Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/69"
(→List) |
(→List) |
||
Line 336: | Line 336: | ||
168. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232032.png ; $J ( \rho ) = J ( \rho ; x _ { 0 } , u ) = \frac { 1 } { \sigma _ { N } ( \rho ) } \int _ { S _ { n } ( x _ { 0 } , \rho ) } u ( y ) d \sigma _ { n } ( y ),$ ; confidence 0.275 | 168. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232032.png ; $J ( \rho ) = J ( \rho ; x _ { 0 } , u ) = \frac { 1 } { \sigma _ { N } ( \rho ) } \int _ { S _ { n } ( x _ { 0 } , \rho ) } u ( y ) d \sigma _ { n } ( y ),$ ; confidence 0.275 | ||
− | 169. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k1300507.png ; $Ma = \frac { u } { c } , Re = \frac { u l } { \nu } , Pr = \frac { \nu } { \kappa }.$ ; confidence 0.275 | + | 169. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k1300507.png ; $\operatorname{Ma} = \frac { u } { c } , \operatorname{Re} = \frac { u l } { \nu } , \operatorname{Pr} = \frac { \nu } { \kappa }.$ ; confidence 0.275 |
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta b$ ; confidence 0.275 | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta b$ ; confidence 0.275 | ||
Line 342: | Line 342: | ||
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010039.png ; $= F _ { n } ( X _ { 1 } ( - t , x _ { 1 } , \ldots , x _ { n } ) , \ldots , X _ { n } ( - t , x _ { 1 } , \ldots , x _ { N } ) ),$ ; confidence 0.275 | 171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010039.png ; $= F _ { n } ( X _ { 1 } ( - t , x _ { 1 } , \ldots , x _ { n } ) , \ldots , X _ { n } ( - t , x _ { 1 } , \ldots , x _ { N } ) ),$ ; confidence 0.275 | ||
− | 172. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700091.png ; $Q \equiv \lambda p f x \ | + | 172. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700091.png ; $Q \equiv \lambda p f x \dot p ( \lambda a b \dot b ( a f ) ) ( \lambda q \dot x ) I$ ; confidence 0.275 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099045.png ; $ | + | 173. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099045.png ; $g_{ij}$ ; confidence 0.275 |
174. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900227.png ; $I _ { N }$ ; confidence 0.275 | 174. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900227.png ; $I _ { N }$ ; confidence 0.275 | ||
Line 350: | Line 350: | ||
175. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510135.png ; $\gamma ( v ) = \infty ( K )$ ; confidence 0.275 | 175. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510135.png ; $\gamma ( v ) = \infty ( K )$ ; confidence 0.275 | ||
− | 176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040516.png ; $ | + | 176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040516.png ; $\mathcal{C} \in FFI _ { \mathcal{D} } \mathbf{A}$ ; confidence 0.275 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p1201107.png ; $ | + | 177. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p1201107.png ; $n$ ; confidence 0.275 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040322.png ; $Q = \operatorname { Alg } \operatorname { Mod } ^ { * S } D$ ; confidence 0.274 | + | 178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040322.png ; $Q = \operatorname { Alg } \operatorname { Mod } ^ { * S } \mathcal{D}$ ; confidence 0.274 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031080.png ; $\sum _ { X } \mu ( X ) \frac { ( \operatorname { | + | 179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031080.png ; $\sum _ { X } \mu ( X ) \frac { ( \operatorname { time } _ { \mathcal{A} } ( X ) ) ^ { 1 / k } } { | X | } < \infty$ ; confidence 0.274 |
180. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201908.png ; $f _ { W } = ( 2 \pi \hbar ) ^ { - 3 N } \psi _ { W }$ ; confidence 0.274 | 180. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201908.png ; $f _ { W } = ( 2 \pi \hbar ) ^ { - 3 N } \psi _ { W }$ ; confidence 0.274 | ||
− | 181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027043.png ; $( T ( x _ { | + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027043.png ; $( T ( x _ { n } ) , \psi _ { j } ) = ( f , \psi _ { j } ) , j = 1 , \ldots , n.$ ; confidence 0.274 |
182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260138.png ; $\pi _ { v ^ { \prime } , p ^ { \prime } }$ ; confidence 0.274 | 182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260138.png ; $\pi _ { v ^ { \prime } , p ^ { \prime } }$ ; confidence 0.274 | ||
− | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050271.png ; $\pi _ { C } ^ { \# } ( x ) \sim C x ^ { \kappa } ( \operatorname { log } x ) ^ { \nu } \text { as } x \rightarrow \infty$ ; confidence 0.274 | + | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050271.png ; $\pi _ { \mathcal{C} } ^ { \# } ( x ) \sim C x ^ { \kappa } ( \operatorname { log } x ) ^ { \nu } \text { as } x \rightarrow \infty.$ ; confidence 0.274 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001020.png ; $\rho ^ { v }$ ; confidence 0.274 | + | 184. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001020.png ; $\rho ^ { v(.) }$ ; confidence 0.274 |
185. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150133.png ; $\pi _ { G \times G _ { x } } s : G \times _ { G _ { X } } S \rightarrow ( G \times _ { G _ { X } } S ) / / G$ ; confidence 0.274 | 185. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150133.png ; $\pi _ { G \times G _ { x } } s : G \times _ { G _ { X } } S \rightarrow ( G \times _ { G _ { X } } S ) / / G$ ; confidence 0.274 | ||
− | 186. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035027.png ; $P = \operatorname { lim } _ { N \rightarrow \infty } N \ | + | 186. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035027.png ; $P = \operatorname { lim } _ { N \rightarrow \infty } N \dot \operatorname { Cov } ( \hat { \theta }_ N ) =$ ; confidence 0.274 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c1200106.png ; $ | + | 187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c1200106.png ; $l \subset \mathbf{C} ^ { n }$ ; confidence 0.274 |
188. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006045.png ; $\{ \operatorname { Pred } ( x ) , x \in X _ { P } \} \cup \{ \operatorname { Pred } \operatorname { Succ } ( x ) , x \in X _ { P } \}$ ; confidence 0.274 | 188. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006045.png ; $\{ \operatorname { Pred } ( x ) , x \in X _ { P } \} \cup \{ \operatorname { Pred } \operatorname { Succ } ( x ) , x \in X _ { P } \}$ ; confidence 0.274 | ||
− | 189. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120126.png ; $\phi ( x ) \in O$ ; confidence 0.274 | + | 189. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120126.png ; $\phi ( x ) \in O^r_K$ ; confidence 0.274 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017093.png ; $ | + | 190. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017093.png ; $s = ( s _ { 1 } , \ldots , s _ { m } )$ ; confidence 0.274 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a013010143.png ; $ | + | 191. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a013010143.png ; $n_ 1$ ; confidence 0.274 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008028.png ; $a ( u , v ) = ( f , v ) _ { L | + | 192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008028.png ; $a ( u , v ) = ( f , v ) _ { L ^ { 2 }}$ ; confidence 0.273 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200154.png ; $z _ { 1 } \dots z _ { | + | 193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200154.png ; $z _ { 1 } \dots z _ { n } \neq 0$ ; confidence 0.273 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019012.png ; $a | + | 194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019012.png ; $a /q$ ; confidence 0.273 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014010.png ; $I \in | + | 195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014010.png ; $I \in W$ ; confidence 0.273 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009034.png ; $x e ^ { | + | 196. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009034.png ; $x e ^ { rx }$ ; confidence 0.273 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048055.png ; $E _ { 2 } ^ { p | + | 197. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048055.png ; $E _ { 2 } ^ { p q } = H ^ { p } ( B ) \otimes H _ { S } ^ { q } ( D _ { \pi } )$ ; confidence 0.273 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010017.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq 0 , y , z \in C ^ { n }$ ; confidence 0.273 | + | 198. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010017.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq 0 , y , z \in \mathbf{C} ^ { n },$ ; confidence 0.273 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { | + | 199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n_ j } ^ { \prime } \}$ ; confidence 0.273 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010011.png ; $ | + | 200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010011.png ; $DT$ ; confidence 0.273 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008036.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } z ^ { k } z ^ { l } F ( - k , - l ; - k - l - \alpha ; \frac { 1 } { | + | 201. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008036.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } z ^ { k } z ^ { l } F ( - k , - l ; - k - l - \alpha ; \frac { 1 } { z \bar{z} } ).$ ; confidence 0.273 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006023.png ; $w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) \ | + | 202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006023.png ; $w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) \dot f ^ { ( k ) } ( z ) + \sum _ { k = 0 } ^ { n } b _ { k } ( z ) \overline { g ^ { ( k ) } ( z ) },$ ; confidence 0.273 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220133.png ; $_ { | + | 203. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220133.png ; $\operatorname{ord}_ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } H _ { \mathcal{D} } ^ { i + 1 } ( X_{ / \mathbf{R}} , \mathbf{R} ( i + 1 - m ) )$ ; confidence 0.273 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006021.png ; $ | + | 204. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006021.png ; $ \widehat{ { \mathfrak{sl}( n ) }}$ ; confidence 0.272 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670103.png ; $W = GL ^ { k } ( n ) | + | 205. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670103.png ; $W = GL ^ { k } ( n ) / G$ ; confidence 0.272 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005037.png ; $| a ( k ) | ^ { 2 } = 1 + | b ( k ) | ^ { 2 } , r _ { - } ( k ) = \frac { b ( k ) } { a ( k ) } , r _ { + } ( k ) = - \frac { b ( - k ) } { a ( k ) }$ ; confidence 0.272 | + | 206. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005037.png ; $| a ( k ) | ^ { 2 } = 1 + | b ( k ) | ^ { 2 } , r _ { - } ( k ) = \frac { b ( k ) } { a ( k ) } , r _ { + } ( k ) = - \frac { b ( - k ) } { a ( k ) },$ ; confidence 0.272 |
207. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260132.png ; $\pi _ { v , p } ( d \theta ) = A ( m , p ) ( L _ { \mu } ( \theta ) ) ^ { - p } \operatorname { exp } \langle \theta , v \rangle \alpha ( d \theta )$ ; confidence 0.272 | 207. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260132.png ; $\pi _ { v , p } ( d \theta ) = A ( m , p ) ( L _ { \mu } ( \theta ) ) ^ { - p } \operatorname { exp } \langle \theta , v \rangle \alpha ( d \theta )$ ; confidence 0.272 | ||
− | 208. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220205.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } _ { Q } H _ { M } ^ { i + 1 } ( X , Q ( m ) ) _ { Z } ^ { 0 }$ ; confidence 0.272 | + | 208. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220205.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } _ { Q } H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( m ) ) _ { \mathbf{Z} } ^ { 0 }$ ; confidence 0.272 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180388.png ; $M \subset \ | + | 209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180388.png ; $M \subset \tilde { M }$ ; confidence 0.272 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663025.png ; $f _ { X _ { i } } ^ { ( r _ { i } ^ { * } ) } = \frac { \partial _ { i } ^ { r _ { i } ^ { * } } f } { \partial x _ { i } ^ { r _ { i } ^ { * } } }$ ; confidence 0.272 | + | 210. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663025.png ; $f _ { X _ { i } } ^ { ( r _ { i } ^ { * } ) } = \frac { \partial _ { i } ^ { r _ { i } ^ { * } } f } { \partial x _ { i } ^ { r _ { i } ^ { * } } },$ ; confidence 0.272 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018018.png ; $ | + | 211. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018018.png ; $I_E$ ; confidence 0.272 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027069.png ; $\alpha ( t ) = b ( t ) + \int _ { | + | 212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027069.png ; $\alpha ( t ) = b ( t ) + \int _ { ( 0 , t ] } a ( t - u ) d F ( u ) \text { for } t \geq 0.$ ; confidence 0.272 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140104.png ; $D _ { 1 } \subset C ^ { N }$ ; confidence 0.272 | + | 213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140104.png ; $\mathcal{D} _ { 1 } \subset \mathbf{C} ^ { N }$ ; confidence 0.272 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017064.png ; $ | + | 214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017064.png ; $\textbf{supp} \mu \subseteq K$ ; confidence 0.271 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002012.png ; $\partial _ { x } \alpha L = L _ { x _ { 1 } } \alpha _ { 1 \ldots x _ { D } } | + | 215. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002012.png ; $\partial _ { x } \alpha L = L _ { x _ { 1 } } \alpha _ { 1 \ldots x _ { D } } { \alpha _ { D } }$ ; confidence 0.271 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055027.png ; $ | + | 216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055027.png ; $ b _ { \gamma }$ ; confidence 0.271 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007045.png ; $v _ { i | + | 217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007045.png ; $v _ { i ,0} $ ; confidence 0.271 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | | + | 218. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | \leq 1$ ; confidence 0.271 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302301.png ; $P _ { | + | 219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302301.png ; $P _ { U \cap V }$ ; confidence 0.271 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011019.png ; $a \in C$ ; confidence 0.271 | + | 220. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011019.png ; $a \in \mathbf{C}$ ; confidence 0.271 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019062.png ; $\overline { a } | + | 221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019062.png ; $\overline { a } / q$ ; confidence 0.271 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v1300504.png ; $\sum _ { n \geq - 1 } ( \operatorname { dim } V _ { n } ^ { | + | 222. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v1300504.png ; $\sum _ { n \geq - 1 } ( \operatorname { dim } V _ { n } ^ { \sharp } ) q ^ { n }$ ; confidence 0.271 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009040.png ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = \theta _ { n } ( h _ { 1 } \otimes \ | + | 223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009040.png ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = \theta _ { n } ( h _ { 1 } \otimes^\wedge \ldots \otimes^\wedge \sim h _ { n } )$ ; confidence 0.271 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028035.png ; $E * ( | \overline { S } ( X ) | )$ ; confidence 0.270 | + | 224. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028035.png ; $\mathbf{E} * ( | \overline { S } ( X ) | )$ ; confidence 0.270 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002079.png ; $\sum _ { x \in N }$ ; confidence 0.270 | + | 225. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002079.png ; $\sum _ { x \in \mathbf{N} } |c_n| \|X\|_1$ ; confidence 0.270 |
226. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520380.png ; $Y ^ { Q } \equiv y _ { 1 } ^ { q _ { 1 } } \dots y _ { n } ^ { q _ { n } }$ ; confidence 0.270 | 226. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520380.png ; $Y ^ { Q } \equiv y _ { 1 } ^ { q _ { 1 } } \dots y _ { n } ^ { q _ { n } }$ ; confidence 0.270 | ||
Line 454: | Line 454: | ||
227. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005031.png ; $\alpha \mapsto a ^ { g }$ ; confidence 0.270 | 227. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005031.png ; $\alpha \mapsto a ^ { g }$ ; confidence 0.270 | ||
− | 228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010032.png ; $ | + | 228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010032.png ; $(.)$ ; confidence 0.270 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032022.png ; $B _ { V } \otimes | + | 229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032022.png ; $B _ {{ V } \otimes { W }} ( x \otimes y ) = ( - 1 ) ^ { p ( x ) p ( y ) } ( y \otimes x ).$ ; confidence 0.270 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120161.png ; $p \in S _ { | + | 230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120161.png ; $p \in S _ { M}$ ; confidence 0.270 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006059.png ; $\ | + | 231. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006059.png ; $\operatorname{CTop}/B$ ; confidence 0.270 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021071.png ; $ | + | 232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021071.png ; $l = 0 , \dots , n _ { 2 } - 1$ ; confidence 0.270 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110252.png ; $\ | + | 233. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110252.png ; $\tilde { g } _ { X } = H ( X ) ^ { - 1 } \tilde { h } ( X ) G _ { X } ( T )$ ; confidence 0.270 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001031.png ; $C ( F ) \subset C ( X )$ ; confidence 0.270 | + | 234. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001031.png ; $\mathbf{C} ( F ) \subset \mathbf{C} ( X )$ ; confidence 0.270 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007019.png ; $C ^ { | + | 235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007019.png ; $C ^ { n } ( \mathcal{C} , M ) \rightarrow M( \operatorname{ codom } \alpha_n$ ; confidence 0.270 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040037.png ; $X | + | 236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040037.png ; $X \times_ { G } E G = ( X \times E G ) / G$ ; confidence 0.270 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041010.png ; $\| p \| _ { s } ^ { 2 } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \int _ { R } | p ^ { ( i ) } ( t ) | ^ { 2 } d \mu _ { i } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \| p ^ { ( i ) } ( t ) \| _ { \mu _ { i } } ^ { 2 }$ ; confidence 0.270 | + | 237. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041010.png ; $\| p \| _ { s } ^ { 2 } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \int _ { \mathbf{R} } | p ^ { ( i ) } ( t ) | ^ { 2 } d \mu _ { i } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \| p ^ { ( i ) } ( t ) \| _ { \mu _ { i } } ^ { 2 }.$ ; confidence 0.270 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280140.png ; $g _ { | + | 238. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280140.png ; $g _ { u } = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { \partial u } { \partial z _ { k } } d \bar{z} [ k ] \wedge d z$ ; confidence 0.270 |
239. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270111.png ; $\{ a _ { j } ^ { g } : j = 1 , \dots , [ K : Q ] , g \in G \}$ ; confidence 0.270 | 239. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270111.png ; $\{ a _ { j } ^ { g } : j = 1 , \dots , [ K : Q ] , g \in G \}$ ; confidence 0.270 | ||
− | 240. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f1300509.png ; $\sum _ { | + | 240. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f1300509.png ; $\sum _ { i = 1 } ^ { m } \| p _ { i } - x \| = c ( a \text { constant } ),$ ; confidence 0.270 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015010.png ; $ad _ { \alpha } = [ \alpha , ]$ ; confidence 0.270 | + | 241. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015010.png ; $\operatorname{ad} _ { \alpha } = [ \alpha ,. ]$ ; confidence 0.270 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014036.png ; $r _ { 1 } / r _ { 2 } \notin H _ { | + | 242. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014036.png ; $r _ { 1 } / r _ { 2 } \notin H _ { n}$ ; confidence 0.269 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019061.png ; $S ^ { | + | 243. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019061.png ; $S ^ { l - 1 }$ ; confidence 0.269 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006059.png ; $G _ { R } ^ { \# } ( n ) = A _ { R } q ^ { n } + O ( 1 ) \text { as } n \rightarrow \infty$ ; confidence 0.269 | + | 244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006059.png ; $G _ { R } ^ { \# } ( n ) = A _ { R } q ^ { n } + O ( 1 ) \text { as } n \rightarrow \infty,$ ; confidence 0.269 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013019.png ; $\Gamma ^ { | + | 245. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013019.png ; $\Gamma ^ { o p }$ ; confidence 0.269 |
246. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269 | 246. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269 | ||
− | 247. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027021.png ; $y _ { 1 | + | 247. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027021.png ; $y _ { 1 , m} < \ldots < y _ { m , m }$ ; confidence 0.269 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262078.png ; $ | + | 248. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262078.png ; $l \times l$ ; confidence 0.269 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211035.png ; $X ^ { 2 } ( \theta ) = \sum _ { | + | 249. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211035.png ; $X ^ { 2 } ( \theta ) = \sum _ { i = 1 } ^ { k } \frac { [ \nu _ { i } - n p _ { i } ( \theta ) ] ^ { 2 } } { n p _ { l } ( \theta ) }$ ; confidence 0.269 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010030.png ; $ | + | 250. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010030.png ; $q_f$ ; confidence 0.268 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017024.png ; $K _ { R } \equiv \{ x \in R ^ { n } : | + | 251. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017024.png ; $K _ { R } \equiv \{ x \in \mathbf{R} ^ { n } : r_j ( x ) \geq 0 , j = 1 , \ldots , m \}$ ; confidence 0.268 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584054.png ; $( H , ( , | + | 252. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584054.png ; $( \mathcal{H} , ( .,. ) )$ ; confidence 0.268 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110177.png ; $b = b _ { m } + b _ { m | + | 253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110177.png ; $b = b _ { m } + b _ { m - 1} + \ldots$ ; confidence 0.268 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014018.png ; $J _ { | + | 254. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014018.png ; $J _ { k }$ ; confidence 0.268 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015450/b0154509.png ; $\{ | + | 255. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015450/b0154509.png ; $\{ x_k \}$ ; confidence 0.268 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013012.png ; $T ^ { | + | 256. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013012.png ; $\mathbf{T} ^ { n }$ ; confidence 0.268 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014046.png ; $ | + | 257. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014046.png ; $q_Q$ ; confidence 0.268 |
258. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001035.png ; $e \notin S ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.268 | 258. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001035.png ; $e \notin S ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.268 | ||
− | 259. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012079.png ; $K _ { tot S } = \ | + | 259. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012079.png ; $K _ { tot S } = \bigcap _ { p \in S } \bigcap _ { \sigma \in G ( K ) } K _ { p } ^ { \sigma }$ ; confidence 0.268 |
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430146.png ; $B \in \square _ { H } ^ { H } M$ ; confidence 0.268 | 260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430146.png ; $B \in \square _ { H } ^ { H } M$ ; confidence 0.268 | ||
− | 261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220158.png ; $H _ { M } ^ { i } ( X , Q ( j ) )$ ; confidence 0.268 | + | 261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220158.png ; $H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) )$ ; confidence 0.268 |
262. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a01245047.png ; $b - 1$ ; confidence 0.267 | 262. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a01245047.png ; $b - 1$ ; confidence 0.267 | ||
Line 526: | Line 526: | ||
263. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007037.png ; $A ^ { \text { in/out } } ( f )$ ; confidence 0.267 | 263. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007037.png ; $A ^ { \text { in/out } } ( f )$ ; confidence 0.267 | ||
− | 264. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005033.png ; $N | + | 264. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005033.png ; $N / N ^ { 2 }$ ; confidence 0.267 |
265. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306508.png ; $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ ; confidence 0.267 | 265. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306508.png ; $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ ; confidence 0.267 | ||
− | 266. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012015.png ; $x \in \Sigma ^ { | + | 266. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012015.png ; $x \in \Sigma ^ { n }$ ; confidence 0.267 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m1202108.png ; $K ^ { | + | 267. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m1202108.png ; $\mathcal{K} ^ { n }$ ; confidence 0.267 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002015.png ; $x ( y \wedge z ) t = x y t | + | 268. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002015.png ; $x ( y \wedge z ) t = x y t \wedge x z t.$ ; confidence 0.267 |
269. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029047.png ; $\mathfrak { p } \in \operatorname { Spec } R$ ; confidence 0.267 | 269. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029047.png ; $\mathfrak { p } \in \operatorname { Spec } R$ ; confidence 0.267 | ||
− | 270. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400209.png ; $x \in K _ { | + | 270. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400209.png ; $x \in K _ { n }$ ; confidence 0.267 |
271. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110138.png ; $i = 1 , \dots , 2 ^ { q }$ ; confidence 0.267 | 271. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110138.png ; $i = 1 , \dots , 2 ^ { q }$ ; confidence 0.267 | ||
− | 272. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027035.png ; $z _ { 1 } , \dots , z _ { | + | 272. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027035.png ; $z _ { 1 } , \dots , z _ { n } , 1 / z _ { 1 } , \dots , 1 / z _ { n }$ ; confidence 0.267 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583038.png ; $ | + | 273. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583038.png ; $C_{00}$ ; confidence 0.267 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040028.png ; $\sum _ { | + | 274. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040028.png ; $\sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X , \mathbf{Z} / p ) \geq \sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X ^ { P } , \mathbf{Z} / p ).$ ; confidence 0.266 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012042.png ; $\hat { K } _ { p } = C$ ; confidence 0.266 | + | 275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012042.png ; $\hat { K } _ { p } = \mathbf{C}$ ; confidence 0.266 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066083.png ; $g 1 , \ldots , g _ { | + | 276. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066083.png ; $\bar{g}_ 1 , \ldots , \bar{g} _ { n }$ ; confidence 0.266 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010075.png ; $K _ { N } : = n ( 2 / L _ { 1 , | + | 277. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010075.png ; $K _ { N } : = n ( 2 / L _ { 1 , n } ) ^ { 2 / N } ( n + 2 ) ^ { - 1 - 2 / n }$ ; confidence 0.266 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200121.png ; $( \alpha _ { i } | \alpha _ { j } ) = d _ { i } a _ { j }$ ; confidence 0.266 | + | 278. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200121.png ; $( \alpha _ { i } | \alpha _ { j } ) = d _ { i } a _ {i j }$ ; confidence 0.266 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040573.png ; $ | + | 279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040573.png ; $\textbf{DL}$ ; confidence 0.266 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026021.png ; $P ( \theta , \mu ) ( d x ) = \frac { 1 } { L _ { \mu } ( \theta ) } \operatorname { exp } \langle \theta , x \rangle \mu ( d x )$ ; confidence 0.266 | + | 280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026021.png ; $P ( \theta , \mu ) ( d x ) = \frac { 1 } { L _ { \mu } ( \theta ) } \operatorname { exp } \langle \theta , x \rangle \mu ( d x ),$ ; confidence 0.266 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026082.png ; $( a _ { i } ) _ { i \in N }$ ; confidence 0.266 | + | 281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026082.png ; $( a _ { i } ) _ { i \in \mathbf{N} }$ ; confidence 0.266 |
282. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300205.png ; $\dot { i } \in \Gamma$ ; confidence 0.266 | 282. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300205.png ; $\dot { i } \in \Gamma$ ; confidence 0.266 | ||
− | 283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040583.png ; $ | + | 283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040583.png ; $\Lambda$ ; confidence 0.266 |
284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030038.png ; $( T ( a _ { 1 } , \dots , a _ { n } ) , d )$ ; confidence 0.266 | 284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030038.png ; $( T ( a _ { 1 } , \dots , a _ { n } ) , d )$ ; confidence 0.266 | ||
− | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201206.png ; $\alpha ( n ) = \text { Vol } ( S ^ { | + | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201206.png ; $\alpha ( n ) = \text { Vol } ( S ^ { n } )$ ; confidence 0.266 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027019.png ; $O ( E [ ( 1 - c ) n ] ( f ) )$ ; confidence 0.266 | + | 286. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027019.png ; $O ( E _{[ ( 1 - c ) n ] }( f ) )$ ; confidence 0.266 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023033.png ; $p _ { 1 } , \dots , p _ { | + | 287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023033.png ; $p _ { 1 } , \dots , p _ { n }$ ; confidence 0.265 |
288. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210100.png ; $X _ { 0 } , \dots , X _ { N }$ ; confidence 0.265 | 288. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210100.png ; $X _ { 0 } , \dots , X _ { N }$ ; confidence 0.265 | ||
− | 289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d | + | 289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( \mathcal{S} ) , \overline { g } ) = ( \mathbf{R} _ { + } \times \mathcal{S} , d r ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006089.png ; $\Rightarrow ( \mu I - A ) ^ { - 1 } | + | 290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006089.png ; $\Rightarrow ( \mu I - A ) ^ { - 1 } . E x = x \Rightarrow \Rightarrow \| ( \mu I - A ) ^ { - 1 } . E \| . \| x \| \geq \| x \|.$ ; confidence 0.265 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170169.png ; $f , g \in P _ { | + | 291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170169.png ; $f , g \in P _ { n-k } $ ; confidence 0.265 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220187.png ; $ | + | 292. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220187.png ; $X / \mathbf{Q}$ ; confidence 0.265 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $ | + | 293. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $\operatorname{Ch} ( [ a ] )$ ; confidence 0.265 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004026.png ; $c = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { cr } ( K _ { | + | 294. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004026.png ; $c = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { cr } ( K _ { n , n } ) \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right) ^ { - 2 }$ ; confidence 0.265 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106705.png ; $Y$ ; confidence 0.265 | + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106705.png ; $\mathcal{Y}$ ; confidence 0.265 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040635.png ; $F _ { S _ { P } } \mathfrak { M }$ ; confidence 0.264 | + | 296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040635.png ; $F _ { \mathcal{S} _ { P } } \mathfrak { M }$ ; confidence 0.264 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202407.png ; $ | + | 297. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202407.png ; $s , y$ ; confidence 0.264 |
298. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070208.png ; $\sum _ { \text { ord } T } ( u d v )$ ; confidence 0.264 | 298. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070208.png ; $\sum _ { \text { ord } T } ( u d v )$ ; confidence 0.264 | ||
− | 299. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029015.png ; $P _ { N } ( x ) = \sum _ { k = 0 } ^ { | + | 299. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029015.png ; $P _ { N } ( x ) = \sum _ { k = 0 } ^ { n } c _ { k } s _ { k } ( x ),$ ; confidence 0.264 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051084.png ; $H _ { | + | 300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051084.png ; $H _ { n}^{ - 1} d$ ; confidence 0.264 |
Revision as of 14:12, 10 May 2020
List
1. ; $u ( z _ { 1 } , z _ { 2 } ) = \left\{ \begin{array} { c l } { 0 } & { \text { if } | z _ { 1 } | ^ { 2 } , | z _ { 2 } | ^ { 2 } < \frac { 1 } { 2 } } ,\\ { \operatorname { max } \left\{ \left( | z _ { 1 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 } \right. } & { \left. \left( | z _ { 2 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 } \right\} } \\ { \text { elsewhere on } D, } \end{array} \right. $ ; confidence 0.287
2. ; $I_i$ ; confidence 0.287
3. ; $B _ { m }$ ; confidence 0.287
4. ; $\tilde { g } | _ { M } = g$ ; confidence 0.287
5. ; $\| f _ { 1 } - P _ { U \cap V } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
6. ; $A ( X _ { 1 } , \dots , X _ { N } )$ ; confidence 0.287
7. ; $P ( X = 0 ) \leq e ^ { - \Omega ( 1 / ( n p ^ { 2 } ) ) }$ ; confidence 0.287
8. ; $\operatorname { co } ( R ) = U \times \operatorname { Rng } ( R )$ ; confidence 0.287
9. ; $F \Psi ^ { q }$ ; confidence 0.287
10. ; $F _ { m } ^ { n }$ ; confidence 0.286
11. ; $X _ { i } = B U \Rightarrow A : = B$ ; confidence 0.286
12. ; $v _ { 1 } , \dots , v _ { N }$ ; confidence 0.286
13. ; $\langle A , \tilde { f } \rangle _ { f \in \Phi }$ ; confidence 0.286
14. ; $\mathfrak{S}_r$ ; confidence 0.286
15. ; $m _ { 1 } , \dots , m _ { r }$ ; confidence 0.286
16. ; $\rightarrow \square _ { R } \text { Mod } ( ? , C ) \rightarrow S _ { C } \rightarrow 0.$ ; confidence 0.286
17. ; $| N _ { k } | ^ { 2 } \geq | N _ { k - 1} | | N _ { k + 1}$ ; confidence 0.285
18. ; $l _ { A } ( M / qM ) - e _ { q } ^ { 0 } ( M )$ ; confidence 0.285
19. ; $f ( t , \psi ) \in \mathbf{R} ^ { n }$ ; confidence 0.285
20. ; $s\leq s_ 1$ ; confidence 0.285
21. ; $\varepsilon _ { l } - \varepsilon _ { l }$ ; confidence 0.285
22. ; $\mathcal{A} x = a x - x c$ ; confidence 0.285
23. ; $Q _ { m , j_g }$ ; confidence 0.285
24. ; $\textbf{Alg} _ { vdash } ( \mathcal{L} )$ ; confidence 0.285
25. ; $\alpha ^ { w } = \int _ { R ^ { 2 n } } \alpha ( X ) 2 ^ { n } \sigma _ { X } d X =$ ; confidence 0.285
26. ; $\mathcal{F} \subseteq Fi _ { \mathcal{D} } A$ ; confidence 0.285
27. ; $A = B ^ { \uparrow X _ { 1 } , \ldots , X _ { n } }$ ; confidence 0.284
28. ; $\mathbf{Z} / 2$ ; confidence 0.284
29. ; $d _ { 2 }$ ; confidence 0.284
30. ; $\alpha \in T _ { X } \cap T _ { Y }$ ; confidence 0.284
31. ; $h ^ { \alpha } = h _ { 1 } ^ { \alpha _ { 1 } } \ldots h _ { m } ^ { \alpha _ { m } }$ ; confidence 0.284
32. ; $( \partial / \partial t _ { n } ) - Q _ { 0 } z ^ { n }$ ; confidence 0.284
33. ; $C^n$ ; confidence 0.284
34. ; $\int _ { I } | \varphi - \varphi _ { I } | ^ { 2 } \frac { d \vartheta } { 2 \pi } \leq c _ { 1 } ^ { 2 } | I |$ ; confidence 0.284
35. ; $($ ; confidence 0.284
36. ; $E [ T ( x ) ] _ { P S }$ ; confidence 0.284
37. ; $\alpha ( t , u , v ) = \langle \mathcal{A} ( t ) u , v \rangle _ { \langle H ^ { 1 } \rangle^ { \prime } \times H ^ { 1 }}$ ; confidence 0.284
38. ; $\tilde { g } | _ { N } = g$ ; confidence 0.284
39. ; $O _ { n }$ ; confidence 0.284
40. ; $u _ { t } + 1 / 2 ( x , ( 1 / 2 ) \Delta t )$ ; confidence 0.283
41. ; $/tilde{c}$ ; confidence 0.283
42. ; $\tilde { j } f = j$ ; confidence 0.283
43. ; $c = \alpha \frac { \Delta t } { \Delta x }$ ; confidence 0.283
44. ; $\xi { \alpha }$ ; confidence 0.283
45. ; $\text{NSPACE} [ s ( n ) ] = \text { co } \text{NSPACE} [ s ( n ) ]$ ; confidence 0.283
46. ; $\Sigma ( P , R ) \subseteq Fm_{ P \cup R}$ ; confidence 0.283
47. ; $\textbf{FM}$ ; confidence 0.283
48. ; $L _ { 1 } ^ { \prime }$ ; confidence 0.283
49. ; $X = \sum _ { j = 1 } ^ { 8 } X _ { j } e_j$ ; confidence 0.283
50. ; $\epsilon ^ { \prime \prime }_\lambda$ ; confidence 0.283
51. ; $\langle t ^ { * } ( n ^ { * } ) , m \rangle = ( - 1 ) ^ { p ( t ) p ( n ^ { * } ) } \langle n ^ { * } , t ( m ) \rangle.$ ; confidence 0.283
52. ; $x ( n ) = \sum ( \text { residues of } z ^ { n - 1 } \tilde{x}(z) )$ ; confidence 0.283
53. ; $i = 1 , \dots , s$ ; confidence 0.282
54. ; $\left( \begin{array} { c } { m } \\ { \lceil \frac { m + 1 } { 2 } \rceil } \end{array} \right).$ ; confidence 0.282
55. ; $\pi X * $ ; confidence 0.282
56. ; $\mathcal{U} ( L ) = \mathcal{T} ( L ) / \left( x \otimes y - ( - 1 ) ^ { p ( x ) p ( y ) } y \otimes x - [ x , y ] \right)$ ; confidence 0.282
57. ; $\mathbf{C} [ z , \underline{z} ] / N$ ; confidence 0.282
58. ; $\operatorname{Ext} ^ { 2 } ( ., . )$ ; confidence 0.282
59. ; $\mathbf{P} ^ { + } . P _ { \subseteq } P$ ; confidence 0.282
60. ; $\delta ( 2 ) > K _ { ( 2 ) } / K _ { ( 1 ) }$ ; confidence 0.282
61. ; $u_1$ ; confidence 0.282
62. ; $P ^ { \prime }$ ; confidence 0.282
63. ; $L _ { w } ( \mathcal{X} , \mathcal{Y} ) *$ ; confidence 0.282
64. ; $T _ { V }$ ; confidence 0.282
65. ; $a \in \mathbf{C} ^ { n } \backslash \{ 0 \}$ ; confidence 0.282
66. ; $W ^ { r} H ^ { \omega } [ 0,1 ]$ ; confidence 0.282
67. ; $\kappa \leq | \operatorname { arc } z _ { j } | \leq \pi$ ; confidence 0.282
68. ; $\mathcal{D} ( K ) = \langle \textbf{F m} , \vDash _ { K } \rangle$ ; confidence 0.282
69. ; $\operatorname { dim } T _ { \lambda } = 2 ^ { [ ( n - r ( \lambda ) ) / 2 ] } \frac { n ! } { \prod _ { ( i , j ) } b _ { i j } },$ ; confidence 0.281
70. ; $G$ ; confidence 0.281
71. ; $P f ( g ) = \left( \int _ { g K } f d \mu \right) _ { K \in \mathcal{K} } , g \in G,$ ; confidence 0.281
72. ; $\operatorname{Voc}_\mathcal{L}$ ; confidence 0.281
73. ; $c$ ; confidence 0.281
74. ; $F = 0 , d F = 0 , \dots , d ^ { m } F = 0$ ; confidence 0.281
75. ; $L A$ ; confidence 0.281
76. ; $\hat { \psi }$ ; confidence 0.281
77. ; $\psi = \psi _ { 0 } + f ( y ) e ^ { i \langle k , x \rangle + \mu t }$ ; confidence 0.281
78. ; $q \in Q _ { m } : = \left\{ \begin{array} { c } { q = \overline { q } }, \\ { q : | q ( x ) | + | \nabla ^ { m } q | \leq c ( 1 + | x | ) ^ { - b } }, \\ { b > 3 } \end{array} \right\},$ ; confidence 0.281
79. ; $\Gamma = \Delta \vec { U } .l$ ; unknown symbol
80. ; $t \in \mathbf{E} ^ { n }$ ; confidence 0.281
81. ; $AN$ ; confidence 0.281
82. ; $\zeta _ { A } ( z ) = \prod _ {\substack{ r \geq 1 \\ \text{primes in } \mathbf{N}}} \quad ( 1 - p ^ { - r z } ) ^ { - 1 } = \prod _ { r = 1 } ^ { \infty } \zeta ( r z ),$ ; confidence 0.281
83. ; $\sigma | _ { A }$ ; confidence 0.281
84. ; $\{ \alpha \in A : \alpha . \mathfrak{S} ( T ) = \mathfrak{S} ( T ) , \alpha = \{ 0 \} \}$ ; confidence 0.281
85. ; $u v - ( T _ { d } v + T _ { v } u ) \in H ^ { r } ( R ^ { n } )$ ; confidence 0.281
86. ; $\{ 1,1,2 \}$ ; confidence 0.280
87. ; $\{ h ( t , p _ { j } ) \} _ { 1 } \leq j \leq x$ ; confidence 0.280
88. ; $u _ { t } + u _ { \lambda } + u u _ { X } - u _ { X x t } = 0,$ ; confidence 0.280
89. ; $\{ \lambda _ { n } = - \kappa _ { n } ^ { 2 } \} _ { n = 1 } ^ { N }$ ; confidence 0.280
90. ; $\mathbf{P} \left[ \operatorname { sup } _ { t \geq T } | X _ { t } - X _ { T } | > \lambda \right] \leq C _ { e } ^ { - \lambda / e } \mathbf{P} [ T < \infty ]$ ; confidence 0.280
91. ; $A = \mathbf{R} [ x _ { 1 } , \dots , x _ { N } ] / \mathcal{A}$ ; confidence 0.280
92. ; $z ^ { * }$ ; confidence 0.280
93. ; $\mathcal{Q} = \langle a _ { 1 } , \dots , a _ { g } | S _ { 1 } , \dots , S _ { n } \rangle$ ; confidence 0.280
94. ; $p \in \mathfrak { h } ^ { * }$ ; confidence 0.280
95. ; $Q _ { D } ( v , z ) = z ^ { \operatorname { com } ( D ) - 1 } v ^ { - \operatorname { Tait } ( D ) } ( v ^ { - 1 } - v ) P _ { D } ( v , z ),$ ; confidence 0.280
96. ; $p ( x ) = \frac { \Gamma ( ( n + 1 ) / 2 ) x ^ { k / 2 - 1 } ( 1 + x / n ) ^{- ( n + 1 ) / 2 }} { \Gamma ( ( n - k + 1 ) / 2 ) \Gamma ( k / 2 ) n ^ { k / 2 } },$ ; confidence 0.280
97. ; $x \in \mathbf{R} ^ { 1 }$ ; confidence 0.280
98. ; $| f ( z _ { 0 } ) | ^ { 2 } \leq \frac { 1 } { \pi r ^ { 2 } } \int _ { D _ { z _ { 0 } , r } } | f ( \zeta ) | ^ { 2 } d x d y \leq \frac { 1 } { \pi r ^ { 2 } } ( f , f ) _ { L^2(D) }.$ ; confidence 0.280
99. ; $x _ { i j } \in \mathbf{R} ^ { n }$ ; confidence 0.279
100. ; $\Delta \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) \otimes \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right),$ ; confidence 0.279
101. ; $\omega ( g , .)_p$ ; confidence 0.279
102. ; $\omega ^ { \alpha}$ ; confidence 0.279
103. ; $\dot{X}$ ; confidence 0.279
104. ; $p _ { m } + 1 ( x ) = ( m x + 1 ) p _ { m } ( x ) - x ( x - 1 ) p _ { m } ^ { \prime } ( x ) , \quad m \geq 1.$ ; confidence 0.279
105. ; $\mathcal{D} _ { j , k } ( \alpha ) = \{ z : b _ { j } ^ { 1 } | z _ { 1 } - \alpha _ { 1 } | ^ { 2 } + \ldots + b _ { j } ^ { n } | z _ { \lambda } - a _ { \lambda } | ^ { 2 } < r _ { j , k } ^ { 2 } \}.$ ; confidence 0.279
106. ; $\gamma _ { i }$ ; confidence 0.279
107. ; $( u_j )_{ j \in \mathbf{N}}$ ; confidence 0.279
108. ; $d _n$ ; confidence 0.279
109. ; $\Phi _ { n } ^ { * }$ ; confidence 0.279 c 110. ; $C ^ { 0 } \neq \emptyset$ ; confidence 0.279
111. ; $\textbf{Plus}\equiv \lambda \text { pqf } x \dot p f ( q f x )$ ; confidence 0.279
112. ; $J ^ { r_0 } ( \mathbf{R} ^ { N } , M )$ ; confidence 0.279
113. ; $\chi _ { f }$ ; confidence 0.279
114. ; $K ^ { \prime 2 } \times I \searrow p t$ ; confidence 0.278
115. ; $( \alpha | b ) ^ { * } \dot { b } = a$ ; confidence 0.278
116. ; $K ( s ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { 1 } { \langle s , \zeta - z \rangle ^ { n } } \times$ ; confidence 0.278
117. ; $k ( E , F , g , g ^ { - 1 } )$ ; confidence 0.278
118. ; $H _ { \mathcal{D} } ^ { i} ( X _ { / R } , A ( j ) )$ ; confidence 0.278
119. ; $0 \neq \mathfrak { c } _ { u , v} < \infty$ ; confidence 0.278
120. ; $x \in X$ ; confidence 0.278
121. ; $[ ., . ] ^ { \wedge }$ ; confidence 0.278
122. ; $F = Z \oplus Z$ ; confidence 0.278
123. ; $\mathcal{A} = \operatorname { Fun } _ { q } ( SL ( n , C ) )$ ; confidence 0.278
124. ; $\mathcal{S} = \mathcal{M} \circ e$ ; confidence 0.278
125. ; $G ( K ) ^ { e }$ ; confidence 0.278
126. ; $\xi _ { l } ^ { 0 }$ ; confidence 0.278
127. ; $\mathcal{R} ( t ^ { i } \square j \otimes t ^ { k } \square l ) = \mathbf{R} ^ { i } \square_ j \square ^ { k } \square l$ ; confidence 0.278
128. ; $A \| f \| _ { 2 } ^ { 2 } \leq \sum _ { n \in Z } \sum _ { m \in Z } |\langle f , g _ { n , m} \rangle | ^ { 2 } \leq B \| f \| _ { 2 } ^ { 2 }.$ ; confidence 0.277
129. ; $T _ { n }$ ; confidence 0.277
130. ; $c _ { m}$ ; confidence 0.277
131. ; $A _ { 2n }$ ; confidence 0.277
132. ; $A = P T | _ { \mathfrak { h } }$ ; confidence 0.277
133. ; $f ( x ) : = \sum _ { j = 1 } ^ { J } K ( x , y_j ) c j , c j =\text{const.}$ ; confidence 0.277
134. ; $C \in GL _ { n } ( K )$ ; confidence 0.277
135. ; $n = 1,2 , \dots$ ; confidence 0.277
136. ; $G _ { X } ^ { g } = \sum _ { 1 \leq j \leq n } h _ { j } ^ { - 1 } ( | \alpha q _ { j } | ^ { 2 } + | \alpha p _ { j } | ^ { 2 } ).$ ; confidence 0.277
137. ; $X ^ { 2 } \times I$ ; confidence 0.277
138. ; $\mathbf{X} ^ { \prime } \mathbf{X} \hat { \beta } = \mathbf{X} ^ { \prime } y.$ ; confidence 0.277
139. ; $( u _ { q } ^ { i } , u _ { t } ^ { i + 1} )$ ; confidence 0.277
140. ; $T _ { \alpha }$ ; confidence 0.277
141. ; $( a , \partial )$ ; confidence 0.277
142. ; $k = 1 , \dots , r = \operatorname { dim } n ^ { - }$ ; confidence 0.277
143. ; $H *$ ; confidence 0.277
144. ; $f _ { 0 } , \dots , f _ { n }$ ; confidence 0.277
145. ; $\{ \langle x _ { 1 } , y _ { 1 } \rangle , \dots , \langle x _ { m } , y _ { m } \rangle \}$ ; confidence 0.277
146. ; $d_{ i j} > 0$ ; confidence 0.277
147. ; $w \in \mathbf{R} ^ { n } \backslash \{ 0 \}$ ; confidence 0.277
148. ; $z = ( z_ 1 , \dots , z _ { n } )$ ; confidence 0.277
149. ; $p = 0 , \ldots , n ; \quad n = 0,1 , \ldots,$ ; confidence 0.277
150. ; $\operatorname { lim } _ { | l| \rightarrow 0 } \frac { 1 } { | l | } \int _ { I } | f - f _ { I } | d m = 0.$ ; confidence 0.276
151. ; $( L ) v ^ { * } = \left\{ \begin{array} { l l } { \operatorname { max } } & { g ( u _ { 1 } ) } \\ { s.t. } & { u _ { 1 } \in U _ { 1 }, } \end{array} \right.$ ; confidence 0.276
152. ; $GL ( V ) = \operatorname { Aut } _ { F _ { q } } ( V )$ ; confidence 0.276
153. ; $J _ { n } ( z )$ ; confidence 0.276
154. ; $A _ { n }$ ; confidence 0.276
155. ; $L ^ { Y }$ ; confidence 0.276
156. ; $| g ( k ) | \geq ( \frac { \delta } { 2 + 2 \delta } ) ^ { n - 1 } | b _ { r } z _ { r} ^ { k } |.$ ; confidence 0.276
157. ; $- ( - 1 ) ^ { ( q + 1 _ { 1 } - 1 ) ( l _ { 2 } - 1 ) } i ( L _ { 2 } ) \omega \wedge L _ { 1 } , [ \omega \wedge K _ { 1 } , K _ { 2 } ] = \omega \wedge [ K _ { 1 } , K _ { 2 } ] +$ ; confidence 0.276
158. ; $\operatorname{Gal}(\tilde{\mathbf{Q}_p}/\mathbf{Q}_p)$ ; confidence 0.276
159. ; $H _ { \mathcal{M} } ^ { \cdot } ( X , Q ( * ) ) _ { Z } =$ ; confidence 0.276
160. ; $( 0 , T ) \times \mathbf{R} ^ { N }$ ; confidence 0.276
161. ; $g ^ { * }$ ; confidence 0.276
162. ; $\alpha \| c$ ; confidence 0.275
163. ; $\mathfrak{h} ( S )$ ; confidence 0.275
164. ; $g _ { 1 } ( \alpha ) , \ldots , g _ { m } ( \alpha )$ ; confidence 0.275
165. ; $t ^ { em } = t ^ { em.f } + ( P \otimes E ^ { \prime } - B \otimes M ^ { \prime } + 2 ( M ^ { \prime }. B ) 1 ),$ ; confidence 0.275
166. ; $a \in K ^ { * }$ ; confidence 0.275
167. ; $\tilde { \mathcal{M} }$ ; confidence 0.275
168. ; $J ( \rho ) = J ( \rho ; x _ { 0 } , u ) = \frac { 1 } { \sigma _ { N } ( \rho ) } \int _ { S _ { n } ( x _ { 0 } , \rho ) } u ( y ) d \sigma _ { n } ( y ),$ ; confidence 0.275
169. ; $\operatorname{Ma} = \frac { u } { c } , \operatorname{Re} = \frac { u l } { \nu } , \operatorname{Pr} = \frac { \nu } { \kappa }.$ ; confidence 0.275
170. ; $a ^ { \prime } \Theta b$ ; confidence 0.275
171. ; $= F _ { n } ( X _ { 1 } ( - t , x _ { 1 } , \ldots , x _ { n } ) , \ldots , X _ { n } ( - t , x _ { 1 } , \ldots , x _ { N } ) ),$ ; confidence 0.275
172. ; $Q \equiv \lambda p f x \dot p ( \lambda a b \dot b ( a f ) ) ( \lambda q \dot x ) I$ ; confidence 0.275
173. ; $g_{ij}$ ; confidence 0.275
174. ; $I _ { N }$ ; confidence 0.275
175. ; $\gamma ( v ) = \infty ( K )$ ; confidence 0.275
176. ; $\mathcal{C} \in FFI _ { \mathcal{D} } \mathbf{A}$ ; confidence 0.275
177. ; $n$ ; confidence 0.275
178. ; $Q = \operatorname { Alg } \operatorname { Mod } ^ { * S } \mathcal{D}$ ; confidence 0.274
179. ; $\sum _ { X } \mu ( X ) \frac { ( \operatorname { time } _ { \mathcal{A} } ( X ) ) ^ { 1 / k } } { | X | } < \infty$ ; confidence 0.274
180. ; $f _ { W } = ( 2 \pi \hbar ) ^ { - 3 N } \psi _ { W }$ ; confidence 0.274
181. ; $( T ( x _ { n } ) , \psi _ { j } ) = ( f , \psi _ { j } ) , j = 1 , \ldots , n.$ ; confidence 0.274
182. ; $\pi _ { v ^ { \prime } , p ^ { \prime } }$ ; confidence 0.274
183. ; $\pi _ { \mathcal{C} } ^ { \# } ( x ) \sim C x ^ { \kappa } ( \operatorname { log } x ) ^ { \nu } \text { as } x \rightarrow \infty.$ ; confidence 0.274
184. ; $\rho ^ { v(.) }$ ; confidence 0.274
185. ; $\pi _ { G \times G _ { x } } s : G \times _ { G _ { X } } S \rightarrow ( G \times _ { G _ { X } } S ) / / G$ ; confidence 0.274
186. ; $P = \operatorname { lim } _ { N \rightarrow \infty } N \dot \operatorname { Cov } ( \hat { \theta }_ N ) =$ ; confidence 0.274
187. ; $l \subset \mathbf{C} ^ { n }$ ; confidence 0.274
188. ; $\{ \operatorname { Pred } ( x ) , x \in X _ { P } \} \cup \{ \operatorname { Pred } \operatorname { Succ } ( x ) , x \in X _ { P } \}$ ; confidence 0.274
189. ; $\phi ( x ) \in O^r_K$ ; confidence 0.274
190. ; $s = ( s _ { 1 } , \ldots , s _ { m } )$ ; confidence 0.274
191. ; $n_ 1$ ; confidence 0.274
192. ; $a ( u , v ) = ( f , v ) _ { L ^ { 2 }}$ ; confidence 0.273
193. ; $z _ { 1 } \dots z _ { n } \neq 0$ ; confidence 0.273
194. ; $a /q$ ; confidence 0.273
195. ; $I \in W$ ; confidence 0.273
196. ; $x e ^ { rx }$ ; confidence 0.273
197. ; $E _ { 2 } ^ { p q } = H ^ { p } ( B ) \otimes H _ { S } ^ { q } ( D _ { \pi } )$ ; confidence 0.273
198. ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq 0 , y , z \in \mathbf{C} ^ { n },$ ; confidence 0.273
199. ; $\{ x _ { n_ j } ^ { \prime } \}$ ; confidence 0.273
200. ; $DT$ ; confidence 0.273
201. ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } z ^ { k } z ^ { l } F ( - k , - l ; - k - l - \alpha ; \frac { 1 } { z \bar{z} } ).$ ; confidence 0.273
202. ; $w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) \dot f ^ { ( k ) } ( z ) + \sum _ { k = 0 } ^ { n } b _ { k } ( z ) \overline { g ^ { ( k ) } ( z ) },$ ; confidence 0.273
203. ; $\operatorname{ord}_ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } H _ { \mathcal{D} } ^ { i + 1 } ( X_{ / \mathbf{R}} , \mathbf{R} ( i + 1 - m ) )$ ; confidence 0.273
204. ; $ \widehat{ { \mathfrak{sl}( n ) }}$ ; confidence 0.272
205. ; $W = GL ^ { k } ( n ) / G$ ; confidence 0.272
206. ; $| a ( k ) | ^ { 2 } = 1 + | b ( k ) | ^ { 2 } , r _ { - } ( k ) = \frac { b ( k ) } { a ( k ) } , r _ { + } ( k ) = - \frac { b ( - k ) } { a ( k ) },$ ; confidence 0.272
207. ; $\pi _ { v , p } ( d \theta ) = A ( m , p ) ( L _ { \mu } ( \theta ) ) ^ { - p } \operatorname { exp } \langle \theta , v \rangle \alpha ( d \theta )$ ; confidence 0.272
208. ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } _ { Q } H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( m ) ) _ { \mathbf{Z} } ^ { 0 }$ ; confidence 0.272
209. ; $M \subset \tilde { M }$ ; confidence 0.272
210. ; $f _ { X _ { i } } ^ { ( r _ { i } ^ { * } ) } = \frac { \partial _ { i } ^ { r _ { i } ^ { * } } f } { \partial x _ { i } ^ { r _ { i } ^ { * } } },$ ; confidence 0.272
211. ; $I_E$ ; confidence 0.272
212. ; $\alpha ( t ) = b ( t ) + \int _ { ( 0 , t ] } a ( t - u ) d F ( u ) \text { for } t \geq 0.$ ; confidence 0.272
213. ; $\mathcal{D} _ { 1 } \subset \mathbf{C} ^ { N }$ ; confidence 0.272
214. ; $\textbf{supp} \mu \subseteq K$ ; confidence 0.271
215. ; $\partial _ { x } \alpha L = L _ { x _ { 1 } } \alpha _ { 1 \ldots x _ { D } } { \alpha _ { D } }$ ; confidence 0.271
216. ; $ b _ { \gamma }$ ; confidence 0.271
217. ; $v _ { i ,0} $ ; confidence 0.271
218. ; $| e | | \leq 1$ ; confidence 0.271
219. ; $P _ { U \cap V }$ ; confidence 0.271
220. ; $a \in \mathbf{C}$ ; confidence 0.271
221. ; $\overline { a } / q$ ; confidence 0.271
222. ; $\sum _ { n \geq - 1 } ( \operatorname { dim } V _ { n } ^ { \sharp } ) q ^ { n }$ ; confidence 0.271
223. ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = \theta _ { n } ( h _ { 1 } \otimes^\wedge \ldots \otimes^\wedge \sim h _ { n } )$ ; confidence 0.271
224. ; $\mathbf{E} * ( | \overline { S } ( X ) | )$ ; confidence 0.270
225. ; $\sum _ { x \in \mathbf{N} } |c_n| \|X\|_1$ ; confidence 0.270
226. ; $Y ^ { Q } \equiv y _ { 1 } ^ { q _ { 1 } } \dots y _ { n } ^ { q _ { n } }$ ; confidence 0.270
227. ; $\alpha \mapsto a ^ { g }$ ; confidence 0.270
228. ; $(.)$ ; confidence 0.270
229. ; $B _ {{ V } \otimes { W }} ( x \otimes y ) = ( - 1 ) ^ { p ( x ) p ( y ) } ( y \otimes x ).$ ; confidence 0.270
230. ; $p \in S _ { M}$ ; confidence 0.270
231. ; $\operatorname{CTop}/B$ ; confidence 0.270
232. ; $l = 0 , \dots , n _ { 2 } - 1$ ; confidence 0.270
233. ; $\tilde { g } _ { X } = H ( X ) ^ { - 1 } \tilde { h } ( X ) G _ { X } ( T )$ ; confidence 0.270
234. ; $\mathbf{C} ( F ) \subset \mathbf{C} ( X )$ ; confidence 0.270
235. ; $C ^ { n } ( \mathcal{C} , M ) \rightarrow M( \operatorname{ codom } \alpha_n$ ; confidence 0.270
236. ; $X \times_ { G } E G = ( X \times E G ) / G$ ; confidence 0.270
237. ; $\| p \| _ { s } ^ { 2 } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \int _ { \mathbf{R} } | p ^ { ( i ) } ( t ) | ^ { 2 } d \mu _ { i } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \| p ^ { ( i ) } ( t ) \| _ { \mu _ { i } } ^ { 2 }.$ ; confidence 0.270
238. ; $g _ { u } = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { \partial u } { \partial z _ { k } } d \bar{z} [ k ] \wedge d z$ ; confidence 0.270
239. ; $\{ a _ { j } ^ { g } : j = 1 , \dots , [ K : Q ] , g \in G \}$ ; confidence 0.270
240. ; $\sum _ { i = 1 } ^ { m } \| p _ { i } - x \| = c ( a \text { constant } ),$ ; confidence 0.270
241. ; $\operatorname{ad} _ { \alpha } = [ \alpha ,. ]$ ; confidence 0.270
242. ; $r _ { 1 } / r _ { 2 } \notin H _ { n}$ ; confidence 0.269
243. ; $S ^ { l - 1 }$ ; confidence 0.269
244. ; $G _ { R } ^ { \# } ( n ) = A _ { R } q ^ { n } + O ( 1 ) \text { as } n \rightarrow \infty,$ ; confidence 0.269
245. ; $\Gamma ^ { o p }$ ; confidence 0.269
246. ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
247. ; $y _ { 1 , m} < \ldots < y _ { m , m }$ ; confidence 0.269
248. ; $l \times l$ ; confidence 0.269
249. ; $X ^ { 2 } ( \theta ) = \sum _ { i = 1 } ^ { k } \frac { [ \nu _ { i } - n p _ { i } ( \theta ) ] ^ { 2 } } { n p _ { l } ( \theta ) }$ ; confidence 0.269
250. ; $q_f$ ; confidence 0.268
251. ; $K _ { R } \equiv \{ x \in \mathbf{R} ^ { n } : r_j ( x ) \geq 0 , j = 1 , \ldots , m \}$ ; confidence 0.268
252. ; $( \mathcal{H} , ( .,. ) )$ ; confidence 0.268
253. ; $b = b _ { m } + b _ { m - 1} + \ldots$ ; confidence 0.268
254. ; $J _ { k }$ ; confidence 0.268
255. ; $\{ x_k \}$ ; confidence 0.268
256. ; $\mathbf{T} ^ { n }$ ; confidence 0.268
257. ; $q_Q$ ; confidence 0.268
258. ; $e \notin S ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.268
259. ; $K _ { tot S } = \bigcap _ { p \in S } \bigcap _ { \sigma \in G ( K ) } K _ { p } ^ { \sigma }$ ; confidence 0.268
260. ; $B \in \square _ { H } ^ { H } M$ ; confidence 0.268
261. ; $H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) )$ ; confidence 0.268
262. ; $b - 1$ ; confidence 0.267
263. ; $A ^ { \text { in/out } } ( f )$ ; confidence 0.267
264. ; $N / N ^ { 2 }$ ; confidence 0.267
265. ; $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ ; confidence 0.267
266. ; $x \in \Sigma ^ { n }$ ; confidence 0.267
267. ; $\mathcal{K} ^ { n }$ ; confidence 0.267
268. ; $x ( y \wedge z ) t = x y t \wedge x z t.$ ; confidence 0.267
269. ; $\mathfrak { p } \in \operatorname { Spec } R$ ; confidence 0.267
270. ; $x \in K _ { n }$ ; confidence 0.267
271. ; $i = 1 , \dots , 2 ^ { q }$ ; confidence 0.267
272. ; $z _ { 1 } , \dots , z _ { n } , 1 / z _ { 1 } , \dots , 1 / z _ { n }$ ; confidence 0.267
273. ; $C_{00}$ ; confidence 0.267
274. ; $\sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X , \mathbf{Z} / p ) \geq \sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X ^ { P } , \mathbf{Z} / p ).$ ; confidence 0.266
275. ; $\hat { K } _ { p } = \mathbf{C}$ ; confidence 0.266
276. ; $\bar{g}_ 1 , \ldots , \bar{g} _ { n }$ ; confidence 0.266
277. ; $K _ { N } : = n ( 2 / L _ { 1 , n } ) ^ { 2 / N } ( n + 2 ) ^ { - 1 - 2 / n }$ ; confidence 0.266
278. ; $( \alpha _ { i } | \alpha _ { j } ) = d _ { i } a _ {i j }$ ; confidence 0.266
279. ; $\textbf{DL}$ ; confidence 0.266
280. ; $P ( \theta , \mu ) ( d x ) = \frac { 1 } { L _ { \mu } ( \theta ) } \operatorname { exp } \langle \theta , x \rangle \mu ( d x ),$ ; confidence 0.266
281. ; $( a _ { i } ) _ { i \in \mathbf{N} }$ ; confidence 0.266
282. ; $\dot { i } \in \Gamma$ ; confidence 0.266
283. ; $\Lambda$ ; confidence 0.266
284. ; $( T ( a _ { 1 } , \dots , a _ { n } ) , d )$ ; confidence 0.266
285. ; $\alpha ( n ) = \text { Vol } ( S ^ { n } )$ ; confidence 0.266
286. ; $O ( E _{[ ( 1 - c ) n ] }( f ) )$ ; confidence 0.266
287. ; $p _ { 1 } , \dots , p _ { n }$ ; confidence 0.265
288. ; $X _ { 0 } , \dots , X _ { N }$ ; confidence 0.265
289. ; $( C ( \mathcal{S} ) , \overline { g } ) = ( \mathbf{R} _ { + } \times \mathcal{S} , d r ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
290. ; $\Rightarrow ( \mu I - A ) ^ { - 1 } . E x = x \Rightarrow \Rightarrow \| ( \mu I - A ) ^ { - 1 } . E \| . \| x \| \geq \| x \|.$ ; confidence 0.265
291. ; $f , g \in P _ { n-k } $ ; confidence 0.265
292. ; $X / \mathbf{Q}$ ; confidence 0.265
293. ; $\operatorname{Ch} ( [ a ] )$ ; confidence 0.265
294. ; $c = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { cr } ( K _ { n , n } ) \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right) ^ { - 2 }$ ; confidence 0.265
295. ; $\mathcal{Y}$ ; confidence 0.265
296. ; $F _ { \mathcal{S} _ { P } } \mathfrak { M }$ ; confidence 0.264
297. ; $s , y$ ; confidence 0.264
298. ; $\sum _ { \text { ord } T } ( u d v )$ ; confidence 0.264
299. ; $P _ { N } ( x ) = \sum _ { k = 0 } ^ { n } c _ { k } s _ { k } ( x ),$ ; confidence 0.264
300. ; $H _ { n}^{ - 1} d$ ; confidence 0.264
Maximilian Janisch/latexlist/latex/NoNroff/69. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/69&oldid=45817