Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/19"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
Line 206: Line 206:
 
103. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940805.png ; $A \cup B = X$ ; confidence 0.985
 
103. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940805.png ; $A \cup B = X$ ; confidence 0.985
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023031.png ; $\| f _ { 1 } - P f \| \rightarrow 0$ ; confidence 0.984
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023031.png ; $\| f _ { \text{l} } - P f \| \rightarrow 0$ ; confidence 0.984
  
 
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300705.png ; $\sigma ( n ) < 2 n$ ; confidence 0.984
 
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300705.png ; $\sigma ( n ) < 2 n$ ; confidence 0.984
Line 230: Line 230:
 
115. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301705.png ; $u \in A _ { 2 } ( G )$ ; confidence 0.984
 
115. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301705.png ; $u \in A _ { 2 } ( G )$ ; confidence 0.984
  
116. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006019.png ; $H ^ { ( 0 ) } = - D ^ { 2 } + u = Q ^ { - } Q ^ { + },$ ; confidence 0.984
+
116. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006019.png ; $H ^ { ( 0 ) } = - D ^ { 2 } + u = Q ^ { - } Q ^ { + };$ ; confidence 0.984
  
 
117. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170100.png ; $\mathcal{A}$ ; confidence 0.984
 
117. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170100.png ; $\mathcal{A}$ ; confidence 0.984
Line 482: Line 482:
 
241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201603.png ; $Z =$ ; confidence 0.983
 
241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201603.png ; $Z =$ ; confidence 0.983
  
242. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003032.png ; $\Gamma \backslash G ( \mahtbf{R} )$ ; confidence 0.983
+
242. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003032.png ; $\Gamma \backslash G ( \mathbf{R} )$ ; confidence 0.983
  
 
243. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027011.png ; $s = \operatorname { dist } ( p , \gamma ( s ) )$ ; confidence 0.983
 
243. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027011.png ; $s = \operatorname { dist } ( p , \gamma ( s ) )$ ; confidence 0.983
Line 498: Line 498:
 
249. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260157.png ; $b ^ { * } b = b b ^ { * }$ ; confidence 0.983
 
249. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260157.png ; $b ^ { * } b = b b ^ { * }$ ; confidence 0.983
  
250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t1200608.png ; $R \in \mathbf{R} ^ { 3 }$ ; confidence 0.983
+
250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t1200608.png ; $R_{i} \in \mathbf{R} ^ { 3 }$ ; confidence 0.983
  
 
251. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290213.png ; $R = k [ R _ { 1 }]$ ; confidence 0.983
 
251. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290213.png ; $R = k [ R _ { 1 }]$ ; confidence 0.983
Line 546: Line 546:
 
273. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014052.png ; $\Delta = \{ ( x , x ) : x \in X \}$ ; confidence 0.983
 
273. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014052.png ; $\Delta = \{ ( x , x ) : x \in X \}$ ; confidence 0.983
  
274. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200108.png ; $l > 1$ ; confidence 0.983
+
274. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200108.png ; $l \geq 1$ ; confidence 0.983
  
 
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024046.png ; $m \times s$ ; confidence 0.983
 
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024046.png ; $m \times s$ ; confidence 0.983

Latest revision as of 18:14, 22 April 2020

List

1. b01587013.png ; $G _ { \alpha } ( x )$ ; confidence 0.985

2. b120040142.png ; $x \in L ^ { 0 } ( \mu )$ ; confidence 0.985

3. w12011030.png ; $\mathcal{H} ( u , v ) ( x , \xi ) =$ ; confidence 0.985

4. j130040109.png ; $z ( ( ( v ^ { - 1 } - v ) / z ) ^ { 2 } - 1 )$ ; confidence 0.985

5. m12013020.png ; $0 < b \leq 1$ ; confidence 0.985

6. v13005083.png ; $[ L ( m ) , L ( n ) ] =$ ; confidence 0.985

7. l13006040.png ; $W _ { k } ^ { * } = 1 / D _ { k } ^ { * }$ ; confidence 0.985

8. b12022068.png ; $f ( \xi ) \in D _ { \xi }$ ; confidence 0.985

9. b12016047.png ; $x _ { 3 } ^ { \prime } = p _ { 2 } q _ { 1 } , x _ { 4 } ^ { \prime } = p _ { 2 } q _ { 2 }$ ; confidence 0.985

10. t12015012.png ; $\xi \in \mathcal{A} \mapsto \xi ^ { \# } \in \mathcal{A}$ ; confidence 0.985

11. e12007049.png ; $= ( c z + d ) ^ { - k - 2 } F ^ { ( k + 1 ) } ( M z ),$ ; confidence 0.985

12. l0596101.png ; $w _ { N } ( p , q ; t )$ ; confidence 0.985

13. a01419048.png ; $K \subset \Omega$ ; confidence 0.985

14. l12001040.png ; $T = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { 0 } \\ { 1 } & { - 1 } & { 0 } & { 1 } \end{array} \right)$ ; confidence 0.985

15. b11002014.png ; $U \equiv V$ ; confidence 0.985

16. i120080133.png ; $J _ { 1 } > 0$ ; confidence 0.985

17. c12026068.png ; $u _ { t } = \mathcal{F} ( t , u ) , 0 < t , u ( x , 0 ) = u ^ { 0 } ( x ),$ ; confidence 0.985

18. p12011019.png ; $( 10 )$ ; confidence 0.985

19. s1202006.png ; $\sum _ { i } \lambda _ { i } = n$ ; confidence 0.985

20. d12026038.png ; $\pm 1 / 2$ ; confidence 0.985

21. b120150151.png ; $p _ { i } \neq 1 / 2$ ; confidence 0.985

22. c1302609.png ; $\{ \phi _ { j } \in \mathcal{D} \}$ ; confidence 0.985

23. t120200166.png ; $G _ { 2 } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } \phi ( z _ { j } ) z _ { j } ^ { k }$ ; confidence 0.985

24. n12010024.png ; $\| y _ { 1 } - z _ { 1 } \| \leq \| y _ { 0 } - z _ { 0 } \|$ ; confidence 0.985

25. b1200208.png ; $\beta _ { n } ( t ) = n ^ { 1 / 2 } \left( \Gamma _ { n } ^ { - 1 } ( t ) - t \right) , \quad 0 \leq t \leq 1,$ ; confidence 0.985

26. a130240545.png ; $\Sigma$ ; confidence 0.985

27. a130050246.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.985

28. b12051029.png ; $\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0.$ ; confidence 0.985

29. e12010055.png ; $\mathbf{E} ^ { \prime } = 0$ ; confidence 0.985

30. i13005080.png ; $s > - \infty$ ; confidence 0.985

31. k05570017.png ; $A _ { t } ^ { * }$ ; confidence 0.985

32. b0175706.png ; $\Delta t$ ; confidence 0.985

33. a130040221.png ; $E ( x , y ) = \{ \epsilon _ { i } ( x , y ) : i \in I \}$ ; confidence 0.985

34. f13001012.png ; $R = \mathbf{F} _ { q } [ x ] / ( f )$ ; confidence 0.985

35. s0833606.png ; $J _ { n } = \frac { z ^ { n } } { 2 ^ { \pi + 1 } \pi i } \int _ { - \infty } ^ { ( 0 + ) } t ^ { - n - 1 } \operatorname { exp } \left( t - \frac { z ^ { 2 } } { 4 t } \right) d t.$ ; confidence 0.985

36. b12004026.png ; $( \Omega , \Sigma , \mu )$ ; confidence 0.985

37. m1302002.png ; $( M , P )$ ; confidence 0.985

38. w13009080.png ; $( C ^ { \prime } , C )$ ; confidence 0.985

39. v12003034.png ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { E } f _ { n } d \mu = \nu ( E )$ ; confidence 0.985

40. s120340201.png ; $( H _ { 3 } , J )$ ; confidence 0.985

41. n067520302.png ; $\mathcal{L} ^ { 2 } = \sum \oplus \mathcal{L} _ { \rho _ { \alpha } } ^ { 2 }$ ; confidence 0.985

42. t12015037.png ; $\eta \in \mathcal{D} ( S ^ { * } )$ ; confidence 0.985

43. s130510145.png ; $L _ { 1 } , L _ { 2 } \neq \mathbf{Z} ^ { 0 }$ ; confidence 0.985

44. s12025043.png ; $( a , b ) = ( 0 , \infty )$ ; confidence 0.985

45. p0754809.png ; $( p \supset q ) \supset ( ( p \supset \neg q ) \supset \neg p )$ ; confidence 0.985

46. f12016041.png ; $\lambda \in G$ ; confidence 0.985

47. a13004017.png ; $\Gamma , \Delta \subseteq \operatorname{Fm}$ ; confidence 0.985

48. c0210502.png ; $n = \operatorname { dim } X$ ; confidence 0.985

49. m1202409.png ; $\psi [ 1 ] = \psi - \frac { \varphi \Omega ( \varphi , \psi ) } { \Omega ( \varphi , \varphi ) },$ ; confidence 0.985

50. s08602013.png ; $\Phi ( z ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - z } , \quad z \notin \Gamma,$ ; confidence 0.985

51. s13041018.png ; $\mu _ { 0 } = \mu _ { 1 } =$ ; confidence 0.985

52. q12005022.png ; $d ^ { k } = - H _ { k } D ^ { T } f ( x ^ { k } )$ ; confidence 0.985

53. d12018040.png ; $H ^ { p } ( m )$ ; confidence 0.985

54. m11011034.png ; $| x | > 1$ ; confidence 0.985

55. l120090109.png ; $A = T ^ { * } M$ ; confidence 0.985

56. b12044067.png ; $T _ { H } ^ { G } : B ^ { H } \rightarrow B ^ { G }$ ; confidence 0.985

57. k12006030.png ; $h ^ { 1 } ( L )$ ; confidence 0.985

58. a130240202.png ; $q \times m$ ; confidence 0.985

59. b130020108.png ; $x \circ ( y \circ x ^ { 2 } ) = ( x \circ y ) \circ x ^ { 2 }$ ; confidence 0.985

60. d12030034.png ; $d Z ( t ) = g ( t , Z ( t ) ) d \tilde { B } ( t )$ ; confidence 0.985

61. w130080115.png ; $d E$ ; confidence 0.985

62. c130160108.png ; $f ( w ) \notin B$ ; confidence 0.985

63. c11032078.png ; $h \in H ^ { \infty }$ ; confidence 0.985

64. f13016032.png ; $k + n$ ; confidence 0.985

65. a120280158.png ; $\{ \alpha _ { t } \} _ { t \in G }$ ; confidence 0.985

66. q12001046.png ; $( \theta f ) ( s ) : = f ( - s )$ ; confidence 0.985

67. f12023060.png ; $L \in \Omega ^ { \text{l} + 1 } ( M , T M )$ ; confidence 0.985

68. r130070149.png ; $( f , g ) _ { H } = ( L F , L G ) _ { H } =$ ; confidence 0.985

69. o130010149.png ; $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.985

70. i13006097.png ; $q ( x ) = A ^ { 2 } ( x ) + A ^ { \prime } ( x )$ ; confidence 0.985

71. n067520445.png ; $f ( V )$ ; confidence 0.985

72. f13021049.png ; $A ( G _ { 1 } )$ ; confidence 0.985

73. l13006058.png ; $m = 2 ^ { E }$ ; confidence 0.985

74. a13029025.png ; $u ( 1 , t ) \in L _ { 1 }$ ; confidence 0.985

75. b12005036.png ; $\{ f \in \mathcal{H} ^ { \infty } ( B _ { E } ) : f \ \text { uniformly continuous on } B _ { E } \}.$ ; confidence 0.985

76. d03027031.png ; $V _ { n , p } ( f , x ) =$ ; confidence 0.985

77. b1205307.png ; $T : L \rightarrow M$ ; confidence 0.985

78. o13001038.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( \alpha ^ { \prime } . \alpha , k )$ ; confidence 0.985

79. d03029024.png ; $g ( x _ { i } ) = ( - 1 ) ^ { i } \| g \|$ ; confidence 0.985

80. l11004046.png ; $F _ { \mathcal{X} } ( T ) \in \mathcal{X}$ ; confidence 0.985

81. i13009075.png ; $( \pi , T )$ ; confidence 0.985

82. p12011010.png ; $| C ( 30 ) | = 845480228069$ ; confidence 0.985

83. q12008032.png ; $\sigma _ { p } = \sum _ { k = 1 } ^ { p } \rho _ { p }$ ; confidence 0.985

84. d12030049.png ; $\sigma ( Y ( u ) , u \leq t )$ ; confidence 0.985

85. o13005038.png ; $T ^ { * } \subset \mathcal{A} ^ { * }$ ; confidence 0.985

86. w12006014.png ; $\varphi \in \operatorname{Hom}( C ^ { \infty } ( M , \mathbf{R} ) , A )$ ; confidence 0.985

87. w12006088.png ; $T T _ { A } \rightarrow T T _ { A }$ ; confidence 0.985

88. s1203004.png ; $\operatorname{Map}( B _ { G } , X )$ ; confidence 0.985

89. v1200303.png ; $\lambda : \Sigma \rightarrow [ 0 , + \infty ]$ ; confidence 0.985

90. c1200201.png ; $f \in L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.985

91. a130040278.png ; $\Gamma \cup \{ \varphi , \psi \} \subseteq \operatorname{Fm}$ ; confidence 0.985

92. b120040150.png ; $( X _ { 0 } ^ { 1 - \theta } X _ { 1 } ^ { \theta } ) ^ { \prime } = ( X _ { 0 } ^ { \prime } ) ^ { 1 - \theta } ( X _ { 1 } ^ { \prime } ) ^ { \theta }$ ; confidence 0.985

93. c13015070.png ; $\mathcal{G} ^ { \infty } ( \Omega ) \cap \mathcal{D} ^ { \prime } ( \Omega ) = \mathcal{C} ^ { \infty } ( \Omega )$ ; confidence 0.985

94. h04690014.png ; $\delta _ { 2 }$ ; confidence 0.985

95. f12002048.png ; $K ( ( X ) )$ ; confidence 0.985

96. i13005050.png ; $\int _ { - \infty } ^ { \infty } | g ( x , i k _ { j } ) | ^ { 2 } d x = ( m _ { j } ^ { - } ) ^ { - 2 }.$ ; confidence 0.985

97. h12012085.png ; $\phi _ { \infty }$ ; confidence 0.985

98. d130080101.png ; $E _ { z _ { 0 } } ( x , R ) = F _ { z _ { 0 } } ( x , R )$ ; confidence 0.985

99. z13003027.png ; $( Z f ) ( t , w ) = ( 2 \gamma ) ^ { 1 / 4 } e ^ { - \pi \gamma t ^ { 2 } } \theta _ { 3 } ( w - i \gamma t , e ^ { - \pi \gamma } ),$ ; confidence 0.985

100. b12031057.png ; $M _ { R } f ( x )$ ; confidence 0.985

101. l120090124.png ; $d _ { A } *$ ; confidence 0.985

102. s13050018.png ; $\mathcal{A} : = \mathcal{F} _ { l }$ ; confidence 0.985

103. t0940805.png ; $A \cup B = X$ ; confidence 0.985

104. a13023031.png ; $\| f _ { \text{l} } - P f \| \rightarrow 0$ ; confidence 0.984

105. a1300705.png ; $\sigma ( n ) < 2 n$ ; confidence 0.984

106. d12013028.png ; $H ^ { * } ( W ; \mathbf{F} _ { 2 } )$ ; confidence 0.984

107. m13025088.png ; $\mathcal{M} _ { 3 }$ ; confidence 0.984

108. e120260131.png ; $( v , p ) \in E \times \mathbf{R}$ ; confidence 0.984

109. s12023079.png ; $X : = A U,$ ; confidence 0.984

110. d13006011.png ; $m : 2 ^ { \Xi } \rightarrow [ 0,1 ]$ ; confidence 0.984

111. z13010095.png ; $( R \in R \leftrightarrow ( \neg R \in R ) )$ ; confidence 0.984

112. a110680209.png ; $n \geq 4$ ; confidence 0.984

113. g12003023.png ; $\alpha _ { \nu }$ ; confidence 0.984

114. l057000184.png ; $f ( d ) = \cup \{ f ( \beta ) : \beta \subseteq d , \beta \ \Box \text{finite} \}$ ; confidence 0.984

115. f1301705.png ; $u \in A _ { 2 } ( G )$ ; confidence 0.984

116. d12006019.png ; $H ^ { ( 0 ) } = - D ^ { 2 } + u = Q ^ { - } Q ^ { + };$ ; confidence 0.984

117. p120170100.png ; $\mathcal{A}$ ; confidence 0.984

118. m12011029.png ; $X = t ( h )$ ; confidence 0.984

119. a0124507.png ; $\mathbf{R} ^ { 4 }$ ; confidence 0.984

120. t12006010.png ; $\mathcal{E} ( \rho ) : =$ ; confidence 0.984

121. t120060144.png ; $B \sim Z ^ { 3 }$ ; confidence 0.984

122. y12001021.png ; $B _ { 12 } B _ { 23 } B _ { 12 } = B _ { 23 } B _ { 12 } B _ { 23 }.$ ; confidence 0.984

123. f12004034.png ; $( \overline { \mathbf{R} } , \leq )$ ; confidence 0.984

124. g04337012.png ; $f _ { G } ^ { \prime } ( x _ { 0 } )$ ; confidence 0.984

125. c02211025.png ; $x _ { k } = + \infty$ ; confidence 0.984

126. b13027093.png ; $C ( X ) \otimes \mathcal{K} ( H )$ ; confidence 0.984

127. f12021075.png ; $1 \leq j \leq \nu$ ; confidence 0.984

128. n067520282.png ; $\mathcal{L} _ { \rho } ^ { 2 }$ ; confidence 0.984

129. a130240342.png ; $\mathbf{Y} , \mathbf{B} , \mathbf{E}$ ; confidence 0.984

130. z12001071.png ; $O _ { 1 } ( m ),$ ; confidence 0.984

131. f040820114.png ; $f ( Z )$ ; confidence 0.984

132. h120120146.png ; $H ( Y )$ ; confidence 0.984

133. h13006056.png ; $R _ { 0 } ( X , D )$ ; confidence 0.984

134. w130080189.png ; $\omega = \omega ^ { 0 } - ( 1 / \kappa ) \sum \delta H _ { \alpha } \delta t _ { \alpha }$ ; confidence 0.984

135. a13029043.png ; $\mathcal{L} _ { 1 } \subset \mathcal{M} ( P )$ ; confidence 0.984

136. m12027013.png ; $w \in C ^ { ( 1 ) } ( \partial D )$ ; confidence 0.984

137. c11002039.png ; $b \geq 0$ ; confidence 0.984

138. l1201706.png ; $C W$ ; confidence 0.984

139. m13013051.png ; $\tau ( K _ { \nu } ) = \nu ^ { \nu - 2 }$ ; confidence 0.984

140. p12011030.png ; $\overset{\rightharpoonup}{ G }$ ; confidence 0.984

141. b12017039.png ; $| \xi | ^ { - \alpha }$ ; confidence 0.984

142. n067520221.png ; $A \rightarrow C ^ { - 1 } A C$ ; confidence 0.984

143. a01138019.png ; $x = 1$ ; confidence 0.984

144. p11015076.png ; $\varphi = \tau \psi$ ; confidence 0.984

145. a12012064.png ; $\lambda ^ { * } = \lambda ( x ^ { * } , y ^ { * } )$ ; confidence 0.984

146. n06752059.png ; $\Delta j > 0$ ; confidence 0.984

147. p13007083.png ; $C ( E , \Omega ) = \operatorname { sup } \{ C ( K ) : K \subset \Omega \}.$ ; confidence 0.984

148. t12006018.png ; $\int _ { \mathbf{R} ^ { 3 } } \rho = N$ ; confidence 0.984

149. t12015072.png ; $J \mathcal{L} ( \mathcal{A} ) J = \mathcal{L} ( \mathcal{A} ) ^ { \prime }$ ; confidence 0.984

150. i13005048.png ; $- f ^ { \prime \prime } ( x , i k _ { j } ) + q ( x ) f ( x , i k _ { j } ) + k ^ { 2 _ j } f ( x , i k _ { j } ) = 0,$ ; confidence 0.984

151. t13011029.png ; $\operatorname { mod} B$ ; confidence 0.984

152. a12023010.png ; $Z _ { n , n - 1 } ^ { \infty } ( \overline { D } )$ ; confidence 0.984

153. k13006059.png ; $| \Delta ( \mathcal{F} ) | \geq \left( \begin{array} { c } { x } \\ { k - 1 } \end{array} \right).$ ; confidence 0.984

154. s1304503.png ; $R _ { i } = \operatorname { rank } ( x _ { i } )$ ; confidence 0.984

155. f04049023.png ; $\nu _ { 1 } = m$ ; confidence 0.984

156. w130080144.png ; $F B ( \Sigma _ { g } , G )$ ; confidence 0.984

157. l1300408.png ; $[ x y z ] + [ y z x ] + [ z x y ] = 0,$ ; confidence 0.984

158. c13016024.png ; $\phi \equiv ( x _ { 1 } \vee x _ { 2 } ) \wedge ( \overline { x _ { 2 } } \vee \overline { x _ { 3 } } ) \wedge ( \overline { x _ { 1 } } \vee x _ { 3 } )$ ; confidence 0.984

159. f13010084.png ; $P M _ { p } ( G )$ ; confidence 0.984

160. s12017078.png ; $| F ( A , d ) | \geq k$ ; confidence 0.984

161. z12001074.png ; $x ^ { ( i ) }$ ; confidence 0.984

162. a12022039.png ; $S < T$ ; confidence 0.984

163. a13004089.png ; $\operatorname {Mod} \mathcal{D}$ ; confidence 0.984

164. e13003029.png ; $K _ { \infty }$ ; confidence 0.984

165. a01137073.png ; $\{ U _ { i } \}$ ; confidence 0.984

166. t120200179.png ; $\operatorname {max}_{r}\operatorname { Re } G _ { 1 } ( r ) \geq B$ ; confidence 0.984

167. t12015032.png ; $S ^ { * } = J \Delta ^ { - 1 / 2 } = \Delta ^ { 1 / 2 } J$ ; confidence 0.984

168. b015400100.png ; $\Psi _ { 1 }$ ; confidence 0.984

169. r13007047.png ; $= c \sum _ { j = 1 } ^ { \infty } ( A \varphi _ { j } , \varphi _ { j } ) _ { 0 } = c \Lambda ^ { 2 } < \infty.$ ; confidence 0.984

170. a0137505.png ; $x \rightarrow \infty$ ; confidence 0.984

171. q120070108.png ; $\epsilon g = 1$ ; confidence 0.984

172. o13004016.png ; $L ( \dot { x } , x )$ ; confidence 0.984

173. b13029093.png ; $\operatorname { dim } A = d$ ; confidence 0.984

174. d120280151.png ; $\omega ( \zeta ) \in C ( \partial D _ { m } )$ ; confidence 0.984

175. z1300702.png ; $\pm \zeta ^ { 2 }$ ; confidence 0.984

176. f12008060.png ; $T \in C ^ { * } ( G )$ ; confidence 0.984

177. r130070116.png ; $f ( x ) = L F : = \int _ { T } F ( t ) \overline { h ( t , x ) } d m ( t ).$ ; confidence 0.984

178. i130090196.png ; $g _ { \chi } ( T )$ ; confidence 0.984

179. f120230106.png ; $\Omega ( M )$ ; confidence 0.984

180. l1201602.png ; $\Omega G = \{ \gamma : S ^ { 1 } \rightarrow G : \gamma ( 1 ) = 1 \}$ ; confidence 0.984

181. a01174024.png ; $n \geq 2$ ; confidence 0.984

182. m120130110.png ; $\mu _ { 2 } = \gamma$ ; confidence 0.984

183. l12006068.png ; $e ^ { - i z t }$ ; confidence 0.984

184. s1306202.png ; $- y ^ { \prime \prime } + q ( x ) y = \lambda y,$ ; confidence 0.984

185. c130070262.png ; $V = \nu _ { 1 } V _ { 1 } - \mathfrak { D } _ { 1 }$ ; confidence 0.984

186. f12008067.png ; $L _ { \infty } ( G )$ ; confidence 0.984

187. o12005012.png ; $S ( t ) : = \int _ { 0 } ^ { t } w ( s ) d s < \infty.$ ; confidence 0.984

188. w12007084.png ; $i \xi A$ ; confidence 0.984

189. e12015027.png ; $| \eta |$ ; confidence 0.984

190. a11030022.png ; $\Omega X$ ; confidence 0.984

191. w13017059.png ; $\operatorname { det } \Sigma = \operatorname { exp } \left\{ ( 2 \pi ) ^ { - 1 } \int _ { - \pi } ^ { \pi } \operatorname { log } \operatorname { det } 2 \pi f ( \lambda ) d \lambda \right\}.$ ; confidence 0.984

192. i130090110.png ; $\nu _ { p } ( K / k )$ ; confidence 0.984

193. o11005097.png ; $60$ ; confidence 0.984

194. i13009071.png ; $a _ { i } \in ( \pi )$ ; confidence 0.984

195. q13005063.png ; $| \alpha | = | \beta | \Rightarrow \frac { | h ( \alpha ) | } { | h ( \beta ) | } \leq M.$ ; confidence 0.984

196. t130050151.png ; $K ( A , \mathcal{X} )$ ; confidence 0.984

197. g120040155.png ; $L = L _ { 2 }$ ; confidence 0.984

198. o13008051.png ; $I ( k )$ ; confidence 0.984

199. b12001010.png ; $\frac { \partial ^ { 2 } u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } \partial x _ { 2 } ^ { \prime } } - \frac { \partial ^ { 2 } u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } \partial x _ { 1 } ^ { \prime } } = 0$ ; confidence 0.984

200. q1200809.png ; $\rho _ { p } = \lambda _ { p } b _ { p }$ ; confidence 0.984

201. v12004032.png ; $\Delta ( G ) \geq 8$ ; confidence 0.984

202. b12031061.png ; $G _ { \delta } [ f _ { S } ^ { + } ( x _ { 0 } ) - f _ { S } ^ { - } ( x _ { 0 } ) ]$ ; confidence 0.984

203. a12006046.png ; $0 \leq t _ { 1 } \leq t _ { k } \leq T$ ; confidence 0.984

204. d13011025.png ; $\gamma _ { i } ^ { 2 } = 1 , i = 1,2,3,4,$ ; confidence 0.984

205. a13025021.png ; $[D _ { 1 } , D _ { 2 } ] = D _ { 1 } D _ { 2 } - D _ { 2 } D _ { 1 } \in \mathcal{D}$ ; confidence 0.984

206. n12001011.png ; $\pi ( \nu )$ ; confidence 0.984

207. l110020169.png ; $C [ X , \mathbf{R} ]$ ; confidence 0.984

208. m12019021.png ; $F ( \tau ) = \int _ { 1 } ^ { \infty } P _ { i \tau - 1 / 2 } ( x ) f ( x ) d x$ ; confidence 0.984

209. b1200609.png ; $\frac { \partial } { \partial z } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } - i \frac { \partial } { \partial y } \right) , \frac { \partial } { \partial \overline{z} } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } \right),$ ; confidence 0.984

210. f12011025.png ; $F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.984

211. t120200221.png ; $\operatorname {max}_{j} | z _ { j } | = 1$ ; confidence 0.984

212. s12022028.png ; $\operatorname { spec } ( M , \Delta ) = \operatorname { spec } ( M ^ { \prime } , \Delta ^ { \prime } )$ ; confidence 0.984

213. l057000102.png ; $f ( k + 1 , x ) = f ( k , x ) + x$ ; confidence 0.984

214. l12006063.png ; $\operatorname { Re } W ( z ) > 0$ ; confidence 0.984

215. c12027012.png ; $\Omega _ { p } \subset T _ { p } M$ ; confidence 0.984

216. e120190146.png ; $g ( f ( a ) , f ( b ) )$ ; confidence 0.984

217. b12052060.png ; $1 + v ^ { T } B ^ { - 1 } u \neq 0$ ; confidence 0.983

218. s13045012.png ; $T = \sum _ { t } t ( t ^ { 2 } - 1 ) / 12$ ; confidence 0.983

219. f130100157.png ; $u \in A _ { p } ( G )$ ; confidence 0.983

220. a12010064.png ; $\int _ { \Omega } u \Delta u d x = \int _ { \partial \Omega } u \frac { \partial u } { \partial \eta } d \sigma - \int _ { \Omega } | \operatorname { grad } u | ^ { 2 } d x,$ ; confidence 0.983

221. p12012034.png ; $6$ ; confidence 0.983

222. k13002093.png ; $C _ { X , Y }$ ; confidence 0.983

223. a13025029.png ; $L ( V )$ ; confidence 0.983

224. i13003053.png ; $L ( N , g )$ ; confidence 0.983

225. f12010061.png ; $j ( z ) = q ^ { - 1 } + 744 + 196884 q + 21493760 q ^ { 2 } +\dots .$ ; confidence 0.983

226. b01692064.png ; $2 ^ { n }$ ; confidence 0.983

227. b13026091.png ; $0 \notin f ( \partial \Omega )$ ; confidence 0.983

228. p11015040.png ; $( H , Q )$ ; confidence 0.983

229. m1300901.png ; $0 = \left[ - \left( \frac { \partial } { \partial t } - i \frac { q e } { \hbar } \phi \right) ^ { 2 } + \right.$ ; confidence 0.983

230. z13011048.png ; $\{ f _ { i n } \} _ { i = 1 } ^ { N }$ ; confidence 0.983

231. s120340190.png ; $u _ { 1 } \cup u _ { 2 } \cup \sigma : D ^ { 2 } \rightarrow M$ ; confidence 0.983

232. g12007039.png ; $\mathbf{R} \pi$ ; confidence 0.983

233. y1200105.png ; $R _ { 12 } = R \otimes _ { k } 1$ ; confidence 0.983

234. k1300509.png ; $N ^ { 6 }$ ; confidence 0.983

235. a1300701.png ; $\sigma ( n )$ ; confidence 0.983

236. d12006015.png ; $T ( f ) ( x , t ) = f ( x + \delta , t ) , \quad x , \delta \in \mathbf{R},$ ; confidence 0.983

237. m12009029.png ; $P ( D ) u = 0$ ; confidence 0.983

238. m12007037.png ; $m ( x + y + x y + x ^ { 2 } y + x y ^ { 2 } ) = L ^ { \prime } ( 0 , E _ { 15 } )$ ; confidence 0.983

239. a1302507.png ; $\{ x y z \} + \{ y z x \} + \{ z x y \} = 0,$ ; confidence 0.983

240. f12015088.png ; $A + T \in \Phi _ { \pm } ( X , Y )$ ; confidence 0.983

241. a1201603.png ; $Z =$ ; confidence 0.983

242. e13003032.png ; $\Gamma \backslash G ( \mathbf{R} )$ ; confidence 0.983

243. c12027011.png ; $s = \operatorname { dist } ( p , \gamma ( s ) )$ ; confidence 0.983

244. b11022017.png ; $0 \leq i \leq 2 n$ ; confidence 0.983

245. a12006065.png ; $f \in C ( [ 0 , T ] ; Y )$ ; confidence 0.983

246. a1201201.png ; $( m \times n )$ ; confidence 0.983

247. b13027019.png ; $\mathcal{B} ( \mathcal{H} )$ ; confidence 0.983

248. m12015068.png ; $V > 0 , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 ).$ ; confidence 0.983

249. m130260157.png ; $b ^ { * } b = b b ^ { * }$ ; confidence 0.983

250. t1200608.png ; $R_{i} \in \mathbf{R} ^ { 3 }$ ; confidence 0.983

251. b130290213.png ; $R = k [ R _ { 1 }]$ ; confidence 0.983

252. a11028043.png ; $n - 1$ ; confidence 0.983

253. b01615019.png ; $n = 6$ ; confidence 0.983

254. d12013029.png ; $S ( H ^ { 1 } ( W ; \mathbf{F} _ { 2 } ) )$ ; confidence 0.983

255. f13016053.png ; $Q ( R / P )$ ; confidence 0.983

256. e12027016.png ; $\gamma \leq - 1 / 2$ ; confidence 0.983

257. c120180195.png ; $S ( g ) = g ^ { - 1 } \{ 1,2 \} \operatorname { Ric } ( g ) = g ^ { - 1 } \{ 1,4 ; 2,3 \} R ( g ) \in C ^ { \infty } ( M )$ ; confidence 0.983

258. d03202011.png ; $x _ { 0 } \in \Omega$ ; confidence 0.983

259. h12002058.png ; $H_{-} ^ { 2 }$ ; confidence 0.983

260. e120190182.png ; $W ^ { \prime }$ ; confidence 0.983

261. d13011046.png ; $\operatorname { Re } ( 4 )$ ; confidence 0.983

262. d12002020.png ; $u _ { 2 } = u _ { 2 } ^ { * }$ ; confidence 0.983

263. s120320116.png ; $U \subset \mathbf{C} ^ { p }$ ; confidence 0.983

264. l06105086.png ; $P ( E ) < \delta \Rightarrow \lambda ( F ( E ) ) < \epsilon ).$ ; confidence 0.983

265. l0600307.png ; $P Q \perp A ^ { \prime } A$ ; confidence 0.983

266. p12015046.png ; $\alpha > 0$ ; confidence 0.983

267. a12027067.png ; $\operatorname {trace}_{E/K} ( x ^ { 2 } )$ ; confidence 0.983

268. m12023064.png ; $f _ { t , s } = f _ { t - s }$ ; confidence 0.983

269. l12010028.png ; $V ( x ) = \lambda W ( x )$ ; confidence 0.983

270. m06211054.png ; $n \leq 5$ ; confidence 0.983

271. a120280166.png ; $( \pi , \{ U _ { t } \} _ { t \in G } )$ ; confidence 0.983

272. a12024048.png ; $( Z , g ) = ( \operatorname { div } ( s ) , - \operatorname { log } ( h ( s , s ) ) )$ ; confidence 0.983

273. c13014052.png ; $\Delta = \{ ( x , x ) : x \in X \}$ ; confidence 0.983

274. t1200108.png ; $l \geq 1$ ; confidence 0.983

275. a13024046.png ; $m \times s$ ; confidence 0.983

276. d03249024.png ; $s \in \mathbf{Z}$ ; confidence 0.983

277. v13006019.png ; $j \in ( 1 / 2 ) \mathbf{Z}$ ; confidence 0.983

278. w120110273.png ; $\{ | x | < 1 , | x | | \xi | > 1 \}$ ; confidence 0.983

279. l05700072.png ; $X \equiv W W$ ; confidence 0.983

280. f04158019.png ; $m \times m$ ; confidence 0.983

281. b1301905.png ; $M _ { 1 } , M _ { 2 } \in [ M , 2 M ]$ ; confidence 0.983

282. l13001067.png ; $\operatorname { ln } ^ { 2 } N$ ; confidence 0.983

283. e12026015.png ; $L _ { \mu } ( \theta )$ ; confidence 0.983

284. a130040773.png ; $\mathfrak{N} \in \operatorname {Mod}_{\mathcal{S}_{P \cup R}} ( \Sigma ( P , R ) )$ ; confidence 0.983

285. b12001014.png ; $u ^ { \prime } ( x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } )$ ; confidence 0.983

286. d12005060.png ; $E \in \mathcal{Z}$ ; confidence 0.983

287. m120130109.png ; $\frac { d L } { d t } = \gamma L ( F - \xi ) , \quad \xi = \frac { \nu } { \gamma },$ ; confidence 0.983

288. n12002047.png ; $\mathcal{M} ( \mathbf{R} )$ ; confidence 0.983

289. h04601030.png ; $n \geq 6$ ; confidence 0.983

290. b13012055.png ; $1 / f \in \mathcal{A} ^ { * }$ ; confidence 0.983

291. s1303602.png ; $\mathbf{R} ^ { 1 } = ( - \infty , \infty )$ ; confidence 0.983

292. o12001020.png ; $\varepsilon \ll 1$ ; confidence 0.983

293. g12003024.png ; $\beta _ { \mu }$ ; confidence 0.983

294. a12012016.png ; $x = A v \text { and } y = B v.$ ; confidence 0.983

295. f120150119.png ; $F ( x _ { 0 } ) = y _ { 0 }$ ; confidence 0.983

296. t120140106.png ; $\lambda \notin \phi ( \mathbf{T} )$ ; confidence 0.983

297. i1300801.png ; $A _ { 1 } A _ { 2 } A _ { 3 }$ ; confidence 0.983

298. b13027080.png ; $K K ^ { 1 } ( A , B )$ ; confidence 0.983

299. a1201007.png ; $y ^ { \prime } ( t ) = - A y ( t )$ ; confidence 0.983

300. c12031056.png ; $n ^ { - 1 / 2 }$ ; confidence 0.983

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/19. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/19&oldid=45473