Difference between revisions of "Multiplicative ergodic theorem"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 47934 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
''Oseledets's multiplicative ergodic theorem, Oseledec's multiplicative ergodic theorem'' | ''Oseledets's multiplicative ergodic theorem, Oseledec's multiplicative ergodic theorem'' | ||
Consider a linear homogeneous system of differential equations | Consider a linear homogeneous system of differential equations | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m0654401.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | The Lyapunov exponent of a solution | + | The Lyapunov exponent of a solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m0654402.png" /> of (a1) is defined as |
− | of (a1) is defined as | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m0654403.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | A more general setting (Lyapunov exponents for families of system of differential equations) for discussing Lyapunov exponents and related matters is as follows. Let | + | A more general setting (Lyapunov exponents for families of system of differential equations) for discussing Lyapunov exponents and related matters is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m0654404.png" /> be a [[Measurable flow|measurable flow]] on a measure space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m0654405.png" />. For all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m0654406.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m0654407.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m0654408.png" />-dimensional vector space. (Think, for example, of a vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m0654409.png" />.) A cocycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544010.png" /> associated with the flow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544011.png" /> is a measurable function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544012.png" /> that assigns to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544013.png" /> an invertible linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544014.png" /> such that |
− | be a [[Measurable flow|measurable flow]] on a measure space | ||
− | For all | ||
− | let | ||
− | be an | ||
− | dimensional vector space. (Think, for example, of a vector bundle | ||
− | A cocycle | ||
− | associated with the flow | ||
− | is a measurable function on | ||
− | that assigns to | ||
− | an invertible linear mapping | ||
− | such that | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table> | |
− | |||
− | |||
− | I.e. if the collection of vector spaces | + | I.e. if the collection of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544016.png" /> is viewed as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544017.png" />-dimensional vector bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544018.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544019.png" /> defines an isomorphism of vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544020.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544021.png" />, |
− | is viewed as an | ||
− | dimensional vector bundle over | ||
− | then | ||
− | defines an isomorphism of vector bundles | ||
− | over | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544022.png" /></td> </tr></table> | |
− | and condition (a2) simply says that | + | and condition (a2) simply says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544023.png" />. So <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544024.png" /> is a flow on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544025.png" /> that lifts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544026.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544027.png" /> is sometimes called the skew product flow defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544029.png" />. This set-up is sufficiently general to discuss Lyapunov exponents for non-linear flows, and even stochastic non-linear flows and such things as products of random matrices. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544031.png" />, the classical situation (a1) reappears. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544032.png" /> be a differential equation on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544033.png" />. Take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544034.png" />, the tangent bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544035.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544036.png" /> be the flow on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544037.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544038.png" />. The associated cocycle is defined by the differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544039.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544040.png" />, |
− | So | ||
− | is a flow on | ||
− | that lifts | ||
− | |||
− | is sometimes called the skew product flow defined by | ||
− | and | ||
− | This set-up is sufficiently general to discuss Lyapunov exponents for non-linear flows, and even stochastic non-linear flows and such things as products of random matrices. If | ||
− | |||
− | the classical situation (a1) reappears. Let | ||
− | be a differential equation on a manifold | ||
− | Take | ||
− | the tangent bundle over | ||
− | Let | ||
− | be the flow on | ||
− | defined by | ||
− | The associated cocycle is defined by the differential | ||
− | of | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544041.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | For a skew product flow | + | For a skew product flow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544042.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544043.png" /> the Lyapunov exponent at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544044.png" /> in the direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544045.png" /> is defined by |
− | on | ||
− | the Lyapunov exponent at | ||
− | in the direction | ||
− | is defined by | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544046.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | The multiplicative ergodic theorem of V.I. Oseledets [[#References|[a1]]] now is as follows. Let | + | The multiplicative ergodic theorem of V.I. Oseledets [[#References|[a1]]] now is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544047.png" /> be a skew product flow and assume that there is an invariant probability measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544048.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544049.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544050.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544051.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544052.png" />. Suppose, moreover, that |
− | be a skew product flow and assume that there is an invariant probability measure | ||
− | on | ||
− | for | ||
− | i.e. | ||
− | for all | ||
− | Suppose, moreover, that | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544053.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | Then there exists a measurable | + | Then there exists a measurable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544054.png" />-invariant set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544055.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544056.png" />-measure 1 such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544057.png" /> there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544058.png" /> numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544060.png" />, and corresponding subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544061.png" /> of dimensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544062.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544063.png" />, |
− | invariant set | ||
− | of | ||
− | measure 1 such that for all | ||
− | there are | ||
− | numbers | ||
− | |||
− | and corresponding subspaces | ||
− | of dimensions | ||
− | such that for all | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544064.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | If moreover | + | If moreover <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544065.png" /> is ergodic for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544066.png" />, i.e. all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544067.png" />-invariant subsets have <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544068.png" />-measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544069.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544070.png" />, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544073.png" /> are constants independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544074.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544075.png" />). However, the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544076.png" /> may still depend on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544077.png" /> (if the bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544078.png" /> is a trivial bundle so that all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544079.png" /> can be identified). The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544080.png" /> is called the Lyapunov spectrum of the flow. For more details and applications cf. [[#References|[a2]]], [[#References|[a3]]]. |
− | is ergodic for | ||
− | i.e. all | ||
− | invariant subsets have | ||
− | measure | ||
− | or | ||
− | then the | ||
− | |||
− | |||
− | are constants independent of | ||
− | or | ||
− | However, the spaces | ||
− | may still depend on | ||
− | if the bundle | ||
− | is a trivial bundle so that all the | ||
− | can be identified). The set | ||
− | is called the Lyapunov spectrum of the flow. For more details and applications cf. [[#References|[a2]]], [[#References|[a3]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. [V.I. Oseledets] Oseledec, "A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems" ''Trans. Moscow Math. Soc.'' , '''19''' (1968) pp. 197–231 ''Trudy Moskov. Mat. Obshch.'' , '''19''' (1968) pp. 179–210</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Kliemann, "Analysis of nonlinear stochastic systems" W. Schiehlen (ed.) W. Wedig (ed.) , ''Analysis and estimation of stochastic mechanical systems'' , Springer (Wien) (1988) pp. 43–102</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L. Arnold (ed.) V. Wihstutz (ed.) , ''Lyapunov exponents'' , ''Lect. notes in math.'' , '''1186''' , Springer (1986)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. [V.I. Oseledets] Oseledec, "A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems" ''Trans. Moscow Math. Soc.'' , '''19''' (1968) pp. 197–231 ''Trudy Moskov. Mat. Obshch.'' , '''19''' (1968) pp. 179–210</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Kliemann, "Analysis of nonlinear stochastic systems" W. Schiehlen (ed.) W. Wedig (ed.) , ''Analysis and estimation of stochastic mechanical systems'' , Springer (Wien) (1988) pp. 43–102</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L. Arnold (ed.) V. Wihstutz (ed.) , ''Lyapunov exponents'' , ''Lect. notes in math.'' , '''1186''' , Springer (1986)</TD></TR></table> |
Revision as of 14:32, 7 June 2020
Oseledets's multiplicative ergodic theorem, Oseledec's multiplicative ergodic theorem
Consider a linear homogeneous system of differential equations
(a1) |
The Lyapunov exponent of a solution of (a1) is defined as
A more general setting (Lyapunov exponents for families of system of differential equations) for discussing Lyapunov exponents and related matters is as follows. Let be a measurable flow on a measure space . For all , let be an -dimensional vector space. (Think, for example, of a vector bundle .) A cocycle associated with the flow is a measurable function on that assigns to an invertible linear mapping such that
(a2) |
I.e. if the collection of vector spaces is viewed as an -dimensional vector bundle over , then defines an isomorphism of vector bundles over ,
and condition (a2) simply says that . So is a flow on that lifts . is sometimes called the skew product flow defined by and . This set-up is sufficiently general to discuss Lyapunov exponents for non-linear flows, and even stochastic non-linear flows and such things as products of random matrices. If , , the classical situation (a1) reappears. Let be a differential equation on a manifold . Take , the tangent bundle over . Let be the flow on defined by . The associated cocycle is defined by the differential of ,
For a skew product flow on the Lyapunov exponent at in the direction is defined by
The multiplicative ergodic theorem of V.I. Oseledets [a1] now is as follows. Let be a skew product flow and assume that there is an invariant probability measure on for , i.e. for all . Suppose, moreover, that
Then there exists a measurable -invariant set of -measure 1 such that for all there are numbers , , and corresponding subspaces of dimensions such that for all ,
If moreover is ergodic for , i.e. all -invariant subsets have -measure or , then the , , are constants independent of (or ). However, the spaces may still depend on (if the bundle is a trivial bundle so that all the can be identified). The set is called the Lyapunov spectrum of the flow. For more details and applications cf. [a2], [a3].
References
[a1] | V.I. [V.I. Oseledets] Oseledec, "A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems" Trans. Moscow Math. Soc. , 19 (1968) pp. 197–231 Trudy Moskov. Mat. Obshch. , 19 (1968) pp. 179–210 |
[a2] | W. Kliemann, "Analysis of nonlinear stochastic systems" W. Schiehlen (ed.) W. Wedig (ed.) , Analysis and estimation of stochastic mechanical systems , Springer (Wien) (1988) pp. 43–102 |
[a3] | L. Arnold (ed.) V. Wihstutz (ed.) , Lyapunov exponents , Lect. notes in math. , 1186 , Springer (1986) |
Multiplicative ergodic theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiplicative_ergodic_theorem&oldid=47934