Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 15: Line 15:
  
 
{|
 
{|
|valign="top"|{{Ref|S}}||  Rae M. Shortt, "Universally measurable spaces: an invariance theorem and diverse characterizations", ''Fundamenta Mathematicae'' '''121''', 169–176. (1984).    {{MR|0765332}}   {{ZBL|}}
+
|valign="top"|{{Ref|S}}||  Rae M. Shortt, "Universally measurable spaces: an invariance theorem and diverse characterizations", ''Fundamenta Mathematicae'' '''121''' (1984), 169–176.    {{MR|0765332}}   {{ZBL|0573.28018}}
 
|-
 
|-
 
|valign="top"|{{Ref|P}}||  David Pollard, "A user's guide to measure theoretic probability",  Cambridge (2002).    {{MR|1873379}}    {{ZBL|0992.60001}}
 
|valign="top"|{{Ref|P}}||  David Pollard, "A user's guide to measure theoretic probability",  Cambridge (2002).    {{MR|1873379}}    {{ZBL|0992.60001}}

Revision as of 19:48, 16 February 2012

$\newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\M}{\mathcal M} $ The term "universally measurable" may be applied to

Let $(X,\A)$ be a measurable space. A subset $A\subset X$ is called universally measurable, if it is $\mu$-measurable for every finite measure $\mu$ on $(X,\A)$. In other words: $\mu_*(A)=\mu^*(A)$ where $\mu_*,\mu^*$ are the inner and outer measures for $\mu$, that is,

$ \mu_*(A) = \max\{\mu(B):B\in\A,B\subset A\}\,,\quad \mu^*(A) = \min\{\mu(B):B\in\A,B\supset A\}\,.$

References

[S] Rae M. Shortt, "Universally measurable spaces: an invariance theorem and diverse characterizations", Fundamenta Mathematicae 121 (1984), 169–176.   MR0765332   Zbl 0573.28018
[P] David Pollard, "A user's guide to measure theoretic probability", Cambridge (2002).   MR1873379   Zbl 0992.60001
[K] Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995).   MR1321597   Zbl 0819.04002
[BK] Howard Becker and Alexander S. Kechris, "The descriptive set theory of Polish group actions", Cambridge (1996).   MR1425877   Zbl 0949.54052
[D] Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989).   MR0982264   Zbl 0686.60001
[M] George W. Mackey, "Borel structure in groups and their duals", Trans. Amer. Math. Soc. 85 (1957), 134–165.   MR0089999   Zbl 0082.11201
[H] Paul R. Halmos, "Measure theory", v. Nostrand (1950).   MR0033869   Zbl 0040.16802
[R] Walter Rudin, "Principles of mathematical analysis", McGraw-Hill (1953).   MR0055409   Zbl 0052.05301
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21105