Namespaces
Variants
Actions

Difference between revisions of "Darboux net invariants"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 1: Line 1:
The expressions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d0301401.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d0301402.png" />,
+
The expressions $h$ and $k$,
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d0301403.png" /></td> </tr></table>
 
  
 +
$$h=c+ab-\frac{\partial a}{\partial u},\quad k=c+ab-\frac{\partial b}{\partial v},  $$
 
derived from the coefficients of the Laplace equation (in differential line geometry)
 
derived from the coefficients of the Laplace equation (in differential line geometry)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d0301404.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$\frac{\partial^2\theta}{\partial u\partial v} = a\frac{\partial\theta}{\partial u}+b\frac{\partial\theta}{\partial v}+c\theta. \tag*{(*)}$$
 
+
Equation (*) is satisfied by the homogeneous coordinates of a point $x$ describing a [[Conjugate net|conjugate net]] of lines $u$ and $v$ on a two-dimensional surface in an $n$-dimensional projective space, where $n\geq 3$. It was shown by G. Darboux [[#References|[1]]] that the Darboux invariants $h$ and $k$ do not change their value when the normalization of the coordinates of the point $x$ is changed. Special forms of conjugate nets are obtained by imposing some condition on the Darboux invariants.
Equation (*) is satisfied by the homogeneous coordinates of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d0301405.png" /> describing a [[Conjugate net|conjugate net]] of lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d0301406.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d0301407.png" /> on a two-dimensional surface in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d0301408.png" />-dimensional projective space, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d0301409.png" />. It was shown by G. Darboux [[#References|[1]]] that the Darboux invariants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d03014010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d03014011.png" /> do not change their value when the normalization of the coordinates of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d03014012.png" /> is changed. Special forms of conjugate nets are obtained by imposing some condition on the Darboux invariants.
 
  
 
====References====
 
====References====
Line 15: Line 13:
  
 
====Comments====
 
====Comments====
The expressions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d03014013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030140/d03014014.png" /> are more commonly referred to as the Darboux invariants of a net.
+
The expressions $h$ and $k$ are more commonly referred to as the Darboux invariants of a net.

Revision as of 10:13, 4 February 2012

The expressions $h$ and $k$,

$$h=c+ab-\frac{\partial a}{\partial u},\quad k=c+ab-\frac{\partial b}{\partial v}, $$ derived from the coefficients of the Laplace equation (in differential line geometry)

$$\frac{\partial^2\theta}{\partial u\partial v} = a\frac{\partial\theta}{\partial u}+b\frac{\partial\theta}{\partial v}+c\theta. \tag*{(*)}$$ Equation (*) is satisfied by the homogeneous coordinates of a point $x$ describing a conjugate net of lines $u$ and $v$ on a two-dimensional surface in an $n$-dimensional projective space, where $n\geq 3$. It was shown by G. Darboux [1] that the Darboux invariants $h$ and $k$ do not change their value when the normalization of the coordinates of the point $x$ is changed. Special forms of conjugate nets are obtained by imposing some condition on the Darboux invariants.

References

[1] G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 2 , Gauthier-Villars (1889)
[2] G. Tzitzeica, "Géométrie différentielle projective des réseaux" , Gauthier-Villars & Acad. Roumaine (1924)
[3] S.P. Finikov, "Theorie der Kongruenzen" , Akademie Verlag (1959) (Translated from Russian)


Comments

The expressions $h$ and $k$ are more commonly referred to as the Darboux invariants of a net.

How to Cite This Entry:
Darboux net invariants. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Darboux_net_invariants&oldid=20844
This article was adapted from an original article by V.T. Bazylev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article