Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/73"
(→List) |
Rui Martins (talk | contribs) (→List) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003013.png ; $Z _ { | + | 1. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003013.png ; $Z _ { a } f$ ; confidence 0.183 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100111.png ; $\lambda _ { G } ^ { p } ( \mu ) = ( \operatorname { supp } \mu ) ^ { - 1 }$ ; confidence 0.182 | + | 2. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100111.png ; $\operatorname {supp}\lambda _ { G } ^ { p } ( \mu ) = ( \operatorname { supp } \mu ) ^ { - 1 }$ ; confidence 0.182 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $( \mathcal{S} ) $ ; unknown symbol | + | 3. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $_{\bigtriangledown}^{\bigtriangleup}( \mathcal{S} ) $ ; unknown symbol |
− | 4. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004019.png ; $\| | + | 4. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004019.png ; $\| d \| _ { b t } = \| d \| _ { \operatorname {bv} } + \sum _ { n = 2 } ^ { \infty } \right| \sum _ { k = 1 } ^ { n / 2 } \frac { \Delta d _ { n - k } - \Delta d _ { n + k } } { k }\right|.$ ; confidence 0.182 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015022.png ; $ad : \mathfrak { g } \rightarrow \operatorname { End } ( \mathfrak { g } )$ ; confidence 0.182 | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015022.png ; $\operatorname {ad} : \mathfrak { g } \rightarrow \operatorname { End } ( \mathfrak { g } )$ ; confidence 0.182 |
6. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041320/f04132015.png ; $v ^ { k }$ ; confidence 0.182 | 6. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041320/f04132015.png ; $v ^ { k }$ ; confidence 0.182 | ||
Line 14: | Line 14: | ||
7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030031.png ; $f _ { \alpha } : S ^ { n _ { \alpha } } \rightarrow X _ { n _ { \alpha } }$ ; confidence 0.182 | 7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030031.png ; $f _ { \alpha } : S ^ { n _ { \alpha } } \rightarrow X _ { n _ { \alpha } }$ ; confidence 0.182 | ||
− | 8. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041035.png ; $T _ { | + | 8. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041035.png ; $T _ { n } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \frac { b _ { n , j} } { j } P _ { j } ^ { \prime } ( x ) , n \geq k + 1,$ ; confidence 0.181 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022044.png ; $i = | + | 9. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022044.png ; $i = r_{j - 1} , \dots , r_{j} - 1$ ; confidence 0.181 |
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018051.png ; $\textbf{Alg} _ { \vDash } ( \mathcal{L} ) \subseteq \textbf{Alg} _ { \vdash } ( \mathcal{L} )$ ; confidence 0.181 | 10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018051.png ; $\textbf{Alg} _ { \vDash } ( \mathcal{L} ) \subseteq \textbf{Alg} _ { \vdash } ( \mathcal{L} )$ ; confidence 0.181 | ||
− | 11. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005085.png ; $a _ { | + | 11. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005085.png ; $a _ { i } \in \mathcal{B}$ ; confidence 0.181 |
12. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023059.png ; $[G:\operatorname{rist}_G ( n )]<\infty$ ; confidence 0.181 | 12. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023059.png ; $[G:\operatorname{rist}_G ( n )]<\infty$ ; confidence 0.181 | ||
Line 26: | Line 26: | ||
13. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280143.png ; $\mathbf{C} ^ { n } \backslash D$ ; confidence 0.181 | 13. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280143.png ; $\mathbf{C} ^ { n } \backslash D$ ; confidence 0.181 | ||
− | 14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008047.png ; $\sum _ { | + | 14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008047.png ; $\sum _ { i = 0 } ^ { m } \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ).$ ; confidence 0.181 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002071.png ; $\int _ { E | + | 15. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002071.png ; $\int _ { E }x d \mathsf{P}( x ) = m$ ; confidence 0.181 |
16. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008085.png ; $\langle z , w \rangle = \sum _ { j = 1 } ^ { x } z _ { j } w _ { j }$ ; confidence 0.181 | 16. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008085.png ; $\langle z , w \rangle = \sum _ { j = 1 } ^ { x } z _ { j } w _ { j }$ ; confidence 0.181 | ||
− | 17. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007039.png ; $\operatorname { \underline{lim} } \leftarrow : \mathcal{A} ^ { C } \rightarrow A$ ; confidence 0.181 | + | 17. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007039.png ; $\operatorname { \underline{lim} } \leftarrow : \mathcal{A} ^ { \mathbf{C} } \rightarrow A$ ; confidence 0.181 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005076.png ; $\mathfrak{ | + | 18. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005076.png ; $\mathfrak{H}(S)\oplus \mathbf{C}$ ; confidence 0.181 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d1300609.png ; $\ | + | 19. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d1300609.png ; $\geq \sum _ { I \subseteq \{ 1 , \ldots , k \} , I \neq \emptyset } ( - 1 ) ^ { | I | + 1 } \operatorname { Bel } ( \bigcap _ { i \in I } A _ { i } ).$ ; confidence 0.180 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033030.png ; $2 ^ { | + | 20. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033030.png ; $2 ^ { a } 3 ^ { b }$ ; confidence 0.180 |
21. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511065.png ; $x \in D$ ; confidence 0.180 | 21. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511065.png ; $x \in D$ ; confidence 0.180 | ||
Line 44: | Line 44: | ||
22. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034048.png ; $P S L_n$ ; confidence 0.180 | 22. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034048.png ; $P S L_n$ ; confidence 0.180 | ||
− | 23. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009018.png ; $w ^ { i }$ ; confidence 0.180 | + | 23. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009018.png ; $\mathbf{w} ^ { i }$ ; confidence 0.180 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240282.png ; $\ | + | 24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240282.png ; $\widehat { \psi } = \sum _ { i = 1 } ^ { q } d _ { i } z _ { i }$ ; confidence 0.180 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520316.png ; $a ( f ) = \int _ { M } a ( x ) f ( x ) d \sigma ( x ) , \quad | + | 25. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520316.png ; $a ( f ) = \int _ { M } a ( x ) f ( x ) d \sigma ( x ) , \quad a ^ { * } ( f ) = \int _ { M } a ^ { * } ( x ) \overline { f } ( x ) d \sigma ( x ).$ ; confidence 0.180 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010059.png ; $k _ | + | 26. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010059.png ; $k _ { z }$ ; confidence 0.180 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026063.png ; $A _ { 1 } = A ^ { * } / \cap _ { i \in N } m ^ { i } A ^ { * }$ ; confidence 0.180 | + | 27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026063.png ; $A _ { 1 } = A ^ { * } / \cap _ { i \in \mathbf{N} } m ^ { i } A ^ { * }$ ; confidence 0.180 |
28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201704.png ; $\int _ { a _ { 1 } } ^ { a _ { 2 } } p ( a , t ) d a$ ; confidence 0.180 | 28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201704.png ; $\int _ { a _ { 1 } } ^ { a _ { 2 } } p ( a , t ) d a$ ; confidence 0.180 | ||
Line 64: | Line 64: | ||
32. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302302.png ; $\sim _ { c }$ ; confidence 0.179 | 32. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302302.png ; $\sim _ { c }$ ; confidence 0.179 | ||
− | 33. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026074.png ; $\frac { d } { d t } U _ { | + | 33. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026074.png ; $\frac { d } { d t } U _ { h } = F _ { h } ( t , U _ { h } ) , 0 < t , U _ { h } ( 0 ) = u ^ { 0_h } ,$ ; confidence 0.179 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170120.png ; $g ( z ) = z ^ { r } - ( a _ { 0 } + \ldots + a _ { r | + | 34. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170120.png ; $g ( z ) = z ^ { r } - ( a _ { 0 } + \ldots + a _ { r - 1 } ^ { r - 1 } )$ ; confidence 0.179 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004049.png ; $ | + | 35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004049.png ; $p_{X} $ ; confidence 0.179 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $( \oplus _ { b | + | 36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $( \oplus _ { b ^G = B } b )$ ; confidence 0.179 |
37. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $A _ {M}$ ; confidence 0.179 | 37. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $A _ {M}$ ; confidence 0.179 | ||
Line 76: | Line 76: | ||
38. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014018.png ; $\text{Pf}$ ; confidence 0.179 | 38. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014018.png ; $\text{Pf}$ ; confidence 0.179 | ||
− | 39. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027076.png ; $\rho _ { | + | 39. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027076.png ; $\rho _ { a } ( g ) = g ( \sqrt { a } ) / \sqrt { a }$ ; confidence 0.179 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110112.png ; $( \frac { \partial \phi } { \partial t } ) | _ { x _ { k } 0 } = ( \frac { \partial \phi } { \partial t } ) | _ { x _ { i } } + ( \frac { \partial \phi } { \partial x _ { i } } ) | _ { t } ( \frac { \partial x _ { i } } { \partial t } ) | _ { x _ { k } 0 }.$ ; confidence 0.179 | + | 40. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110112.png ; $\left( \frac { \partial \phi } { \partial t } \right) | _ { x _ { k }^0 } = \left( \frac { \partial \phi } { \partial t } \right) | _ { x _ { i } } + \left( \frac { \partial \phi } { \partial x _ { i } } \right) | _ { t } \left( \frac { \partial x _ { i } } { \partial t } \right) | _ { x _ { k }^ 0 }.$ ; confidence 0.179 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180166.png ; $Id _ { i j } = \{ q \in \square ^ { \omega } U : q_i = q_j \}$ ; confidence 0.179 | + | 41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180166.png ; $\operatorname {Id} _ { i j } = \{ q \in \square ^ { \omega } U : q_i = q_j \}$ ; confidence 0.179 |
42. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300155.png ; $C_{B ( m , n )} ( G )$ ; confidence 0.179 | 42. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300155.png ; $C_{B ( m , n )} ( G )$ ; confidence 0.179 | ||
− | 43. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180332.png ; $C ( g ) = \nabla A ( g ) - \tau ^ { - 1_3 } \nabla A ( g ) \in \bigotimes \square ^ { 3 } \ | + | 43. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180332.png ; $C ( g ) = \nabla A ( g ) - \tau ^ { - 1_3 } \nabla A ( g ) \in \bigotimes \square ^ { 3 } \mathcal{E},$ ; confidence 0.179 |
44. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960151.png ; $b \in F$ ; confidence 0.178 | 44. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960151.png ; $b \in F$ ; confidence 0.178 | ||
− | 45. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520310.png ; $A = \sum _ { m , n \geq 0 } \int K _ { | + | 45. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520310.png ; $A = \sum _ { m , n \geq 0 } \int K _ { n , m } ( x _ { 1 } , \ldots , x _ { n } ; y _ { 1 } , \ldots , y _ { m } ) \times$ ; confidence 0.178 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010168.png ; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , | + | 46. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010168.png ; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , a _ { k 1 } \rangle ) \ldots ( 1 + \langle z , a _ { k n } \rangle ) },$ ; confidence 0.178 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300905.png ; $u _ { t } + u _ { x } + u u _ { x } + u _ { | + | 47. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300905.png ; $u _ { t } + u _ { x } + u u _ { x } + u _ { xxx } = 0.$ ; confidence 0.178 |
48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028032.png ; $k _ { n } ( z )$ ; confidence 0.178 | 48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028032.png ; $k _ { n } ( z )$ ; confidence 0.178 | ||
Line 100: | Line 100: | ||
50. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840172.png ; $\pi _ { \kappa}$ ; confidence 0.178 | 50. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840172.png ; $\pi _ { \kappa}$ ; confidence 0.178 | ||
− | 51. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004051.png ; $\times \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } s _ { j } d s _ { 1 } \ | + | 51. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004051.png ; $\times \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } s _ { j } d s _ { 1 } \bigwedge \ldots \bigwedge [ d s _ { j } ] \bigwedge \ldots \bigwedge d s _ { n } \bigwedge \omega ( \zeta ),$ ; confidence 0.178 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000198.png ; $[ [ \lambda x | + | 52. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000198.png ; $[ [ \lambda x . M ] ] _ { \rho } = \lambda d [ [ M ] ] _ { \rho ( x : = d ) }$ ; confidence 0.178 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006030.png ; $a_{k | + | 53. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006030.png ; $a_{k - 1}$ ; confidence 0.177 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130030/r1300306.png ; $\frac { p } { q } = a _ { n } + \frac { 1 } { a _ { n | + | 54. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130030/r1300306.png ; $\frac { p } { q } = a _ { n } + \frac { 1 } { a _ { n - 1} + \ldots + \frac { 1 } { a_ { 1 } } }.$ ; confidence 0.177 |
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031061.png ; $\mathcal{Q}$ ; confidence 0.177 | 55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031061.png ; $\mathcal{Q}$ ; confidence 0.177 | ||
Line 116: | Line 116: | ||
58. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003012.png ; $\operatorname{ind} ( P ) : = \operatorname { dim } ( \operatorname{ker} ( P ) ) - \operatorname { dim } ( \operatorname { coker } ( P ) ).$ ; confidence 0.177 | 58. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003012.png ; $\operatorname{ind} ( P ) : = \operatorname { dim } ( \operatorname{ker} ( P ) ) - \operatorname { dim } ( \operatorname { coker } ( P ) ).$ ; confidence 0.177 | ||
− | 59. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013035.png ; $L _ { | + | 59. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013035.png ; $L _ { a } ^ { p } ( G )$ ; confidence 0.177 |
60. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023077.png ; $m D$ ; confidence 0.176 | 60. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023077.png ; $m D$ ; confidence 0.176 | ||
− | 61. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200146.png ; $\hat { g }$ ; confidence 0.176 | + | 61. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200146.png ; $\hat { \mathfrak{g} }$ ; confidence 0.176 |
62. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043068.png ; $\Psi ( y \bigotimes y ) = q ^ { 2 } y \otimes y \Psi ( x \otimes y ) = q y \otimes x$ ; confidence 0.176 | 62. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043068.png ; $\Psi ( y \bigotimes y ) = q ^ { 2 } y \otimes y \Psi ( x \otimes y ) = q y \otimes x$ ; confidence 0.176 | ||
Line 130: | Line 130: | ||
65. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459090.png ; $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$ ; confidence 0.176 | 65. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459090.png ; $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$ ; confidence 0.176 | ||
− | 66. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019042.png ; $M _ { | + | 66. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019042.png ; $M _ { n } = [ m _ { i j } ] _ { i , j = 0 } ^ { n }$ ; confidence 0.176 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012052.png ; $f _ { i } ^{( t + 1 ) }= f _ { i }^{ ( t )} \sum _ { j } ( \frac { h _ { i j } } { \sum _ { k } f _ { k } ( t ) h _ { k j } ) } ) g _ { j } , t = 1,2 ,\dots $ ; confidence 0.176 | + | 67. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012052.png ; $f _ { i } ^{( t + 1 ) }= f _ { i }^{ ( t )} \sum _ { j } \left( \frac { h _ { i j } } { \sum _ { k } f _ { k }^{ ( t )} h _ { k j } ) } \right) g _ { j } , t = 1,2 ,\dots $ ; confidence 0.176 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003022.png ; $H ^ { \bullet } ( \Gamma \backslash X , \widetilde { \mathcal{M} \ | + | 68. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003022.png ; $H ^ { \bullet } ( \Gamma \backslash X , \widetilde { \mathcal{M} \bigotimes \mathbf{C} } ) \overset{\sim}{\rightarrow} H ^ { \bullet } ( \Gamma \backslash X , \Omega ^ { \bullet } ( \widetilde { \mathcal{M} } _ { \mathbf{C} } ) ),$ ; confidence 0.176 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012026.png ; $\{ x \in \ | + | 69. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012026.png ; $\left\{ x \in \widehat { K } _ { \operatorname {p} } : | x - a | _ { \operatorname {p} } \leq \epsilon \right\}$ ; confidence 0.176 |
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a1302608.png ; $c _ { n }$ ; confidence 0.175 | 70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a1302608.png ; $c _ { n }$ ; confidence 0.175 | ||
Line 142: | Line 142: | ||
71. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110182.png ; $e ^ { h |x | ^ { 1 / s } }$ ; confidence 0.175 | 71. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110182.png ; $e ^ { h |x | ^ { 1 / s } }$ ; confidence 0.175 | ||
− | 72. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002095.png ; $E [ X _ { \infty } \operatorname { log } ^ { + } X _ { \infty } ]$ ; confidence 0.175 | + | 72. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002095.png ; $\mathsf{E} [ X _ { \infty } \operatorname { log } ^ { + } X _ { \infty } ]$ ; confidence 0.175 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110127.png ; $( a \circ b ) ( x , \xi ) = \int \int e ^ { - 2 i \pi y | + | 73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110127.png ; $( a \circ b ) ( x , \xi ) = \int \int e ^ { - 2 i \pi y . \eta } a ( x , \xi + \eta ) b ( y + x , \xi ) d y d \eta,$ ; confidence 0.175 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003044.png ; $\rightarrow H ^ { \bullet } ( \Gamma \backslash X , \ | + | 74. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003044.png ; $\rightarrow H ^ { \bullet } ( \Gamma \backslash X , \widetilde { \mathcal{M} } ) \stackrel { r } { \rightarrow } H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \widetilde { \mathcal{M} } )\rightarrow \dots .$ ; confidence 0.175 |
75. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040688.png ; $\textbf{Fm} _ { P }$ ; confidence 0.175 | 75. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040688.png ; $\textbf{Fm} _ { P }$ ; confidence 0.175 | ||
Line 152: | Line 152: | ||
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $\mathcal{L}$ ; confidence 0.175 | 76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $\mathcal{L}$ ; confidence 0.175 | ||
− | 77. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023035.png ; $( z _ { 1 } e ^ { i t p _ { 1 } } 1 , \ldots , z _ { | + | 77. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023035.png ; $( z _ { 1 } e ^ { i t p _ { 1 } } 1 , \ldots , z _ { n } e ^ { i t p _ { n } } ) \in \Omega$ ; confidence 0.175 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009057.png ; $= \{ \frac { \beta } { 1 + \alpha ^ { 2 } } \int _ { 0 } ^ { z } \frac { h ( \xi ) - \alpha i } { \xi ^ { 1 + \alpha \beta i / ( 1 + \alpha ^ { 2 } ) } } g ( \xi ) ^ { \beta / ( 1 + \alpha ^ { 2 } ) } d \xi \} ^ { ( 1 + \alpha i ) / \beta }$ ; confidence 0.175 | + | 78. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009057.png ; $= \left\{ \frac { \beta } { 1 + \alpha ^ { 2 } } \int _ { 0 } ^ { z } \frac { h ( \xi ) - \alpha i } { \xi ^ { 1 + \alpha \beta i / ( 1 + \alpha ^ { 2 } ) } } g ( \xi ) ^ { \beta / ( 1 + \alpha ^ { 2 } ) } d \xi \right\} ^ { ( 1 + \alpha i ) / \beta }$ ; confidence 0.175 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100117.png ; $ \varphi | + | 79. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100117.png ; $ \check{\varphi} ( \chi ) = \varphi ( \chi ^ { - 1 } )$ ; confidence 0.175 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290209.png ; $H _ { \mathfrak{ | + | 80. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290209.png ; $H _ { \mathfrak{M} } ^ { i } ( R ) = [ H _ { \mathfrak{M} } ^ { i } ( R ) ] _ { 0 }$ ; confidence 0.175 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022038.png ; $ | + | 81. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022038.png ; $V ^ { \natural }$ ; confidence 0.175 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170116.png ; $Z ^ { | + | 82. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170116.png ; $Z ^ { r } = a _ { 0 } 1 + \ldots + a _ { r - 1 } Z ^ { r - 1 }$ ; confidence 0.174 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025022.png ; $ | + | 83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025022.png ; $a _ { i } \in V$ ; confidence 0.174 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170173.png ; $1 , \dots , r _ { m } \in C [ z , z ]$ ; confidence 0.174 | + | 84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170173.png ; $1 , \dots , r _ { m } \in \mathbf{C} [ z , \overline{z} ]$ ; confidence 0.174 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019034.png ; $\operatorname { Tr } A B = \int _ { \mathbf{R} ^ { 3 N } \times \mathbf{R} ^ { 3 N } } A _ { w } B _ { w } d x d p.$ ; confidence 0.174 | + | 85. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019034.png ; $\operatorname { Tr } A B = \int _ { \mathbf{R} ^ { 3 N } \times \mathbf{R} ^ { 3 N } } A _ { \mathbf{w} } B _ { \mathbf{w} } d x d p.$ ; confidence 0.174 |
86. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005047.png ; $\mathcal{D} _ { n } ^ { r }$ ; confidence 0.174 | 86. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005047.png ; $\mathcal{D} _ { n } ^ { r }$ ; confidence 0.174 | ||
− | 87. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016011.png ; $L^+G _ { C } = \left\{ \begin{array}{l}{ \\ \gamma \in L G _ { C } :\\ }\end{array} \begin{array}{c}{ \gamma \text{ extends} \\ \text{ holomorphically in the disc } }\\{ \text { to a group } "\square" \text{valued mapping }}\end{array} \right\}.$ ; confidence 0.174 | + | 87. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016011.png ; $L^+G _ { \mathbf{C} } = \left\{ \begin{array}{l}{ \\ \gamma \in L G _ { \mathbf{C} } :\\ }\end{array} \begin{array}{c}{ \gamma \text{ extends} \\ \text{ holomorphically in the disc } }\\{ \text { to a group } "\square" \text{valued mapping }}\end{array} \right\}.$ ; confidence 0.174 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130100.png ; $f , g _ { 1 } , \dots , g _ { m } \in \mathbf{Z} [ X _ { 1 } , \dots , X _ { | + | 88. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130100.png ; $f , g _ { 1 } , \dots , g _ { m } \in \mathbf{Z} [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.174 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066041.png ; $\| T _ { 1 | + | 89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066041.png ; $\| T _ { 1 + i t} ( f ) \| _ { \infty } \leq C \| f \|_\infty$ ; confidence 0.173 |
90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005082.png ; $\sum ^ { i _ { 1 } , \dots , i _ { s }}$ ; confidence 0.173 | 90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005082.png ; $\sum ^ { i _ { 1 } , \dots , i _ { s }}$ ; confidence 0.173 | ||
− | 91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi_{-} ^ { -1 } ( \frac { \partial } { \partial x } - P _ { 0 z | + | 91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi_{-} ^ { -1 } \left( \frac { \partial } { \partial x } - P _ { 0 }z \right) \phi _ { - } = \frac { \partial } { \partial x } - P,$ ; confidence 0.173 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007029.png ; $\Delta g = g \ | + | 92. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007029.png ; $\Delta g = g \bigotimes g , \epsilon g = 1 , S g = g ^ { - 1 } = g ^ { n - 1 },$ ; confidence 0.173 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300701.png ; $u _ { t } + u _ { | + | 93. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300701.png ; $u _ { t } + u _ { xxxx } + u _ { xx } + u u _ { x } = 0 , \quad x \in [ - L / 2 , L / 2 ],$ ; confidence 0.173 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043045.png ; $\Delta x ^ { n } = \sum _ { m = 0 } ^ { n } \left[ \begin{array} { c } { n } \\ { m } \end{array} \right] _ { q } x ^ { n } \ | + | 94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043045.png ; $\Delta x ^ { n } = \sum _ { m = 0 } ^ { n } \left[ \begin{array} { c } { n } \\ { m } \end{array} \right] _ { q } x ^ { n } \bigotimes x ^ { n - m } , S x ^ { n } = ( - 1 ) ^ { n } q ^ { n ( n - 1 ) / 2 } x ^ { n },$ ; confidence 0.173 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420103.png ; $\Psi _ { V , W } ( v \ | + | 95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420103.png ; $\Psi _ { V , W } ( v \bigotimes w ) = \beta ( | v | , | w | ) w \bigotimes v$ ; confidence 0.173 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300108.png ; $k = ( k _ { 1 } , \dots , k _ { | + | 96. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300108.png ; $k = ( k _ { 1 } , \dots , k _ { n } ) \in \mathbf{Z} ^ { n }$ ; confidence 0.172 |
97. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661029.png ; $R _ { ab }$ ; confidence 0.172 | 97. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661029.png ; $R _ { ab }$ ; confidence 0.172 | ||
− | 98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030058.png ; $\mathcal{A} ( \eta ) = - \sum _ { k , l = 1 } ^ { N } ( \frac { \partial } { \partial y _ { k } } + i \eta _ { k } ) ( | + | 98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030058.png ; $\mathcal{A} ( \eta ) = - \sum _ { k , \operatorname {l} = 1 } ^ { N } \left( \frac { \partial } { \partial y _ { k } } + i \eta _ { k } \right) \left( a _ { k \operatorname {l} } ( y ) \left( \frac { \partial } { \partial y _ { \operatorname {l} } } + i \eta _ { \operatorname {l} } \right) \right),$ ; confidence 0.172 |
99. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002038.png ; $l \in V ^ { \prime }$ ; confidence 0.172 | 99. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002038.png ; $l \in V ^ { \prime }$ ; confidence 0.172 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030710/d03071034.png ; $\ | + | 100. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030710/d03071034.png ; $\tilde { F }$ ; confidence 0.172 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031031.png ; $e _ { | + | 101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031031.png ; $e _ { n } ( C _ { d } ^ { k } ) \asymp n ^ { - k / d } \text { or } n ( \epsilon , C _ { d } ^ { k } ) \asymp \epsilon ^ { - d / k }.$ ; confidence 0.172 |
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050239.png ; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu n } ) \text { as } n \rightarrow \infty.$ ; confidence 0.172 | 102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050239.png ; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu n } ) \text { as } n \rightarrow \infty.$ ; confidence 0.172 | ||
Line 208: | Line 208: | ||
104. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m1200904.png ; $P ( \xi ) = \sum _ { J } a _ { J } \xi ^ { J }$ ; confidence 0.172 | 104. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m1200904.png ; $P ( \xi ) = \sum _ { J } a _ { J } \xi ^ { J }$ ; confidence 0.172 | ||
− | 105. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004013.png ; $\lambda _ { 1 } \geq \frac { \pi { j } _ { 1 | + | 105. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004013.png ; $\lambda _ { 1 } \geq \frac { \pi { j } _ {0,1 } ^ { 2 } } { A },$ ; confidence 0.172 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021030.png ; $k = 0 , \ldots , n = \operatorname { dim } a$ ; confidence 0.172 | + | 106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021030.png ; $k = 0 , \ldots , n = \operatorname { dim } \mathfrak{a}$ ; confidence 0.172 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023013.png ; $T = ( | + | 107. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023013.png ; $T = ( c _ { i - j} ) _ { i , j=0 } ^ { n - 1 } $ ; confidence 0.172 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040193.png ; $\ | + | 108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040193.png ; $\widetilde { \Omega } _ { \mathcal{D} } F$ ; confidence 0.172 |
109. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280139.png ; $Z ^ { n , n - 1 }$ ; confidence 0.172 | 109. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280139.png ; $Z ^ { n , n - 1 }$ ; confidence 0.172 | ||
− | 110. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327016.png ; $ | + | 110. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327016.png ; $ q \notin \bar { A }$ ; confidence 0.172 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100102.png ; $\epsilon = ( \ | + | 111. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100102.png ; $\epsilon = ( \epsilon_{0} , \dots , \epsilon _ { n } )$ ; confidence 0.171 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008078.png ; $E [ W ] _ { | + | 112. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008078.png ; $\mathsf{E} [ W ] _ { \operatorname {PS} } = \frac { \rho b } { 1 - \rho },$ ; confidence 0.171 |
113. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041036.png ; $b _ { n , n + 1} = 1$ ; confidence 0.171 | 113. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041036.png ; $b _ { n , n + 1} = 1$ ; confidence 0.171 | ||
− | 114. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022012.png ; $w _ | + | 114. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022012.png ; $w _ \mu $ ; confidence 0.171 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003051.png ; $( ( \_ ) \otimes _ { | + | 115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003051.png ; $( ( \_ ) \otimes _ { \mathbf{F}_p } H ^ { * } Z )$ ; confidence 0.171 |
116. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020223.png ; $\underline{v}$ ; confidence 0.171 | 116. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020223.png ; $\underline{v}$ ; confidence 0.171 | ||
− | 117. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012031.png ; $V ( \ | + | 117. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012031.png ; $V ( \widehat { K } _ { \operatorname {p} } )$ ; confidence 0.171 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005042.png ; $J ^ | + | 118. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005042.png ; $J ^{ r_0} ( \mathbf{R} ^ { n } , \mathbf{R} )$ ; confidence 0.170 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100196.png ; $E | + | 119. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100196.png ; $E ^{r+1} $ ; confidence 0.170 |
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014085.png ; $T _ { z u}$ ; confidence 0.170 | 120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014085.png ; $T _ { z u}$ ; confidence 0.170 | ||
− | 121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090348.png ; $U | + | 121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090348.png ; $\mathcal{U}_{ \mathbf{Z}}$ ; confidence 0.170 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019015.png ; $\Delta_{operatorname{ Dir}}$ ; confidence 0.170 | + | 122. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019015.png ; $\Delta_{\operatorname{ Dir}}$ ; confidence 0.170 |
123. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002012.png ; $\hat{v} $ ; confidence 0.170 | 123. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002012.png ; $\hat{v} $ ; confidence 0.170 | ||
− | 124. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017038.png ; $ \begin{cases} { p _ { t } ( | + | 124. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017038.png ; $ \begin{cases} { p _ { t } ( a , t ) + p _ { a } ( a , t ) + \mu ( a , S ( t ) ) p ( a , t ) = 0 }, \\ { p ( 0 , t ) = \int ^ { + \infty_0 } \beta ( \sigma , s ( t ) ) p ( \sigma , t ) d \sigma }, \\ { p ( a , 0 ) = p_ 0(a) }, \\ { S ( t ) = \int^{+\infty_0} \gamma ( \sigma ) p ( \sigma , t ) d \sigma . } \end{cases}. $ ; confidence 0.169 |
125. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100160.png ; $\|v \| _ { A _ { p } ( G ) } \leq C$ ; confidence 0.169 | 125. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100160.png ; $\|v \| _ { A _ { p } ( G ) } \leq C$ ; confidence 0.169 | ||
− | 126. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200117.png ; $\alpha _ { j } ( h _ { i } ) = | + | 126. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200117.png ; $\alpha _ { j } ( h _ { i } ) = a _ {i j }$ ; confidence 0.169 |
127. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340145.png ; $\mathcal{M} ( \tilde { x } , \tilde { y } ) / \mathbf{R}$ ; confidence 0.169 | 127. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340145.png ; $\mathcal{M} ( \tilde { x } , \tilde { y } ) / \mathbf{R}$ ; confidence 0.169 | ||
− | 128. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020036.png ; $( f , g ) = \sum _ { \nu = 1 } ^ { r } f ( x _ { \nu } ) g ( x _ { \nu } ) + \int _ { | + | 128. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020036.png ; $( f , g ) = \sum _ { \nu = 1 } ^ { r } f ( x _ { \nu } ) g ( x _ { \nu } ) + \int _ { a } ^ { b } f ^ { ( r ) } ( x ) g ^ { ( r ) } ( x ) d x$ ; confidence 0.169 |
129. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017054.png ; $\mathcal{N} _ { \epsilon}$ ; confidence 0.169 | 129. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017054.png ; $\mathcal{N} _ { \epsilon}$ ; confidence 0.169 | ||
Line 260: | Line 260: | ||
130. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050150/i0501503.png ; $\mathfrak{C}$ ; confidence 0.169 | 130. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050150/i0501503.png ; $\mathfrak{C}$ ; confidence 0.169 | ||
− | 131. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005012.png ; $W ( G , K ) = \{ \bigwedge ( \mathfrak { g } / \mathfrak { k } ) ^ { * } \ | + | 131. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005012.png ; $W ( G , K ) = \{ \bigwedge ( \mathfrak { g } / \mathfrak { k } ) ^ { * } \bigotimes S \mathfrak { g } ^ { * } \} ^ { K }.$ ; confidence 0.169 |
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024067.png ; $e _ {i j k }$ ; confidence 0.169 | 132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024067.png ; $e _ {i j k }$ ; confidence 0.169 | ||
− | 133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620133.png ; $\operatorname { lim } _ { N \rightarrow \infty } \frac { \int _ { 0 } ^ { N } | y ( x , \lambda ) | ^ { 2 } d x } { \int | + | 133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620133.png ; $\operatorname { lim } _ { N \rightarrow \infty } \frac { \int _ { 0 } ^ { N } | y ( x , \lambda ) | ^ { 2 } d x } { \int ^{N_0} | v ( x , \lambda ) | ^ { 2 } d x } = 0.$ ; confidence 0.169 |
134. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016038.png ; $\| g _ { n } \|$ ; confidence 0.169 | 134. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016038.png ; $\| g _ { n } \|$ ; confidence 0.169 | ||
Line 270: | Line 270: | ||
135. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005081.png ; $\left(\begin{array} { c c } { T } & { ( I - T T ^ { * } ) ^ { 1 / 2 } } \\ { ( I - T ^ { * } T ) ^ { 1 / 2 } } & { T ^ { * } } \end{array} \right)$ ; confidence 0.169 | 135. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005081.png ; $\left(\begin{array} { c c } { T } & { ( I - T T ^ { * } ) ^ { 1 / 2 } } \\ { ( I - T ^ { * } T ) ^ { 1 / 2 } } & { T ^ { * } } \end{array} \right)$ ; confidence 0.169 | ||
− | 136. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007013.png ; $M ( P ) = | | + | 136. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007013.png ; $M ( P ) = | a _ { 0 } | \prod _ { k = 1 } ^ { d } \operatorname { max } ( | \alpha _ { k } | , 1 )$ ; confidence 0.169 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040313.png ; $\text{iff }\epsilon _ { i,0 } ^ { A } ( | + | 137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040313.png ; $\text{iff }\epsilon _ { i,0 } ^ { \mathbf{A} } ( a , b , c , d ) = \epsilon _ { i , 1 } ^ { \mathbf{A} } ( a , b , c , d ) \text { for all } i < m,$ ; confidence 0.169 |
138. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290118.png ; $\textbf{FTOP}$ ; confidence 0.169 | 138. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290118.png ; $\textbf{FTOP}$ ; confidence 0.169 | ||
− | 139. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016065.png ; $\mathfrak { | + | 139. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016065.png ; $\mathfrak { A } [ \Lambda ]$ ; confidence 0.169 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302801.png ; $\left\{ \begin{array} { l l } { \operatorname { min } } & { c ^ { T } x } \\ { s.t. } & { A x \leq b } \end{array} \right | + | 140. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302801.png ; $\left\{ \begin{array} { l l } { \operatorname { min } } & { \mathbf{c} ^ { T } \mathbf{x} } \\ { \operatorname {s.t.} } & { A \mathbf{x} \leq \mathbf{b}. } \end{array} \right. $ ; confidence 0.169 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067011.png ; $\left. \begin{array} { l l l } { \square } & { C } & { \square } \\ { \square _ { f } } & { \swarrow } & { \square } & { \searrow _ { g } } \\ { A } & { } & { \square } & { B } \end{array} \right.$ ; confidence 0.169 | + | 141. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067011.png ; $\left. \begin{array} { l l l } { \square } & {} & { C } & { \square } \\ { \square _ { f } } & { \swarrow } & { \square } & { \searrow _ { g } } \\ { A } & { } & { \square } & { B } \end{array} \right.$ ; confidence 0.169 |
142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030036.png ; $h \equiv 0$ ; confidence 0.169 | 142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030036.png ; $h \equiv 0$ ; confidence 0.169 | ||
− | 143. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200406.png ; $A \ | + | 143. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200406.png ; $A \subset_{*} B$ ; confidence 0.168 |
144. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970216.png ; $X ^ { r }$ ; confidence 0.168 | 144. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970216.png ; $X ^ { r }$ ; confidence 0.168 | ||
− | 145. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120131.png ; $M _ { | + | 145. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120131.png ; $M _ { \operatorname {ins} }$ ; confidence 0.168 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030084.png ; $\hat{g} _ { m } ( \eta ) = \int _ { R ^ { N } } g ( y ) e ^ { - i \eta y \overline { \phi } | + | 146. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030084.png ; $\hat{g} _ { m } ( \eta ) = \int _ { \mathbf{R} ^ { N } } g ( y ) e ^ { - i \eta . y} \overline { \phi } m ( y ; \eta ) d y , \forall \eta \in Y ^ { \prime }.$ ; confidence 0.168 |
147. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210126.png ; $R _ { n , h } ( A )$ ; confidence 0.168 | 147. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210126.png ; $R _ { n , h } ( A )$ ; confidence 0.168 | ||
Line 298: | Line 298: | ||
149. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148049.png ; $a _ { n }$ ; confidence 0.168 | 149. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148049.png ; $a _ { n }$ ; confidence 0.168 | ||
− | 150. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011045.png ; $J _ { b - a } ( \sqrt { x } ) Y _ { b - a } ( \sqrt { x } ) = - \sqrt { x } x ^ { - a } G _ { 13 } ^ { 20 } \left( x | \begin{array} { c } { a + 1 / 2 } \\ { b , a , 2 a - b } \end{array} \right).$ ; confidence 0.168 | + | 150. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011045.png ; $J _ { b - a } ( \sqrt { x } ) Y _ { b - a } ( \sqrt { x } ) = - \sqrt { x } x ^ { - a } G _ { 13 } ^ { 20 } \left( x \left| \begin{array} { c } { a + 1 / 2 } \\ { b , a , 2 a - b } \end{array} \right. \right).$ ; confidence 0.168 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180471.png ; $\ | + | 151. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180471.png ; $\widetilde{\pi} : \widetilde{N} \rightarrow N$ ; confidence 0.168 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075700/p075700112.png ; $i _1 , \ldots , i _ { | + | 152. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075700/p075700112.png ; $i _1 , \ldots , i _ { r }$ ; confidence 0.168 |
153. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004016.png ; $L _ { D }$ ; confidence 0.168 | 153. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004016.png ; $L _ { D }$ ; confidence 0.168 | ||
Line 312: | Line 312: | ||
156. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013066.png ; $\tilde { A } _ { n }$ ; confidence 0.167 | 156. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013066.png ; $\tilde { A } _ { n }$ ; confidence 0.167 | ||
− | 157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001029.png ; $P ^ { n } \supset C ^ { n }$ ; confidence 0.167 | + | 157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001029.png ; $\mathbf{P} ^ { n } \supset \mathbf{C} ^ { n }$ ; confidence 0.167 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300708.png ; $e ^ { i k \alpha | + | 158. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300708.png ; $e ^ { i k \alpha x}$ ; confidence 0.167 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026097.png ; $R _ { 1 } = R ^ { * } / \cap _ { i \in N } a ^ { i } R ^ { * }$ ; confidence 0.167 | + | 159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026097.png ; $R _ { 1 } = R ^ { * } / \cap _ { i \in \mathbf{N} } a ^ { i } R ^ { * }$ ; confidence 0.167 |
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040337.png ; $\vdash_\mathcal{D} E ( \lambda x _ { 0 } , \ldots , x _ { n - 1} , \lambda y 0 , \ldots , y _ { n - 1} )$ ; confidence 0.167 | 160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040337.png ; $\vdash_\mathcal{D} E ( \lambda x _ { 0 } , \ldots , x _ { n - 1} , \lambda y 0 , \ldots , y _ { n - 1} )$ ; confidence 0.167 | ||
Line 322: | Line 322: | ||
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027077.png ; $h \downarrow 0$ ; confidence 0.167 | 161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027077.png ; $h \downarrow 0$ ; confidence 0.167 | ||
− | 162. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010015.png ; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } _ { p } ( \alpha , p ) } { \alpha x - p } d \alpha d p,$ ; confidence 0.166 | + | 162. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010015.png ; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } _ { p } ( \alpha , p ) } { \alpha . x - p } d \alpha d p,$ ; confidence 0.166 |
163. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011044.png ; $J _ { a - b } ( 2 \sqrt { x } ) = x ^ { - ( a + b ) / 2 } G _ { 02 } ^ { 10 } ( x | a , b ),$ ; confidence 0.166 | 163. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011044.png ; $J _ { a - b } ( 2 \sqrt { x } ) = x ^ { - ( a + b ) / 2 } G _ { 02 } ^ { 10 } ( x | a , b ),$ ; confidence 0.166 | ||
Line 328: | Line 328: | ||
164. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003038.png ; $d_{ j k l}$ ; confidence 0.166 | 164. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003038.png ; $d_{ j k l}$ ; confidence 0.166 | ||
− | 165. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602038.png ; $\left. \begin{array}{l}{ \Phi ^ { + } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + ( 1 - \frac { \beta } { 2 \pi } ) \phi ( t _ { 0 } ) ,}\\{ \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int_{\Gamma} \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { \beta } { 2 \pi } \phi ( t _ { 0 } ) , 0 \leq \beta \leq 2 \pi .}\end{array} \right.$ ; confidence 0.166 | + | 165. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602038.png ; $\left. \begin{array}{l}{ \Phi ^ { + } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \left( 1 - \frac { \beta } { 2 \pi } \right) \phi ( t _ { 0 } ) ,}\\{ \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int_{\Gamma} \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { \beta } { 2 \pi } \phi ( t _ { 0 } ) , 0 \leq \beta \leq 2 \pi .}\end{array} \right.$ ; confidence 0.166 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090109.png ; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E^{ \ | + | 166. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090109.png ; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E^{ \bigotimes r }.$ ; confidence 0.166 |
167. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004011.png ; $\lfloor m/ 2 \rfloor$ ; confidence 0.166 | 167. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004011.png ; $\lfloor m/ 2 \rfloor$ ; confidence 0.166 | ||
− | 168. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010052.png ; $\sum _ { | + | 168. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010052.png ; $\sum _ { i = 0 } ^ { k } \alpha _ { i } y _ { m + i } = h f \left( \sum _ { i = 0 } ^ { k } \beta _ { i } x _ { m + i } , \sum _ { i = 0 } ^ { k } \beta _ { i } y _ { m + i } \right).$ ; confidence 0.166 |
169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002057.png ; $U _ { x }$ ; confidence 0.166 | 169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002057.png ; $U _ { x }$ ; confidence 0.166 | ||
Line 340: | Line 340: | ||
170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003031.png ; $g_{n,m}$ ; confidence 0.166 | 170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003031.png ; $g_{n,m}$ ; confidence 0.166 | ||
− | 171. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010066.png ; $\operatorname { supp } a _ { e } ( x , \alpha , p ) \subset [ - \delta , \delta ]$ ; confidence 0.166 | + | 171. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010066.png ; $\operatorname { supp } a _ { \operatorname {e} } ( x , \alpha , p ) \subset [ - \delta , \delta ]$ ; confidence 0.166 |
172. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070108.png ; $r ^ { 2 } = \sum \| A _ { j } \| ^ { 2 }$ ; confidence 0.166 | 172. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070108.png ; $r ^ { 2 } = \sum \| A _ { j } \| ^ { 2 }$ ; confidence 0.166 | ||
− | 173. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045015.png ; $U = \sum _ { | + | 173. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045015.png ; $U = \sum _ { u } u ( u ^ { 2 } - 1 ) / 12$ ; confidence 0.165 |
174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026021.png ; $d [ f / \| f \| , \partial K , S ^ { n - 1 } ]$ ; confidence 0.165 | 174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026021.png ; $d [ f / \| f \| , \partial K , S ^ { n - 1 } ]$ ; confidence 0.165 | ||
− | 175. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006021.png ; $r _ { i } ( A ) : = \sum _ { j = 1 \atop j \neq i } ^ { n } | | + | 175. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006021.png ; $r _ { i } ( A ) : = \sum _ { j = 1 \atop j \neq i } ^ { n } | a _ { i , j } |.$ ; confidence 0.165 |
176. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019023.png ; $A _ { k l }$ ; confidence 0.165 | 176. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019023.png ; $A _ { k l }$ ; confidence 0.165 | ||
− | 177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004060.png ; $\cap _ { | + | 177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004060.png ; $\cap _ { n = 1 } ^ { \infty } U _ { n } = \cap _ { n = 1 } ^ { \infty } V _ { n } \neq \emptyset$ ; confidence 0.165 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001015.png ; $\langle D \rangle = \sum _ { | + | 178. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001015.png ; $\langle D \rangle = \sum _ { s } A ^ { T ( s ) } ( - A ^ { 2 } - A ^ { - 2 } ) ^ { | s D | - 1 }, $ ; confidence 0.165 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301408.png ; $ | + | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301408.png ; $Q_{( r , s )} = q_ r q _ { s } + 2 \sum _ { i = 1 } ^ { s } ( - 1 ) ^ { i } q_{r + i} q _ { s - i},$ ; confidence 0.165 |
180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200158.png ; $r_i : \mathfrak{h}^ { e ^ { * } } \rightarrow \mathfrak{h} ^ { e ^ { * } }$ ; confidence 0.165 | 180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200158.png ; $r_i : \mathfrak{h}^ { e ^ { * } } \rightarrow \mathfrak{h} ^ { e ^ { * } }$ ; confidence 0.165 | ||
Line 372: | Line 372: | ||
186. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009025.png ; $M \stackrel { f } { \rightarrow } N \stackrel { \pi } { \rightarrow } I$ ; confidence 0.165 | 186. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009025.png ; $M \stackrel { f } { \rightarrow } N \stackrel { \pi } { \rightarrow } I$ ; confidence 0.165 | ||
− | 187. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028022.png ; $\tilde{A} x$ ; confidence 0.165 | + | 187. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028022.png ; $\tilde{A} \mathbf{x}$ ; confidence 0.165 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007017.png ; $v _ { t + 1} = L | + | 188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007017.png ; $v _ { t + 1} = L v_ t $ ; confidence 0.165 |
189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011040.png ; $v$ ; confidence 0.165 | 189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011040.png ; $v$ ; confidence 0.165 | ||
− | 190. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011041.png ; $\mathcal{H} ( u , v ) ( x , \xi ) = 2 ^ { n } \langle \sigma _ { x , \xi }u , v \rangle _ { L^2 ( R ^ { n } )} , ( \sigma _ { x , \xi} u ) ( y ) = u ( 2 x - y ) \operatorname { exp } ( - 4 i \pi ( x - y ) . \xi).$ ; confidence 0.164 | + | 190. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011041.png ; $\mathcal{H} ( u , v ) ( x , \xi ) = 2 ^ { n } \langle \sigma _ { x , \xi }u , v \rangle _ { L^2 ( \mathbf{R} ^ { n } )} , ( \sigma _ { x , \xi} u ) ( y ) = u ( 2 x - y ) \operatorname { exp } ( - 4 i \pi ( x - y ) . \xi).$ ; confidence 0.164 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007045.png ; $V ^ { \ | + | 191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007045.png ; $V ^ { \natural } = \oplus _ { n } V _ { n }$ ; confidence 0.164 |
192. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007068.png ; $a , b \in \mathbf{C} ^ { n }$ ; confidence 0.164 | 192. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007068.png ; $a , b \in \mathbf{C} ^ { n }$ ; confidence 0.164 | ||
− | 193. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030181.png ; $\phi _ { * } ( \text { ind } ( D ) ) = ( - 1 ) ^ { n } ( 2 \pi i ) ^ { - m } ( Ch ( [ a ] ) T ( M ) f ^ { * } \phi ) [ T ^ { * } M ].$ ; confidence 0.164 | + | 193. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030181.png ; $\phi _ { * } ( \text { ind } ( D ) ) = ( - 1 ) ^ { n } \left( 2 \pi i ) ^ { - m } ( \operatorname {Ch} ( [ a ] ) \mathcal{T} ( M ) f ^ { * } \phi \right) [ T ^ { * } M ].$ ; confidence 0.164 |
194. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001029.png ; $S _ { N } ( f ; x ) = \sum _ { |k| \leq N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.164 | 194. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001029.png ; $S _ { N } ( f ; x ) = \sum _ { |k| \leq N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.164 | ||
− | 195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 ),$ ; confidence 0.164 | + | 195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $\operatorname {SU} ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , \operatorname {SO} ( k ) / \operatorname {SO} ( k - 4 ) \times \operatorname {Sp} ( 1 ),$ ; confidence 0.164 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052091.png ; $w _ { n - 1 } = ( \| s _ { n | + | 196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052091.png ; $w _ { n - 1 } = ( \| s _ { n - 1} \| _ { 2 } + v _ { n - 1 } ^ { T } w ) ^ { - 1 } w , s _ { n } = - ( I - w _ { n - 1 } v _ { n - 1 } ^ { T } ) w.$ ; confidence 0.164 |
197. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220248.png ; $\mathbf{Q}$ ; confidence 0.164 | 197. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220248.png ; $\mathbf{Q}$ ; confidence 0.164 | ||
Line 400: | Line 400: | ||
200. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010059.png ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \forall w ( w \in v \rightarrow w \in x ) ).$ ; confidence 0.164 | 200. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010059.png ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \forall w ( w \in v \rightarrow w \in x ) ).$ ; confidence 0.164 | ||
− | 201. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054088.png ; $SL _ { n} ( Q _ { p } )$ ; confidence 0.164 | + | 201. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054088.png ; $\operatorname {SL} _ { n} ( \mathbf{Q} _ { p } )$ ; confidence 0.164 |
202. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691029.png ; $\vee _ { a } ^ { b } g _ { n }$ ; confidence 0.164 | 202. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691029.png ; $\vee _ { a } ^ { b } g _ { n }$ ; confidence 0.164 | ||
Line 408: | Line 408: | ||
204. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003020.png ; $T _ { n } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.164 | 204. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003020.png ; $T _ { n } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.164 | ||
− | 205. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046052.png ; $\ | + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046052.png ; $\widetilde { D }$ ; confidence 0.164 |
206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031045.png ; $n ( \epsilon , F _ { d } ) \leq K . d ^ { p } . \epsilon ^ { - q } , \quad \forall d = 1,2 , \dots , \forall \epsilon \in ( 0,1 ],$ ; confidence 0.163 | 206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031045.png ; $n ( \epsilon , F _ { d } ) \leq K . d ^ { p } . \epsilon ^ { - q } , \quad \forall d = 1,2 , \dots , \forall \epsilon \in ( 0,1 ],$ ; confidence 0.163 | ||
− | 207. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100129.png ; $ | + | 207. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100129.png ; $\operatorname {sp} \hat { T } = ( \operatorname { supp } T ) ^ { - 1 }$ ; confidence 0.163 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011040.png ; $S _ { n + 1 } = \left\{ z \in C ^ { n + 1 } : \operatorname { Im } z _ { n + 1 } > \sum ^ { n _ { j = 1 } } | z _ { j } | ^ { 2 } \right\},$ ; confidence 0.163 | + | 208. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011040.png ; $S _ { n + 1 } = \left\{ z \in \mathbf{C} ^ { n + 1 } : \operatorname { Im } z _ { n + 1 } > \sum ^ { n _ { j = 1 } } | z _ { j } | ^ { 2 } \right\},$ ; confidence 0.163 |
209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010124.png ; $C ^ { \infty_0 }(D)$ ; confidence 0.163 | 209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010124.png ; $C ^ { \infty_0 }(D)$ ; confidence 0.163 | ||
Line 420: | Line 420: | ||
210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022055.png ; $\int _ { a } ^ { b } p ^ { - 1 } \times \int _ { a } ^ { b } | q | < 4$ ; confidence 0.163 | 210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022055.png ; $\int _ { a } ^ { b } p ^ { - 1 } \times \int _ { a } ^ { b } | q | < 4$ ; confidence 0.163 | ||
− | 211. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006085.png ; $\mathcal{H}^ ( 1 )$ ; confidence 0.163 | + | 211. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006085.png ; $\mathcal{H}^{ ( 1 )}$ ; confidence 0.163 |
212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230154.png ; $f _ { 1 } ( T ) = W ^ { ( n - n _ { 1 } - \ldots - n _ { s } ) / 2 } f ( T )$ ; confidence 0.163 | 212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230154.png ; $f _ { 1 } ( T ) = W ^ { ( n - n _ { 1 } - \ldots - n _ { s } ) / 2 } f ( T )$ ; confidence 0.163 | ||
Line 432: | Line 432: | ||
216. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026085.png ; $U _ { h } ( t _ { n } )$ ; confidence 0.162 | 216. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026085.png ; $U _ { h } ( t _ { n } )$ ; confidence 0.162 | ||
− | 217. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060104.png ; $ | + | 217. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060104.png ; $ i = 1 , \ldots , r$ ; confidence 0.162 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015033.png ; $d ^ { * } \in \cap_{ P \in \mathcal{P}} L _ { 2 } ( \Omega , \mathcal{A} , P )$ ; confidence 0.162 | + | 218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015033.png ; $d ^ { * } \in \cap_{ \mathsf{P} \in \mathcal{P}} L _ { 2 } ( \Omega , \mathcal{A} , \mathsf{P} )$ ; confidence 0.162 |
219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020037.png ; $[ h _ { i j } e _ { k } ] = \delta _ { i j } a _ { i k } e _ { k }$ ; confidence 0.162 | 219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020037.png ; $[ h _ { i j } e _ { k } ] = \delta _ { i j } a _ { i k } e _ { k }$ ; confidence 0.162 | ||
− | 220. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021064.png ; $A ( C ; q , z ) = \sum _ { | + | 220. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021064.png ; $A ( C ; q , z ) = \sum _ { \mathbf{v} \in C } z ^ { w (\mathbf{v}) }$ ; confidence 0.162 |
221. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005016.png ; $\operatorname { dim } \Lambda ^ { k } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.162 | 221. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005016.png ; $\operatorname { dim } \Lambda ^ { k } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.162 | ||
Line 444: | Line 444: | ||
222. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014099.png ; $r_{j,1} / r_{j,2} $ ; confidence 0.162 | 222. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014099.png ; $r_{j,1} / r_{j,2} $ ; confidence 0.162 | ||
− | 223. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110248.png ; $ | + | 223. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110248.png ; $g_{X} ( T ) = \frac { G _ { X } ( T ) } { H ( X ) [ 1 + a ( X ) + H ( X ) ^ { 2 } \| a ^ { \prime \prime } ( X ) \| ^ { 2 _{ G _ { X }} ] ^ { 1 / 2 } }.$ ; confidence 0.162 |
224. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008047.png ; $\int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }.$ ; confidence 0.162 | 224. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008047.png ; $\int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }.$ ; confidence 0.162 | ||
− | 225. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080177.png ; $( A , \overline { A } , t \sim t _ { | + | 225. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080177.png ; $( A , \overline { A } , t \sim t _ { a } )$ ; confidence 0.162 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m1201509.png ; $\left( \begin{array} { c c c } { x _ { 11 } ( . ) } & { \dots } & { x _ { 1 n } ( . ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( . ) } & { \dots } & { x _ { p n } (1) } \end{array} \right)$ ; confidence 0.161 | + | 226. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m1201509.png ; $\left( \begin{array} { c c c } { x _ { 11 } ( . ) } & { \dots } & { x _ { 1 n } ( . ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( . ) } & { \dots } & { x _ { p n } (1) } \end{array} \right), $ ; confidence 0.161 |
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040069.png ; $\mathfrak{h}_R$ ; confidence 0.161 | 227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040069.png ; $\mathfrak{h}_R$ ; confidence 0.161 | ||
Line 458: | Line 458: | ||
229. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002017.png ; $7$ ; confidence 0.161 | 229. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002017.png ; $7$ ; confidence 0.161 | ||
− | 230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006012.png ; $ \| x \| _ { 1 } | + | 230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006012.png ; $ \| x \| _ { 1 } = \sum _ { i } | x_i |, $ ; confidence 0.161 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016021.png ; $\sigma ( T ) \backslash \sigma |_ { \text { | + | 231. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016021.png ; $\sigma ( T ) \backslash \sigma |_ { \text { lre } } ( T )$ ; confidence 0.161 |
232. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020184.png ; $\overline { v } = \infty$ ; confidence 0.161 | 232. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020184.png ; $\overline { v } = \infty$ ; confidence 0.161 | ||
− | 233. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003017.png ; $\{ S q ^ { i } : i \geq 0 \}$ ; confidence 0.161 | + | 233. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003017.png ; $\{ \mathcal{S} \operatorname {q} ^ { i } : i \geq 0 \}$ ; confidence 0.161 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \ | + | 234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } \mathbf{C} \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \bigoplus \sum _ { i > 0 } \mathbf{C} \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \bigoplus \mathbf{C} _{c},$ ; confidence 0.161 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017040.png ; $\langle | + | 235. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017040.png ; $\langle a , b | a b a = b a b , a ^ { 4 } = b ^ { 5 } \rangle$ ; confidence 0.161 |
236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110164.png ; $r _ { m - 2} \in S _ { \text{loc} } ^ { m - 2 } ( \Omega )$ ; confidence 0.161 | 236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110164.png ; $r _ { m - 2} \in S _ { \text{loc} } ^ { m - 2 } ( \Omega )$ ; confidence 0.161 | ||
Line 476: | Line 476: | ||
238. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120164.png ; $( K _ { s } ( \overline { \sigma } ) \cap K _ { totS } ) _ { ins }$ ; confidence 0.161 | 238. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120164.png ; $( K _ { s } ( \overline { \sigma } ) \cap K _ { totS } ) _ { ins }$ ; confidence 0.161 | ||
− | 239. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050020.png ; $\ | + | 239. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050020.png ; $\widetilde { \mathbf{Q} }_ p$ ; confidence 0.161 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025890/c02589041.png ; $\ | + | 240. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025890/c02589041.png ; $\widetilde { H }$ ; confidence 0.160 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002044.png ; $l \in \mathbf{R} ^ { | + | 241. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002044.png ; $l \in \mathbf{R} ^ { n }$ ; confidence 0.160 |
242. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160121.png ; $\psi _ { \mathfrak { A } } ^ { 0 } \overline {a}$ ; confidence 0.160 | 242. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160121.png ; $\psi _ { \mathfrak { A } } ^ { 0 } \overline {a}$ ; confidence 0.160 | ||
− | 243. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193041.png ; $\operatorname{GL} ( m , C )$ ; confidence 0.160 | + | 243. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193041.png ; $\operatorname{GL} ( m , \mathbf{C} )$ ; confidence 0.160 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031054.png ; $e _ { | + | 244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031054.png ; $e _ { n } ^ { \operatorname {ran} } ( F _ { d } ) = \operatorname { inf } _ { Q _ { n } } e ^ { \operatorname {ran} } ( Q _ { n } , F _ { d } )$ ; confidence 0.160 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042090.png ; $\Psi _ { V , W } ( v \ | + | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042090.png ; $\Psi _ { V , W } ( v \bigotimes w ) = q ^ { |v| | w | } w \bigotimes v$ ; confidence 0.160 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027012.png ; $A ( t ) = t - S _ { N | + | 246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027012.png ; $A ( t ) = t - S _ { N ( t )} , R ( t ) = S _ { N ( t ) + 1 } - t,$ ; confidence 0.160 |
247. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b1106608.png ; $|Q|$ ; confidence 0.160 | 247. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b1106608.png ; $|Q|$ ; confidence 0.160 | ||
− | 248. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024022.png ; $P _ { | + | 248. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024022.png ; $P _ { l } ( x ) \in \mathbf{Z} [ x ]$ ; confidence 0.160 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005055.png ; $H _ { k+1 } | + | 249. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005055.png ; $H _ { k+1 } $ ; confidence 0.160 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220221.png ; $\rightarrow \operatorname { Ext } _ { \mathcal{M} \mathcal{H} _ { \mathbf{R} } ^ { + } } ( \mathbf{R} ( 0 ) , H _ { B } ^ { i } ( X ) , \mathbf{R} ( j ) ).$ ; confidence 0.159 | + | 250. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220221.png ; $\rightarrow \operatorname { Ext } _ { \mathcal{M} \mathcal{H} _ { \mathbf{R} } ^ { + } } ( \mathbf{R} ( 0 ) , H _ { \operatorname {B} } ^ { i } ( X ) , \mathbf{R} ( j ) ).$ ; confidence 0.159 |
251. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220117.png ; $r : H _ { \mathcal{M} } ^ { \bullet } ( X , Q ( * ) ) \rightarrow H _ { \mathcal{D} } ^ { \bullet } ( X , A ( * ) )$ ; confidence 0.159 | 251. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220117.png ; $r : H _ { \mathcal{M} } ^ { \bullet } ( X , Q ( * ) ) \rightarrow H _ { \mathcal{D} } ^ { \bullet } ( X , A ( * ) )$ ; confidence 0.159 | ||
Line 510: | Line 510: | ||
255. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007031.png ; $F ( r , m ) = ( x _ { 1 } , \dots , x _ { m } | x _ { i } \dots x _ { i + r - 1} = x _ { i + r } ),$ ; confidence 0.159 | 255. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007031.png ; $F ( r , m ) = ( x _ { 1 } , \dots , x _ { m } | x _ { i } \dots x _ { i + r - 1} = x _ { i + r } ),$ ; confidence 0.159 | ||
− | 256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004014.png ; $\mathcal{D} = \{ | + | 256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004014.png ; $\mathcal{D} = \{ \mathbf{Fm} , \vdash _ { \mathcal{D} } )$ ; confidence 0.159 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420162.png ; $\lambda _ { 1 } = id , \lambda _ { W \ | + | 257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420162.png ; $\lambda _ { \underline{1} } = \operatorname {id} , \lambda _ { W \bigotimes Z} = \lambda_{Z} \circ \lambda _ { W }$ ; confidence 0.159 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011019.png ; $C / \Lambda$ ; confidence 0.159 | + | 258. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011019.png ; $\mathbf{C} / \Lambda$ ; confidence 0.159 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $\mathbf{M} _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . | + | 259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $\mathbf{M} _ { \mathsf{E} } = \sum _ { i j k } ( \mathbf{y} _ { i j k } - \mathbf{y} _ { i j }. ) ^ { \prime } ( \mathbf{y} _ { i j k } - \mathbf{y} _ { i j }. )$ ; confidence 0.159 |
260. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013014.png ; $K = \kappa _ { 1 } \quad \kappa _ { 2 }$ ; confidence 0.159 | 260. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013014.png ; $K = \kappa _ { 1 } \quad \kappa _ { 2 }$ ; confidence 0.159 | ||
− | 261. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032010.png ; $u _ { m | + | 261. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032010.png ; $u _ { m + 1} = R _ { 0 } ^ { ( s + 1 ) } ( h T ) u _ { m } +$ ; confidence 0.159 |
262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200103.png ; $\alpha \mapsto x _ { \alpha } \in \mathfrak{h}$ ; confidence 0.159 | 262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200103.png ; $\alpha \mapsto x _ { \alpha } \in \mathfrak{h}$ ; confidence 0.159 | ||
− | 263. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010033.png ; $m _ { r s } = g _ { ij} Q _ { r } ^ { i } Q _ { s } ^ { j }$ ; confidence 0.159 | + | 263. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010033.png ; $m _ { r s } = g _ { ij} Q _ { r } ^ { i } Q _ { s } ^ { j },$ ; confidence 0.159 |
264. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290125.png ; $\textbf{SFRM}$ ; confidence 0.158 | 264. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290125.png ; $\textbf{SFRM}$ ; confidence 0.158 | ||
− | 265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430118.png ; $\Psi ( \alpha \bigotimes \alpha ) = \alpha \ | + | 265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430118.png ; $\Psi ( \alpha \bigotimes \alpha ) = \alpha \bigotimes \alpha + ( 1 - q ^ { 2 } ) \beta \bigotimes \gamma,$ ; confidence 0.158 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009017.png ; $F ^ { \mu \nu } = \left( \begin{array} { c c c c } { 0 } & { E _ { | + | 266. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009017.png ; $F ^ { \mu \nu } = \left( \begin{array} { c c c c } { 0 } & { E _ { x } } & { E _ { y } } & { E _ { z } } \\ { - E _ { x } } & { 0 } & { H _ { z } } & { - H _ { y } } \\ { - E _ { y } } & { - H _ { z } } & { 0 } & { H _ { x } } \\ { - E _ { z } } & { H _ { y } } & { - H _ { x } } & { 0 } \end{array} \right),$ ; confidence 0.158 |
267. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001026.png ; $\operatorname { lim } _ { |z | \rightarrow \infty } \tilde { x } ( z ) = x ( 0 )$ ; confidence 0.158 | 267. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001026.png ; $\operatorname { lim } _ { |z | \rightarrow \infty } \tilde { x } ( z ) = x ( 0 )$ ; confidence 0.158 | ||
Line 536: | Line 536: | ||
268. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005019.png ; $\kappa _ { n } > 0$ ; confidence 0.158 | 268. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005019.png ; $\kappa _ { n } > 0$ ; confidence 0.158 | ||
− | 269. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220137.png ; $c ( i , m ) \mathcal{L} ( i , m ) = \operatorname { det } _ { Q } r _ { D } ( H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } ),$ ; confidence 0.157 | + | 269. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220137.png ; $c ( i , m ) . \mathcal{L} ( i , m ) = \operatorname { det } _ { \mathbf{Q} } r _ { \mathcal{D} } ( H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( i + 1 - m ) ) _ { \mathbf{Z} } ),$ ; confidence 0.157 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230101.png ; $\ | + | 270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230101.png ; $\mathcal{E} ^ { a } ( L ) ( \sigma ^ { 2 k } ( x ) ) = 0,$ ; confidence 0.157 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080184.png ; $M _ { | + | 271. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080184.png ; $M _ { a }$ ; confidence 0.157 |
272. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027014.png ; $( Q _ { n_i } [ f ] ) _ { i = 1,2 , \ldots }$ ; confidence 0.157 | 272. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027014.png ; $( Q _ { n_i } [ f ] ) _ { i = 1,2 , \ldots }$ ; confidence 0.157 | ||
− | 273. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007044.png ; $\hat { f } ( \xi ) = \int _ { R ^ { 2 n }} e ^ { - i x \xi } f ( x ) d x$ ; confidence 0.157 | + | 273. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007044.png ; $\hat { f } ( \xi ) = \int _ { \mathbf{R} ^ { 2 n }} e ^ { - i x \xi } f ( x ) d x$ ; confidence 0.157 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008057.png ; $[ L : K ] \geq \sum _ { i = 1 } ^ { m } e ( w _ { i } | v ) . f ( w _ { | + | 274. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008057.png ; $[ L : K ] \geq \sum _ { i = 1 } ^ { m } e ( w _ { i } | v ) . f ( w _ { i } | w ).$ ; confidence 0.157 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006022.png ; $\| f |_ { W } | + | 275. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006022.png ; $\left\| f |_ { W ^{k} L _ { \Phi } ( \Omega ) } \right\| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { L _ { \Phi } ( \Omega ) }.$ ; confidence 0.157 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040173.png ; $\sum _ { \alpha \in Z _+^ { n } } \frac { | + | 276. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040173.png ; $\sum _ { \alpha \in \mathbf{Z} _+^ { n } } \frac { a _ { \alpha } } { ( | \alpha | ! ) ^ { s - 1 } } x ^ { \alpha },$ ; confidence 0.157 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002063.png ; $\overline{x} = \sum _ { k \in P } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R } \overline { \mu } _ { k } | + | 277. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002063.png ; $\overline{x} = \sum _ { k \in P } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R } \overline { \mu } _ { k } \tilde{x} ^ { ( k ) }$ ; confidence 0.156 |
278. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019048.png ; $M _ { n } ( z ) = \left( \begin{array} { c c c } { \langle f _ { 0 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { 0 } , f _ { n } \rangle } \\ { \vdots } & { \square } & { \vdots } \\ { \langle f _ { n - 1 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { n - 1 } , f _ { n } \rangle } \\ { f _ { 0 } ( z ) } & { \dots } & { f _ { n } ( z ) } \end{array} \right).$ ; confidence 0.156 | 278. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019048.png ; $M _ { n } ( z ) = \left( \begin{array} { c c c } { \langle f _ { 0 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { 0 } , f _ { n } \rangle } \\ { \vdots } & { \square } & { \vdots } \\ { \langle f _ { n - 1 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { n - 1 } , f _ { n } \rangle } \\ { f _ { 0 } ( z ) } & { \dots } & { f _ { n } ( z ) } \end{array} \right).$ ; confidence 0.156 | ||
Line 558: | Line 558: | ||
279. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110238.png ; $a \sharp b \in S ( m _ { 1 } m _ { 2 } , G ),$ ; confidence 0.156 | 279. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110238.png ; $a \sharp b \in S ( m _ { 1 } m _ { 2 } , G ),$ ; confidence 0.156 | ||
− | 280. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032091.png ; $T ^ { st }$ ; confidence 0.156 | + | 280. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032091.png ; $T ^ { \operatorname {st} }$ ; confidence 0.156 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { | + | 281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { n } } P - \frac { \partial } { \partial x } Q ^ { ( n ) } + [ P , Q ^ { ( n ) } ] = 0 \Leftrightarrow$ ; confidence 0.156 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025052.png ; $( x , \xi ) \in | + | 282. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025052.png ; $( x , \xi ) \in \operatorname {WF} ( v )$ ; confidence 0.156 |
283. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011041.png ; $\mathfrak { S } _ { w }$ ; confidence 0.156 | 283. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011041.png ; $\mathfrak { S } _ { w }$ ; confidence 0.156 | ||
− | 284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007063.png ; $F | _ { - k } ^ { | + | 284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007063.png ; $F | _ { - k } ^ { \mathbf{v} } M = F + p _ { M } , \forall M \in \Gamma,$ ; confidence 0.156 |
285. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002047.png ; $\int _ { \overline{U M} } f ( u ) d u = \int _ { U ^ { + } \partial M } \int _ { 0 } ^ { l ( v ) } f ( g _ { t } ( v ) ) d t \langle v , N _ { x } \rangle d v d x.$ ; confidence 0.156 | 285. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002047.png ; $\int _ { \overline{U M} } f ( u ) d u = \int _ { U ^ { + } \partial M } \int _ { 0 } ^ { l ( v ) } f ( g _ { t } ( v ) ) d t \langle v , N _ { x } \rangle d v d x.$ ; confidence 0.156 | ||
− | 286. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021061.png ; $ | + | 286. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021061.png ; $r _ { i , j } = \left\{ \begin{array} { l l } { 1 , } & { \text { if } i + j = m + 1, } \\ { 0 } & { \text { otherwise, } } \end{array} \right.$ ; confidence 0.156 |
287. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001021.png ; $f _ { 1 } = \operatorname { gcd } ( x ^ {q } - x , f )$ ; confidence 0.156 | 287. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001021.png ; $f _ { 1 } = \operatorname { gcd } ( x ^ {q } - x , f )$ ; confidence 0.156 | ||
Line 578: | Line 578: | ||
289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017048.png ; $L _ { \alpha } ^ { 2 }$ ; confidence 0.156 | 289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017048.png ; $L _ { \alpha } ^ { 2 }$ ; confidence 0.156 | ||
− | 290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007048.png ; $\alpha = \frac { b \sigma ( a ) } { | + | 290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007048.png ; $\alpha = \frac { b \sigma ( a ) } { a \varphi ( b ) }$ ; confidence 0.156 |
291. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016053.png ; $f _ { \mathfrak { A } } ( P ) = f _ { \mathfrak { B } } ( P ) \cap A ^ { m }$ ; confidence 0.156 | 291. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016053.png ; $f _ { \mathfrak { A } } ( P ) = f _ { \mathfrak { B } } ( P ) \cap A ^ { m }$ ; confidence 0.156 | ||
− | 292. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050120.png ; $( u _ { m } ( v ) ) _ { n } ( w ) = \sum _ { i \geq 0 } ( - 1 ) ^ { i } \left( \begin{array} { c } { m } \\ { i } \end{array} \right) ( u _ { m - i }( v _ { n | + | 292. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050120.png ; $( u _ { m } ( v ) ) _ { n } ( w ) = \sum _ { i \geq 0 } ( - 1 ) ^ { i } \left( \begin{array} { c } { m } \\ { i } \end{array} \right) ( u _ { m - i }( v _ { n + i} ( w ) ) - ( - 1 ) ^ { m } v _ { m + n - i }( u _ { i } ( w ) ) )$ ; confidence 0.155 |
293. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620463.png ; $h_* $ ; confidence 0.155 | 293. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620463.png ; $h_* $ ; confidence 0.155 |
Revision as of 14:53, 25 May 2020
List
1. ; $Z _ { a } f$ ; confidence 0.183
2. ; $\operatorname {supp}\lambda _ { G } ^ { p } ( \mu ) = ( \operatorname { supp } \mu ) ^ { - 1 }$ ; confidence 0.182
3. ; $_{\bigtriangledown}^{\bigtriangleup}( \mathcal{S} ) $ ; unknown symbol
4. ; $\| d \| _ { b t } = \| d \| _ { \operatorname {bv} } + \sum _ { n = 2 } ^ { \infty } \right| \sum _ { k = 1 } ^ { n / 2 } \frac { \Delta d _ { n - k } - \Delta d _ { n + k } } { k }\right|.$ ; confidence 0.182
5. ; $\operatorname {ad} : \mathfrak { g } \rightarrow \operatorname { End } ( \mathfrak { g } )$ ; confidence 0.182
6. ; $v ^ { k }$ ; confidence 0.182
7. ; $f _ { \alpha } : S ^ { n _ { \alpha } } \rightarrow X _ { n _ { \alpha } }$ ; confidence 0.182
8. ; $T _ { n } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \frac { b _ { n , j} } { j } P _ { j } ^ { \prime } ( x ) , n \geq k + 1,$ ; confidence 0.181
9. ; $i = r_{j - 1} , \dots , r_{j} - 1$ ; confidence 0.181
10. ; $\textbf{Alg} _ { \vDash } ( \mathcal{L} ) \subseteq \textbf{Alg} _ { \vdash } ( \mathcal{L} )$ ; confidence 0.181
11. ; $a _ { i } \in \mathcal{B}$ ; confidence 0.181
12. ; $[G:\operatorname{rist}_G ( n )]<\infty$ ; confidence 0.181
13. ; $\mathbf{C} ^ { n } \backslash D$ ; confidence 0.181
14. ; $\sum _ { i = 0 } ^ { m } \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ).$ ; confidence 0.181
15. ; $\int _ { E }x d \mathsf{P}( x ) = m$ ; confidence 0.181
16. ; $\langle z , w \rangle = \sum _ { j = 1 } ^ { x } z _ { j } w _ { j }$ ; confidence 0.181
17. ; $\operatorname { \underline{lim} } \leftarrow : \mathcal{A} ^ { \mathbf{C} } \rightarrow A$ ; confidence 0.181
18. ; $\mathfrak{H}(S)\oplus \mathbf{C}$ ; confidence 0.181
19. ; $\geq \sum _ { I \subseteq \{ 1 , \ldots , k \} , I \neq \emptyset } ( - 1 ) ^ { | I | + 1 } \operatorname { Bel } ( \bigcap _ { i \in I } A _ { i } ).$ ; confidence 0.180
20. ; $2 ^ { a } 3 ^ { b }$ ; confidence 0.180
21. ; $x \in D$ ; confidence 0.180
22. ; $P S L_n$ ; confidence 0.180
23. ; $\mathbf{w} ^ { i }$ ; confidence 0.180
24. ; $\widehat { \psi } = \sum _ { i = 1 } ^ { q } d _ { i } z _ { i }$ ; confidence 0.180
25. ; $a ( f ) = \int _ { M } a ( x ) f ( x ) d \sigma ( x ) , \quad a ^ { * } ( f ) = \int _ { M } a ^ { * } ( x ) \overline { f } ( x ) d \sigma ( x ).$ ; confidence 0.180
26. ; $k _ { z }$ ; confidence 0.180
27. ; $A _ { 1 } = A ^ { * } / \cap _ { i \in \mathbf{N} } m ^ { i } A ^ { * }$ ; confidence 0.180
28. ; $\int _ { a _ { 1 } } ^ { a _ { 2 } } p ( a , t ) d a$ ; confidence 0.180
29. ; $g _ { k } ( z )$ ; confidence 0.180
30. ; $\overline { c }$ ; confidence 0.180
31. ; $W _ { k } ^ { * }$ ; confidence 0.179
32. ; $\sim _ { c }$ ; confidence 0.179
33. ; $\frac { d } { d t } U _ { h } = F _ { h } ( t , U _ { h } ) , 0 < t , U _ { h } ( 0 ) = u ^ { 0_h } ,$ ; confidence 0.179
34. ; $g ( z ) = z ^ { r } - ( a _ { 0 } + \ldots + a _ { r - 1 } ^ { r - 1 } )$ ; confidence 0.179
35. ; $p_{X} $ ; confidence 0.179
36. ; $( \oplus _ { b ^G = B } b )$ ; confidence 0.179
37. ; $A _ {M}$ ; confidence 0.179
38. ; $\text{Pf}$ ; confidence 0.179
39. ; $\rho _ { a } ( g ) = g ( \sqrt { a } ) / \sqrt { a }$ ; confidence 0.179
40. ; $\left( \frac { \partial \phi } { \partial t } \right) | _ { x _ { k }^0 } = \left( \frac { \partial \phi } { \partial t } \right) | _ { x _ { i } } + \left( \frac { \partial \phi } { \partial x _ { i } } \right) | _ { t } \left( \frac { \partial x _ { i } } { \partial t } \right) | _ { x _ { k }^ 0 }.$ ; confidence 0.179
41. ; $\operatorname {Id} _ { i j } = \{ q \in \square ^ { \omega } U : q_i = q_j \}$ ; confidence 0.179
42. ; $C_{B ( m , n )} ( G )$ ; confidence 0.179
43. ; $C ( g ) = \nabla A ( g ) - \tau ^ { - 1_3 } \nabla A ( g ) \in \bigotimes \square ^ { 3 } \mathcal{E},$ ; confidence 0.179
44. ; $b \in F$ ; confidence 0.178
45. ; $A = \sum _ { m , n \geq 0 } \int K _ { n , m } ( x _ { 1 } , \ldots , x _ { n } ; y _ { 1 } , \ldots , y _ { m } ) \times$ ; confidence 0.178
46. ; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , a _ { k 1 } \rangle ) \ldots ( 1 + \langle z , a _ { k n } \rangle ) },$ ; confidence 0.178
47. ; $u _ { t } + u _ { x } + u u _ { x } + u _ { xxx } = 0.$ ; confidence 0.178
48. ; $k _ { n } ( z )$ ; confidence 0.178
49. ; $\pi_ 1 M_0$ ; confidence 0.178
50. ; $\pi _ { \kappa}$ ; confidence 0.178
51. ; $\times \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } s _ { j } d s _ { 1 } \bigwedge \ldots \bigwedge [ d s _ { j } ] \bigwedge \ldots \bigwedge d s _ { n } \bigwedge \omega ( \zeta ),$ ; confidence 0.178
52. ; $[ [ \lambda x . M ] ] _ { \rho } = \lambda d [ [ M ] ] _ { \rho ( x : = d ) }$ ; confidence 0.178
53. ; $a_{k - 1}$ ; confidence 0.177
54. ; $\frac { p } { q } = a _ { n } + \frac { 1 } { a _ { n - 1} + \ldots + \frac { 1 } { a_ { 1 } } }.$ ; confidence 0.177
55. ; $\mathcal{Q}$ ; confidence 0.177
56. ; $\operatorname { lim } _ { n } a _ { n } = \frac { \sum _ { 0 } ^ { \infty } b _ { j } } { \sum _ { 0 } ^ { \infty } j p _ { j } }.$ ; confidence 0.177
57. ; $j_{0,1} = 2.4048\dots$ ; confidence 0.177
58. ; $\operatorname{ind} ( P ) : = \operatorname { dim } ( \operatorname{ker} ( P ) ) - \operatorname { dim } ( \operatorname { coker } ( P ) ).$ ; confidence 0.177
59. ; $L _ { a } ^ { p } ( G )$ ; confidence 0.177
60. ; $m D$ ; confidence 0.176
61. ; $\hat { \mathfrak{g} }$ ; confidence 0.176
62. ; $\Psi ( y \bigotimes y ) = q ^ { 2 } y \otimes y \Psi ( x \otimes y ) = q y \otimes x$ ; confidence 0.176
63. ; $f _ { l } ^ { t } = \mathcal{F} ^ { - 1 } ( e ^ { i ( p ^ { 0 } - \omega ) t } \mathcal{F} ( f _ { l } ) )$ ; confidence 0.176
64. ; $E _ { * }$ ; confidence 0.176
65. ; $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$ ; confidence 0.176
66. ; $M _ { n } = [ m _ { i j } ] _ { i , j = 0 } ^ { n }$ ; confidence 0.176
67. ; $f _ { i } ^{( t + 1 ) }= f _ { i }^{ ( t )} \sum _ { j } \left( \frac { h _ { i j } } { \sum _ { k } f _ { k }^{ ( t )} h _ { k j } ) } \right) g _ { j } , t = 1,2 ,\dots $ ; confidence 0.176
68. ; $H ^ { \bullet } ( \Gamma \backslash X , \widetilde { \mathcal{M} \bigotimes \mathbf{C} } ) \overset{\sim}{\rightarrow} H ^ { \bullet } ( \Gamma \backslash X , \Omega ^ { \bullet } ( \widetilde { \mathcal{M} } _ { \mathbf{C} } ) ),$ ; confidence 0.176
69. ; $\left\{ x \in \widehat { K } _ { \operatorname {p} } : | x - a | _ { \operatorname {p} } \leq \epsilon \right\}$ ; confidence 0.176
70. ; $c _ { n }$ ; confidence 0.175
71. ; $e ^ { h |x | ^ { 1 / s } }$ ; confidence 0.175
72. ; $\mathsf{E} [ X _ { \infty } \operatorname { log } ^ { + } X _ { \infty } ]$ ; confidence 0.175
73. ; $( a \circ b ) ( x , \xi ) = \int \int e ^ { - 2 i \pi y . \eta } a ( x , \xi + \eta ) b ( y + x , \xi ) d y d \eta,$ ; confidence 0.175
74. ; $\rightarrow H ^ { \bullet } ( \Gamma \backslash X , \widetilde { \mathcal{M} } ) \stackrel { r } { \rightarrow } H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \widetilde { \mathcal{M} } )\rightarrow \dots .$ ; confidence 0.175
75. ; $\textbf{Fm} _ { P }$ ; confidence 0.175
76. ; $\mathcal{L}$ ; confidence 0.175
77. ; $( z _ { 1 } e ^ { i t p _ { 1 } } 1 , \ldots , z _ { n } e ^ { i t p _ { n } } ) \in \Omega$ ; confidence 0.175
78. ; $= \left\{ \frac { \beta } { 1 + \alpha ^ { 2 } } \int _ { 0 } ^ { z } \frac { h ( \xi ) - \alpha i } { \xi ^ { 1 + \alpha \beta i / ( 1 + \alpha ^ { 2 } ) } } g ( \xi ) ^ { \beta / ( 1 + \alpha ^ { 2 } ) } d \xi \right\} ^ { ( 1 + \alpha i ) / \beta }$ ; confidence 0.175
79. ; $ \check{\varphi} ( \chi ) = \varphi ( \chi ^ { - 1 } )$ ; confidence 0.175
80. ; $H _ { \mathfrak{M} } ^ { i } ( R ) = [ H _ { \mathfrak{M} } ^ { i } ( R ) ] _ { 0 }$ ; confidence 0.175
81. ; $V ^ { \natural }$ ; confidence 0.175
82. ; $Z ^ { r } = a _ { 0 } 1 + \ldots + a _ { r - 1 } Z ^ { r - 1 }$ ; confidence 0.174
83. ; $a _ { i } \in V$ ; confidence 0.174
84. ; $1 , \dots , r _ { m } \in \mathbf{C} [ z , \overline{z} ]$ ; confidence 0.174
85. ; $\operatorname { Tr } A B = \int _ { \mathbf{R} ^ { 3 N } \times \mathbf{R} ^ { 3 N } } A _ { \mathbf{w} } B _ { \mathbf{w} } d x d p.$ ; confidence 0.174
86. ; $\mathcal{D} _ { n } ^ { r }$ ; confidence 0.174
87. ; $L^+G _ { \mathbf{C} } = \left\{ \begin{array}{l}{ \\ \gamma \in L G _ { \mathbf{C} } :\\ }\end{array} \begin{array}{c}{ \gamma \text{ extends} \\ \text{ holomorphically in the disc } }\\{ \text { to a group } "\square" \text{valued mapping }}\end{array} \right\}.$ ; confidence 0.174
88. ; $f , g _ { 1 } , \dots , g _ { m } \in \mathbf{Z} [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.174
89. ; $\| T _ { 1 + i t} ( f ) \| _ { \infty } \leq C \| f \|_\infty$ ; confidence 0.173
90. ; $\sum ^ { i _ { 1 } , \dots , i _ { s }}$ ; confidence 0.173
91. ; $\phi_{-} ^ { -1 } \left( \frac { \partial } { \partial x } - P _ { 0 }z \right) \phi _ { - } = \frac { \partial } { \partial x } - P,$ ; confidence 0.173
92. ; $\Delta g = g \bigotimes g , \epsilon g = 1 , S g = g ^ { - 1 } = g ^ { n - 1 },$ ; confidence 0.173
93. ; $u _ { t } + u _ { xxxx } + u _ { xx } + u u _ { x } = 0 , \quad x \in [ - L / 2 , L / 2 ],$ ; confidence 0.173
94. ; $\Delta x ^ { n } = \sum _ { m = 0 } ^ { n } \left[ \begin{array} { c } { n } \\ { m } \end{array} \right] _ { q } x ^ { n } \bigotimes x ^ { n - m } , S x ^ { n } = ( - 1 ) ^ { n } q ^ { n ( n - 1 ) / 2 } x ^ { n },$ ; confidence 0.173
95. ; $\Psi _ { V , W } ( v \bigotimes w ) = \beta ( | v | , | w | ) w \bigotimes v$ ; confidence 0.173
96. ; $k = ( k _ { 1 } , \dots , k _ { n } ) \in \mathbf{Z} ^ { n }$ ; confidence 0.172
97. ; $R _ { ab }$ ; confidence 0.172
98. ; $\mathcal{A} ( \eta ) = - \sum _ { k , \operatorname {l} = 1 } ^ { N } \left( \frac { \partial } { \partial y _ { k } } + i \eta _ { k } \right) \left( a _ { k \operatorname {l} } ( y ) \left( \frac { \partial } { \partial y _ { \operatorname {l} } } + i \eta _ { \operatorname {l} } \right) \right),$ ; confidence 0.172
99. ; $l \in V ^ { \prime }$ ; confidence 0.172
100. ; $\tilde { F }$ ; confidence 0.172
101. ; $e _ { n } ( C _ { d } ^ { k } ) \asymp n ^ { - k / d } \text { or } n ( \epsilon , C _ { d } ^ { k } ) \asymp \epsilon ^ { - d / k }.$ ; confidence 0.172
102. ; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu n } ) \text { as } n \rightarrow \infty.$ ; confidence 0.172
103. ; $V _ { \text { simp } }$ ; confidence 0.172
104. ; $P ( \xi ) = \sum _ { J } a _ { J } \xi ^ { J }$ ; confidence 0.172
105. ; $\lambda _ { 1 } \geq \frac { \pi { j } _ {0,1 } ^ { 2 } } { A },$ ; confidence 0.172
106. ; $k = 0 , \ldots , n = \operatorname { dim } \mathfrak{a}$ ; confidence 0.172
107. ; $T = ( c _ { i - j} ) _ { i , j=0 } ^ { n - 1 } $ ; confidence 0.172
108. ; $\widetilde { \Omega } _ { \mathcal{D} } F$ ; confidence 0.172
109. ; $Z ^ { n , n - 1 }$ ; confidence 0.172
110. ; $ q \notin \bar { A }$ ; confidence 0.172
111. ; $\epsilon = ( \epsilon_{0} , \dots , \epsilon _ { n } )$ ; confidence 0.171
112. ; $\mathsf{E} [ W ] _ { \operatorname {PS} } = \frac { \rho b } { 1 - \rho },$ ; confidence 0.171
113. ; $b _ { n , n + 1} = 1$ ; confidence 0.171
114. ; $w _ \mu $ ; confidence 0.171
115. ; $( ( \_ ) \otimes _ { \mathbf{F}_p } H ^ { * } Z )$ ; confidence 0.171
116. ; $\underline{v}$ ; confidence 0.171
117. ; $V ( \widehat { K } _ { \operatorname {p} } )$ ; confidence 0.171
118. ; $J ^{ r_0} ( \mathbf{R} ^ { n } , \mathbf{R} )$ ; confidence 0.170
119. ; $E ^{r+1} $ ; confidence 0.170
120. ; $T _ { z u}$ ; confidence 0.170
121. ; $\mathcal{U}_{ \mathbf{Z}}$ ; confidence 0.170
122. ; $\Delta_{\operatorname{ Dir}}$ ; confidence 0.170
123. ; $\hat{v} $ ; confidence 0.170
124. ; $ \begin{cases} { p _ { t } ( a , t ) + p _ { a } ( a , t ) + \mu ( a , S ( t ) ) p ( a , t ) = 0 }, \\ { p ( 0 , t ) = \int ^ { + \infty_0 } \beta ( \sigma , s ( t ) ) p ( \sigma , t ) d \sigma }, \\ { p ( a , 0 ) = p_ 0(a) }, \\ { S ( t ) = \int^{+\infty_0} \gamma ( \sigma ) p ( \sigma , t ) d \sigma . } \end{cases}. $ ; confidence 0.169
125. ; $\|v \| _ { A _ { p } ( G ) } \leq C$ ; confidence 0.169
126. ; $\alpha _ { j } ( h _ { i } ) = a _ {i j }$ ; confidence 0.169
127. ; $\mathcal{M} ( \tilde { x } , \tilde { y } ) / \mathbf{R}$ ; confidence 0.169
128. ; $( f , g ) = \sum _ { \nu = 1 } ^ { r } f ( x _ { \nu } ) g ( x _ { \nu } ) + \int _ { a } ^ { b } f ^ { ( r ) } ( x ) g ^ { ( r ) } ( x ) d x$ ; confidence 0.169
129. ; $\mathcal{N} _ { \epsilon}$ ; confidence 0.169
130. ; $\mathfrak{C}$ ; confidence 0.169
131. ; $W ( G , K ) = \{ \bigwedge ( \mathfrak { g } / \mathfrak { k } ) ^ { * } \bigotimes S \mathfrak { g } ^ { * } \} ^ { K }.$ ; confidence 0.169
132. ; $e _ {i j k }$ ; confidence 0.169
133. ; $\operatorname { lim } _ { N \rightarrow \infty } \frac { \int _ { 0 } ^ { N } | y ( x , \lambda ) | ^ { 2 } d x } { \int ^{N_0} | v ( x , \lambda ) | ^ { 2 } d x } = 0.$ ; confidence 0.169
134. ; $\| g _ { n } \|$ ; confidence 0.169
135. ; $\left(\begin{array} { c c } { T } & { ( I - T T ^ { * } ) ^ { 1 / 2 } } \\ { ( I - T ^ { * } T ) ^ { 1 / 2 } } & { T ^ { * } } \end{array} \right)$ ; confidence 0.169
136. ; $M ( P ) = | a _ { 0 } | \prod _ { k = 1 } ^ { d } \operatorname { max } ( | \alpha _ { k } | , 1 )$ ; confidence 0.169
137. ; $\text{iff }\epsilon _ { i,0 } ^ { \mathbf{A} } ( a , b , c , d ) = \epsilon _ { i , 1 } ^ { \mathbf{A} } ( a , b , c , d ) \text { for all } i < m,$ ; confidence 0.169
138. ; $\textbf{FTOP}$ ; confidence 0.169
139. ; $\mathfrak { A } [ \Lambda ]$ ; confidence 0.169
140. ; $\left\{ \begin{array} { l l } { \operatorname { min } } & { \mathbf{c} ^ { T } \mathbf{x} } \\ { \operatorname {s.t.} } & { A \mathbf{x} \leq \mathbf{b}. } \end{array} \right. $ ; confidence 0.169
141. ; $\left. \begin{array} { l l l } { \square } & {} & { C } & { \square } \\ { \square _ { f } } & { \swarrow } & { \square } & { \searrow _ { g } } \\ { A } & { } & { \square } & { B } \end{array} \right.$ ; confidence 0.169
142. ; $h \equiv 0$ ; confidence 0.169
143. ; $A \subset_{*} B$ ; confidence 0.168
144. ; $X ^ { r }$ ; confidence 0.168
145. ; $M _ { \operatorname {ins} }$ ; confidence 0.168
146. ; $\hat{g} _ { m } ( \eta ) = \int _ { \mathbf{R} ^ { N } } g ( y ) e ^ { - i \eta . y} \overline { \phi } m ( y ; \eta ) d y , \forall \eta \in Y ^ { \prime }.$ ; confidence 0.168
147. ; $R _ { n , h } ( A )$ ; confidence 0.168
148. ; $\operatorname{det} \Phi$ ; confidence 0.168
149. ; $a _ { n }$ ; confidence 0.168
150. ; $J _ { b - a } ( \sqrt { x } ) Y _ { b - a } ( \sqrt { x } ) = - \sqrt { x } x ^ { - a } G _ { 13 } ^ { 20 } \left( x \left| \begin{array} { c } { a + 1 / 2 } \\ { b , a , 2 a - b } \end{array} \right. \right).$ ; confidence 0.168
151. ; $\widetilde{\pi} : \widetilde{N} \rightarrow N$ ; confidence 0.168
152. ; $i _1 , \ldots , i _ { r }$ ; confidence 0.168
153. ; $L _ { D }$ ; confidence 0.168
154. ; $\psi ^ { * }$ ; confidence 0.168
155. ; $c ( x ) = c ^ { a } ( x ) T _ { a }$ ; confidence 0.167
156. ; $\tilde { A } _ { n }$ ; confidence 0.167
157. ; $\mathbf{P} ^ { n } \supset \mathbf{C} ^ { n }$ ; confidence 0.167
158. ; $e ^ { i k \alpha x}$ ; confidence 0.167
159. ; $R _ { 1 } = R ^ { * } / \cap _ { i \in \mathbf{N} } a ^ { i } R ^ { * }$ ; confidence 0.167
160. ; $\vdash_\mathcal{D} E ( \lambda x _ { 0 } , \ldots , x _ { n - 1} , \lambda y 0 , \ldots , y _ { n - 1} )$ ; confidence 0.167
161. ; $h \downarrow 0$ ; confidence 0.167
162. ; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } _ { p } ( \alpha , p ) } { \alpha . x - p } d \alpha d p,$ ; confidence 0.166
163. ; $J _ { a - b } ( 2 \sqrt { x } ) = x ^ { - ( a + b ) / 2 } G _ { 02 } ^ { 10 } ( x | a , b ),$ ; confidence 0.166
164. ; $d_{ j k l}$ ; confidence 0.166
165. ; $\left. \begin{array}{l}{ \Phi ^ { + } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \left( 1 - \frac { \beta } { 2 \pi } \right) \phi ( t _ { 0 } ) ,}\\{ \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int_{\Gamma} \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { \beta } { 2 \pi } \phi ( t _ { 0 } ) , 0 \leq \beta \leq 2 \pi .}\end{array} \right.$ ; confidence 0.166
166. ; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E^{ \bigotimes r }.$ ; confidence 0.166
167. ; $\lfloor m/ 2 \rfloor$ ; confidence 0.166
168. ; $\sum _ { i = 0 } ^ { k } \alpha _ { i } y _ { m + i } = h f \left( \sum _ { i = 0 } ^ { k } \beta _ { i } x _ { m + i } , \sum _ { i = 0 } ^ { k } \beta _ { i } y _ { m + i } \right).$ ; confidence 0.166
169. ; $U _ { x }$ ; confidence 0.166
170. ; $g_{n,m}$ ; confidence 0.166
171. ; $\operatorname { supp } a _ { \operatorname {e} } ( x , \alpha , p ) \subset [ - \delta , \delta ]$ ; confidence 0.166
172. ; $r ^ { 2 } = \sum \| A _ { j } \| ^ { 2 }$ ; confidence 0.166
173. ; $U = \sum _ { u } u ( u ^ { 2 } - 1 ) / 12$ ; confidence 0.165
174. ; $d [ f / \| f \| , \partial K , S ^ { n - 1 } ]$ ; confidence 0.165
175. ; $r _ { i } ( A ) : = \sum _ { j = 1 \atop j \neq i } ^ { n } | a _ { i , j } |.$ ; confidence 0.165
176. ; $A _ { k l }$ ; confidence 0.165
177. ; $\cap _ { n = 1 } ^ { \infty } U _ { n } = \cap _ { n = 1 } ^ { \infty } V _ { n } \neq \emptyset$ ; confidence 0.165
178. ; $\langle D \rangle = \sum _ { s } A ^ { T ( s ) } ( - A ^ { 2 } - A ^ { - 2 } ) ^ { | s D | - 1 }, $ ; confidence 0.165
179. ; $Q_{( r , s )} = q_ r q _ { s } + 2 \sum _ { i = 1 } ^ { s } ( - 1 ) ^ { i } q_{r + i} q _ { s - i},$ ; confidence 0.165
180. ; $r_i : \mathfrak{h}^ { e ^ { * } } \rightarrow \mathfrak{h} ^ { e ^ { * } }$ ; confidence 0.165
181. ; $j \neq i_ 1 , \ldots , i_l$ ; confidence 0.165
182. ; $P _ { \text { max } }$ ; confidence 0.165
183. ; $\alpha _ { H } ( \tilde{x} _ { + } ) - \alpha _ { H } ( \tilde{x} _ { - } )$ ; confidence 0.165
184. ; $\tilde{v} ( \tilde { u } _ { 1 } ) > 0$ ; confidence 0.165
185. ; $T P U$ ; confidence 0.165
186. ; $M \stackrel { f } { \rightarrow } N \stackrel { \pi } { \rightarrow } I$ ; confidence 0.165
187. ; $\tilde{A} \mathbf{x}$ ; confidence 0.165
188. ; $v _ { t + 1} = L v_ t $ ; confidence 0.165
189. ; $v$ ; confidence 0.165
190. ; $\mathcal{H} ( u , v ) ( x , \xi ) = 2 ^ { n } \langle \sigma _ { x , \xi }u , v \rangle _ { L^2 ( \mathbf{R} ^ { n } )} , ( \sigma _ { x , \xi} u ) ( y ) = u ( 2 x - y ) \operatorname { exp } ( - 4 i \pi ( x - y ) . \xi).$ ; confidence 0.164
191. ; $V ^ { \natural } = \oplus _ { n } V _ { n }$ ; confidence 0.164
192. ; $a , b \in \mathbf{C} ^ { n }$ ; confidence 0.164
193. ; $\phi _ { * } ( \text { ind } ( D ) ) = ( - 1 ) ^ { n } \left( 2 \pi i ) ^ { - m } ( \operatorname {Ch} ( [ a ] ) \mathcal{T} ( M ) f ^ { * } \phi \right) [ T ^ { * } M ].$ ; confidence 0.164
194. ; $S _ { N } ( f ; x ) = \sum _ { |k| \leq N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.164
195. ; $\operatorname {SU} ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , \operatorname {SO} ( k ) / \operatorname {SO} ( k - 4 ) \times \operatorname {Sp} ( 1 ),$ ; confidence 0.164
196. ; $w _ { n - 1 } = ( \| s _ { n - 1} \| _ { 2 } + v _ { n - 1 } ^ { T } w ) ^ { - 1 } w , s _ { n } = - ( I - w _ { n - 1 } v _ { n - 1 } ^ { T } ) w.$ ; confidence 0.164
197. ; $\mathbf{Q}$ ; confidence 0.164
198. ; $\sigma_{ U , V} ( u \otimes v ) = u ^ { ( 2 ) } . v \otimes u ^ { ( 1 ) }$ ; confidence 0.164
199. ; $F _ { 2 }$ ; confidence 0.164
200. ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \forall w ( w \in v \rightarrow w \in x ) ).$ ; confidence 0.164
201. ; $\operatorname {SL} _ { n} ( \mathbf{Q} _ { p } )$ ; confidence 0.164
202. ; $\vee _ { a } ^ { b } g _ { n }$ ; confidence 0.164
203. ; $f ( w ^ { H _ { i } } | { v ^ { H _ { i } } } ) = f ( w | v )$ ; confidence 0.164
204. ; $T _ { n } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.164
205. ; $\widetilde { D }$ ; confidence 0.164
206. ; $n ( \epsilon , F _ { d } ) \leq K . d ^ { p } . \epsilon ^ { - q } , \quad \forall d = 1,2 , \dots , \forall \epsilon \in ( 0,1 ],$ ; confidence 0.163
207. ; $\operatorname {sp} \hat { T } = ( \operatorname { supp } T ) ^ { - 1 }$ ; confidence 0.163
208. ; $S _ { n + 1 } = \left\{ z \in \mathbf{C} ^ { n + 1 } : \operatorname { Im } z _ { n + 1 } > \sum ^ { n _ { j = 1 } } | z _ { j } | ^ { 2 } \right\},$ ; confidence 0.163
209. ; $C ^ { \infty_0 }(D)$ ; confidence 0.163
210. ; $\int _ { a } ^ { b } p ^ { - 1 } \times \int _ { a } ^ { b } | q | < 4$ ; confidence 0.163
211. ; $\mathcal{H}^{ ( 1 )}$ ; confidence 0.163
212. ; $f _ { 1 } ( T ) = W ^ { ( n - n _ { 1 } - \ldots - n _ { s } ) / 2 } f ( T )$ ; confidence 0.163
213. ; $x \in y$ ; confidence 0.163
214. ; $\operatorname{mng}_ \tau$ ; confidence 0.163
215. ; $f : V ^ { n } \rightarrow W ^ { n }$ ; confidence 0.163
216. ; $U _ { h } ( t _ { n } )$ ; confidence 0.162
217. ; $ i = 1 , \ldots , r$ ; confidence 0.162
218. ; $d ^ { * } \in \cap_{ \mathsf{P} \in \mathcal{P}} L _ { 2 } ( \Omega , \mathcal{A} , \mathsf{P} )$ ; confidence 0.162
219. ; $[ h _ { i j } e _ { k } ] = \delta _ { i j } a _ { i k } e _ { k }$ ; confidence 0.162
220. ; $A ( C ; q , z ) = \sum _ { \mathbf{v} \in C } z ^ { w (\mathbf{v}) }$ ; confidence 0.162
221. ; $\operatorname { dim } \Lambda ^ { k } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.162
222. ; $r_{j,1} / r_{j,2} $ ; confidence 0.162
223. ; $g_{X} ( T ) = \frac { G _ { X } ( T ) } { H ( X ) [ 1 + a ( X ) + H ( X ) ^ { 2 } \| a ^ { \prime \prime } ( X ) \| ^ { 2 _{ G _ { X }} ] ^ { 1 / 2 } }.$ ; confidence 0.162
224. ; $\int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }.$ ; confidence 0.162
225. ; $( A , \overline { A } , t \sim t _ { a } )$ ; confidence 0.162
226. ; $\left( \begin{array} { c c c } { x _ { 11 } ( . ) } & { \dots } & { x _ { 1 n } ( . ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( . ) } & { \dots } & { x _ { p n } (1) } \end{array} \right), $ ; confidence 0.161
227. ; $\mathfrak{h}_R$ ; confidence 0.161
228. ; $\operatorname{det} JF \in \mathbf{C}^*$ ; confidence 0.161
229. ; $7$ ; confidence 0.161
230. ; $ \| x \| _ { 1 } = \sum _ { i } | x_i |, $ ; confidence 0.161
231. ; $\sigma ( T ) \backslash \sigma |_ { \text { lre } } ( T )$ ; confidence 0.161
232. ; $\overline { v } = \infty$ ; confidence 0.161
233. ; $\{ \mathcal{S} \operatorname {q} ^ { i } : i \geq 0 \}$ ; confidence 0.161
234. ; $s = \sum _ { i > 0 } \mathbf{C} \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \bigoplus \sum _ { i > 0 } \mathbf{C} \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \bigoplus \mathbf{C} _{c},$ ; confidence 0.161
235. ; $\langle a , b | a b a = b a b , a ^ { 4 } = b ^ { 5 } \rangle$ ; confidence 0.161
236. ; $r _ { m - 2} \in S _ { \text{loc} } ^ { m - 2 } ( \Omega )$ ; confidence 0.161
237. ; $|F(0)|\geq |h(0)|$ ; confidence 0.161
238. ; $( K _ { s } ( \overline { \sigma } ) \cap K _ { totS } ) _ { ins }$ ; confidence 0.161
239. ; $\widetilde { \mathbf{Q} }_ p$ ; confidence 0.161
240. ; $\widetilde { H }$ ; confidence 0.160
241. ; $l \in \mathbf{R} ^ { n }$ ; confidence 0.160
242. ; $\psi _ { \mathfrak { A } } ^ { 0 } \overline {a}$ ; confidence 0.160
243. ; $\operatorname{GL} ( m , \mathbf{C} )$ ; confidence 0.160
244. ; $e _ { n } ^ { \operatorname {ran} } ( F _ { d } ) = \operatorname { inf } _ { Q _ { n } } e ^ { \operatorname {ran} } ( Q _ { n } , F _ { d } )$ ; confidence 0.160
245. ; $\Psi _ { V , W } ( v \bigotimes w ) = q ^ { |v| | w | } w \bigotimes v$ ; confidence 0.160
246. ; $A ( t ) = t - S _ { N ( t )} , R ( t ) = S _ { N ( t ) + 1 } - t,$ ; confidence 0.160
247. ; $|Q|$ ; confidence 0.160
248. ; $P _ { l } ( x ) \in \mathbf{Z} [ x ]$ ; confidence 0.160
249. ; $H _ { k+1 } $ ; confidence 0.160
250. ; $\rightarrow \operatorname { Ext } _ { \mathcal{M} \mathcal{H} _ { \mathbf{R} } ^ { + } } ( \mathbf{R} ( 0 ) , H _ { \operatorname {B} } ^ { i } ( X ) , \mathbf{R} ( j ) ).$ ; confidence 0.159
251. ; $r : H _ { \mathcal{M} } ^ { \bullet } ( X , Q ( * ) ) \rightarrow H _ { \mathcal{D} } ^ { \bullet } ( X , A ( * ) )$ ; confidence 0.159
252. ; $g_i$ ; confidence 0.159
253. ; $P _ { k } = ( u _ { i + 1} , \dots , u _ { i + k})$ ; confidence 0.159
254. ; $\dot { x } ^ { i }$ ; confidence 0.159
255. ; $F ( r , m ) = ( x _ { 1 } , \dots , x _ { m } | x _ { i } \dots x _ { i + r - 1} = x _ { i + r } ),$ ; confidence 0.159
256. ; $\mathcal{D} = \{ \mathbf{Fm} , \vdash _ { \mathcal{D} } )$ ; confidence 0.159
257. ; $\lambda _ { \underline{1} } = \operatorname {id} , \lambda _ { W \bigotimes Z} = \lambda_{Z} \circ \lambda _ { W }$ ; confidence 0.159
258. ; $\mathbf{C} / \Lambda$ ; confidence 0.159
259. ; $\mathbf{M} _ { \mathsf{E} } = \sum _ { i j k } ( \mathbf{y} _ { i j k } - \mathbf{y} _ { i j }. ) ^ { \prime } ( \mathbf{y} _ { i j k } - \mathbf{y} _ { i j }. )$ ; confidence 0.159
260. ; $K = \kappa _ { 1 } \quad \kappa _ { 2 }$ ; confidence 0.159
261. ; $u _ { m + 1} = R _ { 0 } ^ { ( s + 1 ) } ( h T ) u _ { m } +$ ; confidence 0.159
262. ; $\alpha \mapsto x _ { \alpha } \in \mathfrak{h}$ ; confidence 0.159
263. ; $m _ { r s } = g _ { ij} Q _ { r } ^ { i } Q _ { s } ^ { j },$ ; confidence 0.159
264. ; $\textbf{SFRM}$ ; confidence 0.158
265. ; $\Psi ( \alpha \bigotimes \alpha ) = \alpha \bigotimes \alpha + ( 1 - q ^ { 2 } ) \beta \bigotimes \gamma,$ ; confidence 0.158
266. ; $F ^ { \mu \nu } = \left( \begin{array} { c c c c } { 0 } & { E _ { x } } & { E _ { y } } & { E _ { z } } \\ { - E _ { x } } & { 0 } & { H _ { z } } & { - H _ { y } } \\ { - E _ { y } } & { - H _ { z } } & { 0 } & { H _ { x } } \\ { - E _ { z } } & { H _ { y } } & { - H _ { x } } & { 0 } \end{array} \right),$ ; confidence 0.158
267. ; $\operatorname { lim } _ { |z | \rightarrow \infty } \tilde { x } ( z ) = x ( 0 )$ ; confidence 0.158
268. ; $\kappa _ { n } > 0$ ; confidence 0.158
269. ; $c ( i , m ) . \mathcal{L} ( i , m ) = \operatorname { det } _ { \mathbf{Q} } r _ { \mathcal{D} } ( H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( i + 1 - m ) ) _ { \mathbf{Z} } ),$ ; confidence 0.157
270. ; $\mathcal{E} ^ { a } ( L ) ( \sigma ^ { 2 k } ( x ) ) = 0,$ ; confidence 0.157
271. ; $M _ { a }$ ; confidence 0.157
272. ; $( Q _ { n_i } [ f ] ) _ { i = 1,2 , \ldots }$ ; confidence 0.157
273. ; $\hat { f } ( \xi ) = \int _ { \mathbf{R} ^ { 2 n }} e ^ { - i x \xi } f ( x ) d x$ ; confidence 0.157
274. ; $[ L : K ] \geq \sum _ { i = 1 } ^ { m } e ( w _ { i } | v ) . f ( w _ { i } | w ).$ ; confidence 0.157
275. ; $\left\| f |_ { W ^{k} L _ { \Phi } ( \Omega ) } \right\| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { L _ { \Phi } ( \Omega ) }.$ ; confidence 0.157
276. ; $\sum _ { \alpha \in \mathbf{Z} _+^ { n } } \frac { a _ { \alpha } } { ( | \alpha | ! ) ^ { s - 1 } } x ^ { \alpha },$ ; confidence 0.157
277. ; $\overline{x} = \sum _ { k \in P } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R } \overline { \mu } _ { k } \tilde{x} ^ { ( k ) }$ ; confidence 0.156
278. ; $M _ { n } ( z ) = \left( \begin{array} { c c c } { \langle f _ { 0 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { 0 } , f _ { n } \rangle } \\ { \vdots } & { \square } & { \vdots } \\ { \langle f _ { n - 1 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { n - 1 } , f _ { n } \rangle } \\ { f _ { 0 } ( z ) } & { \dots } & { f _ { n } ( z ) } \end{array} \right).$ ; confidence 0.156
279. ; $a \sharp b \in S ( m _ { 1 } m _ { 2 } , G ),$ ; confidence 0.156
280. ; $T ^ { \operatorname {st} }$ ; confidence 0.156
281. ; $\frac { \partial } { \partial t _ { n } } P - \frac { \partial } { \partial x } Q ^ { ( n ) } + [ P , Q ^ { ( n ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
282. ; $( x , \xi ) \in \operatorname {WF} ( v )$ ; confidence 0.156
283. ; $\mathfrak { S } _ { w }$ ; confidence 0.156
284. ; $F | _ { - k } ^ { \mathbf{v} } M = F + p _ { M } , \forall M \in \Gamma,$ ; confidence 0.156
285. ; $\int _ { \overline{U M} } f ( u ) d u = \int _ { U ^ { + } \partial M } \int _ { 0 } ^ { l ( v ) } f ( g _ { t } ( v ) ) d t \langle v , N _ { x } \rangle d v d x.$ ; confidence 0.156
286. ; $r _ { i , j } = \left\{ \begin{array} { l l } { 1 , } & { \text { if } i + j = m + 1, } \\ { 0 } & { \text { otherwise, } } \end{array} \right.$ ; confidence 0.156
287. ; $f _ { 1 } = \operatorname { gcd } ( x ^ {q } - x , f )$ ; confidence 0.156
288. ; $V ^ { n } \subset U ^ { n }$ ; confidence 0.156
289. ; $L _ { \alpha } ^ { 2 }$ ; confidence 0.156
290. ; $\alpha = \frac { b \sigma ( a ) } { a \varphi ( b ) }$ ; confidence 0.156
291. ; $f _ { \mathfrak { A } } ( P ) = f _ { \mathfrak { B } } ( P ) \cap A ^ { m }$ ; confidence 0.156
292. ; $( u _ { m } ( v ) ) _ { n } ( w ) = \sum _ { i \geq 0 } ( - 1 ) ^ { i } \left( \begin{array} { c } { m } \\ { i } \end{array} \right) ( u _ { m - i }( v _ { n + i} ( w ) ) - ( - 1 ) ^ { m } v _ { m + n - i }( u _ { i } ( w ) ) )$ ; confidence 0.155
293. ; $h_* $ ; confidence 0.155
294. ; $4 m$ ; confidence 0.155
295. ; $j_{m,1}$ ; confidence 0.155
296. ; $S _ { k } ( 0 )$ ; confidence 0.155
297. ; $K _ { n } . U _ { 1 }$ ; confidence 0.155
298. ; $e ^ { i k x }$ ; confidence 0.155
299. ; $\mathfrak{g} \subset \text { End } ( V )$ ; confidence 0.155
300. ; $E , A \in C ^ { n \times n }$ ; confidence 0.155
Maximilian Janisch/latexlist/latex/NoNroff/73. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/73&oldid=45798