Difference between revisions of "Measurable space"
From Encyclopedia of Mathematics
(link) |
(→References: MR) |
||
Line 14: | Line 14: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top">Terence Tao, "An introduction to measure theory", AMS (2011)</TD></TR> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top">Terence Tao, "An introduction to measure theory", AMS (2011) {{User:Boris Tsirelson/MR|2827917}}</TD></TR> |
− | <TR><TD valign="top">[2]</TD> <TD valign="top">David Pollard, "A user's guide to measure theoretic probability", Cambridge (2002)</TD></TR> | + | <TR><TD valign="top">[2]</TD> <TD valign="top">David Pollard, "A user's guide to measure theoretic probability", Cambridge (2002) {{User:Boris Tsirelson/MR|1873379}}</TD></TR> |
− | <TR><TD valign="top">[3]</TD> <TD valign="top">Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989)</TD></TR> | + | <TR><TD valign="top">[3]</TD> <TD valign="top">Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989) {{User:Boris Tsirelson/MR|0982264}}</TD></TR> |
− | <TR><TD valign="top">[4]</TD> <TD valign="top">Paul R. Halmos, "Measure theory", v. Nostrand (1950)</TD></TR> | + | <TR><TD valign="top">[4]</TD> <TD valign="top">Paul R. Halmos, "Measure theory", v. Nostrand (1950) {{User:Boris Tsirelson/MR|0033869}}</TD></TR> |
− | <TR><TD valign="top">[5]</TD> <TD valign="top">Walter Rudin, "Principles of mathematical analysis", McGraw-Hill (1953)</TD></TR> | + | <TR><TD valign="top">[5]</TD> <TD valign="top">Walter Rudin, "Principles of mathematical analysis", McGraw-Hill (1953) {{User:Boris Tsirelson/MR|0055409}}</TD></TR> |
</table> | </table> |
Revision as of 20:34, 20 December 2011
$ \newcommand{\R}{\mathbb R} \newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\P}{\mathbf P} $
A set with a distinguished σ-algebra of subsets (called measurable). More formally: a pair $(X,\A)$ consisting of a set $X$ and a σ-algebra $\A$ of subsets of $X$.
Examples: $\R^n$ with the Borel σ-algebra; $\R^n$ with the Lebesgue σ-algebra.
Older terminology
Weaker assumptions on $\A$ were usual in the past. For example, according to [4], $\A$ need not contain the whole $X$, it is a σ-ring, not necessarily a σ-algebra. According to [5], a measurable space is not a pair $(X,\A)$ but a measure space $(X,\A,\mu)$ such that $X\in\A$ (and again, $\A$ is generally a σ-ring).
References
[1] | Terence Tao, "An introduction to measure theory", AMS (2011) User:Boris Tsirelson/MR |
[2] | David Pollard, "A user's guide to measure theoretic probability", Cambridge (2002) User:Boris Tsirelson/MR |
[3] | Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989) User:Boris Tsirelson/MR |
[4] | Paul R. Halmos, "Measure theory", v. Nostrand (1950) User:Boris Tsirelson/MR |
[5] | Walter Rudin, "Principles of mathematical analysis", McGraw-Hill (1953) User:Boris Tsirelson/MR |
How to Cite This Entry:
Measurable space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Measurable_space&oldid=19861
Measurable space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Measurable_space&oldid=19861
This article was adapted from an original article by V.V. Sazonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article