Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/77"
(→List) |
Rui Martins (talk | contribs) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011012.png ; $f ^ { \circ } ( x ; v ) : = \ | + | 1. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011012.png ; $f ^ { \circ } ( x ; v ) : = \liminf _ { y \rightarrow x , t \downarrow 0 } \frac { f ( y + t v ) - f ( y ) } { t }$ ; confidence 0.055 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160110.png ; $y _ { i } = e ^ { | + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160110.png ; $y _ { i } = e ^ { a} \prod _ { j = 1 } ^ { p _ { t } } x _ { i j } ^ { b j } \prod _ { j ^ { \prime } = p _ { t + 1 } } ^ { p } ( 1 + x _ { i j ^ { \prime } } ) ^ { b j ^ { \prime } } e ^ { \mu i },$ ; confidence 0.054 |
3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021090.png ; $\sigma _ { \alpha }$ ; confidence 0.054 | 3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021090.png ; $\sigma _ { \alpha }$ ; confidence 0.054 | ||
− | 4. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030095.png ; $\omega \{ K _ { i } \} ( S _ { i_1 } \ldots S _ { i_r } S _ { | + | 4. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030095.png ; $\omega \{ K _ { i } \} ( S _ { i_1 } \ldots S _ { i_r } S _ { j_{s} } ^ { * } \ldots S _ { j_{ 1} } ^ { * } ) = \prod _ { h = 1 } ^ { r } \{ S _ { j _ { h } } , K _ { h } S _ { i_h } \} \delta _ { r , s }.$ ; confidence 0.054 |
5. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028042.png ; $| r g _ { 1 } | = [ g_{2} ]$ ; confidence 0.053 | 5. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028042.png ; $| r g _ { 1 } | = [ g_{2} ]$ ; confidence 0.053 | ||
− | 6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005061.png ; $\mathcal{M} ( \mathcal{H} _ { b } ( | + | 6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005061.png ; $\mathcal{M} ( \mathcal{H} _ { b } ( c _ { 0 } ) ) = \{ \widetilde { \delta _ { z } } : z \in \operatorname{l} _ { \infty } \}$ ; confidence 0.053 |
7. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004080.png ; $S _ { 1,0 } ^ { m }$ ; confidence 0.053 | 7. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004080.png ; $S _ { 1,0 } ^ { m }$ ; confidence 0.053 | ||
Line 18: | Line 18: | ||
9. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004058.png ; $\phi _ { k } = \frac { 1 } { \langle \rho ^ { \prime } , \zeta \rangle ^ { n } } \left\langle \frac { \rho ^ { \prime } ( \zeta ) } { \langle \rho ^ { \prime } ( \zeta ) , \zeta \rangle } , z \right\rangle ^ { k } \sigma,$ ; confidence 0.053 | 9. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004058.png ; $\phi _ { k } = \frac { 1 } { \langle \rho ^ { \prime } , \zeta \rangle ^ { n } } \left\langle \frac { \rho ^ { \prime } ( \zeta ) } { \langle \rho ^ { \prime } ( \zeta ) , \zeta \rangle } , z \right\rangle ^ { k } \sigma,$ ; confidence 0.053 | ||
− | 10. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300702.png ; $h _ { t } + h _ { | + | 10. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300702.png ; $h _ { t } + h _ { xxxx } + h _ {xx } + \frac { 1 } { 2 } h _ { x } ^ { 2 } = 0,$ ; confidence 0.053 |
11. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007051.png ; $R _ { n - 1} : = k [ X _ { 1 } , \dots , X _ { n-1 } ]$ ; confidence 0.053 | 11. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007051.png ; $R _ { n - 1} : = k [ X _ { 1 } , \dots , X _ { n-1 } ]$ ; confidence 0.053 | ||
− | 12. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007040.png ; $\left\{ \begin{array} { c } { M ( u ) = \phi | + | 12. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007040.png ; $\left\{ \begin{array} { c } { M ( u ) = \phi } & {\text { on } D , } \\ { u |_{ \partial D = f.} } \end{array} \right.$ ; confidence 0.053 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013061.png ; $L _ { | + | 13. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013061.png ; $L _ { a } ^ { q }$ ; confidence 0.052 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180493.png ; $+ 2 r d t \ | + | 14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180493.png ; $+ 2 r d t \bigotimes d t + t d t \bigotimes d r + t d r \bigotimes d t$ ; confidence 0.052 |
15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050148.png ; $= 1 + \sum | p _ { 1 } | ^ { - r _ { 1 } z } \ldots | p _ {m } | ^ { - r _ { m } z } =$ ; confidence 0.052 | 15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050148.png ; $= 1 + \sum | p _ { 1 } | ^ { - r _ { 1 } z } \ldots | p _ {m } | ^ { - r _ { m } z } =$ ; confidence 0.052 | ||
Line 42: | Line 42: | ||
21. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020069.png ; $S ^ { \lambda } = \operatorname { span } \{ e _ { t } : t a \lambda \square \text { tableau } \}$ ; confidence 0.051 | 21. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020069.png ; $S ^ { \lambda } = \operatorname { span } \{ e _ { t } : t a \lambda \square \text { tableau } \}$ ; confidence 0.051 | ||
− | 22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s120200104.png ; $ | + | 22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s120200104.png ; $\operatorname { GL} _ { n }$ ; confidence 0.051 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026072.png ; $\ | + | 23. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026072.png ; $\widetilde { A } _ { s a }$ ; confidence 0.051 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003033.png ; $\mathcal{C} _ { \infty } ( \Gamma \backslash G ( \mathbf{R} ) \otimes M _ { C } ) \not \subset L ^ { 2 } ( \Gamma \backslash G ( \mathbf{R} ) \otimes M _ { C } )$ ; confidence 0.051 | + | 24. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003033.png ; $\mathcal{C} _ { \infty } ( \Gamma \backslash G ( \mathbf{R} ) \otimes \mathcal{M} _ { \mathbf{C} } ) \not \subset L ^ { 2 } ( \Gamma \backslash G ( \mathbf{R} ) \otimes \mathcal{M} _ { \mathbf{C} } )$ ; confidence 0.051 |
25. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220106.png ; $Q_m u$ ; confidence 0.051 | 25. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220106.png ; $Q_m u$ ; confidence 0.051 | ||
Line 52: | Line 52: | ||
26. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004036.png ; $u^*$ ; confidence 0.051 | 26. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004036.png ; $u^*$ ; confidence 0.051 | ||
− | 27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240278.png ; $P ( \hat { \psi } - S \hat { \sigma } _ { \hat { \psi } } \leq \psi \leq \hat { \psi } + S \hat { \sigma } _ { \hat { \psi } } , \forall \psi \in L ) = 1 - \alpha,$ ; confidence 0.051 | + | 27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240278.png ; $\mathsf{P} ( \hat { \psi } - S \hat { \sigma } _ { \hat { \psi } } \leq \psi \leq \hat { \psi } + S \hat { \sigma } _ { \hat { \psi } } , \forall \psi \in L ) = 1 - \alpha,$ ; confidence 0.051 |
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201607.png ; $I _ { d }$ ; confidence 0.051 | 28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201607.png ; $I _ { d }$ ; confidence 0.051 | ||
Line 58: | Line 58: | ||
29. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032091.png ; $\frac { k } { k + 1 } \frac { \operatorname { log } a _ { \mathfrak { m } } } { \operatorname { log } m } \leq \frac { \operatorname { log } a _ { \mathfrak { n } } } { \operatorname { log } n } \leq \frac { k + 1 } { k } \frac { \operatorname { log } a _ { \mathfrak { m } } } { \operatorname { log } m }.$ ; confidence 0.050 | 29. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032091.png ; $\frac { k } { k + 1 } \frac { \operatorname { log } a _ { \mathfrak { m } } } { \operatorname { log } m } \leq \frac { \operatorname { log } a _ { \mathfrak { n } } } { \operatorname { log } n } \leq \frac { k + 1 } { k } \frac { \operatorname { log } a _ { \mathfrak { m } } } { \operatorname { log } m }.$ ; confidence 0.050 | ||
− | 30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200801.png ; $\begin{cases} { \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = \sum _ { i , j = 1 } ^ { m } \frac { \partial } { \partial x _ { i } } \{ | + | 30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200801.png ; $\begin{cases} { \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = \sum _ { i , j = 1 } ^ { m } \frac { \partial } { \partial x _ { i } } \left\{ a _ {i, j } ( x ) \frac { \partial u } { \partial x _ { j } } \right\} + c ( x ) u + f ( x , t ) }, |
\\{ ( x , t ) \in \Omega \times [ 0 , T ] }, | \\{ ( x , t ) \in \Omega \times [ 0 , T ] }, | ||
\\{ u ( x , 0 ) = u _ { 0 } ( x ) , \frac { \partial u } { \partial t } ( x , 0 ) = u _ { 1 } ( x ) , x \in \Omega } ,\end{cases}$ ; confidence 0.050 | \\{ u ( x , 0 ) = u _ { 0 } ( x ) , \frac { \partial u } { \partial t } ( x , 0 ) = u _ { 1 } ( x ) , x \in \Omega } ,\end{cases}$ ; confidence 0.050 |
Revision as of 11:58, 11 May 2020
List
1. ; $f ^ { \circ } ( x ; v ) : = \liminf _ { y \rightarrow x , t \downarrow 0 } \frac { f ( y + t v ) - f ( y ) } { t }$ ; confidence 0.055
2. ; $y _ { i } = e ^ { a} \prod _ { j = 1 } ^ { p _ { t } } x _ { i j } ^ { b j } \prod _ { j ^ { \prime } = p _ { t + 1 } } ^ { p } ( 1 + x _ { i j ^ { \prime } } ) ^ { b j ^ { \prime } } e ^ { \mu i },$ ; confidence 0.054
3. ; $\sigma _ { \alpha }$ ; confidence 0.054
4. ; $\omega \{ K _ { i } \} ( S _ { i_1 } \ldots S _ { i_r } S _ { j_{s} } ^ { * } \ldots S _ { j_{ 1} } ^ { * } ) = \prod _ { h = 1 } ^ { r } \{ S _ { j _ { h } } , K _ { h } S _ { i_h } \} \delta _ { r , s }.$ ; confidence 0.054
5. ; $| r g _ { 1 } | = [ g_{2} ]$ ; confidence 0.053
6. ; $\mathcal{M} ( \mathcal{H} _ { b } ( c _ { 0 } ) ) = \{ \widetilde { \delta _ { z } } : z \in \operatorname{l} _ { \infty } \}$ ; confidence 0.053
7. ; $S _ { 1,0 } ^ { m }$ ; confidence 0.053
8. ; $\|AB \| \leq \| A \| \| B \|$ ; Picture is maybe incomplete?
9. ; $\phi _ { k } = \frac { 1 } { \langle \rho ^ { \prime } , \zeta \rangle ^ { n } } \left\langle \frac { \rho ^ { \prime } ( \zeta ) } { \langle \rho ^ { \prime } ( \zeta ) , \zeta \rangle } , z \right\rangle ^ { k } \sigma,$ ; confidence 0.053
10. ; $h _ { t } + h _ { xxxx } + h _ {xx } + \frac { 1 } { 2 } h _ { x } ^ { 2 } = 0,$ ; confidence 0.053
11. ; $R _ { n - 1} : = k [ X _ { 1 } , \dots , X _ { n-1 } ]$ ; confidence 0.053
12. ; $\left\{ \begin{array} { c } { M ( u ) = \phi } & {\text { on } D , } \\ { u |_{ \partial D = f.} } \end{array} \right.$ ; confidence 0.053
13. ; $L _ { a } ^ { q }$ ; confidence 0.052
14. ; $+ 2 r d t \bigotimes d t + t d t \bigotimes d r + t d r \bigotimes d t$ ; confidence 0.052
15. ; $= 1 + \sum | p _ { 1 } | ^ { - r _ { 1 } z } \ldots | p _ {m } | ^ { - r _ { m } z } =$ ; confidence 0.052
16. ; $PTP$ ; confidence 0.052
17. ; $\square _ { D(A) } \mathcal{C}^{D ( A )}$ ; confidence 0.052
18. ; $e ( A ( q , d ) , f ) \leq C _ { d }. n ^ { - k } .( \operatorname { log } n ) ^ { ( d - 1 ) . ( k + 1 ) }. \| f \| _ { k }$ ; confidence 0.052
19. ; $Lu$ ; confidence 0.051
20. ; $\int _ { a } ^ { b } P _ { n } ( x ) E _ { n + 1 } ( x ) x ^ { k } h ( x ) d x = 0 , \quad k = 1 , \dots , n,$ ; confidence 0.051
21. ; $S ^ { \lambda } = \operatorname { span } \{ e _ { t } : t a \lambda \square \text { tableau } \}$ ; confidence 0.051
22. ; $\operatorname { GL} _ { n }$ ; confidence 0.051
23. ; $\widetilde { A } _ { s a }$ ; confidence 0.051
24. ; $\mathcal{C} _ { \infty } ( \Gamma \backslash G ( \mathbf{R} ) \otimes \mathcal{M} _ { \mathbf{C} } ) \not \subset L ^ { 2 } ( \Gamma \backslash G ( \mathbf{R} ) \otimes \mathcal{M} _ { \mathbf{C} } )$ ; confidence 0.051
25. ; $Q_m u$ ; confidence 0.051
26. ; $u^*$ ; confidence 0.051
27. ; $\mathsf{P} ( \hat { \psi } - S \hat { \sigma } _ { \hat { \psi } } \leq \psi \leq \hat { \psi } + S \hat { \sigma } _ { \hat { \psi } } , \forall \psi \in L ) = 1 - \alpha,$ ; confidence 0.051
28. ; $I _ { d }$ ; confidence 0.051
29. ; $\frac { k } { k + 1 } \frac { \operatorname { log } a _ { \mathfrak { m } } } { \operatorname { log } m } \leq \frac { \operatorname { log } a _ { \mathfrak { n } } } { \operatorname { log } n } \leq \frac { k + 1 } { k } \frac { \operatorname { log } a _ { \mathfrak { m } } } { \operatorname { log } m }.$ ; confidence 0.050
30. ; $\begin{cases} { \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = \sum _ { i , j = 1 } ^ { m } \frac { \partial } { \partial x _ { i } } \left\{ a _ {i, j } ( x ) \frac { \partial u } { \partial x _ { j } } \right\} + c ( x ) u + f ( x , t ) }, \\{ ( x , t ) \in \Omega \times [ 0 , T ] }, \\{ u ( x , 0 ) = u _ { 0 } ( x ) , \frac { \partial u } { \partial t } ( x , 0 ) = u _ { 1 } ( x ) , x \in \Omega } ,\end{cases}$ ; confidence 0.050
31. ; $F _ { n+1 } \rightarrow F _ { n+1 } / l ^ { n } F _ { n+1 } $ ; confidence 0.050
32. ; $\| A \| = \operatorname { max } _ { x \neq 0 } \| A x \| / \| x \| = \operatorname { max } _ { \| x \| =1 } \| A x \|$ ; confidence 0.050
33. ; $\Gamma / \Gamma ^ { p^m } \rightarrow \Gamma / \Gamma ^ { p ^n }$ ; confidence 0.050
Maximilian Janisch/latexlist/latex/NoNroff/77. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/77&oldid=45648