|
|
Line 1: |
Line 1: |
− | A measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920501.png" /> on the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920502.png" /> of adèles (cf. [[Adèle|Adèle]]) of a connected [[Linear algebraic group|linear algebraic group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920503.png" /> defined over a global field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920504.png" />. This measure is constructed as follows: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920505.png" /> be a non-zero differential form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920506.png" /> of maximum degree which is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920507.png" />. For a valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920508.png" /> in the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920509.png" /> of equivalence classes of valuations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205010.png" />, one denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205011.png" /> the Haar measure on the locally compact group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205012.png" /> of points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205013.png" /> over the completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205014.png" />, obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205015.png" /> (see [[#References|[1]]] and [[#References|[2]]]). If the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205016.png" /> taken over all non-Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205018.png" /> is the group of integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205019.png" />-adic points, is absolutely convergent (which is always the case for semi-simple and unipotent groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205020.png" />), then one puts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205021.png" />. (Otherwise, to define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205022.png" /> in some non-canonical way, one introduces a system of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205023.png" />, called convergence factors, such that the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205024.png" /> is absolutely convergent; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205025.png" />, see [[#References|[1]]], [[#References|[3]]].) The measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205026.png" /> thus obtained does not depend on the initial choice of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205027.png" />, and is the canonical Haar measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205028.png" />. This allows one to speak about the volume of homogeneous spaces connected with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205029.png" /> (see [[Tamagawa number|Tamagawa number]]). | + | A measure $\tau$ on the group $G_A$ of adèles (cf. [[Adèle|Adèle]]) |
| + | of a connected [[Linear algebraic group|linear algebraic group]] $G$ |
| + | defined over a global field $K$. This measure is constructed as |
| + | follows: Let $\omega$ be a non-zero differential form on $G$ of maximum |
| + | degree which is defined over $K$. For a valuation $\nu$ in the set $V$ |
| + | of equivalence classes of valuations of $K$, one denotes by $\omega_\nu$ the |
| + | Haar measure on the locally compact group $G_{K_v}$ of points of $G$ over |
| + | the completion $K_\nu$, obtained from $\omega$ (see [[#References|[1]]] and |
| + | [[#References|[2]]]). If the product $\prod\omega_\nu(G_{O_\nu})$ taken over all |
| + | non-Archimedean $\nu$, where $G_{O_\nu}$ is the group of integral $\nu$-adic |
| + | points, is absolutely convergent (which is always the case for |
| + | semi-simple and unipotent groups $G$), then one puts $\tau=\prod_{\nu\in V} \omega_\nu$. (Otherwise, |
| + | to define $\tau$ in some non-canonical way, one introduces a system of |
| + | numbers $(\lambda_\nu)_{\nu\in V}$, called convergence factors, such that the product $\prod_{\nu\in V} \lambda_\nu \omega_\nu (G_{O_\nu})$ is |
| + | absolutely convergent; then $\tau = \prod_{\nu\in V} \lambda_\nu \omega_\nu$, see [[#References|[1]]], |
| + | [[#References|[3]]].) The measure $\tau$ thus obtained does not depend on |
| + | the initial choice of the form $\omega$, and is the canonical Haar measure |
| + | on $G_A$. This allows one to speak about the volume of homogeneous |
| + | spaces connected with $G_A$ (see [[Tamagawa number|Tamagawa number]]). |
| | | |
| ====References==== | | ====References==== |
A measure $\tau$ on the group $G_A$ of adèles (cf. Adèle)
of a connected linear algebraic group $G$
defined over a global field $K$. This measure is constructed as
follows: Let $\omega$ be a non-zero differential form on $G$ of maximum
degree which is defined over $K$. For a valuation $\nu$ in the set $V$
of equivalence classes of valuations of $K$, one denotes by $\omega_\nu$ the
Haar measure on the locally compact group $G_{K_v}$ of points of $G$ over
the completion $K_\nu$, obtained from $\omega$ (see [1] and
[2]). If the product $\prod\omega_\nu(G_{O_\nu})$ taken over all
non-Archimedean $\nu$, where $G_{O_\nu}$ is the group of integral $\nu$-adic
points, is absolutely convergent (which is always the case for
semi-simple and unipotent groups $G$), then one puts $\tau=\prod_{\nu\in V} \omega_\nu$. (Otherwise,
to define $\tau$ in some non-canonical way, one introduces a system of
numbers $(\lambda_\nu)_{\nu\in V}$, called convergence factors, such that the product $\prod_{\nu\in V} \lambda_\nu \omega_\nu (G_{O_\nu})$ is
absolutely convergent; then $\tau = \prod_{\nu\in V} \lambda_\nu \omega_\nu$, see [1],
[3].) The measure $\tau$ thus obtained does not depend on
the initial choice of the form $\omega$, and is the canonical Haar measure
on $G_A$. This allows one to speak about the volume of homogeneous
spaces connected with $G_A$ (see Tamagawa number).
References
[1] | A. Weil, "Sur certaines groupes d'opérateurs unitaires" Acta Math. , 111 (1964) pp. 143–211 |
[2] | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986) |
[3] | T. Ono, "On the Tamagawa number of algebraic tori" Ann. of Math. , 78 : 1 (1963) pp. 47–73 |
References
[a1] | A. Weil, "Adèles and algebraic groups" , Birkhäuser (1982) |