Difference between revisions of "Linear function"
Ulf Rehmann (talk | contribs) m |
Ulf Rehmann (talk | contribs) |
||
Line 1: | Line 1: | ||
− | A function of the form | + | A function of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592301.png" />. The main property of a linear function is: The increment of the function is proportional to the increment of the argument. Graphically a linear function is represented by a straight line. |
− | The increment of the function is proportional to the increment of the | ||
− | argument. Graphically a linear function is represented by a straight | ||
− | line. | ||
− | A linear function in | + | A linear function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592302.png" /> variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592303.png" /> is a function of the form |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592304.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | The term "linear function" , or, more precisely, homogeneous linear | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592305.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592306.png" /> are certain fixed numbers. The domain of definition of a linear function is the whole <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592307.png" />-dimensional space of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592308.png" />, real or complex. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592309.png" />, the linear function is called a homogeneous, or linear, form. |
− | function, is often used for a linear mapping of a vector space | + | |
− | over a field | + | If all variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923010.png" /> and coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923011.png" /> are real (complex) numbers, then the graph of the linear function in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923012.png" />-dimensional (complex) space of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923013.png" /> is the (complex) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923014.png" />-dimensional hyperplane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923015.png" />, in particular, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923016.png" /> it is a straight line in the plane (respectively, a complex plane in two-dimensional complex space). |
− | for any elements | + | |
− | + | The term "linear function" , or, more precisely, homogeneous linear function, is often used for a linear mapping of a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923017.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923018.png" /> into this field, that is, for a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923019.png" /> such that for any elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923020.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923021.png" />, | |
− | and in this case instead of | + | |
− | the term "linear function" one also uses the terms linear functional | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923022.png" /></td> </tr></table> |
− | and linear form. | + | |
+ | and in this case instead of the term "linear function" one also uses the terms linear functional and linear form. |
Revision as of 21:21, 6 December 2011
A function of the form . The main property of a linear function is: The increment of the function is proportional to the increment of the argument. Graphically a linear function is represented by a straight line.
A linear function in variables is a function of the form
where and are certain fixed numbers. The domain of definition of a linear function is the whole -dimensional space of the variables , real or complex. If , the linear function is called a homogeneous, or linear, form.
If all variables and coefficients are real (complex) numbers, then the graph of the linear function in the -dimensional (complex) space of the variables is the (complex) -dimensional hyperplane , in particular, for it is a straight line in the plane (respectively, a complex plane in two-dimensional complex space).
The term "linear function" , or, more precisely, homogeneous linear function, is often used for a linear mapping of a vector space over a field into this field, that is, for a mapping such that for any elements and any ,
and in this case instead of the term "linear function" one also uses the terms linear functional and linear form.
Linear function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_function&oldid=19728