Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/37"
(bis 17. korrigiert) |
Rui Martins (talk | contribs) |
||
Line 6: | Line 6: | ||
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png ; $z$ ; confidence 0.857 | 3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png ; $z$ ; confidence 0.857 | ||
− | 4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240354.png ; $E ( \mathbf Z _ { 2 } )$ ; confidence 0.857 | + | 4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240354.png ; $\mathsf{E} ( \mathbf Z _ { 2 } )$ ; confidence 0.857 |
5. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001080.png ; $A ( \alpha ^ { \prime } , \alpha , k ) \equiv - \frac { C } { 4 \pi } , \text { if } \Gamma u = u , k a \ll 1,$ ; confidence 0.857 | 5. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001080.png ; $A ( \alpha ^ { \prime } , \alpha , k ) \equiv - \frac { C } { 4 \pi } , \text { if } \Gamma u = u , k a \ll 1,$ ; confidence 0.857 | ||
Line 32: | Line 32: | ||
16. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016680/b0166805.png ; $H _ { k }$ ; confidence 0.856 | 16. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016680/b0166805.png ; $H _ { k }$ ; confidence 0.856 | ||
− | 17. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028025.png ; $\phi \in A _ { 0 } ( \overline { C } \backslash D )$ ; confidence 0.856 | + | 17. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028025.png ; $\phi \in A _ { 0 } ( \overline { \mathbf{C} } \backslash D )$ ; confidence 0.856 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004024.png ; $A _ { k } \downarrow 0 ( k \rightarrow \infty ) , \sum _ { k = 0 } ^ { \infty } A _ { k } < \infty , | \Delta d _ { k } | < A _ { k }$ ; confidence 0.856 | + | 18. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004024.png ; $A _ { k } \downarrow 0 ( k \rightarrow \infty ) , \sum _ { k = 0 } ^ { \infty } A _ { k } < \infty , | \Delta d _ { k } | < A _ { k }.$ ; confidence 0.856 |
19. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935074.png ; $W ( t )$ ; confidence 0.856 | 19. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935074.png ; $W ( t )$ ; confidence 0.856 | ||
− | 20. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040046.png ; $F = C$ ; confidence 0.856 | + | 20. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040046.png ; $F = \mathbf C$ ; confidence 0.856 |
21. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002034.png ; $X \times Y _ { \alpha }$ ; confidence 0.856 | 21. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002034.png ; $X \times Y _ { \alpha }$ ; confidence 0.856 | ||
Line 46: | Line 46: | ||
23. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068200/o06820019.png ; $t \in K$ ; confidence 0.856 | 23. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068200/o06820019.png ; $t \in K$ ; confidence 0.856 | ||
− | 24. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018019.png ; $D$ ; confidence 0.856 | + | 24. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018019.png ; $\overline{\mathbf D }$ ; confidence 0.856 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013039.png ; $( L )$ ; confidence 0.856 | + | 25. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013039.png ; $\operatorname{adj}( L )$ ; confidence 0.856 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002091.png ; $v _ { M } \geq v ^ { * }$ ; confidence 0.856 | + | 26. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002091.png ; $v _ { \operatorname{M} } \geq v ^ { * }$ ; confidence 0.856 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027050.png ; $_ { \rho }$ ; confidence 0.856 | + | 27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027050.png ; $\operatorname{det}_ { \rho }$ ; confidence 0.856 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016012.png ; $f = X _ { | + | 28. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016012.png ; $f = X _ { a } X ^ { a }$ ; confidence 0.856 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017084.png ; $\iota \omega ( G ) | + | 29. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017084.png ; $\iota \ \omega ( G ) / \omega ( G )$ ; confidence 0.856 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004020.png ; $ | + | 30. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004020.png ; $d$ ; confidence 0.856 |
31. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202208.png ; $\phi \in \operatorname { Span } ( 1 , v _ { j } , | v | ^ { 2 } )$ ; confidence 0.856 | 31. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202208.png ; $\phi \in \operatorname { Span } ( 1 , v _ { j } , | v | ^ { 2 } )$ ; confidence 0.856 | ||
− | 32. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200904.png ; $\ | + | 32. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200904.png ; $\langle x \rangle$ ; confidence 0.856 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005057.png ; $\operatorname { lim } _ { n \rightarrow \infty } H ( \theta _ { n } , \Theta _ { 0 } ) = 0 , \operatorname { lim } _ { n \rightarrow \infty } n H ^ { 2 } ( \theta _ { n } , \Theta _ { 0 } ) = \infty$ ; confidence 0.856 | + | 33. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005057.png ; $\operatorname { lim } _ { n \rightarrow \infty } H ( \theta _ { n } , \Theta _ { 0 } ) = 0 , \operatorname { lim } _ { n \rightarrow \infty } n H ^ { 2 } ( \theta _ { n } , \Theta _ { 0 } ) = \infty ,$ ; confidence 0.856 |
34. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001090.png ; $x , y \in P$ ; confidence 0.856 | 34. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001090.png ; $x , y \in P$ ; confidence 0.856 | ||
− | 35. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508020.png ; $\omega = \frac { i } { 2 } \sum _ { \mu , \nu } h _ { \mu \nu } ( z ) d z _ { \mu } \ | + | 35. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508020.png ; $\omega = \frac { i } { 2 } \sum _ { \mu , \nu } h _ { \mu \nu } ( z ) d z _ { \mu } \bigwedge d \overline{z} _ { \nu }.$ ; confidence 0.856 |
36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007010.png ; $2 ^ { n } p$ ; confidence 0.856 | 36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007010.png ; $2 ^ { n } p$ ; confidence 0.856 | ||
− | 37. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240513.png ; $T _ { 2 }$ ; confidence 0.856 | + | 37. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240513.png ; $\mathbf{T} _ { 2 }$ ; confidence 0.856 |
38. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301407.png ; $f \in C ( R ^ { n } )$ ; confidence 0.856 | 38. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301407.png ; $f \in C ( R ^ { n } )$ ; confidence 0.856 | ||
− | 39. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001095.png ; $R | + | 39. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001095.png ; $R * G$ ; confidence 0.856 |
40. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022049.png ; $k ^ { j }$ ; confidence 0.856 | 40. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022049.png ; $k ^ { j }$ ; confidence 0.856 | ||
Line 82: | Line 82: | ||
41. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c02176022.png ; $Y _ { 2 }$ ; confidence 0.855 | 41. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c02176022.png ; $Y _ { 2 }$ ; confidence 0.855 | ||
− | 42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031089.png ; $ | + | 42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031089.png ; $\lim _R S _ { R } ^ { ( n - 1 ) / 2 } f ( x _ { 0 } ) = f ( x _ { 0 } )$ ; confidence 0.855 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280123.png ; $A ( D ) ^ { * } \simeq H ^ { n , n - 1 } ( C ^ { n } \backslash D )$ ; confidence 0.855 | + | 43. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280123.png ; $A ( D ) ^ { * } \simeq H ^ { n , n - 1 } ( \mathbf{C} ^ { n } \backslash D ),$ ; confidence 0.855 |
44. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006081.png ; $e = \{ x , y \}$ ; confidence 0.855 | 44. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006081.png ; $e = \{ x , y \}$ ; confidence 0.855 | ||
− | 45. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320112.png ; $\operatorname { Ber } ( T ^ { st } ) = \operatorname { Ber } ( T )$ ; confidence 0.855 | + | 45. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320112.png ; $\operatorname { Ber } ( T ^ { \text{st} } ) = \operatorname { Ber } ( T )$ ; confidence 0.855 |
46. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m1300701.png ; $P ^ { \mu }$ ; confidence 0.855 | 46. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m1300701.png ; $P ^ { \mu }$ ; confidence 0.855 | ||
Line 94: | Line 94: | ||
47. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010411.png ; $N = \infty$ ; confidence 0.855 | 47. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010411.png ; $N = \infty$ ; confidence 0.855 | ||
− | 48. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064018.png ; $T _ { | + | 48. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064018.png ; $T _ { n } ( a )$ ; confidence 0.855 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016420/b01642032.png ; $B ( | + | 49. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016420/b01642032.png ; $B ( a , b )$ ; confidence 0.855 |
50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023058.png ; $\Omega ^ { * + 1 } ( M , T M )$ ; confidence 0.855 | 50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023058.png ; $\Omega ^ { * + 1 } ( M , T M )$ ; confidence 0.855 | ||
Line 104: | Line 104: | ||
52. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019057.png ; $( B ^ { k } \times B ^ { n - k } , S ^ { k - 1 } \times B ^ { n - k } )$ ; confidence 0.855 | 52. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019057.png ; $( B ^ { k } \times B ^ { n - k } , S ^ { k - 1 } \times B ^ { n - k } )$ ; confidence 0.855 | ||
− | 53. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009032.png ; $\frac { d f } { f } = \frac { d \xi } { \xi } - i | + | 53. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009032.png ; $\frac { d f } { f } = \frac { d \xi } { \xi } - i a \frac { d \tau } { \tau }.$ ; confidence 0.855 |
54. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150214.png ; $B = T$ ; confidence 0.855 | 54. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150214.png ; $B = T$ ; confidence 0.855 | ||
Line 110: | Line 110: | ||
55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210147.png ; $H ^ { i } ( \mathfrak { h } ^ { - } , L )$ ; confidence 0.855 | 55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210147.png ; $H ^ { i } ( \mathfrak { h } ^ { - } , L )$ ; confidence 0.855 | ||
− | 56. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017076.png ; $ | + | 56. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017076.png ; $z, \overline{z}$ ; confidence 0.855 |
57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300168.png ; $C _ { B ( m , n ) } ( S )$ ; confidence 0.855 | 57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300168.png ; $C _ { B ( m , n ) } ( S )$ ; confidence 0.855 | ||
Line 122: | Line 122: | ||
61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050123.png ; $x \in \Sigma ^ { n } ( f )$ ; confidence 0.855 | 61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050123.png ; $x \in \Sigma ^ { n } ( f )$ ; confidence 0.855 | ||
− | 62. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005057.png ; $L _ { 1 | + | 62. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005057.png ; $L _ { 1 , 1}$ ; confidence 0.855 |
63. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008068.png ; $e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) = e ( w | v )$ ; confidence 0.855 | 63. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008068.png ; $e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) = e ( w | v )$ ; confidence 0.855 | ||
− | 64. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002013.png ; $\omega ( \tau ) = \frac { \tau } { \operatorname { sinh } ( \pi \tau ) } | \frac { \Gamma ( c - \alpha + \frac { i \tau } { 2 } ) } { \Gamma ( | + | 64. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002013.png ; $\omega ( \tau ) = \frac { \tau } { \operatorname { sinh } ( \pi \tau ) } \left| \frac { \Gamma ( c - \alpha + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } \right| ^ { 2 } .$ ; confidence 0.855 |
65. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160144.png ; $s ( n )$ ; confidence 0.855 | 65. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160144.png ; $s ( n )$ ; confidence 0.855 | ||
Line 138: | Line 138: | ||
69. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016025.png ; $x _ { 1 } ^ { \prime }$ ; confidence 0.855 | 69. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016025.png ; $x _ { 1 } ^ { \prime }$ ; confidence 0.855 | ||
− | 70. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011051.png ; $\{ f ( k , n ) \} _ { k = 1 } ^ { \mu _ { n } }$ ; confidence 0.854 | + | 70. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011051.png ; $\{ f _{( k , n )} \} _ { k = 1 } ^ { \mu _ { n } }$ ; confidence 0.854 |
71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024017.png ; $( Z , g )$ ; confidence 0.854 | 71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024017.png ; $( Z , g )$ ; confidence 0.854 | ||
− | 72. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014043.png ; $ | + | 72. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014043.png ; $\tilde{s}$ ; confidence 0.854 |
73. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507069.png ; $\operatorname { Ric } _ { g } = k g$ ; confidence 0.854 | 73. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507069.png ; $\operatorname { Ric } _ { g } = k g$ ; confidence 0.854 | ||
− | 74. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080108.png ; $E , A _ { k } \in R ^ { n \times m }$ ; confidence 0.854 | + | 74. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080108.png ; $E , A _ { k } \in \mathbf{R} ^ { n \times m }$ ; confidence 0.854 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006060.png ; $b _ { | + | 75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006060.png ; $b _ {ii }$ ; confidence 0.854 |
76. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080128.png ; $V _ { n } = ( 1 / 2 ) D _ { n } \theta ^ { 2 } \overline { \theta } ^ { 2 }$ ; confidence 0.854 | 76. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080128.png ; $V _ { n } = ( 1 / 2 ) D _ { n } \theta ^ { 2 } \overline { \theta } ^ { 2 }$ ; confidence 0.854 | ||
Line 160: | Line 160: | ||
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052079.png ; $B _ { n } ^ { - 1 }$ ; confidence 0.854 | 80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052079.png ; $B _ { n } ^ { - 1 }$ ; confidence 0.854 | ||
− | 81. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557807.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } \pi \tau F ( \tau ) d \tau$ ; confidence 0.854 | + | 81. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557807.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } \pi \tau F ( \tau ) d \tau .$ ; confidence 0.854 |
82. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016025.png ; $\lambda I - T$ ; confidence 0.854 | 82. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016025.png ; $\lambda I - T$ ; confidence 0.854 | ||
− | 83. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620106.png ; $m _ { + } ( \lambda ) = \operatorname { lim } _ { \epsilon \rightarrow 0 + } m ( \lambda + i \epsilon )$ ; confidence 0.853 | + | 83. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620106.png ; $m _ { + } ( \lambda ) = \operatorname { lim } _ { \epsilon \rightarrow 0 + } m ( \lambda + i \epsilon ).$ ; confidence 0.853 |
84. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028078.png ; $c ( G )$ ; confidence 0.853 | 84. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028078.png ; $c ( G )$ ; confidence 0.853 | ||
Line 174: | Line 174: | ||
87. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190131.png ; $a , b \in T$ ; confidence 0.853 | 87. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190131.png ; $a , b \in T$ ; confidence 0.853 | ||
− | 88. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001039.png ; $\operatorname { | + | 88. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001039.png ; $\operatorname { deg } F _ { 2 }$ ; confidence 0.853 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150130.png ; $G \ | + | 89. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150130.png ; $G \times_{ G _ { x }} S$ ; confidence 0.853 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010074.png ; $\rho ( x ) = \sum _ { j \geq 1 } | f _ { j } ( x ) | ^ { 2 }$ ; confidence 0.853 | + | 90. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010074.png ; $\rho ( x ) = \sum _ { j \geq 1 } | f _ { j } ( x ) | ^ { 2 }.$ ; confidence 0.853 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111012.png ; $\square \ldots \rightarrow H ^ { n } ( X , A ; G ) \rightarrow H ^ { n } ( X ; G ) \rightarrow H ^ { n } ( A ; G )$ ; confidence 0.853 | + | 91. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111012.png ; $\square \ldots \rightarrow H ^ { n } ( X , A ; G ) \rightarrow H ^ { n } ( X ; G ) \rightarrow H ^ { n } ( A ; G ) \rightarrow $ ; confidence 0.853 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004010.png ; $x \in L ^ { 0 } ( \mu ) , y \in X , | x | \leq | y | \mu - a . e$ ; confidence 0.853 | + | 92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004010.png ; $x \in L ^ { 0 } ( \mu ) , y \in X , | x | \leq | y | \mu - a.e.$ ; confidence 0.853 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025077.png ; $u \in D ^ { \prime } ( R ^ { n } )$ ; confidence 0.853 | + | 93. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025077.png ; $u \in \mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.853 |
94. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015041.png ; $\varphi ( P ) \subseteq Q$ ; confidence 0.853 | 94. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015041.png ; $\varphi ( P ) \subseteq Q$ ; confidence 0.853 | ||
Line 194: | Line 194: | ||
97. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004069.png ; $\chi _ { \mu } ^ { \lambda }$ ; confidence 0.853 | 97. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004069.png ; $\chi _ { \mu } ^ { \lambda }$ ; confidence 0.853 | ||
− | 98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015071.png ; $: \{ 0,1 \} ^ { n } \rightarrow R$ ; confidence 0.853 | + | 98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015071.png ; $d : \{ 0,1 \} ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.853 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015016.png ; $P _ { p }$ ; confidence 0.853 | + | 99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015016.png ; $\mathsf{P} _ { p }$ ; confidence 0.853 |
100. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690037.png ; $T \in A$ ; confidence 0.853 | 100. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690037.png ; $T \in A$ ; confidence 0.853 | ||
Line 204: | Line 204: | ||
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051020.png ; $- \nabla f ( x _ { c } )$ ; confidence 0.852 | 102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051020.png ; $- \nabla f ( x _ { c } )$ ; confidence 0.852 | ||
− | 103. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t1200607.png ; $ | + | 103. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t1200607.png ; $Z_i > 0$ ; confidence 0.852 |
104. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010130.png ; $R : X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.852 | 104. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010130.png ; $R : X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.852 | ||
− | 105. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008037.png ; $R _ { k + l } ^ { k - l } ( r | + | 105. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008037.png ; $R _ { k + l } ^ { k - l } ( r ; \alpha ) =$ ; confidence 0.852 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060150.png ; $x | + | 106. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060150.png ; $x \geq \epsilon$ ; confidence 0.852 |
107. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019068.png ; $h ( S )$ ; confidence 0.852 | 107. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019068.png ; $h ( S )$ ; confidence 0.852 | ||
− | 108. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014010.png ; $\ | + | 108. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014010.png ; $\widehat { f } ( - \alpha , - p ) = \widehat { f } ( \alpha , p )$ ; confidence 0.852 |
109. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520319.png ; $a ^ { * } ( x _ { i } )$ ; confidence 0.852 | 109. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520319.png ; $a ^ { * } ( x _ { i } )$ ; confidence 0.852 | ||
− | 110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007058.png ; $x \operatorname { exp } ( - 8 ( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } ) < A _ { 2 } ( x ) <$ ; confidence 0.852 | + | 110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007058.png ; $x \operatorname { exp } ( - 8 ( \operatorname { log } x\operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } ) < A _ { 2 } ( x ) <$ ; confidence 0.852 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014036.png ; $ | + | 111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014036.png ; $r_{ - 1} ( z ) = a ( z )$ ; confidence 0.852 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030044.png ; $\psi ( ; \eta ) \text { is } ( \eta$ ; confidence 0.852 | + | 112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030044.png ; $\psi ( . ; \eta ) \text { is } ( \eta , Y) \square \text{periodic}.$ ; confidence 0.852 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840134.png ; $y \in D ( T ^ { + } )$ ; confidence 0.852 | + | 113. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840134.png ; $y \in \mathcal{D} ( T ^ { + } )$ ; confidence 0.852 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021029.png ; $\sigma ( L _ { C } ^ { \infty } ( G ) , L _ { C } ^ { 1 } ( G ) )$ ; confidence 0.852 | + | 114. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021029.png ; $\sigma ( \mathcal{L} _ { \mathbf{C} } ^ { \infty } ( G ) , \mathcal{L} _ { \mathbf{C} } ^ { 1 } ( G ) )$ ; confidence 0.852 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201908.png ; $\times \operatorname { lim } _ { N \rightarrow \infty } \int _ { 1 / N } ^ { N } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) F ( \tau ) d \tau$ ; confidence 0.852 | + | 115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201908.png ; $\times \operatorname { lim } _ { N \rightarrow \infty } \int _ { 1 / N } ^ { N } \tau \operatorname { tanh } \left( \frac { \pi \tau } { 2 } \right) P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) F ( \tau ) d \tau ,$ ; confidence 0.852 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014029.png ; $f ( x ) - f _ { \rho } ( x ) \in C ( R ^ { 2 } )$ ; confidence 0.852 | + | 116. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014029.png ; $f ( x ) - f _ { \rho } ( x ) \in C ( \mathbf{R} ^ { 2 } )$ ; confidence 0.852 |
117. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222087.png ; $v = v ( u )$ ; confidence 0.852 | 117. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222087.png ; $v = v ( u )$ ; confidence 0.852 | ||
− | 118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240302.png ; $\ | + | 118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240302.png ; $\widehat { \eta } \omega$ ; confidence 0.852 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230126.png ; $\frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma \omega ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.852 | + | 119. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230126.png ; $+ \frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \ \sigma \ \omega ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots ).$ ; confidence 0.852 |
120. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225028.png ; $m \geq 0$ ; confidence 0.852 | 120. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225028.png ; $m \geq 0$ ; confidence 0.852 | ||
Line 242: | Line 242: | ||
121. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p1301005.png ; $\| P \| _ { K } = \operatorname { max } _ { z \in K } | P ( z ) |$ ; confidence 0.852 | 121. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p1301005.png ; $\| P \| _ { K } = \operatorname { max } _ { z \in K } | P ( z ) |$ ; confidence 0.852 | ||
− | 122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070110.png ; $f \in C ^ { 0 } ( \Gamma , k + 2 , v )$ ; confidence 0.852 | + | 122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070110.png ; $f \in C ^ { 0 } ( \Gamma , k + 2 , \mathbf{v} )$ ; confidence 0.852 |
123. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236050.png ; $N _ { k }$ ; confidence 0.852 | 123. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236050.png ; $N _ { k }$ ; confidence 0.852 | ||
Line 248: | Line 248: | ||
124. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004024.png ; $[ d \overline { \zeta _ { j } } ]$ ; confidence 0.851 | 124. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004024.png ; $[ d \overline { \zeta _ { j } } ]$ ; confidence 0.851 | ||
− | 125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b1205007.png ; $ | + | 125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b1205007.png ; $\mathcal{ Z}_ { 0 }$ ; confidence 0.851 |
126. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005022.png ; $E _ { i } ^ { * } \xi = \xi ^ { \prime }$ ; confidence 0.851 | 126. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005022.png ; $E _ { i } ^ { * } \xi = \xi ^ { \prime }$ ; confidence 0.851 | ||
Line 256: | Line 256: | ||
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052082.png ; $\{ w _ { j } , v _ { j } \} _ { j = 0 } ^ { n - 1 }$ ; confidence 0.851 | 128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052082.png ; $\{ w _ { j } , v _ { j } \} _ { j = 0 } ^ { n - 1 }$ ; confidence 0.851 | ||
− | 129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030064.png ; $\{ \psi _ { m } ( ; \eta ) \} _ { m = 1 } ^ { \infty } | + | 129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030064.png ; $\{ \psi _ { m } ( . ; \eta ) \} _ { m = 1 } ^ { \infty } $ ; confidence 0.851 |
130. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007039.png ; $g E g ^ { - 1 } = q ^ { 2 } E , g F g ^ { - 1 } = q ^ { - 2 } F , [ E , F ] = \frac { g - g ^ { - 1 } } { q - q ^ { - 1 } }$ ; confidence 0.851 | 130. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007039.png ; $g E g ^ { - 1 } = q ^ { 2 } E , g F g ^ { - 1 } = q ^ { - 2 } F , [ E , F ] = \frac { g - g ^ { - 1 } } { q - q ^ { - 1 } }$ ; confidence 0.851 | ||
− | 131. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007064.png ; $Z C \rightarrow Ab$ ; confidence 0.851 | + | 131. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007064.png ; $Z \mathcal{C} \rightarrow \operatorname{Ab}$ ; confidence 0.851 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150176.png ; $ | + | 132. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150176.png ; $\phi ^ { \prime }$ ; confidence 0.851 |
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004085.png ; $\int _ { 0 } ^ { t } f ^ { * } ( s ) d s \leq \int _ { 0 } ^ { t } g ^ { * } ( s ) d s$ ; confidence 0.851 | 133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004085.png ; $\int _ { 0 } ^ { t } f ^ { * } ( s ) d s \leq \int _ { 0 } ^ { t } g ^ { * } ( s ) d s$ ; confidence 0.851 | ||
− | 134. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120133.png ; $( K _ { p } ) _ { | + | 134. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120133.png ; $( K _ { p } ) _ { \text{ins} }$ ; confidence 0.851 |
135. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003010.png ; $\psi _ { N }$ ; confidence 0.851 | 135. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003010.png ; $\psi _ { N }$ ; confidence 0.851 | ||
Line 276: | Line 276: | ||
138. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002018.png ; $X \vee X$ ; confidence 0.851 | 138. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002018.png ; $X \vee X$ ; confidence 0.851 | ||
− | 139. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290226.png ; $v ( A ) = e _ { m } ^ { 0 } ( A ) + \operatorname { dim } A + I ( A ) - 1$ ; confidence 0.851 | + | 139. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290226.png ; $v ( A ) = e _ { \mathfrak{m} } ^ { 0 } ( A ) + \operatorname { dim } A + I ( A ) - 1$ ; confidence 0.851 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012047.png ; $H C \in | + | 140. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012047.png ; $H C \in \mathcal{NP}$ ; confidence 0.851 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040035.png ; $( g , f )$ ; confidence 0.851 | + | 141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040035.png ; $( g , \mathbf{f} )$ ; confidence 0.851 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840252.png ; $x , y \in D ( A )$ ; confidence 0.851 | + | 142. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840252.png ; $x , y \in \mathcal{D} ( A )$ ; confidence 0.851 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015058.png ; $\times \operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } ( X - M ) \Psi ^ { - 1 } ( X - M ) ^ { \prime } \} , X \in R ^ { p \times n } , M \in R ^ { p \times n } , \Sigma > 0 , \Psi > 0$ ; confidence 0.851 | + | 143. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015058.png ; $\times \operatorname { etr } \left\{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } ( X - M ) \Psi ^ { - 1 } ( X - M ) ^ { \prime } \right\} , X \in \mathbf{R} ^ { p \times n } , M \in \mathbf{R} ^ { p \times n } , \Sigma > 0 , \Psi > 0.$ ; confidence 0.851 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002092.png ; $V _ { F } ^ { \prime } ( m ) ( V ( m ) ( \alpha ) ) ( \beta ) = V _ { F } ^ { \prime } ( m ) ( V ( m ) ( \beta ) ) ( \alpha )$ ; confidence 0.851 | + | 144. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002092.png ; $V _ { F } ^ { \prime } ( m ) ( V ( m ) ( \alpha ) ) ( \beta ) = V _ { F } ^ { \prime } ( m ) ( V ( m ) ( \beta ) ) ( \alpha ).$ ; confidence 0.851 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b1200108.png ; $B _ { i } ( x _ { 1 } , x _ { 2 } , u , \frac { \partial u } { \partial x _ { 1 } } , \frac { \partial u } { \partial x _ { 2 } } : x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } ) = 0$ ; confidence 0.851 | + | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b1200108.png ; $B _ { i } \left( x _ { 1 } , x _ { 2 } , u , \frac { \partial u } { \partial x _ { 1 } } , \frac { \partial u } { \partial x _ { 2 } } : x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } \right) = 0,$ ; confidence 0.851 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003033.png ; $\operatorname { Map } ( X , Y )$ ; confidence 0.850 | + | 146. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003033.png ; $\pi _0 \operatorname { Map } ( X , Y )$ ; confidence 0.850 |
147. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c1301609.png ; $w \notin S$ ; confidence 0.850 | 147. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c1301609.png ; $w \notin S$ ; confidence 0.850 | ||
Line 302: | Line 302: | ||
151. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290215.png ; $X = \operatorname { Proj } R$ ; confidence 0.850 | 151. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290215.png ; $X = \operatorname { Proj } R$ ; confidence 0.850 | ||
− | 152. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201305.png ; $\frac { \partial M } { \partial x _ { n } } = \Lambda ^ { n } M$ ; confidence 0.850 | + | 152. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201305.png ; $\frac { \partial M } { \partial x _ { n } } = \Lambda ^ { n } M ,$ ; confidence 0.850 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040143.png ; $S 5$ ; confidence 0.850 | + | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040143.png ; $\text{S}5$ ; confidence 0.850 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009014.png ; $f \in H ( C ^ { n } )$ ; confidence 0.850 | + | 154. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009014.png ; $f \in \mathcal{H} ( \mathbf{C} ^ { n } )$ ; confidence 0.850 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011040.png ; $L y = 0$ ; confidence 0.850 | + | 155. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011040.png ; $\mathcal{L} y = 0,$ ; confidence 0.850 |
156. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025017.png ; $Y _ { j } = i$ ; confidence 0.850 | 156. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025017.png ; $Y _ { j } = i$ ; confidence 0.850 | ||
Line 316: | Line 316: | ||
158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006096.png ; $| ( \phi , e ^ { - i H t } \phi ) | ^ { 2 }$ ; confidence 0.850 | 158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006096.png ; $| ( \phi , e ^ { - i H t } \phi ) | ^ { 2 }$ ; confidence 0.850 | ||
− | 159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040433.png ; $h : A \ | + | 159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040433.png ; $h : \mathbf{A} \twoheadrightarrow \mathbf B$ ; confidence 0.850 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s1203506.png ; $\left\{ \begin{array} { l } { d x ( t ) = A x ( t ) d t + B u ( t ) d t + d w ( t ) } \\ { d y ( t ) = C x ( t ) d t + D u ( t ) d t + d v ( t ) } \end{array} \right.$ ; confidence 0.850 | + | 160. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s1203506.png ; $\left\{ \begin{array} { l } { d x ( t ) = A x ( t ) d t + B u ( t ) d t + d w ( t ), } \\ { d y ( t ) = C x ( t ) d t + D u ( t ) d t + d v ( t ), } \end{array} \right.$ ; confidence 0.850 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007027.png ; $H ^ { n } ( C , M )$ ; confidence 0.850 | + | 161. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007027.png ; $H ^ { n } ( \mathcal{C} , M )$ ; confidence 0.850 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010016.png ; $+ \frac { 1 } { c } ( \frac { \partial } { \partial t } ( P \times B ) + \nabla \ | + | 162. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010016.png ; $+ \frac { 1 } { c } \left( \frac { \partial } { \partial t } ( \mathbf P \times \mathbf B ) + \nabla . ( \mathbf v \bigotimes ( \mathbf P \times \mathbf B ) ) \right),$ ; confidence 0.850 |
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032010.png ; $X _ { 1 } + \ldots + X _ { n } > 0$ ; confidence 0.850 | 163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032010.png ; $X _ { 1 } + \ldots + X _ { n } > 0$ ; confidence 0.850 | ||
− | 164. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008055.png ; $\psi \psi ^ { * } d \ | + | 164. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008055.png ; $\psi \psi ^ { * } d \overtilde { \Omega }$ ; confidence 0.850 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a1202807.png ; $\{ U _ { z } \} _ { z \in T }$ ; confidence 0.850 | + | 165. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a1202807.png ; $\{ U _ { z } \} _ { z \in \mathbf T }$ ; confidence 0.850 |
166. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007018.png ; $\int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { det } C _ { s } ( t ) d t \geq$ ; confidence 0.850 | 166. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007018.png ; $\int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { det } C _ { s } ( t ) d t \geq$ ; confidence 0.850 | ||
− | 167. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200408.png ; $\ | + | 167. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200408.png ; $\overset{\rightharpoonup }{ H }$ ; confidence 0.850 |
168. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150107.png ; $K ( x ) \in C ^ { 1 } ( \Omega , Y )$ ; confidence 0.850 | 168. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150107.png ; $K ( x ) \in C ^ { 1 } ( \Omega , Y )$ ; confidence 0.850 | ||
− | 169. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280149.png ; $\overline { u } ( z ) = \int _ { \partial D _ { m } } w ( \zeta ) \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - z _ { k } ) d \overline { \zeta } [ k ] \wedge d \zeta } { | \zeta - z | ^ { 2 n } }$ ; confidence 0.850 | + | 169. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280149.png ; $\overline { u } ( z ) = \int _ { \partial D _ { m } } w ( \zeta ) \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - \overline{z} _ { k } ) d \overline { \zeta } [ k ] \wedge d \zeta } { | \zeta - z | ^ { 2 n } },$ ; confidence 0.850 |
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008066.png ; $X \leftarrow m + T s E$ ; confidence 0.850 | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008066.png ; $X \leftarrow m + T s E$ ; confidence 0.850 | ||
Line 342: | Line 342: | ||
171. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003014.png ; $h _ { K } ( t ) = \operatorname { sup } \{ \| f ( t , x ) \| : x \in K \}$ ; confidence 0.850 | 171. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003014.png ; $h _ { K } ( t ) = \operatorname { sup } \{ \| f ( t , x ) \| : x \in K \}$ ; confidence 0.850 | ||
− | 172. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015045.png ; $G = SL _ { 2 } ( C )$ ; confidence 0.850 | + | 172. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015045.png ; $G = \operatorname{SL} _ { 2 } ( \mathbf C )$ ; confidence 0.850 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v0969008.png ; $A \subset B ( H )$ ; confidence 0.850 | + | 173. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v0969008.png ; $A \subset \mathcal{B} ( H )$ ; confidence 0.850 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290118.png ; $ | + | 174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290118.png ; $\text{q}$ ; confidence 0.849 |
175. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032088.png ; $t : M \rightarrow N$ ; confidence 0.849 | 175. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032088.png ; $t : M \rightarrow N$ ; confidence 0.849 | ||
Line 352: | Line 352: | ||
176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051057.png ; $H _ { + }$ ; confidence 0.849 | 176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051057.png ; $H _ { + }$ ; confidence 0.849 | ||
− | 177. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020158.png ; $U _ { t } = u ( B _ { \operatorname { min } | + | 177. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020158.png ; $U _ { t } = u ( B _ { \operatorname { min } ( t , \tau )} )$ ; confidence 0.849 |
178. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001038.png ; $C ^ { * } = \overline { C ^ { T } }$ ; confidence 0.849 | 178. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001038.png ; $C ^ { * } = \overline { C ^ { T } }$ ; confidence 0.849 | ||
Line 360: | Line 360: | ||
180. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500040.png ; $\epsilon ^ { N } ( C )$ ; confidence 0.849 | 180. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500040.png ; $\epsilon ^ { N } ( C )$ ; confidence 0.849 | ||
− | 181. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006032.png ; $\frac { 1 } { 2 \pi ^ { 2 } } \ | + | 181. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006032.png ; $\frac { 1 } { 2 \pi ^ { 2 } } \omega_{ WP},$ ; confidence 0.849 |
182. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583013.png ; $T _ { 0 } = T | _ { H _ { 0 } }$ ; confidence 0.849 | 182. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583013.png ; $T _ { 0 } = T | _ { H _ { 0 } }$ ; confidence 0.849 | ||
− | 183. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040049.png ; $H ^ { j } ( X \times _ { G } E G , Z / p ) \rightarrow H ^ { j } ( X ^ { G } \times B G , Z / p )$ ; confidence 0.849 | + | 183. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040049.png ; $H ^ { j } ( X \times _ { G } E G , \mathbf{Z} / p ) \rightarrow H ^ { j } ( X ^ { G } \times B G , \mathbf Z / p )$ ; confidence 0.849 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007074.png ; $\ll A ^ { 2 / K } N \lambda _ { k } ^ { 1 / ( 2 K - 2 ) } + M ^ { 1 - 2 / K } \lambda _ { k } ^ { - 1 / ( 2 K - 2 ) }$ ; confidence 0.849 | + | 184. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007074.png ; $\ll A ^ { 2 / K } N \lambda _ { k } ^ { 1 / ( 2 K - 2 ) } + M ^ { 1 - 2 / K } \lambda _ { k } ^ { - 1 / ( 2 K - 2 ) },$ ; confidence 0.849 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b1205509.png ; $b _ { \gamma } : M \rightarrow R$ ; confidence 0.849 | + | 185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b1205509.png ; $b _ { \gamma } : M \rightarrow \mathbf R$ ; confidence 0.849 |
186. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059052.png ; $R = \{ z : | \operatorname { arg } z | < \pi \}$ ; confidence 0.849 | 186. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059052.png ; $R = \{ z : | \operatorname { arg } z | < \pi \}$ ; confidence 0.849 | ||
Line 374: | Line 374: | ||
187. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700045.png ; $( \lambda x M ) N = M [ x : = N ]$ ; confidence 0.849 | 187. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700045.png ; $( \lambda x M ) N = M [ x : = N ]$ ; confidence 0.849 | ||
− | 188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203005.png ; $p \in Z ^ { N }$ ; confidence 0.849 | + | 188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203005.png ; $p \in \mathbf{Z} ^ { N }$ ; confidence 0.849 |
189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049023.png ; $d ( P ) = \operatorname { max } _ { k } | N _ { k } |$ ; confidence 0.849 | 189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049023.png ; $d ( P ) = \operatorname { max } _ { k } | N _ { k } |$ ; confidence 0.849 | ||
− | 190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026017.png ; $\zeta ( 2 n + 1 ) \notin Q$ ; confidence 0.849 | + | 190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026017.png ; $\zeta ( 2 n + 1 ) \notin \mathbf{Q}$ ; confidence 0.849 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232026.png ; $\{ x \in R ^ { n } : 0 \leq r \leq | x - x _ { 0 } | \leq R \}$ ; confidence 0.848 | + | 191. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232026.png ; $\{ x \in \mathbf{R} ^ { n } : 0 \leq r \leq | x - x _ { 0 } | \leq R \}$ ; confidence 0.848 |
192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018044.png ; $a < 1 < b$ ; confidence 0.848 | 192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018044.png ; $a < 1 < b$ ; confidence 0.848 | ||
− | 193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006075.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = 1$ ; confidence 0.848 | + | 193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006075.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = 1.$ ; confidence 0.848 |
194. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014052.png ; $D ( x _ { 0 } ) : = \operatorname { lim } _ { t \rightarrow + 0 } [ f ( x _ { 0 } + t n _ { 0 } ) - f ( x - t n _ { 0 } ) ]$ ; confidence 0.848 | 194. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014052.png ; $D ( x _ { 0 } ) : = \operatorname { lim } _ { t \rightarrow + 0 } [ f ( x _ { 0 } + t n _ { 0 } ) - f ( x - t n _ { 0 } ) ]$ ; confidence 0.848 | ||
− | 195. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051069.png ; $( u _ { i } , v _ { i } ) \in | + | 195. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051069.png ; $( u _ { i } , v _ { i } ) \in E_i$ ; confidence 0.848 |
196. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230155.png ; $A _ { i } A _ { j } = \delta _ { i j } A$ ; confidence 0.848 | 196. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230155.png ; $A _ { i } A _ { j } = \delta _ { i j } A$ ; confidence 0.848 | ||
Line 398: | Line 398: | ||
199. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302802.png ; $\sum _ { k = 0 } ^ { \infty } a _ { k }$ ; confidence 0.848 | 199. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302802.png ; $\sum _ { k = 0 } ^ { \infty } a _ { k }$ ; confidence 0.848 | ||
− | 200. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006070.png ; $\eta ( x , y ) = | y - x | ^ { 2 - n } d x d y$ ; confidence 0.848 | + | 200. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006070.png ; $\eta ( x , y ) = | y - x | ^ { 2 - n } d x d y,$ ; confidence 0.848 |
201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052012.png ; $d = 1$ ; confidence 0.848 | 201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052012.png ; $d = 1$ ; confidence 0.848 | ||
− | 202. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060116.png ; $\{ f ( k ) , s | + | 202. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060116.png ; $\{ f ( k ) , s _j 1 \leq j \leq J \}$ ; confidence 0.848 |
203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004054.png ; $p _ { X } = \operatorname { lim } _ { s \rightarrow \infty } \frac { \operatorname { log } s } { \operatorname { log } \| D _ { s } \| _ { X } }$ ; confidence 0.848 | 203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004054.png ; $p _ { X } = \operatorname { lim } _ { s \rightarrow \infty } \frac { \operatorname { log } s } { \operatorname { log } \| D _ { s } \| _ { X } }$ ; confidence 0.848 | ||
− | 204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003020.png ; $b A _ { p } \subset b \Delta$ ; confidence 0.848 | + | 204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003020.png ; $b \mathcal{A} _ { p } \subset b \Delta .$ ; confidence 0.848 |
205. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663051.png ; $r _ { i } ^ { * }$ ; confidence 0.848 | 205. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663051.png ; $r _ { i } ^ { * }$ ; confidence 0.848 | ||
− | 206. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o0681706.png ; $E e ^ { i t \omega ^ { 2 } } = \prod _ { k = 1 } ^ { \infty } ( 1 - \frac { 2 i t } { \pi ^ { 2 } k ^ { 2 } } ) ^ { - 1 / 2 }$ ; confidence 0.848 | + | 206. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o0681706.png ; $\mathsf{E} e ^ { i t \omega ^ { 2 } } = \prod _ { k = 1 } ^ { \infty } \left( 1 - \frac { 2 i t } { \pi ^ { 2 } k ^ { 2 } } \right) ^ { - 1 / 2 }.$ ; confidence 0.848 |
207. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022025.png ; $y ^ { ( n ) } = 0$ ; confidence 0.848 | 207. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022025.png ; $y ^ { ( n ) } = 0$ ; confidence 0.848 | ||
Line 416: | Line 416: | ||
208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021011.png ; $F _ { r } \geq 0$ ; confidence 0.848 | 208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021011.png ; $F _ { r } \geq 0$ ; confidence 0.848 | ||
− | 209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019016.png ; $x ( h ) = ( h ^ { 2 } , h , h ^ { 3 / 2 } , h ^ { 1 / 2 } , h ^ { - 1 / 2 } )$ ; confidence 0.848 | + | 209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019016.png ; $\mathbf{x} ( h ) = ( h ^ { 2 } , h , h ^ { 3 / 2 } , h ^ { 1 / 2 } , h ^ { - 1 / 2 } )$ ; confidence 0.848 |
210. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140104.png ; $\varphi , \psi , \ldots$ ; confidence 0.848 | 210. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140104.png ; $\varphi , \psi , \ldots$ ; confidence 0.848 | ||
− | 211. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080113.png ; $p , q \in Z _ { + }$ ; confidence 0.848 | + | 211. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080113.png ; $p , q \in \mathbf{Z} _ { + }$ ; confidence 0.848 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003052.png ; $\square ^ { * } C ^ { \infty } ( \Omega ) = B / I | + | 212. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003052.png ; $\square ^ { * } \mathcal{C} ^ { \infty } ( \Omega ) = \mathcal{B} / \mathcal{I}_{ \mathcal{U}}$ ; confidence 0.848 |
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210120.png ; $w _ { 1 } \leftarrow w _ { 2 }$ ; confidence 0.848 | 213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210120.png ; $w _ { 1 } \leftarrow w _ { 2 }$ ; confidence 0.848 | ||
− | 214. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t1200206.png ; $( F ^ { Z } , B ^ { Z } )$ ; confidence 0.848 | + | 214. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t1200206.png ; $( F ^ { \mathbf{Z} } , B ^ {\mathbf{Z} } )$ ; confidence 0.848 |
215. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018042.png ; $\langle x , y \rangle = 0$ ; confidence 0.848 | 215. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018042.png ; $\langle x , y \rangle = 0$ ; confidence 0.848 | ||
− | 216. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840312.png ; $K \oplus K _ { 2 }$ ; confidence 0.848 | + | 216. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840312.png ; $\mathcal{K} \oplus \mathcal{K} _ { 2 }$ ; confidence 0.848 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008021.png ; $A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] , \quad A _ { 1 } \in C ^ { n \times n } , A _ { 2 } \in C ^ { ( m - n ) \times n }$ ; confidence 0.847 | + | 217. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008021.png ; $A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] , \quad A _ { 1 } \in C ^ { n \times n } , A _ { 2 } \in C ^ { ( m - n ) \times n }.$ ; confidence 0.847 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202103.png ; $x ^ { m - 1 } p _ { m } ( \frac { 1 } { x } ) = p _ { m } ( x )$ ; confidence 0.847 | + | 218. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202103.png ; $x ^ { m - 1 } p _ { m } \left( \frac { 1 } { x } \right) = p _ { m } ( x ).$ ; confidence 0.847 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020016.png ; $[ h _ { i } f _ { j } ] = - | + | 219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020016.png ; $[ h _ { i } f _ { j } ] = - a _ { ij } f _ { j }$ ; confidence 0.847 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140117.png ; $\chi _ { R } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z$ ; confidence 0.847 | + | 220. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140117.png ; $\chi _ { R } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf Z$ ; confidence 0.847 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302701.png ; $V _ { n , p } ( f , x ) = \frac { 1 } { p + 1 } \sum _ { k = n - p } ^ { n } S _ { k } ( f , x )$ ; confidence 0.847 | + | 221. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302701.png ; $V _ { n , p } ( f , x ) = \frac { 1 } { p + 1 } \sum _ { k = n - p } ^ { n } S _ { k } ( f , x ),$ ; confidence 0.847 |
222. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000204.png ; $[ [ M ] ] _ { \rho ( x : = d ) }$ ; confidence 0.847 | 222. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000204.png ; $[ [ M ] ] _ { \rho ( x : = d ) }$ ; confidence 0.847 | ||
Line 454: | Line 454: | ||
227. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230113.png ; $v _ { i } = ( 1 - k _ { i } )$ ; confidence 0.847 | 227. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230113.png ; $v _ { i } = ( 1 - k _ { i } )$ ; confidence 0.847 | ||
− | 228. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070121.png ; $( I \frac { \partial } { \partial t } + \sum A _ { j } \frac { \partial } { \partial x _ { j } } ) E = I \delta$ ; confidence 0.847 | + | 228. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070121.png ; $\left( I \frac { \partial } { \partial t } + \sum A _ { j } \frac { \partial } { \partial x _ { j } } \right) E = I \delta$ ; confidence 0.847 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011023.png ; $( Y , B , \nu , S )$ ; confidence 0.847 | + | 229. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011023.png ; $( Y , \mathcal{B} , \nu , S )$ ; confidence 0.847 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008069.png ; $H = C ^ { n }$ ; confidence 0.847 | + | 230. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008069.png ; $\mathcal{H} = \mathbf{C} ^ { n }$ ; confidence 0.847 |
231. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a01180076.png ; $T ( n )$ ; confidence 0.847 | 231. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a01180076.png ; $T ( n )$ ; confidence 0.847 | ||
Line 464: | Line 464: | ||
232. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020157.png ; $b = e$ ; confidence 0.847 | 232. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020157.png ; $b = e$ ; confidence 0.847 | ||
− | 233. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201108.png ; $D _ { x } = \frac { 1 } { 2 i \pi } \frac { \partial } { \partial x }$ ; confidence 0.847 | + | 233. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201108.png ; $D _ { x } = \frac { 1 } { 2 i \pi } \frac { \partial } { \partial x },$ ; confidence 0.847 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040737.png ; $= | + | 234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040737.png ; $\mathsf{Me} \operatorname{Mod} \mathcal{S}= \cup \{ \mathsf{Me} \operatorname{Mod} \mathcal{S}_p \ : \ P \ \text{a set} \}$ ; confidence 0.847 |
235. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170106.png ; $x \in B ( H )$ ; confidence 0.847 | 235. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170106.png ; $x \in B ( H )$ ; confidence 0.847 | ||
Line 472: | Line 472: | ||
236. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b130040107.png ; $\| f \| _ { \infty } : = \operatorname { sup } \{ | f ( x ) | : x \in X \}$ ; confidence 0.847 | 236. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b130040107.png ; $\| f \| _ { \infty } : = \operatorname { sup } \{ | f ( x ) | : x \in X \}$ ; confidence 0.847 | ||
− | 237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002051.png ; $B ( X ) \ | + | 237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002051.png ; $B ( X ) \bigcap A ( ( X ) ) = A ( X );$ ; confidence 0.847 |
238. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170171.png ; $M ^ { 3 }$ ; confidence 0.847 | 238. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170171.png ; $M ^ { 3 }$ ; confidence 0.847 | ||
− | 239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006041.png ; $\partial ( | + | 239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006041.png ; $\partial ( a ) = \operatorname { deg } ( a )$ ; confidence 0.846 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051053.png ; $P = \cup _ { n \in O } P _ { n }$ ; confidence 0.846 | + | 240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051053.png ; $\mathcal{P} = \cup _ { n \in \mathcal{O} } P _ { n }$ ; confidence 0.846 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010056.png ; $B f = R ^ { * } ( a _ { e } \otimes \ | + | 241. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010056.png ; $B f = R ^ { * } ( a _ { \text{e} } \otimes \widehat { f } ) : = A \widehat { f }$ ; confidence 0.846 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584013.png ; $( K _ { + } , [ , ] )$ ; confidence 0.846 | + | 242. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584013.png ; $( \mathcal{K} _ { + } , [ . , . ] )$ ; confidence 0.846 |
243. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140158.png ; $T _ { \Phi }$ ; confidence 0.846 | 243. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140158.png ; $T _ { \Phi }$ ; confidence 0.846 | ||
− | 244. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010072.png ; $ | + | 244. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010072.png ; $leq \delta$ ; confidence 0.846 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006041.png ; $\Phi : H \rightarrow E$ ; confidence 0.846 | + | 245. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006041.png ; $\Phi : \mathcal{H} \rightarrow \mathcal{E}$ ; confidence 0.846 |
246. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070172.png ; $\mathfrak { C } ( P ) = I _ { 0 } \subset \ldots \subset I _ { \delta } = R ( P )$ ; confidence 0.846 | 246. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070172.png ; $\mathfrak { C } ( P ) = I _ { 0 } \subset \ldots \subset I _ { \delta } = R ( P )$ ; confidence 0.846 | ||
Line 496: | Line 496: | ||
248. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040121.png ; $P _ { K } ( v , z ) \operatorname { mod } ( ( ( v ^ { 2 } - 1 ) , z ) ^ { k + 1 } )$ ; confidence 0.846 | 248. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040121.png ; $P _ { K } ( v , z ) \operatorname { mod } ( ( ( v ^ { 2 } - 1 ) , z ) ^ { k + 1 } )$ ; confidence 0.846 | ||
− | 249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040468.png ; $CPC$ ; confidence 0.846 | + | 249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040468.png ; $operatorname{CPC}_{\wedge \vee}$ ; confidence 0.846 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170155.png ; $K ^ { 2 } \times I ^ { n } \searrow pt$ ; confidence 0.846 | + | 250. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170155.png ; $K ^ { 2 } \times I ^ { n } \searrow \operatorname{pt}$ ; confidence 0.846 |
251. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023090.png ; $D | _ { \Omega ^ { 0 } ( M ) } = 0$ ; confidence 0.846 | 251. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023090.png ; $D | _ { \Omega ^ { 0 } ( M ) } = 0$ ; confidence 0.846 | ||
Line 506: | Line 506: | ||
253. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024058.png ; $A = E [ p ^ { m } ]$ ; confidence 0.846 | 253. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024058.png ; $A = E [ p ^ { m } ]$ ; confidence 0.846 | ||
− | 254. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002081.png ; $Y \in | + | 254. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002081.png ; $Y \in \mathcal{BMO}$ ; confidence 0.846 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021024.png ; $w _ { L _ { + } } = w _ { L - } | w _ { L _ { 0 } }$ ; confidence 0.846 | + | 255. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021024.png ; $w _ { L _ { + } } = w _ { L - } | w _ { L _ { 0 } },$ ; confidence 0.846 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202409.png ; $( X _ { i } , x _ { i 0 } ) = | + | 256. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202409.png ; $( X _ { i } , x _ { i 0 } ) = X_i$ ; confidence 0.846 |
257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png ; $K P$ ; confidence 0.846 | 257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png ; $K P$ ; confidence 0.846 | ||
Line 518: | Line 518: | ||
259. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846 | 259. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846 | ||
− | 260. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015035.png ; $x \preceq y \Rightarrow \varphi ( x ) \preceq \varphi ( y )$ ; confidence 0.846 | + | 260. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015035.png ; $x \preceq y \Rightarrow \varphi ( x ) \preceq \varphi ( y ).$ ; confidence 0.846 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014065.png ; $u \in C ( R ^ { n } )$ ; confidence 0.846 | + | 261. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014065.png ; $u \in C ( \mathbf{R} ^ { n } )$ ; confidence 0.846 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062080.png ; $\mu _ { s } = \mu _ { sc } + \mu _ { d }$ ; confidence 0.846 | + | 262. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062080.png ; $\mu _ { \text{s} } = \mu _ { \text{sc} } + \mu _ { \text{d} }.$ ; confidence 0.846 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170107.png ; $( A + i B ) x = 0$ ; confidence 0.846 | + | 263. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170107.png ; $( \mathcal{A} + i \mathcal{B} ) x = 0$ ; confidence 0.846 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023021.png ; $ | + | 264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023021.png ; $a _ { k } = \int _ { \Gamma } \frac { f ( \zeta ) d \zeta } { \zeta ^ { k + 1 } } , \quad k = 0,1, \dots .$ ; confidence 0.846 |
265. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002013.png ; $\operatorname { sp } ( J , x ) = \operatorname { sp } ( J ^ { \prime } , x )$ ; confidence 0.846 | 265. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002013.png ; $\operatorname { sp } ( J , x ) = \operatorname { sp } ( J ^ { \prime } , x )$ ; confidence 0.846 | ||
Line 532: | Line 532: | ||
266. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520392.png ; $\dot { x } _ { j } = 0$ ; confidence 0.846 | 266. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520392.png ; $\dot { x } _ { j } = 0$ ; confidence 0.846 | ||
− | 267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015033.png ; $\frac { D ^ { 2 } \xi ^ { i } } { d t ^ { 2 } } = P _ { r } ^ { i } \xi ^ { r }$ ; confidence 0.846 | + | 267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015033.png ; $\frac { \mathcal{D} ^ { 2 } \xi ^ { i } } { d t ^ { 2 } } = \mathcal{P} _ { r } ^ { i } \xi ^ { r },$ ; confidence 0.846 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003034.png ; $C _ { 0 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.846 | + | 268. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003034.png ; $\mathcal{C} _ { 0 } ( \Gamma \backslash G ( \mathbf{R} ) )$ ; confidence 0.846 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012029.png ; $T _ { W d } = T _ { \delta }$ ; confidence 0.846 | + | 269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012029.png ; $T _ { |text{W}d } = T _ { \delta }$ ; confidence 0.846 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010161.png ; $E \ | + | 270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010161.png ; $E \ni 0$ ; confidence 0.845 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008038.png ; $h \in L ^ { 1 } ( R _ { + } )$ ; confidence 0.845 | + | 271. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008038.png ; $h \in L ^ { 1 } ( \mathbf{R} _ { + } )$ ; confidence 0.845 |
272. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037026.png ; $g _ { k } = f$ ; confidence 0.845 | 272. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037026.png ; $g _ { k } = f$ ; confidence 0.845 | ||
− | 273. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014086.png ; $GR ( p ^ { r } , s )$ ; confidence 0.845 | + | 273. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014086.png ; $\operatorname{GR} ( p ^ { r } , s )$ ; confidence 0.845 |
274. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005029.png ; $\Sigma ^ { i , j , k } ( f ) \subset \Sigma ^ { i , j } ( f )$ ; confidence 0.845 | 274. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005029.png ; $\Sigma ^ { i , j , k } ( f ) \subset \Sigma ^ { i , j } ( f )$ ; confidence 0.845 | ||
Line 550: | Line 550: | ||
275. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005025.png ; $T ( \Sigma ^ { i } ( f ) ) _ { x }$ ; confidence 0.845 | 275. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005025.png ; $T ( \Sigma ^ { i } ( f ) ) _ { x }$ ; confidence 0.845 | ||
− | 276. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160130.png ; $W E = R . F . I$ ; confidence 0.845 | + | 276. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160130.png ; $W E = R.F.I.$ ; confidence 0.845 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025011.png ; $l _ { k } \geq | p _ { k } ( x )$ ; confidence 0.845 | + | 277. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025011.png ; $l _ { k } \geq | p _ { k } ( x )|$ ; confidence 0.845 |
278. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202504.png ; $h \geq 0$ ; confidence 0.845 | 278. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202504.png ; $h \geq 0$ ; confidence 0.845 | ||
− | 279. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028049.png ; $\rho ( | + | 279. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028049.png ; $\rho ( X_{ *} )$ ; confidence 0.845 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049057.png ; $\ | + | 280. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049057.png ; $\widetilde { \nabla } ^ { j - i }$ ; confidence 0.845 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040118.png ; $X _ { | + | 281. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040118.png ; $X _ { s } ^ { * }$ ; confidence 0.845 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005045.png ; $\dot { a } : = d a / d | + | 282. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005045.png ; $\dot { a } : = d a / d k $ ; confidence 0.845 |
283. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a01206017.png ; $12$ ; confidence 0.844 | 283. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a01206017.png ; $12$ ; confidence 0.844 | ||
− | 284. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280011.png ; $ | + | 284. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280011.png ; $C_n$ ; confidence 0.844 |
285. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009013.png ; $S ^ { \sigma }$ ; confidence 0.844 | 285. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009013.png ; $S ^ { \sigma }$ ; confidence 0.844 | ||
− | 286. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090232.png ; $\operatorname { char } ( Y ^ { \chi } ) = \pi ^ { \mu | + | 286. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090232.png ; $\operatorname { char } ( Y ^ { \chi } ) = \pi ^ { \mu _{\chi}} g _ { \chi } ( T ).$ ; confidence 0.844 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006090.png ; $H ( t ) : = - \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } ( | f ( k ) | ^ { - 2 } - 1 ) e ^ { - i k t } d k$ ; confidence 0.844 | + | 287. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006090.png ; $H ( t ) : = - \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } \left( | f ( k ) | ^ { - 2 } - 1 \right) e ^ { - i k t } d k.$ ; confidence 0.844 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005079.png ; $S ( z ) c = H c + z G ( 1 - z T ) ^ { - 1 } F c , c \in C$ ; confidence 0.844 | + | 288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005079.png ; $S ( z ) c = H c + z G ( 1 - z T ) ^ { - 1 } F c , c \in \mathbf{C}.$ ; confidence 0.844 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002033.png ; $ | + | 289. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002033.png ; $\varphi_2$ ; confidence 0.844 |
290. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044026.png ; $H _ { k } ( X )$ ; confidence 0.844 | 290. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044026.png ; $H _ { k } ( X )$ ; confidence 0.844 | ||
Line 582: | Line 582: | ||
291. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500033.png ; $C _ { i } \subset C$ ; confidence 0.844 | 291. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500033.png ; $C _ { i } \subset C$ ; confidence 0.844 | ||
− | 292. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014025.png ; $\ | + | 292. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014025.png ; $\widehat { f } _ { p } : = \partial \widehat { f } / \partial p$ ; confidence 0.844 |
293. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015330/b0153305.png ; $a , b$ ; confidence 0.844 | 293. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015330/b0153305.png ; $a , b$ ; confidence 0.844 | ||
− | 294. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002055.png ; $2 ^ { n } \operatorname { exp } \{ - \left( \begin{array} { c } { n / 100 } \\ { 3 } \end{array} \right) p ^ { 3 } + O ( n ^ { 4 } p ^ { 5 } ) \} = o ( 1 )$ ; confidence 0.844 | + | 294. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002055.png ; $2 ^ { n } \operatorname { exp } \left\{ - \left( \begin{array} { c } { n / 100 } \\ { 3 } \end{array} \right) p ^ { 3 } + O ( n ^ { 4 } p ^ { 5 } ) \right\} = o ( 1 ).$ ; confidence 0.844 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018028.png ; $\ | + | 295. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018028.png ; $\Lambda ^ { + }$ ; confidence 0.844 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004030.png ; $X _ { g } = \operatorname { Sp } ( 2 g , Z ) \backslash H _ { g }$ ; confidence 0.844 | + | 296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004030.png ; $X _ { g } = \operatorname { Sp } ( 2 g , \mathbf{Z} ) \backslash H _ { g }$ ; confidence 0.844 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210123.png ; $L [ \Delta _ { n } ( \theta ) | P _ { n , \theta _ { n } } ] \Rightarrow N ( \Gamma ( \theta ) h , \Gamma ( \theta ) )$ ; confidence 0.844 | + | 297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210123.png ; $\mathcal{L} [ \Delta _ { n } ( \theta ) | P _ { n , \theta _ { n } } ] \Rightarrow N ( \Gamma ( \theta ) h , \Gamma ( \theta ) ).$ ; confidence 0.844 |
298. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001076.png ; $k a \ll 1$ ; confidence 0.844 | 298. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001076.png ; $k a \ll 1$ ; confidence 0.844 |
Revision as of 20:08, 13 May 2020
List
1. ; $C [ a , b ]$ ; confidence 0.857
2. ; $\bigcup \{ \mathbf u \in V : \sigma ( \mathbf u ) = \infty ( K ) , 0 \in K \},$ ; confidence 0.857
3. ; $z$ ; confidence 0.857
4. ; $\mathsf{E} ( \mathbf Z _ { 2 } )$ ; confidence 0.857
5. ; $A ( \alpha ^ { \prime } , \alpha , k ) \equiv - \frac { C } { 4 \pi } , \text { if } \Gamma u = u , k a \ll 1,$ ; confidence 0.857
6. ; $P ( x , D ) = \sum _ { | \alpha | \leq m } p _ { \alpha } ( x ) D _ { x } ^ { \alpha }$ ; confidence 0.857
7. ; $\Delta _ { 2 }$ ; confidence 0.857
8. ; $\nu _ { 2 } = n$ ; confidence 0.857
9. ; $\epsilon _ { 1 } = \ldots = \epsilon _ { r } = 1$ ; confidence 0.857
10. ; $\times \operatorname { min } _ { h _ { 1 } \leq j \leq h _ { 2 } } | \operatorname { Re } ( b _ { 1 } + \ldots + b _ { j } ) |.$ ; confidence 0.857
11. ; $+ \infty$ ; confidence 0.857
12. ; $\varepsilon _ { t } ^ { (i) }$ ; confidence 0.857
13. ; $| A | \geq k$ ; confidence 0.857
14. ; $\mathcal E _ { \lambda } = \mathcal E _ { \lambda } ^ { \prime } + \mathcal E _ { \lambda } ^ { \prime \prime }$ ; confidence 0.857
15. ; $( k , \mathcal A )$ ; confidence 0.856
16. ; $H _ { k }$ ; confidence 0.856
17. ; $\phi \in A _ { 0 } ( \overline { \mathbf{C} } \backslash D )$ ; confidence 0.856
18. ; $A _ { k } \downarrow 0 ( k \rightarrow \infty ) , \sum _ { k = 0 } ^ { \infty } A _ { k } < \infty , | \Delta d _ { k } | < A _ { k }.$ ; confidence 0.856
19. ; $W ( t )$ ; confidence 0.856
20. ; $F = \mathbf C$ ; confidence 0.856
21. ; $X \times Y _ { \alpha }$ ; confidence 0.856
22. ; $\phi : X \rightarrow Y$ ; confidence 0.856
23. ; $t \in K$ ; confidence 0.856
24. ; $\overline{\mathbf D }$ ; confidence 0.856
25. ; $\operatorname{adj}( L )$ ; confidence 0.856
26. ; $v _ { \operatorname{M} } \geq v ^ { * }$ ; confidence 0.856
27. ; $\operatorname{det}_ { \rho }$ ; confidence 0.856
28. ; $f = X _ { a } X ^ { a }$ ; confidence 0.856
29. ; $\iota \ \omega ( G ) / \omega ( G )$ ; confidence 0.856
30. ; $d$ ; confidence 0.856
31. ; $\phi \in \operatorname { Span } ( 1 , v _ { j } , | v | ^ { 2 } )$ ; confidence 0.856
32. ; $\langle x \rangle$ ; confidence 0.856
33. ; $\operatorname { lim } _ { n \rightarrow \infty } H ( \theta _ { n } , \Theta _ { 0 } ) = 0 , \operatorname { lim } _ { n \rightarrow \infty } n H ^ { 2 } ( \theta _ { n } , \Theta _ { 0 } ) = \infty ,$ ; confidence 0.856
34. ; $x , y \in P$ ; confidence 0.856
35. ; $\omega = \frac { i } { 2 } \sum _ { \mu , \nu } h _ { \mu \nu } ( z ) d z _ { \mu } \bigwedge d \overline{z} _ { \nu }.$ ; confidence 0.856
36. ; $2 ^ { n } p$ ; confidence 0.856
37. ; $\mathbf{T} _ { 2 }$ ; confidence 0.856
38. ; $f \in C ( R ^ { n } )$ ; confidence 0.856
39. ; $R * G$ ; confidence 0.856
40. ; $k ^ { j }$ ; confidence 0.856
41. ; $Y _ { 2 }$ ; confidence 0.855
42. ; $\lim _R S _ { R } ^ { ( n - 1 ) / 2 } f ( x _ { 0 } ) = f ( x _ { 0 } )$ ; confidence 0.855
43. ; $A ( D ) ^ { * } \simeq H ^ { n , n - 1 } ( \mathbf{C} ^ { n } \backslash D ),$ ; confidence 0.855
44. ; $e = \{ x , y \}$ ; confidence 0.855
45. ; $\operatorname { Ber } ( T ^ { \text{st} } ) = \operatorname { Ber } ( T )$ ; confidence 0.855
46. ; $P ^ { \mu }$ ; confidence 0.855
47. ; $N = \infty$ ; confidence 0.855
48. ; $T _ { n } ( a )$ ; confidence 0.855
49. ; $B ( a , b )$ ; confidence 0.855
50. ; $\Omega ^ { * + 1 } ( M , T M )$ ; confidence 0.855
51. ; $\operatorname { exp } e ^ { \zeta ^ { 2 } }$ ; confidence 0.855
52. ; $( B ^ { k } \times B ^ { n - k } , S ^ { k - 1 } \times B ^ { n - k } )$ ; confidence 0.855
53. ; $\frac { d f } { f } = \frac { d \xi } { \xi } - i a \frac { d \tau } { \tau }.$ ; confidence 0.855
54. ; $B = T$ ; confidence 0.855
55. ; $H ^ { i } ( \mathfrak { h } ^ { - } , L )$ ; confidence 0.855
56. ; $z, \overline{z}$ ; confidence 0.855
57. ; $C _ { B ( m , n ) } ( S )$ ; confidence 0.855
58. ; $k _ { D }$ ; confidence 0.855
59. ; $g ( x ) = \sum _ { y : y \leq x } f ( y ) \Leftrightarrow f ( x ) = \sum _ { y : y \leq x } g ( y ) \mu ( y , x )$ ; confidence 0.855
60. ; $p = e ^ { \theta } / ( 1 + e ^ { \theta } )$ ; confidence 0.855
61. ; $x \in \Sigma ^ { n } ( f )$ ; confidence 0.855
62. ; $L _ { 1 , 1}$ ; confidence 0.855
63. ; $e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) = e ( w | v )$ ; confidence 0.855
64. ; $\omega ( \tau ) = \frac { \tau } { \operatorname { sinh } ( \pi \tau ) } \left| \frac { \Gamma ( c - \alpha + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } \right| ^ { 2 } .$ ; confidence 0.855
65. ; $s ( n )$ ; confidence 0.855
66. ; $h _ { i } \geq 0$ ; confidence 0.855
67. ; $L ( \omega , r , s )$ ; confidence 0.855
68. ; $T _ { 1 } = T | _ { H _ { 1 } }$ ; confidence 0.855
69. ; $x _ { 1 } ^ { \prime }$ ; confidence 0.855
70. ; $\{ f _{( k , n )} \} _ { k = 1 } ^ { \mu _ { n } }$ ; confidence 0.854
71. ; $( Z , g )$ ; confidence 0.854
72. ; $\tilde{s}$ ; confidence 0.854
73. ; $\operatorname { Ric } _ { g } = k g$ ; confidence 0.854
74. ; $E , A _ { k } \in \mathbf{R} ^ { n \times m }$ ; confidence 0.854
75. ; $b _ {ii }$ ; confidence 0.854
76. ; $V _ { n } = ( 1 / 2 ) D _ { n } \theta ^ { 2 } \overline { \theta } ^ { 2 }$ ; confidence 0.854
77. ; $( p \supset r ) \supset ( ( q \supset r ) \supset ( ( p \vee q ) \supset r ) )$ ; confidence 0.854
78. ; $+ \left[ \begin{array} { l l } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } 4 } \end{array} \right] T _ { p - l , q - 1 } =$ ; confidence 0.854
79. ; $0 < \lambda _ { k } \leq | f ^ { ( k ) } ( x ) | \leq A \lambda _ { k }$ ; confidence 0.854
80. ; $B _ { n } ^ { - 1 }$ ; confidence 0.854
81. ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } \pi \tau F ( \tau ) d \tau .$ ; confidence 0.854
82. ; $\lambda I - T$ ; confidence 0.854
83. ; $m _ { + } ( \lambda ) = \operatorname { lim } _ { \epsilon \rightarrow 0 + } m ( \lambda + i \epsilon ).$ ; confidence 0.853
84. ; $c ( G )$ ; confidence 0.853
85. ; $\alpha \in S ^ { 1 }$ ; confidence 0.853
86. ; $\rho _ { S } = \operatorname { corr } [ F _ { X } ( X ) , F _ { Y } ( Y ) ] =$ ; confidence 0.853
87. ; $a , b \in T$ ; confidence 0.853
88. ; $\operatorname { deg } F _ { 2 }$ ; confidence 0.853
89. ; $G \times_{ G _ { x }} S$ ; confidence 0.853
90. ; $\rho ( x ) = \sum _ { j \geq 1 } | f _ { j } ( x ) | ^ { 2 }.$ ; confidence 0.853
91. ; $\square \ldots \rightarrow H ^ { n } ( X , A ; G ) \rightarrow H ^ { n } ( X ; G ) \rightarrow H ^ { n } ( A ; G ) \rightarrow $ ; confidence 0.853
92. ; $x \in L ^ { 0 } ( \mu ) , y \in X , | x | \leq | y | \mu - a.e.$ ; confidence 0.853
93. ; $u \in \mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.853
94. ; $\varphi ( P ) \subseteq Q$ ; confidence 0.853
95. ; $x _ { 3 } = f _ { m } ( x _ { 1 } , x _ { 2 } )$ ; confidence 0.853
96. ; $A ( \alpha ^ { \prime } , \alpha , k ) \approx - \frac { h | S | } { 4 \pi ( 1 + h | S | C ^ { - 1 } ) }$ ; confidence 0.853
97. ; $\chi _ { \mu } ^ { \lambda }$ ; confidence 0.853
98. ; $d : \{ 0,1 \} ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.853
99. ; $\mathsf{P} _ { p }$ ; confidence 0.853
100. ; $T \in A$ ; confidence 0.853
101. ; $W _ { 0 } \supset W _ { 1 } \supset \ldots$ ; confidence 0.853
102. ; $- \nabla f ( x _ { c } )$ ; confidence 0.852
103. ; $Z_i > 0$ ; confidence 0.852
104. ; $R : X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.852
105. ; $R _ { k + l } ^ { k - l } ( r ; \alpha ) =$ ; confidence 0.852
106. ; $x \geq \epsilon$ ; confidence 0.852
107. ; $h ( S )$ ; confidence 0.852
108. ; $\widehat { f } ( - \alpha , - p ) = \widehat { f } ( \alpha , p )$ ; confidence 0.852
109. ; $a ^ { * } ( x _ { i } )$ ; confidence 0.852
110. ; $x \operatorname { exp } ( - 8 ( \operatorname { log } x\operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } ) < A _ { 2 } ( x ) <$ ; confidence 0.852
111. ; $r_{ - 1} ( z ) = a ( z )$ ; confidence 0.852
112. ; $\psi ( . ; \eta ) \text { is } ( \eta , Y) \square \text{periodic}.$ ; confidence 0.852
113. ; $y \in \mathcal{D} ( T ^ { + } )$ ; confidence 0.852
114. ; $\sigma ( \mathcal{L} _ { \mathbf{C} } ^ { \infty } ( G ) , \mathcal{L} _ { \mathbf{C} } ^ { 1 } ( G ) )$ ; confidence 0.852
115. ; $\times \operatorname { lim } _ { N \rightarrow \infty } \int _ { 1 / N } ^ { N } \tau \operatorname { tanh } \left( \frac { \pi \tau } { 2 } \right) P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) F ( \tau ) d \tau ,$ ; confidence 0.852
116. ; $f ( x ) - f _ { \rho } ( x ) \in C ( \mathbf{R} ^ { 2 } )$ ; confidence 0.852
117. ; $v = v ( u )$ ; confidence 0.852
118. ; $\widehat { \eta } \omega$ ; confidence 0.852
119. ; $+ \frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \ \sigma \ \omega ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots ).$ ; confidence 0.852
120. ; $m \geq 0$ ; confidence 0.852
121. ; $\| P \| _ { K } = \operatorname { max } _ { z \in K } | P ( z ) |$ ; confidence 0.852
122. ; $f \in C ^ { 0 } ( \Gamma , k + 2 , \mathbf{v} )$ ; confidence 0.852
123. ; $N _ { k }$ ; confidence 0.852
124. ; $[ d \overline { \zeta _ { j } } ]$ ; confidence 0.851
125. ; $\mathcal{ Z}_ { 0 }$ ; confidence 0.851
126. ; $E _ { i } ^ { * } \xi = \xi ^ { \prime }$ ; confidence 0.851
127. ; $z \mapsto ( a z + d ) ( c z + d ) ^ { - 1 }$ ; confidence 0.851
128. ; $\{ w _ { j } , v _ { j } \} _ { j = 0 } ^ { n - 1 }$ ; confidence 0.851
129. ; $\{ \psi _ { m } ( . ; \eta ) \} _ { m = 1 } ^ { \infty } $ ; confidence 0.851
130. ; $g E g ^ { - 1 } = q ^ { 2 } E , g F g ^ { - 1 } = q ^ { - 2 } F , [ E , F ] = \frac { g - g ^ { - 1 } } { q - q ^ { - 1 } }$ ; confidence 0.851
131. ; $Z \mathcal{C} \rightarrow \operatorname{Ab}$ ; confidence 0.851
132. ; $\phi ^ { \prime }$ ; confidence 0.851
133. ; $\int _ { 0 } ^ { t } f ^ { * } ( s ) d s \leq \int _ { 0 } ^ { t } g ^ { * } ( s ) d s$ ; confidence 0.851
134. ; $( K _ { p } ) _ { \text{ins} }$ ; confidence 0.851
135. ; $\psi _ { N }$ ; confidence 0.851
136. ; $\sigma _ { 1 }$ ; confidence 0.851
137. ; $c < 1$ ; confidence 0.851
138. ; $X \vee X$ ; confidence 0.851
139. ; $v ( A ) = e _ { \mathfrak{m} } ^ { 0 } ( A ) + \operatorname { dim } A + I ( A ) - 1$ ; confidence 0.851
140. ; $H C \in \mathcal{NP}$ ; confidence 0.851
141. ; $( g , \mathbf{f} )$ ; confidence 0.851
142. ; $x , y \in \mathcal{D} ( A )$ ; confidence 0.851
143. ; $\times \operatorname { etr } \left\{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } ( X - M ) \Psi ^ { - 1 } ( X - M ) ^ { \prime } \right\} , X \in \mathbf{R} ^ { p \times n } , M \in \mathbf{R} ^ { p \times n } , \Sigma > 0 , \Psi > 0.$ ; confidence 0.851
144. ; $V _ { F } ^ { \prime } ( m ) ( V ( m ) ( \alpha ) ) ( \beta ) = V _ { F } ^ { \prime } ( m ) ( V ( m ) ( \beta ) ) ( \alpha ).$ ; confidence 0.851
145. ; $B _ { i } \left( x _ { 1 } , x _ { 2 } , u , \frac { \partial u } { \partial x _ { 1 } } , \frac { \partial u } { \partial x _ { 2 } } : x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } \right) = 0,$ ; confidence 0.851
146. ; $\pi _0 \operatorname { Map } ( X , Y )$ ; confidence 0.850
147. ; $w \notin S$ ; confidence 0.850
148. ; $\Sigma ^ { 1,1,1,1 }$ ; confidence 0.850
149. ; $\tau \circ \tau$ ; confidence 0.850
150. ; $\beta > 89 / 570 = 0.1561 \ldots$ ; confidence 0.850
151. ; $X = \operatorname { Proj } R$ ; confidence 0.850
152. ; $\frac { \partial M } { \partial x _ { n } } = \Lambda ^ { n } M ,$ ; confidence 0.850
153. ; $\text{S}5$ ; confidence 0.850
154. ; $f \in \mathcal{H} ( \mathbf{C} ^ { n } )$ ; confidence 0.850
155. ; $\mathcal{L} y = 0,$ ; confidence 0.850
156. ; $Y _ { j } = i$ ; confidence 0.850
157. ; $X \in \operatorname { ker } \delta _ { A , B }$ ; confidence 0.850
158. ; $| ( \phi , e ^ { - i H t } \phi ) | ^ { 2 }$ ; confidence 0.850
159. ; $h : \mathbf{A} \twoheadrightarrow \mathbf B$ ; confidence 0.850
160. ; $\left\{ \begin{array} { l } { d x ( t ) = A x ( t ) d t + B u ( t ) d t + d w ( t ), } \\ { d y ( t ) = C x ( t ) d t + D u ( t ) d t + d v ( t ), } \end{array} \right.$ ; confidence 0.850
161. ; $H ^ { n } ( \mathcal{C} , M )$ ; confidence 0.850
162. ; $+ \frac { 1 } { c } \left( \frac { \partial } { \partial t } ( \mathbf P \times \mathbf B ) + \nabla . ( \mathbf v \bigotimes ( \mathbf P \times \mathbf B ) ) \right),$ ; confidence 0.850
163. ; $X _ { 1 } + \ldots + X _ { n } > 0$ ; confidence 0.850
164. ; $\psi \psi ^ { * } d \overtilde { \Omega }$ ; confidence 0.850
165. ; $\{ U _ { z } \} _ { z \in \mathbf T }$ ; confidence 0.850
166. ; $\int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { det } C _ { s } ( t ) d t \geq$ ; confidence 0.850
167. ; $\overset{\rightharpoonup }{ H }$ ; confidence 0.850
168. ; $K ( x ) \in C ^ { 1 } ( \Omega , Y )$ ; confidence 0.850
169. ; $\overline { u } ( z ) = \int _ { \partial D _ { m } } w ( \zeta ) \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - \overline{z} _ { k } ) d \overline { \zeta } [ k ] \wedge d \zeta } { | \zeta - z | ^ { 2 n } },$ ; confidence 0.850
170. ; $X \leftarrow m + T s E$ ; confidence 0.850
171. ; $h _ { K } ( t ) = \operatorname { sup } \{ \| f ( t , x ) \| : x \in K \}$ ; confidence 0.850
172. ; $G = \operatorname{SL} _ { 2 } ( \mathbf C )$ ; confidence 0.850
173. ; $A \subset \mathcal{B} ( H )$ ; confidence 0.850
174. ; $\text{q}$ ; confidence 0.849
175. ; $t : M \rightarrow N$ ; confidence 0.849
176. ; $H _ { + }$ ; confidence 0.849
177. ; $U _ { t } = u ( B _ { \operatorname { min } ( t , \tau )} )$ ; confidence 0.849
178. ; $C ^ { * } = \overline { C ^ { T } }$ ; confidence 0.849
179. ; $f \in G _ { 0 } ^ { s } ( \Omega )$ ; confidence 0.849
180. ; $\epsilon ^ { N } ( C )$ ; confidence 0.849
181. ; $\frac { 1 } { 2 \pi ^ { 2 } } \omega_{ WP},$ ; confidence 0.849
182. ; $T _ { 0 } = T | _ { H _ { 0 } }$ ; confidence 0.849
183. ; $H ^ { j } ( X \times _ { G } E G , \mathbf{Z} / p ) \rightarrow H ^ { j } ( X ^ { G } \times B G , \mathbf Z / p )$ ; confidence 0.849
184. ; $\ll A ^ { 2 / K } N \lambda _ { k } ^ { 1 / ( 2 K - 2 ) } + M ^ { 1 - 2 / K } \lambda _ { k } ^ { - 1 / ( 2 K - 2 ) },$ ; confidence 0.849
185. ; $b _ { \gamma } : M \rightarrow \mathbf R$ ; confidence 0.849
186. ; $R = \{ z : | \operatorname { arg } z | < \pi \}$ ; confidence 0.849
187. ; $( \lambda x M ) N = M [ x : = N ]$ ; confidence 0.849
188. ; $p \in \mathbf{Z} ^ { N }$ ; confidence 0.849
189. ; $d ( P ) = \operatorname { max } _ { k } | N _ { k } |$ ; confidence 0.849
190. ; $\zeta ( 2 n + 1 ) \notin \mathbf{Q}$ ; confidence 0.849
191. ; $\{ x \in \mathbf{R} ^ { n } : 0 \leq r \leq | x - x _ { 0 } | \leq R \}$ ; confidence 0.848
192. ; $a < 1 < b$ ; confidence 0.848
193. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = 1.$ ; confidence 0.848
194. ; $D ( x _ { 0 } ) : = \operatorname { lim } _ { t \rightarrow + 0 } [ f ( x _ { 0 } + t n _ { 0 } ) - f ( x - t n _ { 0 } ) ]$ ; confidence 0.848
195. ; $( u _ { i } , v _ { i } ) \in E_i$ ; confidence 0.848
196. ; $A _ { i } A _ { j } = \delta _ { i j } A$ ; confidence 0.848
197. ; $\varphi , \psi \in \operatorname { Aut } ( X )$ ; confidence 0.848
198. ; $E _ { C }$ ; confidence 0.848
199. ; $\sum _ { k = 0 } ^ { \infty } a _ { k }$ ; confidence 0.848
200. ; $\eta ( x , y ) = | y - x | ^ { 2 - n } d x d y,$ ; confidence 0.848
201. ; $d = 1$ ; confidence 0.848
202. ; $\{ f ( k ) , s _j 1 \leq j \leq J \}$ ; confidence 0.848
203. ; $p _ { X } = \operatorname { lim } _ { s \rightarrow \infty } \frac { \operatorname { log } s } { \operatorname { log } \| D _ { s } \| _ { X } }$ ; confidence 0.848
204. ; $b \mathcal{A} _ { p } \subset b \Delta .$ ; confidence 0.848
205. ; $r _ { i } ^ { * }$ ; confidence 0.848
206. ; $\mathsf{E} e ^ { i t \omega ^ { 2 } } = \prod _ { k = 1 } ^ { \infty } \left( 1 - \frac { 2 i t } { \pi ^ { 2 } k ^ { 2 } } \right) ^ { - 1 / 2 }.$ ; confidence 0.848
207. ; $y ^ { ( n ) } = 0$ ; confidence 0.848
208. ; $F _ { r } \geq 0$ ; confidence 0.848
209. ; $\mathbf{x} ( h ) = ( h ^ { 2 } , h , h ^ { 3 / 2 } , h ^ { 1 / 2 } , h ^ { - 1 / 2 } )$ ; confidence 0.848
210. ; $\varphi , \psi , \ldots$ ; confidence 0.848
211. ; $p , q \in \mathbf{Z} _ { + }$ ; confidence 0.848
212. ; $\square ^ { * } \mathcal{C} ^ { \infty } ( \Omega ) = \mathcal{B} / \mathcal{I}_{ \mathcal{U}}$ ; confidence 0.848
213. ; $w _ { 1 } \leftarrow w _ { 2 }$ ; confidence 0.848
214. ; $( F ^ { \mathbf{Z} } , B ^ {\mathbf{Z} } )$ ; confidence 0.848
215. ; $\langle x , y \rangle = 0$ ; confidence 0.848
216. ; $\mathcal{K} \oplus \mathcal{K} _ { 2 }$ ; confidence 0.848
217. ; $A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] , \quad A _ { 1 } \in C ^ { n \times n } , A _ { 2 } \in C ^ { ( m - n ) \times n }.$ ; confidence 0.847
218. ; $x ^ { m - 1 } p _ { m } \left( \frac { 1 } { x } \right) = p _ { m } ( x ).$ ; confidence 0.847
219. ; $[ h _ { i } f _ { j } ] = - a _ { ij } f _ { j }$ ; confidence 0.847
220. ; $\chi _ { R } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf Z$ ; confidence 0.847
221. ; $V _ { n , p } ( f , x ) = \frac { 1 } { p + 1 } \sum _ { k = n - p } ^ { n } S _ { k } ( f , x ),$ ; confidence 0.847
222. ; $[ [ M ] ] _ { \rho ( x : = d ) }$ ; confidence 0.847
223. ; $0 \leq \operatorname { Re } s \leq 1$ ; confidence 0.847
224. ; $D _ { s } \oplus D _ { s } ^ { \perp }$ ; confidence 0.847
225. ; $u v \simeq f$ ; confidence 0.847
226. ; $b _ { \nu } = 0$ ; confidence 0.847
227. ; $v _ { i } = ( 1 - k _ { i } )$ ; confidence 0.847
228. ; $\left( I \frac { \partial } { \partial t } + \sum A _ { j } \frac { \partial } { \partial x _ { j } } \right) E = I \delta$ ; confidence 0.847
229. ; $( Y , \mathcal{B} , \nu , S )$ ; confidence 0.847
230. ; $\mathcal{H} = \mathbf{C} ^ { n }$ ; confidence 0.847
231. ; $T ( n )$ ; confidence 0.847
232. ; $b = e$ ; confidence 0.847
233. ; $D _ { x } = \frac { 1 } { 2 i \pi } \frac { \partial } { \partial x },$ ; confidence 0.847
234. ; $\mathsf{Me} \operatorname{Mod} \mathcal{S}= \cup \{ \mathsf{Me} \operatorname{Mod} \mathcal{S}_p \ : \ P \ \text{a set} \}$ ; confidence 0.847
235. ; $x \in B ( H )$ ; confidence 0.847
236. ; $\| f \| _ { \infty } : = \operatorname { sup } \{ | f ( x ) | : x \in X \}$ ; confidence 0.847
237. ; $B ( X ) \bigcap A ( ( X ) ) = A ( X );$ ; confidence 0.847
238. ; $M ^ { 3 }$ ; confidence 0.847
239. ; $\partial ( a ) = \operatorname { deg } ( a )$ ; confidence 0.846
240. ; $\mathcal{P} = \cup _ { n \in \mathcal{O} } P _ { n }$ ; confidence 0.846
241. ; $B f = R ^ { * } ( a _ { \text{e} } \otimes \widehat { f } ) : = A \widehat { f }$ ; confidence 0.846
242. ; $( \mathcal{K} _ { + } , [ . , . ] )$ ; confidence 0.846
243. ; $T _ { \Phi }$ ; confidence 0.846
244. ; $leq \delta$ ; confidence 0.846
245. ; $\Phi : \mathcal{H} \rightarrow \mathcal{E}$ ; confidence 0.846
246. ; $\mathfrak { C } ( P ) = I _ { 0 } \subset \ldots \subset I _ { \delta } = R ( P )$ ; confidence 0.846
247. ; $\| f \| \neq \operatorname { dist } ( f , L _ { 1 } ( S ) + L _ { 1 } ( T ) )$ ; confidence 0.846
248. ; $P _ { K } ( v , z ) \operatorname { mod } ( ( ( v ^ { 2 } - 1 ) , z ) ^ { k + 1 } )$ ; confidence 0.846
249. ; $operatorname{CPC}_{\wedge \vee}$ ; confidence 0.846
250. ; $K ^ { 2 } \times I ^ { n } \searrow \operatorname{pt}$ ; confidence 0.846
251. ; $D | _ { \Omega ^ { 0 } ( M ) } = 0$ ; confidence 0.846
252. ; $d _ { i } ^ { ( t ) } = ( y _ { i } - \mu ^ { ( t ) } ) ^ { T } [ \Sigma ^ { ( t ) } ] ^ { - 1 } ( y _ { i } - \mu ^ { ( t ) } )$ ; confidence 0.846
253. ; $A = E [ p ^ { m } ]$ ; confidence 0.846
254. ; $Y \in \mathcal{BMO}$ ; confidence 0.846
255. ; $w _ { L _ { + } } = w _ { L - } | w _ { L _ { 0 } },$ ; confidence 0.846
256. ; $( X _ { i } , x _ { i 0 } ) = X_i$ ; confidence 0.846
257. ; $K P$ ; confidence 0.846
258. ; $\Gamma _ { q }$ ; confidence 0.846
259. ; $L _ { q } ( X )$ ; confidence 0.846
260. ; $x \preceq y \Rightarrow \varphi ( x ) \preceq \varphi ( y ).$ ; confidence 0.846
261. ; $u \in C ( \mathbf{R} ^ { n } )$ ; confidence 0.846
262. ; $\mu _ { \text{s} } = \mu _ { \text{sc} } + \mu _ { \text{d} }.$ ; confidence 0.846
263. ; $( \mathcal{A} + i \mathcal{B} ) x = 0$ ; confidence 0.846
264. ; $a _ { k } = \int _ { \Gamma } \frac { f ( \zeta ) d \zeta } { \zeta ^ { k + 1 } } , \quad k = 0,1, \dots .$ ; confidence 0.846
265. ; $\operatorname { sp } ( J , x ) = \operatorname { sp } ( J ^ { \prime } , x )$ ; confidence 0.846
266. ; $\dot { x } _ { j } = 0$ ; confidence 0.846
267. ; $\frac { \mathcal{D} ^ { 2 } \xi ^ { i } } { d t ^ { 2 } } = \mathcal{P} _ { r } ^ { i } \xi ^ { r },$ ; confidence 0.846
268. ; $\mathcal{C} _ { 0 } ( \Gamma \backslash G ( \mathbf{R} ) )$ ; confidence 0.846
269. ; $T _ { |text{W}d } = T _ { \delta }$ ; confidence 0.846
270. ; $E \ni 0$ ; confidence 0.845
271. ; $h \in L ^ { 1 } ( \mathbf{R} _ { + } )$ ; confidence 0.845
272. ; $g _ { k } = f$ ; confidence 0.845
273. ; $\operatorname{GR} ( p ^ { r } , s )$ ; confidence 0.845
274. ; $\Sigma ^ { i , j , k } ( f ) \subset \Sigma ^ { i , j } ( f )$ ; confidence 0.845
275. ; $T ( \Sigma ^ { i } ( f ) ) _ { x }$ ; confidence 0.845
276. ; $W E = R.F.I.$ ; confidence 0.845
277. ; $l _ { k } \geq | p _ { k } ( x )|$ ; confidence 0.845
278. ; $h \geq 0$ ; confidence 0.845
279. ; $\rho ( X_{ *} )$ ; confidence 0.845
280. ; $\widetilde { \nabla } ^ { j - i }$ ; confidence 0.845
281. ; $X _ { s } ^ { * }$ ; confidence 0.845
282. ; $\dot { a } : = d a / d k $ ; confidence 0.845
283. ; $12$ ; confidence 0.844
284. ; $C_n$ ; confidence 0.844
285. ; $S ^ { \sigma }$ ; confidence 0.844
286. ; $\operatorname { char } ( Y ^ { \chi } ) = \pi ^ { \mu _{\chi}} g _ { \chi } ( T ).$ ; confidence 0.844
287. ; $H ( t ) : = - \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } \left( | f ( k ) | ^ { - 2 } - 1 \right) e ^ { - i k t } d k.$ ; confidence 0.844
288. ; $S ( z ) c = H c + z G ( 1 - z T ) ^ { - 1 } F c , c \in \mathbf{C}.$ ; confidence 0.844
289. ; $\varphi_2$ ; confidence 0.844
290. ; $H _ { k } ( X )$ ; confidence 0.844
291. ; $C _ { i } \subset C$ ; confidence 0.844
292. ; $\widehat { f } _ { p } : = \partial \widehat { f } / \partial p$ ; confidence 0.844
293. ; $a , b$ ; confidence 0.844
294. ; $2 ^ { n } \operatorname { exp } \left\{ - \left( \begin{array} { c } { n / 100 } \\ { 3 } \end{array} \right) p ^ { 3 } + O ( n ^ { 4 } p ^ { 5 } ) \right\} = o ( 1 ).$ ; confidence 0.844
295. ; $\Lambda ^ { + }$ ; confidence 0.844
296. ; $X _ { g } = \operatorname { Sp } ( 2 g , \mathbf{Z} ) \backslash H _ { g }$ ; confidence 0.844
297. ; $\mathcal{L} [ \Delta _ { n } ( \theta ) | P _ { n , \theta _ { n } } ] \Rightarrow N ( \Gamma ( \theta ) h , \Gamma ( \theta ) ).$ ; confidence 0.844
298. ; $k a \ll 1$ ; confidence 0.844
299. ; $| f | _ { - }$ ; confidence 0.843
300. ; $\wedge ( \mathfrak { g } ^ { * } )$ ; confidence 0.843
Maximilian Janisch/latexlist/latex/NoNroff/37. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/37&oldid=45873