Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
(experiment)
Line 11: Line 11:
 
\newcommand{\B}{\mathcal B}
 
\newcommand{\B}{\mathcal B}
 
\newcommand{\P}{\mathbf P} $
 
\newcommand{\P}{\mathbf P} $
A [[measurable space|Borel space]] $(X,\A)$ is called '''analytic''' if it is countably separated and isomorphic to a quotient space of a standard Borel space.
+
A [[measurable space|Borel space]] $(X,\A)$ is called '''analytic''' if it is [[Measurable space#countably separated|countably separated]] and isomorphic to a quotient space of a standard Borel space.
 
 
Hardly related to [[User:Boris Tsirelson/sandbox#Entry:routine|this staff]].
 
  
 
====References====
 
====References====

Revision as of 19:39, 24 January 2012

Also: analytic measurable space

Category:Classical measure theory

[ 2010 Mathematics Subject Classification MSN: 28A05,(03E15,54H05) | MSCwiki: 28A05   + 03E15,54H05  ]

$ \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\P}{\mathbf P} $ A Borel space $(X,\A)$ is called analytic if it is countably separated and isomorphic to a quotient space of a standard Borel space.

References

[1] Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995).   MR1321597  Zbl 0819.04002
[2] George W. Mackey, "Borel structure in groups and their duals", Trans. Amer. Math. Soc. 85 (1957), 134–165.   MR0089999   Zbl 0082.11201
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=20463