Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 12: Line 12:
 
\newcommand{\P}{\mathbf P} $
 
\newcommand{\P}{\mathbf P} $
 
A [[measurable space|Borel space]] $(X,\A)$ is called '''analytic''' if it is countably separated and isomorphic to a quotient space of a standard Borel space.
 
A [[measurable space|Borel space]] $(X,\A)$ is called '''analytic''' if it is countably separated and isomorphic to a quotient space of a standard Borel space.
 +
 +
====References====
 +
<table><TR><TD  valign="top">[1]</TD> <TD valign="top">Alexander S.  Kechris, "Classical descriptive set theory", Springer-Verlag (1995) |  {{MR|1321597}} | {{ZBL|0819.04002}}</TD></TR>
 +
<TR><TD  valign="top">[2]</TD> <TD valign="top">Richard M.  Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole  (1989) | {{MR|0982264}} | {{ZBL|0686.60001}}</TD></TR>
 +
<TR><TD  valign="top">[3]</TD><TD valign="top">George W. Mackey,  "Borel structure in groups and their duals", ''Trans. Amer. Math. Soc.''  '''85''' (1957), 134–165 | {{MR|0089999}} |  {{ZBL|0082.11201}}</TD></TR>
 +
</table>

Revision as of 20:49, 23 January 2012

Also: analytic measurable space

Category:Classical measure theory

[ 2010 Mathematics Subject Classification MSN: 28A05,(03E15,54H05) | MSCwiki: 28A05   + 03E15,54H05  ]

$ \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\P}{\mathbf P} $ A Borel space $(X,\A)$ is called analytic if it is countably separated and isomorphic to a quotient space of a standard Borel space.

References

[1] Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995) | MR1321597 | Zbl 0819.04002
[2] Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989) | MR0982264 | Zbl 0686.60001
[3]George W. Mackey, "Borel structure in groups and their duals", Trans. Amer. Math. Soc. 85 (1957), 134–165 | MR0089999 | Zbl 0082.11201
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=20442