Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/67"
Line 442: | Line 442: | ||
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022043.png ; $g : X \rightarrow C$ ; confidence 0.318 | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022043.png ; $g : X \rightarrow C$ ; confidence 0.318 | ||
− | 222. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013040.png ; $c _ { n | + | 222. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013040.png ; $c _ { n , i }$ ; confidence 0.318 |
223. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301307.png ; $\left[ \partial _ { r r } + \frac { 2 } { r } \partial _ { r } + \frac { 1 } { r ^ { 2 } } \partial _ { \theta \theta } + \frac { \operatorname { ctan } \theta } { r ^ { 2 } } \partial _ { \theta } + \frac { 1 } { r ^ { 2 } \operatorname { sin } ^ { 2 } \theta } \partial _ { \varphi \varphi } \right] H = 0$ ; confidence 0.318 | 223. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301307.png ; $\left[ \partial _ { r r } + \frac { 2 } { r } \partial _ { r } + \frac { 1 } { r ^ { 2 } } \partial _ { \theta \theta } + \frac { \operatorname { ctan } \theta } { r ^ { 2 } } \partial _ { \theta } + \frac { 1 } { r ^ { 2 } \operatorname { sin } ^ { 2 } \theta } \partial _ { \varphi \varphi } \right] H = 0$ ; confidence 0.318 |
Revision as of 15:25, 22 June 2020
List
1. ; $p _ { m } ( t , x ; \tau , \xi ) = 0$ ; confidence 0.334
2. ; $\zeta _ { G } ( z ) = \sum _ { n = 1 } ^ { \infty } G ( n ) n ^ { - z } = \sum _ { a \in G } | a | ^ { - z } =$ ; confidence 0.334
3. ; $D \in \operatorname{WC} ( A , k )$ ; confidence 0.334
4. ; $L ( \theta | Y _ { \text{obs} } ) = \int L ( \theta | Y _ { \text{com} } ) d Y_{\text{mis}}$ ; confidence 0.334
5. ; $a R b \subseteq P \Rightarrow a \in P \text { or } b \in P,$ ; confidence 0.334
6. ; $a , b \in P$ ; confidence 0.334
7. ; $H _ { n } = \sum _ { i = 1 } ^ { n } p _ { i } ^ { 2 } / 2 + \sum _ { 1 = i < j } ^ { n } \Phi ( q _ { i } - q _ { j } )$ ; confidence 0.334
8. ; $a _ { 0 } x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n } = 0.$ ; confidence 0.333
9. ; $\mathbf{l}_{1}$ ; confidence 0.333
10. ; $D _ { j } = \partial / \partial x_ { j } $ ; confidence 0.333
11. ; $\vdash _ { \tau }$ ; confidence 0.333
12. ; $x _ { n } \rightarrow x$ ; confidence 0.333
13. ; $G _ { \delta }$ ; confidence 0.333
14. ; $c a = q a c ,\; b a = q a b ,\; d b = q b d ,\; d c = q c b,$ ; confidence 0.333
15. ; $\mathbf{R} ^ { l }$ ; confidence 0.333
16. ; $\operatorname { inf } _ { z _ { j } \in U } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } } { M _ { d } ( k ) }$ ; confidence 0.333
17. ; $\Re ( C )$ ; confidence 0.333
18. ; $\delta _ { k } ( X \bigotimes X _ { 1 } \bigwedge \ldots \bigwedge X _ { k } ) =$ ; confidence 0.333
19. ; $K _ { s } [ \overline { \sigma } ] \cap K _ { \text{tot }S }$ ; confidence 0.333
20. ; $a = ( a _ { 1 } , \dots , a _ { k } )$ ; confidence 0.333
21. ; $S _ { P }$ ; confidence 0.333
22. ; $u \in \mathbf{Z} _ { p } ^ { \times }$ ; confidence 0.333
23. ; $\models_{\tau} $ ; confidence 0.333
24. ; $M _ { n } = [ m _ { i - j} ] _ { i ,\, j = 0 } ^ { n }$ ; confidence 0.333
25. ; $c _ { 1 } \lambda ^ { 2 }$ ; confidence 0.333
26. ; $B _ { \alpha } ( \underline{x} ^ { * } ) = \{ \underline{x} \in \mathbf{R} ^ { n } : \xi _ { \underline{x} ^ { * } } ( \underline{x} ) \geq \alpha \}$ ; confidence 0.332
27. ; $F _ { m } F _ { n }$ ; confidence 0.332
28. ; $\mathbf{Z} G \simeq \mathbf{Z} H \Rightarrow G \simeq H.$ ; confidence 0.332
29. ; $( L _ { + } ^ { \prime } , L ^ { \prime }_{ -} , L _ { 0 } ^ { \prime } )$ ; confidence 0.332
30. ; $c _ { 1 } \stackrel { \phi _ { 1 } } { \rightarrow } \ldots \stackrel { \phi _ { n - 1 } } { \rightarrow } c _ { n },$ ; confidence 0.332
31. ; $| u | _ { p , m , T } = \sum _ { | \alpha | = m } \| D ^ { \alpha } u \| _ { p , T }.$ ; confidence 0.332
32. ; $\lambda ( X ) = \sum _ { i = 1 } ^ { s } \operatorname { deg } ( f _ { i } ( T ) ^ { l _ { i } } ) , \ \mu ( X ) = \sum _ { j = 1 } ^ { t } m _ { j }.$ ; confidence 0.332
33. ; $\mathcal{FT} \operatorname {op}$ ; confidence 0.332
34. ; $E ^ { n + 1}$ ; confidence 0.332
35. ; $\mathbf{u} = ( u _ { 1 } , \dots , u _ { m } ) , \mathbf{v} = ( v _ { 1 } , \dots , v _ { m } ) \in \mathbf{V}$ ; confidence 0.332
36. ; $e ^ { s } ( T , V ) = e \Rightarrow e ( T , V ) = e \Rightarrow e ^ { w } ( T , V ) = e.$ ; confidence 0.332
37. ; $a _ { i i } \leq 0$ ; confidence 0.332
38. ; $( \pi ( M ) , \pi_{*} g )$ ; confidence 0.332
39. ; $n = 1,2 , \dots,$ ; confidence 0.331
40. ; $\sum _ { n \leq x } a ( n ) = A _ { 1 } x + O ( \sqrt { x } ) \quad \text { as } x \rightarrow \infty,$ ; confidence 0.331
41. ; $e \leq c$ ; confidence 0.331
42. ; $x _ { 1 } \in X _ { 1 }$ ; confidence 0.331
43. ; $H = \bigoplus _ { n } \mathcal{H} _ { n }.$ ; confidence 0.331
44. ; $g ( X , Y ) = g (J X , J Y ) + \alpha ( X ) \alpha ( Y )$ ; confidence 0.331
45. ; $( u , v ) \mapsto u _ { n } v$ ; confidence 0.331
46. ; $\mu _ { \chi } \in \mathbf{Z} _ { \geq 0 }$ ; confidence 0.331
47. ; $\operatorname { Aut } ( G , S ) = \{ \sigma \in \operatorname { Aut } ( G ) : S ^ { \sigma } = S \}$ ; confidence 0.331
48. ; $g$ ; confidence 0.331
49. ; $\operatorname { lim } _ { n \rightarrow \infty } \| \alpha _ { n } + \beta _ { n } \| = 0$ ; confidence 0.331
50. ; $\operatorname { max } _ { 1 \leq k \leq 4 \left( \begin{array} { c } { n + r - 1 } \\ { r } \end{array} \right)} | g ( k ) | \geq | g ( 0 ) | \left( 2 e \left( \begin{array} { c } { n + r - 1 } \\ { r } \end{array} \right) \right) ^ { - 1 / r }.$ ; confidence 0.330
51. ; $T , \psi \vdash_{\text{S}5}$ ; confidence 0.330
52. ; $J _ { m }$ ; confidence 0.330
53. ; $.\mathcal{H} _ { n _ { 1 } } \left( \int _ { 0 } ^ { 1 } e _ { 1 } ( t ) d B ( t ) \right) \mathcal{H} _ { n _ { 2 } } \left( \int _ { 0 } ^ { 1 } e _ { 2 } ( t ) d B ( t ) \right) \ldots ,\; n _ { j } \geq 0 ,\; n _ { 1 } + n _ { 2 } + \ldots = n ,\; n \geq 0,$ ; confidence 0.330
54. ; $( f , g ) = \operatorname { lim } _ { \eta \rightarrow \rho - 0 } \int _ { | z | = \eta } f ( z ) \overline { g ( z ) } d s.$ ; confidence 0.330
55. ; $\varphi_{ * } : K _ { 0 } ^ { \text{alg} } ( A ) \rightarrow \mathbf{C}$ ; confidence 0.330
56. ; $\psi _ { \text{w} } = \sum \lambda _ { i } \int _ { \mathbf{R} ^ { 3 N } } e ^ { i p z / \hbar } \overline { \psi } _ { i } \left( x + \frac { z } { 2 } \right) \psi _ { i } \left( x - \frac { z } { 2 } \right) d z.$ ; confidence 0.330
57. ; $B \Gamma$ ; confidence 0.330
58. ; $\mathbf{a} \cdot \mathbf{x} = c$ ; confidence 0.330
59. ; $f \in L _ { 2 }$ ; confidence 0.330
60. ; $\{ E , \mathcal{K} , \langle \cdot , \cdot \rangle \}$ ; confidence 0.330
61. ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
62. ; $\leftrightarrow$ ; confidence 0.330
63. ; $H _ { p } ^ { r } ( \Omega )$ ; confidence 0.330
64. ; $\operatorname { lnt } C ^ { * }$ ; confidence 0.330
65. ; $R H = ( \oplus _ { b ^{ G} = B } b ) \oplus (\oplus_{ b ^{ G} \neq B } b )$ ; confidence 0.330
66. ; $\sigma _ { \text{Te} } ( ( L _ { A } , R _ { B } ) , \mathcal{L} ( \mathcal{H} ) ) =$ ; confidence 0.330
67. ; $\alpha : G ( K _ { \operatorname { tot } S } ) \rightarrow G$ ; confidence 0.330
68. ; $N _ { 1 } = \left\| \begin{array} { c c c c c } { L ( d _ { q + 1 } ) } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { . } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { L ( d _ { n } ) } \end{array} \right\|,$ ; confidence 0.330
69. ; $\psi ( \underline{x} )$ ; confidence 0.330
70. ; $\mathcal{T} _ { \text{H}d }$ ; confidence 0.330
71. ; $ \operatorname {ln} ( d w / d Z )$ ; confidence 0.330
72. ; $A = ( a_{i ,\, j} )$ ; confidence 0.330
73. ; $L_{j}$ ; confidence 0.330
74. ; $\tilde { \Phi }$ ; confidence 0.329
75. ; $\mathfrak { m } \cdot H _ { \mathfrak { m } } ^ { i } ( M ) = ( 0 )$ ; confidence 0.329
76. ; $x_{i}$ ; confidence 0.329
77. ; $\Delta \lambda _ { i } ^ { a }$ ; confidence 0.329
78. ; $U _ { n } ^ { ( k ) } ( x ) = x ^ { 1 - n } F _ { n } ^ { ( k ) } ( x ^ { k } ) ,\; n = 1,2 , \ldots .$ ; confidence 0.329
79. ; $\operatorname{HP} ^ { q } ( \mathbf{C} [ \Gamma ] )$ ; confidence 0.329
80. ; $K _ { cr } = K _ { + } - K _ { - }$ ; confidence 0.329
81. ; $U _ { z } \hat { x } ( n ) = z ^ { n } \hat { x } ( n )$ ; confidence 0.329
82. ; $\left( \begin{array} { l } { \mathbf{v} } \\ { \theta } \\ { p } \end{array} \right) = \sum _ { n = 0 } ^ { \infty } \varepsilon ^ { n } \left( \begin{array} { c } { \mathbf{v} _ { n } } \\ { \theta _ { n } } \\ { p _ { n } } \end{array} \right),$ ; confidence 0.329
83. ; $\odot = +$ ; confidence 0.329
84. ; $\mathfrak { D } _ {\text{p} }$ ; confidence 0.329
85. ; $\tilde{x} ( z ) z ^ { n - 1 }$ ; confidence 0.329
86. ; $a _{p}$ ; confidence 0.329
87. ; $\{ \mu _ { n } ( x ) : x = 1,2 , \ldots \}$ ; confidence 0.329
88. ; $b _ { n ,\, n - k} \neq 0$ ; confidence 0.328
89. ; $\operatorname {mod} \Lambda$ ; confidence 0.328
90. ; $\| \phi - f \| _ { L ^{\infty} ( \mathbf{T} )} = \| H _ { \phi } \|$ ; confidence 0.328
91. ; $1 / ( P _ { m ,\, n } - \epsilon )$ ; confidence 0.328
92. ; $r \in \operatorname { sl} _ { 2 } \otimes \operatorname { sl} _ { 2 }$ ; confidence 0.328
93. ; $\mathbf{C}^{m}$ ; confidence 0.328
94. ; $\mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E} \subset \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.327
95. ; $a \in A$ ; confidence 0.327
96. ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { a } ^ { b } f ( x ) d g _ { n } ( x ) = \int _ { a } ^ { b } f ( x ) d g ( x ),$ ; confidence 0.327
97. ; $\overset{\rightharpoonup }{ v }$ ; confidence 0.327
98. ; $d = ( d _ { 1 } , \dots , d _ { n } )$ ; confidence 0.327
99. ; $H ( r _ { 0 } , \theta )$ ; confidence 0.327
100. ; $\hat{y} ( t | t - 1 ) = f ( Z ^ { t - 1 } , t ).$ ; confidence 0.327
101. ; $\zeta_{e}$ ; confidence 0.327
102. ; $\forall x \in P$ ; confidence 0.327
103. ; $L _ { 0 } \sim _ { c } L _ { 0 } ^ { \prime }$ ; confidence 0.327
104. ; $\sum e_{ n}$ ; confidence 0.327
105. ; $P^{1}$ ; confidence 0.327
106. ; $\sigma ( A | _ { ( I - E ( \Delta ) ) \mathcal{K} } ) \subset \overline { ( \mathbf{R} \backslash \Delta ) } \cup \sigma _ { 0 } ( A )$ ; confidence 0.327
107. ; $x _ { i j }( \cdot )$ ; confidence 0.327
108. ; $A _ { \text{w} } ( x , p ) =$ ; confidence 0.327
109. ; $| v | , | w | , | z | \in G$ ; confidence 0.326
110. ; $\operatorname{Mod} ^ { * \text{L}} \mathcal{D} = \mathbf{P} _ { \text{SD} } \operatorname{Mod} ^ { * \text{L}} \mathcal{D}$ ; confidence 0.326
111. ; $\mathbf{Z} / l ^ { n } \mathbf{Z}$ ; confidence 0.326
112. ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } \prod _ { i = 1 } ^ { H } f _ { i } \circ T ^ { i n }$ ; confidence 0.326
113. ; $D _ { n } ( x , 0 ) = x ^ { n }$ ; confidence 0.326
114. ; $\mathfrak { H } _ { + }$ ; confidence 0.326
115. ; $K f : = ( K f ) ( \cdot ) = ( f , K ( x , ) ) = f ( \cdot )$ ; confidence 0.326
116. ; $M _ { r_{j} } ( n + k _ { j } ) \geq 0$ ; confidence 0.326
117. ; $^{ \bigtriangleup } _ { \bigtriangledown } ( G / K )$ ; confidence 0.326
118. ; $o$ ; confidence 0.326
119. ; $e ^ { a }$ ; confidence 0.326
120. ; $| k | ^ { 2 } = k _ { 1 } ^ { 2 } + \ldots + k _ { n } ^ { 2 }$ ; confidence 0.326
121. ; $F ( t ) = ( F _ { 1 } ( t , x _ { 1 } ) , \ldots , F _ { n } ( t , x _ { 1 } , \ldots , x _ { n } ) , \ldots )$ ; confidence 0.326
122. ; $\operatorname{dim} W \geq 6$ ; confidence 0.326
123. ; $S ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.326
124. ; $\Gamma \subset \operatorname{GL} _ { 2 } ( \mathbf{Z} )$ ; confidence 0.325
125. ; $a _ { 0 } , \dots , a _ { n }$ ; confidence 0.325
126. ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n \}$ ; confidence 0.325
127. ; $\mathsf{P} ( A _ { i_{1} } \bigcap \ldots \bigcap A _ { i_{k} } ) = \frac { ( n - k ) ! } { n ! },$ ; confidence 0.325
128. ; $\operatorname{log} | d ( K ) |$ ; confidence 0.325
129. ; $r _ { 2 } ( t , s ) = \prod _ { i = 1 } ^ { N } t _ { i } \wedge s _ { i } - \prod _ { i = 1 } ^ { N } t _ { i } s _ { i } ,$ ; confidence 0.325
130. ; $\phi ( \sigma , \tau ) = \int _ { \mathbf{R} ^ { 3 N } \times \mathbf{R} ^ { 3 N } } e ^ { i ( \sigma x + r \cdot p ) / \hbar } f ( x , p ) d x d p.$ ; confidence 0.325
131. ; $\mathcal{I} _ { \text{nd} } = \{ ( u _{j} )_{ j \in \mathbf{N}}$ ; confidence 0.325
132. ; $\mathbf{B} = g \frac { \mathbf{r} } { r^{3} },$ ; confidence 0.325
133. ; $\mathsf{P} ( X = n ) = p ^ { r } H _ { n + 1 , r } ^ { ( k ) } ( q _ { 1 } , \dots , q _ { k } ),$ ; confidence 0.325
134. ; $\sigma _ { T } ( L _ { a } , \mathcal{B} ) = \sigma _ { T } ( a , \mathcal{H} )$ ; confidence 0.325
135. ; $h ( \psi ^ { i } ) \in C ( \{ h ( \varphi _ { 0 } ^ { i } ) , \ldots , h ( \varphi _ { n _ { i } - 1 } ^ { i } ) \} )$ ; confidence 0.325
136. ; $\lambda _ { 1 } \geq \frac { 4 \pi ^ { 2 } j _ { 0,1 } ^ { 2 } } { L ^ { 2 } },$ ; confidence 0.325
137. ; $H _ { p } ^ { r } ( \Omega ) = H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( \Omega )$ ; confidence 0.325
138. ; $M$ ; confidence 0.325
139. ; $( \partial , \circ )$ ; confidence 0.325
140. ; $A \rightarrow \overline { A } = \operatorname { sp } ( A ) \bigcap S,$ ; confidence 0.324
141. ; $f ^ { c ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \{ \varphi ( x , w ) - f ( x ) \} ( w \in W ),$ ; confidence 0.324
142. ; $\mathbf{c}$ ; confidence 0.324
143. ; $\chi _ { n } ^ { 2 } = X _ { 1 } ^ { 2 } + \ldots + X _ { n } ^ { 2 }$ ; confidence 0.324
144. ; $G _ { n } ( x ) x \approx \mu _ { n } ,\; x = f _{( 1 , n )} , f _{( 2 , n )}, \dots .$ ; confidence 0.324
145. ; $\operatorname { p} \in P _ { L }$ ; confidence 0.324
146. ; $C H ^ { r } ( X \otimes _ { K } K _ { n } )$ ; confidence 0.324
147. ; $\mathbf{TOP}$ ; confidence 0.324
148. ; $y \succsim _{i} x $ ; confidence 0.324
149. ; $\psi \left( a ( z ) \left( \frac { d } { d z } \right) ^ { n } , b ( z ) \left( \frac { d } { d z } \right) ^ { m } \right) =$ ; confidence 0.324
150. ; $c_{j}$ ; confidence 0.323
151. ; $v ^ { * } = \sum _ { k \in P } \lambda _ { k } x ^ { ( k ) } + \sum _ { k \in R } \mu _ { k } \tilde{x} ^ { ( k ) },$ ; confidence 0.323
152. ; $L_{\overline{0}}$ ; confidence 0.323
153. ; $\hat { u } _ { i } ^ { + } = u _ { i } ^ { n } + \frac { \Delta t } { \Delta x } ( f _ { i } ^ { n } - f _ { i + 1 } ^ { n } );$ ; confidence 0.323
154. ; $\| x _ { n } \| _ { \rightarrow } \| x \|$ ; confidence 0.323
155. ; $\aleph_{0}$ ; confidence 0.323
156. ; $N _ { 2 } = \left\| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right\|.$ ; confidence 0.323
157. ; $L \in \operatorname { PSH } ( \mathbf{C} ^ { n } )$ ; confidence 0.323
158. ; $\triangleright$ ; confidence 0.323
159. ; $r _ { j , 1 }$ ; confidence 0.323
160. ; $\times \int _ { \Gamma } f ( \zeta ) \left( \frac { \operatorname { grad } \psi } { ( \operatorname { grad } \psi , \zeta ) } \right) ^ { q } \operatorname {CF} ( \zeta , \operatorname { grad } \psi ),$ ; confidence 0.323
161. ; $( a _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.323
162. ; $A _ { 2 } \in C ^ { p \times m n }$ ; confidence 0.322
163. ; $\underline { v } = - \infty$ ; confidence 0.322
164. ; $B ( \hat { K } ) = M ( G )$ ; confidence 0.322
165. ; $\mathcal{P} _ { E } ^ { \# } ( n )$ ; confidence 0.322
166. ; $\| x \| _ { X } = \operatorname { sup } \left\{ \left| \int _ { \Omega } x x ^ { \prime } d \mu \right| : x ^ { \prime } \in X ^ { \prime } , \| x ^ { \prime } \| _ { X ^ { \prime } } \leq 1 \right\},$ ; confidence 0.322
167. ; $P _ { k }$ ; confidence 0.322
168. ; $D = \liminf _ { n \rightarrow \infty } M ( r _ { 1 } , r _ { 2 } ) ^ { 1 / n } \geq 22.$ ; confidence 0.322
169. ; $\mathbf{D} y _ { n } ^ { * } ( x )$ ; confidence 0.322
170. ; $G ( v , t ) = g _ { t } ( v )$ ; confidence 0.322
171. ; $\Sigma _ { 1 } = \mathbf{X} _ { 4 } ^ { \prime } \Sigma \mathbf{X} _ { 4 }$ ; confidence 0.322
172. ; $S = \{ \zeta : | \zeta _ { j } | = 1 ,\; j = 2 , \dots , n \}$ ; confidence 0.322
173. ; $\{ u_ { i } , v _ { i } \}$ ; confidence 0.322
174. ; $X ^ { 1 }$ ; confidence 0.322
175. ; $[ \xi ^ {a } , \xi ^ { b } ] = 2 \epsilon _ { a b c } \xi ^ { c }$ ; confidence 0.322
176. ; $\tilde{X}$ ; confidence 0.322
177. ; $b_{r}$ ; confidence 0.322
178. ; $\| T \| < \Gamma ( A )$ ; confidence 0.322
179. ; $L _ { \gamma , n } ^ { 1 } \leq L _ { \gamma ,n }$ ; confidence 0.322
180. ; $\mathbf{CP} ^ { 2 }$ ; confidence 0.322
181. ; $ \operatorname { stab}_{G} (m)$ ; confidence 0.322
182. ; $= e ^ { - i \pi / 4 } \sum _ { A < m \leq A + B } | f ^ { \prime } ( x _ { m } ) | ^ { - 1 / 2 } e ^ { 2 \pi i ( f ( x _ { m } ) - m x _ { m } ) } +$ ; confidence 0.321
183. ; $\mathcal{T} ( \underline { \top } ) = \top $ ; confidence 0.321
184. ; $G = \operatorname { Sp } ( 2 n , \mathbf{Q} )$ ; confidence 0.321
185. ; $\Gamma _ { h }$ ; confidence 0.321
186. ; $\mathsf{E} _ { \text{P} _ { p } } ( d ) = f ( p )$ ; confidence 0.321
187. ; $\operatorname {CS} ( A ) = \frac { 1 } { 4 \pi } \int _ { M } \operatorname { Tr } ( A \bigwedge d A + \frac { 2 } { 3 } A \bigwedge A \bigwedge A ) \operatorname { mod } 2 \pi ,$ ; confidence 0.321
188. ; $Y _ { \text{aug} } = \{ ( y _ { i } , q _ { i } ) : i = 1 , \ldots , n \}$ ; confidence 0.321
189. ; $u _ { t } - 6 u u _ { x } + u _ { xxx } = 0.$ ; confidence 0.321
190. ; $q_{Q} : \mathbf{Z} ^ { Q _ { 0 } } \rightarrow \mathbf{Z} $ ; confidence 0.321
191. ; $\operatorname { max } _ { r = m + 1 , \ldots , m + n } | g ( r ) | \geq$ ; confidence 0.321
192. ; $\operatorname { sup } _ { u \in U } | b ( u , v ) | > 0 , \forall v \in V \backslash \{ 0 \} ),$ ; confidence 0.321
193. ; $\operatorname { exp } \left( \sum _ { n \in \mathbf{N} + 1 / 2 } \frac { y _ { n } } { n } x ^ { n } \right) \operatorname { exp } \left( - 2 \sum _ { n \in \mathbf{N} + 1 / 2 } \frac { \partial } { \partial y _ { n } } x ^ { - n } \right),$ ; confidence 0.321
194. ; $\left\{ x _ { s } ^ { ( i ) } : s \leq t ,\, i = 1 , \dots , n \right\}$ ; confidence 0.320
195. ; $H _ { l } ^ { i } = H ^ { i } ( X , \mathbf{Q} ) \otimes \mathbf{Q} _ { l }$ ; confidence 0.320
196. ; $\overline{c} _ { n } b _ { n } = b _ { n + 2 } + 2 ( n + 1 ) a _ { n + 1 }$ ; confidence 0.320
197. ; $\operatorname {min}_{ \mu \neq \nu} | z _ { \mu } - z _ { \nu } | \geq \delta \operatorname { max } _ { j } | z _ { j }|$ ; confidence 0.320
198. ; $\langle a , b | a = [ a ^ { p } , b ^ { q } ] , b = [ a ^ { r } , b ^ { s } ] \rangle$ ; confidence 0.320
199. ; $\varphi ( v_ { 0 } , \dots , v _ { n - 1} )$ ; confidence 0.320
200. ; $T _ { n } = T _ { n } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.320
201. ; $\chi_{ ( 1 ^ { n } )}$ ; confidence 0.320
202. ; $c _ { 1 } ( S ) ^ { 2 } \leq 3 c_ { 2 } ( S )$ ; confidence 0.319
203. ; $\mathcal{K} _ { n_{\alpha} }$ ; confidence 0.319
204. ; $\mathsf{P} ( A _ { 1 } \cap \ldots \cap A _ { n } ) = 1 - \mathsf{P} ( \overline { A } _ { 1 } \cup \ldots \cup \overline { A } _ { n } )$ ; confidence 0.319
205. ; $\vdash_{\mathcal{D}} \varphi$ ; confidence 0.319
206. ; $s _ { 1 } , s_{ 2} , \ldots$ ; confidence 0.319
207. ; $\operatorname{Id}$ ; confidence 0.319
208. ; $\ldots \rightarrow D _ { 2 } \stackrel { \delta _ { 2 } } { \rightarrow } D _ { 1 } \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } M \rightarrow 0.$ ; confidence 0.319
209. ; $p _ { \lambda _ { i } } = x _ { 1 } ^ { \lambda _ { i } } + \ldots + x _ { l } ^ { \lambda _ { i } }$ ; confidence 0.319
210. ; $\mathcal{A} ( \sigma ) = \int _ { M } L ( \sigma ^ { 1 } ( x ) ) d x = \int _ { M } L ( x , y ( x ) , y ^ { \prime } ( x ) ) d x.$ ; confidence 0.319
211. ; $Z \times_{ S } Y$ ; confidence 0.319
212. ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) \sigma \wedge ( \overline { \partial } \sigma ) ^ { n - 1 } } { ( 1 + \langle z , \sigma \rangle ) ^ { n } } ,\, z \in E.$ ; confidence 0.319
213. ; $\operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A )$ ; confidence 0.319
214. ; $( a \bigwedge b = 0 ) \& ( c \succeq 0 ) \Rightarrow ( c a \bigwedge b = 0 ) \& ( a c \bigwedge b = 0 ).$ ; confidence 0.318
215. ; $f _ { m } ,\, f \in A ( U )$ ; confidence 0.318
216. ; $H _ { n } ^ { ( k ) } ( \mathbf{x} ) = U _ { n } ^ { ( k ) } ( \mathbf{x} )$ ; confidence 0.318
217. ; $\mathbf{Q}[ z _ { 1 } , \dots , z _ { n } ]$ ; confidence 0.318
218. ; $\mathcal{D} _ { g , n }$ ; confidence 0.318
219. ; $\operatorname{HF} _ { * } ^ { \text{symp} } ( M , \text { id } ) \cong \operatorname{QH} ^ { * } ( M )$ ; confidence 0.318
220. ; $R = R _ { c } + \varepsilon ^ { 2 }$ ; confidence 0.318
221. ; $g : X \rightarrow C$ ; confidence 0.318
222. ; $c _ { n , i }$ ; confidence 0.318
223. ; $\left[ \partial _ { r r } + \frac { 2 } { r } \partial _ { r } + \frac { 1 } { r ^ { 2 } } \partial _ { \theta \theta } + \frac { \operatorname { ctan } \theta } { r ^ { 2 } } \partial _ { \theta } + \frac { 1 } { r ^ { 2 } \operatorname { sin } ^ { 2 } \theta } \partial _ { \varphi \varphi } \right] H = 0$ ; confidence 0.318
224. ; $S _ { n } = K$ ; confidence 0.318
225. ; $T _ { A } M$ ; confidence 0.318
226. ; $R _ { c } ( p ; k , n ) = p q ^ { n - 1 } \sum _ { j = 1 } ^ { k } j F _ { n - j + 1 } ^ { ( k ) } ( \frac { p } { q } ),$ ; confidence 0.318
227. ; $\hat{\gamma} = \gamma$ ; confidence 0.318
228. ; $( x \vee y ) ^ { - 1 } = x ^ { - 1 } \bigwedge y ^ { - 1 }.$ ; confidence 0.318
229. ; $J _ { n / 2}$ ; confidence 0.318
230. ; $F ( u ) = u ( x ) - q _{I} ( x )$ ; confidence 0.318
231. ; $y _ { j } = \sum _ { i = j } ^ { k } p _ { j } \ldots p _ { i - 1 } m _ { i } r ^ { j - i - 1 }.$ ; confidence 0.318
232. ; $\varphi _ { + } \in \mathfrak{E}$ ; confidence 0.318
233. ; $\pi _ { n } ( K )$ ; confidence 0.317
234. ; $\rho : W \rightarrow O _ { 2^{n} } ( \mathbf{R} )$ ; confidence 0.317
235. ; $+ \operatorname { dim } _ { \Phi } \{ L ( x , y ) \} _ { \operatorname { span } } =$ ; confidence 0.317
236. ; $k \langle x , y \rangle$ ; confidence 0.317
237. ; $gi_{Q}$ ; confidence 0.317
238. ; $\operatorname { lim } _ { n \rightarrow \infty } m ( E _ { n } ) = 0$ ; confidence 0.317
239. ; $M _ { 3 } = \operatorname { min } _ { z _ { j } } \operatorname { max } _ { k = 3 , \ldots , n + 2 } | s _ { k } | < \frac { 1 } { 1.473 ^ { n } } \text { for } n > n _ { 0 }.$ ; confidence 0.317
240. ; $\varepsilon _ { t }$ ; confidence 0.317
241. ; $\zeta_{ K } ( s _ { 0 } ) \neq 0$ ; confidence 0.317
242. ; $S ^ { * } \left( \frac { a } { q } \right) = \sum _ { h } e \left( \mathbf{x} ( h ) \mathbf{y} \left( \frac { a } { q } \right) \right) \gamma ( h ) \delta \left( \frac { a } { q } \right)$ ; confidence 0.317
243. ; $\operatorname { deg } f _ { i } \leq c _ { n } d ^ { n }$ ; confidence 0.317
244. ; $\mu _ { a } ^ { 0 }$ ; confidence 0.317
245. ; $\operatorname { exp } \left[ - \frac { 1 } { 2 } \lambda _ { d } \frac { t } { f ( t ) ^ { 2 / d } } \right]$ ; confidence 0.317
246. ; $z \in \hat { K }$ ; confidence 0.316
247. ; $B ( g ) \in \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.316
248. ; $H _ { \mathfrak{M} } ^ { i } ( R )$ ; confidence 0.316
249. ; $\{ \alpha , \alpha ^ { d } , \ldots , \alpha ^ { d ^ { n } } , \ldots \}$ ; confidence 0.316
250. ; $k _ { t } ^ { * } f$ ; confidence 0.316
251. ; $r _{S} = \frac { \sum _ { i = 1 } ^ { n } ( R _ { i } - \overline { R } ) ( S _ { i } - \overline{S} ) } { \sqrt { \sum _ { i = 1 } ^ { n } ( R _ { i } - \overline { R } ) ^ { 2 }\cdot \sum _ { i = 1 } ^ { n } ( S _ { i } - \overline { S } ) ^ { 2 } } } =$ ; confidence 0.316
252. ; $\left\{ \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0, } \\ { \frac { \partial \mathbf{v} _ { 0 } } { \partial t } + [ \nabla \mathbf{v} _ { 0 } ] \mathbf{v} _ { 0 } = \frac { 1 } { Re } \Delta \mathbf{v} _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } \mathbf{b}. } \end{array} \right.$ ; confidence 0.316
253. ; $\& ^ { * } , \vee ^ {* } , \supset ^ { * } , \neg ^ { * }$ ; confidence 0.316
254. ; $\int _ { A _ { i } } d \Omega _ { n } = 0$ ; confidence 0.316
255. ; $A ( \hat { K } ) = L _ { 1 } ( G )$ ; confidence 0.316
256. ; $\mathbf{a} ^ { i }$ ; confidence 0.315
257. ; $\frac { U _ { j } ^ { n + 1 } - U _ { j } ^ { n } } { k } = \delta ^ { 2 } \left( \frac { U _ { j } ^ { n + 1 } + U _ { j } ^ { n } } { 2 } \right),$ ; confidence 0.315
258. ; $\rightarrow \mathcal{O} _ { X } ( m q ( H + \lambda ( K _ { X } + B ) ) )$ ; confidence 0.315
259. ; $= \| r x + s y + t z \| = F ( F ( r , s ) , t )$ ; confidence 0.315
260. ; $\| f \cdot g \| \leq \| f \| \cdot \| g \|$ ; confidence 0.315
261. ; $R : = k [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.315
262. ; $N _{*}$ ; confidence 0.315
263. ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l + 1 }} { \tau _ { l } } ,\; r ^ { ( l ) } = - 2 i \frac { \tau _ { l - 1} } { \tau _ { l } }.$ ; confidence 0.315
264. ; $w _ { 1 } , \dots , w _ { n } \in \mathbf{D}$ ; confidence 0.315
265. ; $\overline{x} = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x_{j}$ ; confidence 0.315
266. ; $\nabla _ { i g j k } = \gamma _ { i g j k }$ ; confidence 0.315
267. ; $k \bigoplus \infty ( L ) = \infty ( L ) \bigoplus k = \infty ( L \bigoplus k ),$ ; confidence 0.315
268. ; $\leq \operatorname { max } \{ \mu ( M , P ) + K\operatorname {dim} ( R / P ) : P \in j - \operatorname { Spec } ( R ) \}.$ ; confidence 0.315
269. ; $\left\{ \begin{array} { l } { \frac { d } { d t } \left( \begin{array} { c } { u } \\ { v } \end{array} \right) + \left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right) \left( \begin{array} { c } { u } \\ { v } \end{array} \right) = \left( \begin{array} { c } { 0 } \\ { f ( t ) } \end{array} \right) , \quad t \in [ 0 , T ], } \\ { \left( \begin{array} { c } { u ( 0 ) } \\ { v ( 0 ) } \end{array} \right) = \left( \begin{array} { c } { u _ { 0 } } \\ { u _ { 1 } } \end{array} \right), } \end{array} \right.$ ; confidence 0.315
270. ; $x _ { r }$ ; confidence 0.315
271. ; $\times a ^ { * } ( x _ { 1 } ) \ldots a ^ { * } ( x _ { n } ) a ( y _ { 1 } ) \ldots a ( y _ { m } ) \prod _ { i = 1 } ^ { n } d \sigma ( x _ { i } ) \prod _ { j = 1 } ^ { m } d \sigma ( y _ { j } ),$ ; confidence 0.315
272. ; $T_{E, \text{id}} H _ { E } ^ { * } X = H ^ { * } B E \otimes _ { \text{F}_ p } H ^ { * } X ^ { E }$ ; confidence 0.315
273. ; $( P _ { b } ) _ { b \in B }$ ; confidence 0.315
274. ; $\models _ { \mathcal{S} _ { P } }$ ; confidence 0.315
275. ; $ k_{j }$ ; confidence 0.314
276. ; $S _ { \Lambda } = e ^ { \Lambda + \rho } \sum _ { s } \epsilon ( s ) e ^ { s }$ ; confidence 0.314
277. ; $\dot { x } = D _ { x _ { ss } } + G ( x , \alpha ),$ ; confidence 0.314
278. ; $K _ { \text{p} } = K _ { s } \cap \hat { K } _ { \text{p} }$ ; confidence 0.314
279. ; $u \in \operatorname { PSH } ( \mathbf{C} ^ { n } )$ ; confidence 0.314
280. ; $\in$ ; confidence 0.314
281. ; $3 ^ { - k }$ ; confidence 0.314
282. ; $S _ { Q }$ ; confidence 0.314
283. ; $\psi = \frac { \operatorname { exp } \left( \sum t _ { n } \lambda ^ { n } \right) \tau ( t_{ j} - ( 1 / j \lambda ^ { j } ) ) } { \tau ( t _ { j } ) }.$ ; confidence 0.314
284. ; $\mathsf{P} ( N _ { k } = n + k ) = \frac { U _ { n + 1 } ^ { ( k ) } } { 2 ^ { n + k } } ,\, n = 0,1, \dots .$ ; confidence 0.314
285. ; $\tilde { j } : B \rightarrow X$ ; confidence 0.314
286. ; $V ( O _ { M } ) \neq \emptyset$ ; confidence 0.314
287. ; $\operatorname { lim } _ { n \rightarrow \infty } M ( u _ { n } ) = M ( u )$ ; confidence 0.314
288. ; $v , v _ { 1 } , \dots , v _ { n }$ ; confidence 0.314
289. ; $P _ { \theta } ( | \overline{X} - \theta | > \epsilon _ { n } )$ ; confidence 0.314
290. ; $( x ^ { 1 } , \ldots , x ^ { n } ) = ( x )$ ; confidence 0.313
291. ; $\overline { m } _ { n} ( h )$ ; confidence 0.313
292. ; $\operatorname { rd }_{X} ( N _ { K } ( F ) ) \leq n - k - 2$ ; confidence 0.313
293. ; $u_{0},u_{1}$ ; confidence 0.313
294. ; $\{ \emptyset , \{ \emptyset \} \}$ ; confidence 0.313
295. ; $z: M \rightarrow F$ ; confidence 0.313
296. ; $u _ { t } + a ( u ) _ { x } - u _ { x x t } = 0,$ ; confidence 0.313
297. ; $0 < \tau _ { n }$ ; confidence 0.313
298. ; $\text{if} \ \Gamma u = u _ { N } + h u , k a \ll 1 , h =\text{const},$ ; confidence 0.313
299. ; $\mathbf{Z}[ \text{Gal} (N/K)]$ ; confidence 0.312
300. ; $K _ { R } \equiv \{ z : r _ { j } ( z , \overline{z} ) \geq 0 ,\; j = 1 , \ldots , m \}$ ; confidence 0.312
Maximilian Janisch/latexlist/latex/NoNroff/67. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/67&oldid=49800