Difference between revisions of "User:Boris Tsirelson/sandbox1"
From Encyclopedia of Mathematics
Line 12: | Line 12: | ||
\newcommand{\P}{\mathbf P} $ | \newcommand{\P}{\mathbf P} $ | ||
A [[measurable space|Borel space]] $(X,\A)$ is called '''analytic''' if it is countably separated and isomorphic to a quotient space of a standard Borel space. | A [[measurable space|Borel space]] $(X,\A)$ is called '''analytic''' if it is countably separated and isomorphic to a quotient space of a standard Borel space. | ||
+ | |||
+ | ====References==== | ||
+ | <table><TR><TD valign="top">[1]</TD> <TD valign="top">Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995) | {{MR|1321597}} | {{ZBL|0819.04002}}</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top">Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989) | {{MR|0982264}} | {{ZBL|0686.60001}}</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD><TD valign="top">George W. Mackey, "Borel structure in groups and their duals", ''Trans. Amer. Math. Soc.'' '''85''' (1957), 134–165 | {{MR|0089999}} | {{ZBL|0082.11201}}</TD></TR> | ||
+ | </table> |
Revision as of 20:49, 23 January 2012
Also: analytic measurable space
Category:Classical measure theory
[ 2010 Mathematics Subject Classification MSN: 28A05,(03E15,54H05) | MSCwiki: 28A05 + 03E15,54H05 ]
$ \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\P}{\mathbf P} $ A Borel space $(X,\A)$ is called analytic if it is countably separated and isomorphic to a quotient space of a standard Borel space.
References
[1] | Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995) | MR1321597 | Zbl 0819.04002 |
[2] | Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989) | MR0982264 | Zbl 0686.60001 |
[3] | George W. Mackey, "Borel structure in groups and their duals", Trans. Amer. Math. Soc. 85 (1957), 134–165 | MR0089999 | Zbl 0082.11201 |
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=20442
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=20442