Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/30"
(→List: added comment) |
Rui Martins (talk | contribs) |
||
Line 72: | Line 72: | ||
36. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002070.png ; $\nu = \operatorname { max } _ { 0 \leq k \leq N - 1 } ( d _ { k } + k ).$ ; confidence 0.932 | 36. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002070.png ; $\nu = \operatorname { max } _ { 0 \leq k \leq N - 1 } ( d _ { k } + k ).$ ; confidence 0.932 | ||
− | 37. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011074.png ; $\mathbf{v} = \frac { \partial } { \partial t } ( \mathbf{x} ^ { 0 } + \mathbf{u} ) | _ { \mathbf{x} ^ { 0 } } = ( \frac { \partial \mathbf{u} } { \partial t } ) | _ { \mathbf{x} ^ { 0 } } = \frac { D u } { D t }.$ ; confidence 0.932 | + | 37. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011074.png ; $\mathbf{v} = \frac { \partial } { \partial t } ( \mathbf{x} ^ { 0 } + \mathbf{u} ) | _ { \mathbf{x} ^ { 0 } } = \left( \frac { \partial \mathbf{u} } { \partial t } \right) | _ { \mathbf{x} ^ { 0 } } = \frac { D u } { D t }.$ ; confidence 0.932 |
38. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370068.png ; $k [ G ]$ ; confidence 0.931 | 38. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370068.png ; $k [ G ]$ ; confidence 0.931 | ||
Line 174: | Line 174: | ||
87. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010033.png ; $\exists x \forall y ( \neg y \in x ).$ ; confidence 0.930 | 87. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010033.png ; $\exists x \forall y ( \neg y \in x ).$ ; confidence 0.930 | ||
− | 88. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016014.png ; $( M _ { t } f ) ( s ) = \frac { 1 } { 2 } \operatorname { sup } _ { t } f ( s , t ) + \frac { 1 } { 2 } \operatorname { inf } _ { t } f ( s , t )$ ; confidence 0.930 | + | 88. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016014.png ; $( M _ { t } f ) ( s ) = \frac { 1 } { 2 } \operatorname { sup } _ { t } f ( s , t ) + \frac { 1 } { 2 } \operatorname { inf } _ { t } f ( s , t ).$ ; confidence 0.930 |
89. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007019.png ; $S ^ { 2 } \times S ^ { 2 } \times \mathbf{R} _ { + }$ ; confidence 0.930 | 89. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007019.png ; $S ^ { 2 } \times S ^ { 2 } \times \mathbf{R} _ { + }$ ; confidence 0.930 | ||
Line 202: | Line 202: | ||
101. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013019.png ; $\tilde { W } = W - 2 \pi \chi ( \Sigma )$ ; confidence 0.930 | 101. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013019.png ; $\tilde { W } = W - 2 \pi \chi ( \Sigma )$ ; confidence 0.930 | ||
− | 102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027031.png ; $\mathcal{Q} ( H )$ ; confidence 0.930 | + | 102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027031.png ; $\mathcal{Q} ( \mathcal{H} )$ ; confidence 0.930 |
103. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017093.png ; $( a x - x c ) + i ( b x - x d ) = 0$ ; confidence 0.930 | 103. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017093.png ; $( a x - x c ) + i ( b x - x d ) = 0$ ; confidence 0.930 | ||
Line 288: | Line 288: | ||
144. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009020.png ; $( d \sigma ) ^ { 2 } = g _ { \mu \nu } d x ^ { \mu } d x ^ { \nu },$ ; confidence 0.929 | 144. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009020.png ; $( d \sigma ) ^ { 2 } = g _ { \mu \nu } d x ^ { \mu } d x ^ { \nu },$ ; confidence 0.929 | ||
− | 145. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240374.png ; $F = \mathbf{Z} _ { 1 } \mathbf{M} _ { E } ^ { - 1 } \mathbf{Z} _ { 1 } ^ { \prime }$ ; confidence 0.929 | + | 145. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240374.png ; $F = \mathbf{Z} _ { 1 } \mathbf{M} _ { \mathsf{E} } ^ { - 1 } \mathbf{Z} _ { 1 } ^ { \prime }$ ; confidence 0.929 |
146. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013040.png ; $N_* = K$ ; confidence 0.929 | 146. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013040.png ; $N_* = K$ ; confidence 0.929 | ||
Line 328: | Line 328: | ||
164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040106.png ; $\operatorname { ch } ( \chi ) = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } p _ { \mu },$ ; confidence 0.928 | 164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040106.png ; $\operatorname { ch } ( \chi ) = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } p _ { \mu },$ ; confidence 0.928 | ||
− | 165. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013022.png ; $L = [ | + | 165. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013022.png ; $L = [ l _ {i j } ] = M M ^ { T }$ ; confidence 0.928 |
166. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007011.png ; $P ( x ) = a _ { 0 } \prod _ { k = 1 } ^ { d } ( x - \alpha _ { k } )$ ; confidence 0.928 | 166. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007011.png ; $P ( x ) = a _ { 0 } \prod _ { k = 1 } ^ { d } ( x - \alpha _ { k } )$ ; confidence 0.928 | ||
Line 352: | Line 352: | ||
176. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601042.png ; $( W ; M _ { 0 } , M _ { 1 } )$ ; confidence 0.928 | 176. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601042.png ; $( W ; M _ { 0 } , M _ { 1 } )$ ; confidence 0.928 | ||
− | 177. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110104.png ; $\mathcal{P} * ( K ) ^ { \prime }$ ; confidence 0.927 | + | 177. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110104.png ; $\mathcal{P}_{ *} ( K ) ^ { \prime }$ ; confidence 0.927 |
178. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011030.png ; $\xi _ { i } ( x ) > 0$ ; confidence 0.927 | 178. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011030.png ; $\xi _ { i } ( x ) > 0$ ; confidence 0.927 | ||
Line 588: | Line 588: | ||
294. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021037.png ; $B ( G ) = B ( G _ { d } ) \cap C ( G ; \mathbf{C} )$ ; confidence 0.924 | 294. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021037.png ; $B ( G ) = B ( G _ { d } ) \cap C ( G ; \mathbf{C} )$ ; confidence 0.924 | ||
− | 295. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011078.png ; $[ X , Y ] = \langle \sigma X , Y \rangle _ { \Phi | + | 295. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011078.png ; $[ X , Y ] = \langle \sigma X , Y \rangle _ { \Phi ^ { * } , \Phi },$ ; confidence 0.924 |
296. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035500/e03550078.png ; $\overline{\Omega}$ ; confidence 0.924 | 296. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035500/e03550078.png ; $\overline{\Omega}$ ; confidence 0.924 |
Revision as of 22:18, 23 April 2020
List
1. ; $ \operatorname {WF} ( f )$ ; confidence 0.933
2. ; $\| f \| _ { 2 } = 1$ ; confidence 0.933
3. ; $L ( 0 ) v = n v$ ; confidence 0.933
4. ; $g _ { j } > 0$ ; confidence 0.933
5. ; $\int _ { \mathbf{R} ^ { 3 } } | \psi ( t , \mathbf{x} ) | ^ { 2 } d \mathbf{x}$ ; confidence 0.933
6. ; $q_0$ ; confidence 0.933
7. ; $ \mathbf{R} ^ { 3 } = \mathbf{C} _ { z } \times \mathbf{R} _ { t }$ ; confidence 0.933
8. ; $\| f _ { n } \| \downarrow \text { dist } ( f , C ( S ) + C ( T ) )$ ; confidence 0.932
9. ; $\Delta ( z _ { l } , z _ { 2 } ) = \operatorname { det } [ E z _ { 1 } z _ { 2 } - A _ { 1 } z _ { 1 } - A _ { 2 } z _ { 2 } - A _ { 0 } ] =$ ; confidence 0.932
10. ; $Z \mapsto ( A Z + B ) ( C Z + D ) ^ { - 1 }$ ; confidence 0.932
11. ; $U \leq f ( X ) / h ( X )$ ; confidence 0.932
12. ; $= \operatorname { sup } \left\{ \int _ { K } M ( u ) d V : u \in \operatorname { PSH } ( \Omega ) , 0 < u < 1 \right\}.$ ; confidence 0.932
13. ; $P _ { k - 1 } \subset P _ { K } \subset P _ { k }$ ; confidence 0.932
14. ; $f = f ( \mathbf{x} ^ { 0 } , t )$ ; confidence 0.932
15. ; $x _ { i } ^ { \prime } \neq 0$ ; confidence 0.932
16. ; $\frac { f ( x _ { 0 } + ) + f ( x _ { 0 } - ) } { 2 } =$ ; confidence 0.932
17. ; $\mathcal{G} ( \Omega ) = \mathcal{E} _ { M } ( \Omega ) / \mathcal{N} ( \Omega )$ ; confidence 0.932
18. ; $\eta ^ { a } ( Y ) = g ( \xi ^ { a } , Y )$ ; confidence 0.932
19. ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }.$ ; confidence 0.932
20. ; $u _ { 1 } = \left| \frac { \partial u } { \partial n } \right| = 0 \ \text{in the boundary of} \Omega$ ; confidence 0.932
21. ; $P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$ ; confidence 0.932
22. ; $d f _ { x } : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { p }$ ; confidence 0.932
23. ; $B ^ { \prime }$ ; confidence 0.932
24. ; $d _ { A }$ ; confidence 0.932
25. ; $V _ { \overline{1} }$ ; confidence 0.932
26. ; $Q _ { n } y \rightarrow y$ ; confidence 0.932
27. ; $\int _ { D } | \psi ^ { ( n ) } ( \zeta ) | ^ { p } ( 1 - | \zeta | ) ^ { n p - 2 } d m _ { 2 } ( \zeta ) < \infty,$ ; confidence 0.932
28. ; $\lambda _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x },$ ; confidence 0.932
29. ; $( B , \Delta , \varepsilon , S )$ ; confidence 0.932
30. ; $\Pi \circ \mathcal{B}$ ; confidence 0.932
31. ; $f \notin \mathcal{A} ^ { * }$ ; confidence 0.932
32. ; $[ K _ { 1 } , K _ { 2 } ]$ ; confidence 0.932
33. ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.932
34. ; $0 \neq q \in Q$ ; confidence 0.932
35. ; $\forall u \in \mathcal{U} : M ( u , \xi ) \in D _ { \xi },$ ; confidence 0.932
36. ; $\nu = \operatorname { max } _ { 0 \leq k \leq N - 1 } ( d _ { k } + k ).$ ; confidence 0.932
37. ; $\mathbf{v} = \frac { \partial } { \partial t } ( \mathbf{x} ^ { 0 } + \mathbf{u} ) | _ { \mathbf{x} ^ { 0 } } = \left( \frac { \partial \mathbf{u} } { \partial t } \right) | _ { \mathbf{x} ^ { 0 } } = \frac { D u } { D t }.$ ; confidence 0.932
38. ; $k [ G ]$ ; confidence 0.931
39. ; $G _ { \delta } = ( 2 / \pi ) \operatorname { sup } _ { x > 0 } \int _ { 0 } ^ { 1 } ( 1 - t ^ { 2 } ) ^ { \delta } \operatorname { sin } x t d t / t$ ; confidence 0.931
40. ; $\{ s \in S : s ^ { - 1 } t s = t \}$ ; confidence 0.931
41. ; $\mathcal{I} \neq L ^ { 1 } ( G )$ ; confidence 0.931
42. ; $( L ^ { H _ { i } } , w ^ { H _ { i } } )$ ; confidence 0.931
43. ; $C _ { 0 } ^ { \infty }$ ; confidence 0.931
44. ; $x ^ { * } x \leq y y ^ { * } + z z ^ { * }$ ; confidence 0.931
45. ; $u _ { 0 } = 1 = v _ { 0 }$ ; confidence 0.931
46. ; $\sim$ ; confidence 0.931
47. ; $\rho ( t )$ ; confidence 0.931
48. ; $y \in V ^ { - \sigma }$ ; confidence 0.931
49. ; $\operatorname { lim } _ { t \downarrow 0 } u ( t , x ) = f ( x ) \quad \text { for all } x \in H,$ ; confidence 0.931
50. ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } \| f V _ { \varepsilon } \| _ { \mathcal{A} } * = 0.$ ; confidence 0.931
51. ; $( I ^ { \alpha } f ) ( x ) = c _ { \mu , \alpha } \int _ { 0 } ^ { \infty } ( f ^ { * } \mu _ { t } ) ( x ) t ^ { \alpha - 1 } d t,$ ; confidence 0.931
52. ; $\overline{\mathcal{D}}$ ; confidence 0.931
53. ; $\{ z ^ { j } \} _ { j = p } ^ { q }$ ; confidence 0.931
54. ; $u = D \alpha D$ ; confidence 0.931
55. ; $t \notin A$ ; confidence 0.931
56. ; $\varrho : H \rightarrow F$ ; confidence 0.931
57. ; $( d / d x ) g ( x )$ ; confidence 0.931
58. ; $S _ { i }$ ; confidence 0.931
59. ; $\operatorname {max}( S _ { T } - K , 0 )$ ; confidence 0.931
60. ; $\frac { \partial u } { \partial t } + \sum _ { j = 1 } ^ { m }a _ { j } ( t , u ) \frac { \partial u } { \partial x _ { j } } = f ( t , u ),$ ; confidence 0.931
61. ; $f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.931
62. ; $| f | \operatorname { log } ^ { + } | f |$ ; confidence 0.931
63. ; $| q | = q _1 + \ldots + q_n$ ; confidence 0.931
64. ; $\leq k$ ; confidence 0.931
65. ; $f ^ { * } ( . )$ ; confidence 0.931
66. ; $H ^ { n , n - 1 } = Z ^ { n , n - 1 } / B ^ { n , n - 1 },$ ; confidence 0.931
67. ; $x , y , u , v \in E$ ; confidence 0.931
68. ; $B _ { 2 n } = A _ { 2 n } - \sum _ { p - 1 | 2 n } \frac { 1 } { p },$ ; confidence 0.931
69. ; $q ( z ) = e ^ { 2 \pi i z }$ ; confidence 0.931
70. ; $\underline{x} ^ { * }$ ; confidence 0.931
71. ; $| f ( \gamma ) | \geq \varepsilon$ ; confidence 0.930
72. ; $A \times \mathbf{R}$ ; confidence 0.930
73. ; $( M ^ { 2 n - 1 } , \xi )$ ; confidence 0.930
74. ; $\tilde { \theta }_n$ ; confidence 0.930
75. ; $f \in b \Delta$ ; confidence 0.930
76. ; $\phi ( T T ^ { \prime } )$ ; confidence 0.930
77. ; $M = \sqrt { T }$ ; confidence 0.930
78. ; $\tau \in \operatorname { Aut } ( G )$ ; confidence 0.930
79. ; $[ T x , T y ] = [ x , y ]$ ; confidence 0.930
80. ; $x ( n ) ^ { * } y ( n ) = \sum _ { j = 0 } ^ { n } x ( n - j ) y ( j ) = \sum _ { j = 0 } ^ { n } x ( n ) y ( n - j )$ ; confidence 0.930
81. ; $t ( M _ { i } )$ ; confidence 0.930
82. ; $z = ( z _ { 1 } , z _ { 2 } ) \in G$ ; confidence 0.930
83. ; $E G - F ^ { 2 } < 0$ ; confidence 0.930
84. ; $T _ { \phi _ { \lambda } }$ ; confidence 0.930
85. ; $q ^ { - 1 } L _ { + } - q L _ { - } = z L _ { 0 }$ ; confidence 0.930
86. ; $\square _ { q } F _ { p - 1 }$ ; confidence 0.930
87. ; $\exists x \forall y ( \neg y \in x ).$ ; confidence 0.930
88. ; $( M _ { t } f ) ( s ) = \frac { 1 } { 2 } \operatorname { sup } _ { t } f ( s , t ) + \frac { 1 } { 2 } \operatorname { inf } _ { t } f ( s , t ).$ ; confidence 0.930
89. ; $S ^ { 2 } \times S ^ { 2 } \times \mathbf{R} _ { + }$ ; confidence 0.930
90. ; $y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0,$ ; confidence 0.930
91. ; $r ( \lambda ) = \lambda - \lambda ( h _ { i } ) \alpha _ { i }$ ; confidence 0.930
92. ; $f ( x _ { + } ) < f ( x _ { c } )$ ; confidence 0.930
93. ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \sum _ { m = - \infty } ^ { \infty } \operatorname { log } ( z - ( z _ { 0 } - m l ) ),$ ; confidence 0.930
94. ; $T _ { B } \circ T _ { A }$ ; confidence 0.930
95. ; $u _ { i } ( t )$ ; confidence 0.930
96. ; $\mathbf{Z} [ A ^ { \pm 1 } , a , b , c ]$ ; confidence 0.930
97. ; $m _ { \lambda }$ ; confidence 0.930
98. ; $u _ { 1 } \geq 0$ ; confidence 0.930
99. ; $Z \rightarrow w$ ; confidence 0.930
100. ; $Z ^ { 2 } + B _ { 1 } Z + B _ { 0 } = 0$ ; confidence 0.930
101. ; $\tilde { W } = W - 2 \pi \chi ( \Sigma )$ ; confidence 0.930
102. ; $\mathcal{Q} ( \mathcal{H} )$ ; confidence 0.930
103. ; $( a x - x c ) + i ( b x - x d ) = 0$ ; confidence 0.930
104. ; $B ( G ) = \{ u \in \mathbf{C} ^ { G } : u v \in A ( G ) \text { for every } \ v \in A ( G ) \}.$ ; confidence 0.930
105. ; $\varphi \circ w$ ; confidence 0.929
106. ; $S ^ { 3 } \subset \mathbf{R} ^ { 4 }$ ; confidence 0.929
107. ; $E \otimes \mathbf{C}$ ; confidence 0.929
108. ; $F \in \{ \Gamma , - k , \mathbf{v} \}$ ; confidence 0.929
109. ; $x , y \in D ( T )$ ; confidence 0.929
110. ; $\mathcal{L} [ \sqrt { n } ( T _ { n } - \theta _ { n } ) | P _ { n , \theta _ { n } } ] \Rightarrow \mathcal{L} ( \theta )$ ; confidence 0.929
111. ; $A _ { \text{sa} }$ ; confidence 0.929
112. ; $\lambda \in G _ { i } ( A )$ ; confidence 0.929
113. ; $\iota \omega ( G ) = G$ ; confidence 0.929
114. ; $\overline { f } = f \otimes \overline { \mathbf{Q} }$ ; confidence 0.929
115. ; $\overset{\rightharpoonup} { \theta }$ ; confidence 0.929
116. ; $( N , B )$ ; confidence 0.929
117. ; $\sigma = k ^ { 2 } ( \pi - A - B - C );$ ; confidence 0.929
118. ; $7$ ; confidence 0.929 ; As Rui pointed out to me, this is a strange symbol
119. ; $A _ { 2 } ( G ) \subset A _ { p } ( G )$ ; confidence 0.929
120. ; $x <_P y$ ; confidence 0.929
121. ; $\mathcal{O} _ { \{ 0 \} } ^ { \prime } = \mathcal{B} _ { \{ 0 \} }$ ; confidence 0.929
122. ; $( \overline { A } = A )$ ; confidence 0.929
123. ; $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ ; confidence 0.929
124. ; $\mathsf{P} ( ( X , Y ) \in A ) = \int \int _ { A } f _ { X , Y } d X d Y$ ; confidence 0.929
125. ; $L _ { 1 } , L _ { 2 } \subset \mathbf{Z} ^ { 0 }$ ; confidence 0.929
126. ; $n = 2$ ; confidence 0.929
127. ; $\| f \| = \operatorname { inf } \{ \epsilon > 0 : I ( f / \epsilon ) \leq 1 \}$ ; confidence 0.929
128. ; $e < 0$ ; confidence 0.929
129. ; $\| x \| \leq 1$ ; confidence 0.929
130. ; $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$ ; confidence 0.929
131. ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929
132. ; $\Delta _ { k }$ ; confidence 0.929
133. ; $P = S ^ { 1 }$ ; confidence 0.929
134. ; $d \mu _ { X } ( u )$ ; confidence 0.929
135. ; $\mathcal{N} = \cup _ { n \in \mathcal{O} } N _ { n }$ ; confidence 0.929
136. ; $b _ { n + 1 } = \frac { f ( x _ { n + 1} ) - f ( x _ { n } ) } { x _ { n + 1} - x _ { n } }.$ ; confidence 0.929
137. ; $F _ { 1 } ( q , \dot { q } ) = C _ { 1 } ( q , \dot { q } ) \dot { q } + g _ { 1 } ( q ) + f _ { 1 } ( \dot { q } ),$ ; confidence 0.929
138. ; $\chi ( x ) : = \chi _ { D } ( x )$ ; confidence 0.929
139. ; $f | _ { K } \in A | _ { K } : = \{ f | _ { K } : f \in A \}$ ; confidence 0.929
140. ; $\Gamma _ { \phi }$ ; confidence 0.929
141. ; $x \rightarrow \overline { f } _ { \alpha } ( x )$ ; confidence 0.929
142. ; $f : \mathbf{R} \times \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.929
143. ; $P _ { 0 } \psi / p _ { 0 }$ ; confidence 0.929
144. ; $( d \sigma ) ^ { 2 } = g _ { \mu \nu } d x ^ { \mu } d x ^ { \nu },$ ; confidence 0.929
145. ; $F = \mathbf{Z} _ { 1 } \mathbf{M} _ { \mathsf{E} } ^ { - 1 } \mathbf{Z} _ { 1 } ^ { \prime }$ ; confidence 0.929
146. ; $N_* = K$ ; confidence 0.929
147. ; $p \equiv 1$ ; confidence 0.929
148. ; $A \in C ^ { m \times n }$ ; confidence 0.929
149. ; $\xi < \kappa$ ; confidence 0.929
150. ; $\operatorname { dist } ( B , U ^ { c } ) > 0$ ; confidence 0.929
151. ; $V _ { y } ^ { \sigma }$ ; confidence 0.928
152. ; $\sigma ^ { 2 } = .25$ ; confidence 0.928
153. ; $( A , I )$ ; confidence 0.928
154. ; $T ( 0 , n ) = 2 n,$ ; confidence 0.928
155. ; $= z ^ { n + m } ( f ( D + m ) g ( D ) - f ( D ) g ( D + n ) ) +$ ; confidence 0.928
156. ; $e _ { n } = \lambda _ { p } ( K / k ) n + \mu _ { p } ( K / k ) p ^ { n } + \nu _ { p } ( K / k )$ ; confidence 0.928
157. ; $8 _ { 17 }$ ; confidence 0.928
158. ; $W _ { 2 } ^ { + }$ ; confidence 0.928
159. ; $J ^ { 2 } = I$ ; confidence 0.928
160. ; $\mathcal{P} \subset \mathcal{NP}$ ; confidence 0.928
161. ; $v = \pm 1$ ; confidence 0.928
162. ; $\hat{x}$ ; confidence 0.928
163. ; $x , y \in \mathcal{K}$ ; confidence 0.928
164. ; $\operatorname { ch } ( \chi ) = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } p _ { \mu },$ ; confidence 0.928
165. ; $L = [ l _ {i j } ] = M M ^ { T }$ ; confidence 0.928
166. ; $P ( x ) = a _ { 0 } \prod _ { k = 1 } ^ { d } ( x - \alpha _ { k } )$ ; confidence 0.928
167. ; $[\mathcal{L} _ { K } , i _ { L } ] = i ( [ K , L ] ) - ( - 1 ) ^ { k \text{l} } \mathcal{L} ( i _ { L } K ).$ ; confidence 0.928
168. ; $N _ { G } ^ { \# } ( x ) = \sum _ { n \leq x } G ^ { \# } ( n )$ ; confidence 0.928
169. ; $\Theta ( z ) = U _ { 22 } + z U _ { 21 } ( I - z U _ { 11 } ) ^ { - 1 } U _ { 12 } \quad ( z \in \mathcal{D} )$ ; confidence 0.928
170. ; $0 < q _ { j } < 1$ ; confidence 0.928
171. ; $S _ { N }$ ; confidence 0.928
172. ; $D \beta D = \coprod _ { \beta ^ { \prime } \in A } D \beta ^ { \prime }$ ; confidence 0.928
173. ; $T ^ { * } T$ ; confidence 0.928
174. ; $d ^ { T } \nabla f ( x _ { c } ) < 0$ ; confidence 0.928
175. ; $- ( a | \omega ( a ) ) > 0$ ; confidence 0.928
176. ; $( W ; M _ { 0 } , M _ { 1 } )$ ; confidence 0.928
177. ; $\mathcal{P}_{ *} ( K ) ^ { \prime }$ ; confidence 0.927
178. ; $\xi _ { i } ( x ) > 0$ ; confidence 0.927
179. ; $T \in \operatorname { Mat } ( n ) \otimes \mathcal{A}$ ; confidence 0.927
180. ; $\operatorname {SP} ^ { + } ( n )$ ; confidence 0.927
181. ; $\lambda ( v - 1 ) = k ( k - 1 )$ ; confidence 0.927
182. ; $S _ { i } = - 1$ ; confidence 0.927
183. ; $k \geq 2$ ; confidence 0.927
184. ; $D ( \phi ) = d \gamma \phi + \phi d \gamma$ ; confidence 0.927
185. ; $L : E ^ { 1 } \rightarrow \mathbf{R}$ ; confidence 0.927
186. ; $( c , d )$ ; confidence 0.927
187. ; $Q _ { D } ( v , z ) \in \mathbf{Z} [ v ^ { \pm 1 } , z ^ { 2 } ]$ ; confidence 0.927
188. ; $\chi ( \chi \propto ( T / T _ { c } - 1 ) ^ { - \gamma } \text { with } \gamma = 1 )$ ; confidence 0.927
189. ; $Z ^ { - 1 / 3 }$ ; confidence 0.927
190. ; $\operatorname { min}_r \operatorname { Re } G _ { 2 } ( r ) \leq - A$ ; confidence 0.927
191. ; $\sigma : E \rightarrow E$ ; confidence 0.927
192. ; $\overline { \operatorname { Ran } D _ { A } } \neq \operatorname { Ker } D _ { A }$ ; confidence 0.927
193. ; $f _ { I } = ( 1 / | I | ) \int _ { I } f d m$ ; confidence 0.927
194. ; $\Phi = E \oplus E ^ { * }$ ; confidence 0.927
195. ; $\zeta ( 3 )$ ; confidence 0.927
196. ; $x = u + 1 / u = 2 \operatorname { cos } \alpha$ ; confidence 0.927
197. ; $( x ^ { 2 } - 4 a ) y ^ { \prime \prime } + x y ^ { \prime } - n ^ { 2 } y = 0.$ ; confidence 0.927
198. ; $M ^ { * }$ ; confidence 0.927
199. ; $\alpha ^ { * * } = \alpha$ ; confidence 0.927
200. ; $J _ { E } = I _ { E }$ ; confidence 0.927
201. ; $\alpha _ { i } \in \Pi ^ { \text{re} }$ ; confidence 0.927
202. ; $\| f \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { \infty },$ ; confidence 0.927
203. ; $\delta ( I _ { \delta } ) \subseteq R$ ; confidence 0.927
204. ; $= \int _ { M } \sigma ^ { k ^ { * } } \mathcal{L} _ { Z ^ { k } } ( L \Delta ).$ ; confidence 0.927
205. ; $f ( a t + a k )$ ; confidence 0.927
206. ; $\frac { d N } { d t } = \frac { d n } { d t } = f ( N ) =$ ; confidence 0.927
207. ; $3_1$ ; confidence 0.927
208. ; $j > n$ ; confidence 0.927
209. ; $I [ f ] = \int _ { a } ^ { b } f ( x ) d x$ ; confidence 0.926
210. ; $\int _ { 0 } ^ { t } \phi ( s ) d B ( s + ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s + } ) \phi ( s ) d s.$ ; confidence 0.926
211. ; $m _ { i } , n _ { i } \leq P$ ; confidence 0.926
212. ; $\{ t = t _ { j } \} \subset \mathbf{R} ^ { 3 }$ ; confidence 0.926
213. ; $W _ { 2 } ^ { 1 }$ ; confidence 0.926
214. ; $M ( \mathcal{E} )$ ; confidence 0.926
215. ; $\Omega ( M , T M ) = \oplus _ { k = 0 } ^ { \operatorname { dim } M } \Omega ^ { k } ( M , T M )$ ; confidence 0.926
216. ; $D = \frac { \partial } { \partial x } + y ^ { \prime } \frac { \partial } { \partial y } + y ^ { \prime \prime } \frac { \partial } { \partial y ^ { \prime } }.$ ; confidence 0.926
217. ; $h = F \circ f ^ { - 1 }$ ; confidence 0.926
218. ; $Y _ { 1 } ( N )$ ; confidence 0.926
219. ; $S ^ { 1 } \times S ^ { 3 }$ ; confidence 0.926
220. ; $P Q = a$ ; confidence 0.926
221. ; $\mu ( M ) = \mu ( M \backslash a ) - \mu ( M / a ),$ ; confidence 0.926
222. ; $n ^ { \prime }$ ; confidence 0.926
223. ; $y : M \rightarrow F$ ; confidence 0.926
224. ; $j - \operatorname { Spec } ( R )$ ; confidence 0.926
225. ; $m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } \left( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } \right) d \rho _ { 0 } ( t ),$ ; confidence 0.926
226. ; $\frac { d } { d \alpha } f ( x ^ { k } + \alpha d ^ { k } ) | _ { \alpha = 0 } = D f ( x ^ { k } ) d ^ { k } =$ ; confidence 0.926
227. ; $\forall \alpha ^ { \prime }$ ; confidence 0.926
228. ; $\frac { d T _ { 1 } } { d s } = [ T _ { 2 } , T _ { 3 } ] , \frac { d T _ { 2 } } { d s } = [ T _ { 3 } , T _ { 1 } ] , \frac { d T _ { 3 } } { d s } = [ T _ { 1 } , T _ { 2 } ],$ ; confidence 0.926
229. ; $\phi ( z ) = z ^ { k } + a _ { 1 } z ^ { k - 1 } + \ldots + a _ { k } \neq 0$ ; confidence 0.926
230. ; $F W = F ^ { 2 ( k + 1 ) } W ( G , K ) \subseteq W ( G , K ),$ ; confidence 0.926
231. ; $S = X$ ; confidence 0.926
232. ; $\geq 0$ ; confidence 0.926
233. ; $i _ { 2 } : H ^ { 1 } ( D _ { R } ^ { \prime } ) \rightarrow L ^ { 2 } ( S )$ ; confidence 0.926
234. ; $c > a$ ; confidence 0.926
235. ; $f _{( r - 2 )} ( x _ { 0 } )$ ; confidence 0.926
236. ; $A = \operatorname { diag } \{ a _ { i } \}$ ; confidence 0.926
237. ; $f = \sum _ { k } f _ { \Delta _ { k } }$ ; confidence 0.926
238. ; $( x _ { j } - x _ { k } ) ( y _ { j } - y _ { k } ) < 0$ ; confidence 0.926
239. ; $\mathbf{R} \times \mathbf{R} ^ { m }$ ; confidence 0.926
240. ; $D ^ { b } ( \Lambda )$ ; confidence 0.926
241. ; $L _ { \gamma , 1 } = \frac { 1 } { \sqrt { \pi } ( \gamma - \frac { 1 } { 2 } ) } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 / 2 ) } \left( \frac { \gamma - \frac { 1 } { 2 } } { \gamma + \frac { 1 } { 2 } } \right) ^ { \gamma + 1 / 2 }$ ; confidence 0.926
242. ; $s \geq 0$ ; confidence 0.926
243. ; $\Delta _ { \delta } ( \alpha ) : = \{ z \in \mathbf{C} : | z - \alpha | \leq \delta \}$ ; confidence 0.926
244. ; $k \leq n$ ; confidence 0.926
245. ; $( K , L )$ ; confidence 0.926
246. ; $\wedge$ ; confidence 0.926
247. ; $( \hat { \phi } ( - j - k - 1 ) )_{ j > 0 , k \geq 0}$ ; confidence 0.925
248. ; $T _ { n_ j } ( x _ { n_j } ) \rightarrow g$ ; confidence 0.925
249. ; $\mathcal{K} ( \mathcal{H} )$ ; confidence 0.925
250. ; $H _ { \mathfrak{m} } ^ { i } ( A ) = ( 0 )$ ; confidence 0.925
251. ; $\nu ^ { 3 }$ ; confidence 0.925
252. ; $C _ { G } ( A )$ ; confidence 0.925
253. ; $( 2 / \pi ) \operatorname { sin } ^ { 2 } \phi d \phi$ ; confidence 0.925
254. ; $A \in \mathcal{L} _ { w } ( \mathcal{X} , \mathcal{Y} )$ ; confidence 0.925
255. ; $B + u v ^ { T }$ ; confidence 0.925
256. ; $| \Sigma | ^ { - n / 2 } | \Phi | ^ { - p / 2 } h ( \operatorname { tr } \left( ( X - M ) ^ { \prime } \Sigma ^ { - 1 } ( X - M ) \Phi ^ { - 1 } ) \right),$ ; confidence 0.925
257. ; $\mathfrak { h } = \{ X \in \mathfrak { g } : \tau ( X ) = X \}$ ; confidence 0.925
258. ; $\Phi \geq 0$ ; confidence 0.925
259. ; $K ( p , q )$ ; confidence 0.925
260. ; $E = X$ ; confidence 0.925
261. ; $\pi _ { 1 } ( \overline { M } )$ ; confidence 0.925
262. ; $\int _ { B } ( f \circ \psi ) d m = f ( \psi ( 0 ) )$ ; confidence 0.925
263. ; $- \otimes _ { B } T$ ; confidence 0.925
264. ; $L ( \mathbf{a} ) = \infty$ ; confidence 0.925
265. ; $r _ { \pm } ( - k ) = \overline { r _ { \pm } ( k ) }$ ; confidence 0.925
266. ; $m , n \in \mathbf{Z}$ ; confidence 0.925
267. ; $ \operatorname { WB} ( \mathcal{L} )$ ; confidence 0.925
268. ; $Q _ { 1 }$ ; confidence 0.925
269. ; $U _ { n + 1 } ( x ) U _ { n - 1 } ( x ) - U _ { n } ^ { 2 } ( x ) = ( - 1 ) ^ { n } ;$ ; confidence 0.925
270. ; $\psi ( z _ { 0 } , \overline{z} _ { 0 } ) = I$ ; confidence 0.925
271. ; $h ( X ) = h ^ { 0 } ( X ) \oplus \ldots \oplus h ^ { 2 n } ( X )$ ; confidence 0.925
272. ; $v = D \beta D$ ; confidence 0.925
273. ; $P , Q \in K [ X ]$ ; confidence 0.925
274. ; $\Omega = ( \mathbf{N} \cup \{ 0 \} ) ^ { m }$ ; confidence 0.925
275. ; $\frac { \partial } { \partial t _ { j } } \mathcal{L} = [ ( \mathcal{L} ^ { j } ) _ { + } , \mathcal{L} ],$ ; confidence 0.925
276. ; $x , y , z , u , v , w \in V$ ; confidence 0.925
277. ; $f ^ { \prime } ( N _{*} ) > 0$ ; confidence 0.925
278. ; $A ^ { * } = \operatorname { sup } _ { t \geq 0 } | A _ { t } | \leq \frac { 1 } { \mathsf{P} [ T < \infty ] }.$ ; confidence 0.925
279. ; $L ( . \ ; 0 ) = f ( . )$ ; confidence 0.925
280. ; $\Phi ^ { ( 2 ) } = \Phi ^ { ( 1 ) } U.$ ; confidence 0.925
281. ; $S ( f ( m ) , \rho )$ ; confidence 0.924
282. ; $T ( G )$ ; confidence 0.924
283. ; $x _ { j } = \pi j / N$ ; confidence 0.924
284. ; $( X , \mathcal{A} )$ ; confidence 0.924
285. ; $\mathcal{K}_{-}$ ; confidence 0.924
286. ; $\{ x_{j} \}$ ; confidence 0.924
287. ; $= \frac { ( - 1 ) ^ { k + l } } { ( \alpha + 1 ) _ { k + l } } ( 1 - z \overline{z} ) ^ { - \alpha } ( \frac { \partial } { \partial z } ) ^ { l } ( \frac { \partial } { \partial \overline{z} } ) ^ { k } ( 1 - z \overline{z} ) ^ { k + l + \alpha }.$ ; confidence 0.924
288. ; $\cup$ ; confidence 0.924
289. ; $H ( x ) = 0$ ; confidence 0.924
290. ; $\omega \{ K _ { i } \}$ ; confidence 0.924
291. ; $( \alpha > 0 ) \& ( a \preceq b ) \Rightarrow ( \alpha a \preceq \alpha c ).$ ; confidence 0.924
292. ; $\mathbf{G} ( n , p )$ ; confidence 0.924
293. ; $\tau ( \varphi ) = \text { trace } \nabla d \varphi$ ; confidence 0.924
294. ; $B ( G ) = B ( G _ { d } ) \cap C ( G ; \mathbf{C} )$ ; confidence 0.924
295. ; $[ X , Y ] = \langle \sigma X , Y \rangle _ { \Phi ^ { * } , \Phi },$ ; confidence 0.924
296. ; $\overline{\Omega}$ ; confidence 0.924
297. ; $N ( q , r )$ ; confidence 0.924
298. ; $( p _ { m } ( x ) ) _ { m \geq 1 }$ ; confidence 0.924
299. ; $\{ u \in B ( G ) : \| u \| _ { B ( G ) } = 1 \}$ ; confidence 0.924
300. ; $r \in R$ ; confidence 0.924
Maximilian Janisch/latexlist/latex/NoNroff/30. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/30&oldid=45483