Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/35"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 35 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 35 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230105.png ; $( X X ^ { \prime } ) ^ { 1 / 2 }$ ; confidence 0.982
+
1. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060148.png ; $q ( x ) \in C _ { 0 } ^ { \infty } ( R + )$ ; confidence 0.883
  
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230135.png ; $X _ { i } ( p \times n _ { i } )$ ; confidence 0.960
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002085.png ; $x , y \in R ^ { n }$ ; confidence 0.883
  
3. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510131.png ; $\gamma ( w ) = \gamma ( u )$ ; confidence 1.000
+
3. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700086.png ; $F c _ { k } = c _ { f } ( k )$ ; confidence 0.883
  
4. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510129.png ; $\gamma ( v ) > \gamma ( u )$ ; confidence 0.996
+
4. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057320/l05732010.png ; $a < 1$ ; confidence 0.883
  
5. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305101.png ; $g : V \rightarrow Z ^ { 0 }$ ; confidence 0.335
+
5. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009022.png ; $\sigma ( w x + \theta )$ ; confidence 0.883
  
6. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051054.png ; $N = \cup _ { n \in O } N _ { n }$ ; confidence 0.929
+
6. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883
  
7. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510107.png ; $\gamma ( u ) = \infty ( K )$ ; confidence 0.998
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060134.png ; $K _ { 0 } > 1$ ; confidence 0.883
  
8. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510135.png ; $\gamma ( v ) = \infty ( K )$ ; confidence 0.275
+
8. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025040.png ; $\lambda _ { k } ( t ) = \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta } I _ { k } ( t )$ ; confidence 0.883
  
9. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510124.png ; $c : V ^ { f } \rightarrow J$ ; confidence 0.737
+
9. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708061.png ; $\pi$ ; confidence 0.883
  
10. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051053.png ; $P = \cup _ { n \in O } P _ { n }$ ; confidence 0.846
+
10. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004079.png ; $\rho : GL _ { l } \rightarrow GL _ { m }$ ; confidence 0.883
  
11. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510112.png ; $\gamma ( u ) = \gamma ( v )$ ; confidence 0.999
+
11. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170184.png ; $Wh ^ { * } ( \pi ) \subseteq Wh ( \pi )$ ; confidence 0.883
  
12. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024017.png ; $p _ { i } : X \rightarrow X$ ; confidence 0.896
+
12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005035.png ; $\phi _ { f } \phi _ { g } = \phi _ { f g }$ ; confidence 0.883
  
13. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024043.png ; $z ^ { n } = \{ z _ { i } ^ { n } \}$ ; confidence 0.735
+
13. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013030.png ; $= \oint _ { z = \infty } \tau _ { n + 1 } ( x , y - [ z ] ) \tau _ { m } ( x ^ { \prime } , y ^ { \prime } + [ z ] ) x$ ; confidence 0.883
  
14. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530104.png ; $S ^ { r - 1 } \subset R ^ { r }$ ; confidence 0.825
+
14. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001084.png ; $( \mathfrak { E } , M )$ ; confidence 0.883
  
15. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025018.png ; $h ( x ) = \sqrt { 1 - x ^ { 2 } }$ ; confidence 1.000
+
15. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025022.png ; $\pi _ { k } ( X , * ) \rightarrow \pi _ { k } ( Y , * )$ ; confidence 0.883
  
16. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026051.png ; $\partial _ { S } \phi ( s )$ ; confidence 0.608
+
16. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006016.png ; $D _ { g , n } = \overline { M _ { g , n } } - M _ { g , n }$ ; confidence 0.883
  
17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026041.png ; $\Omega = ( 1,0 , \ldots )$ ; confidence 0.533
+
17. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007035.png ; $\| u \| : = ( u , u ) ^ { 1 / 2 }$ ; confidence 0.883
  
18. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305907.png ; $\{ z ^ { j } \} _ { j = p } ^ { q }$ ; confidence 0.931
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018054.png ; $( S _ { n } )$ ; confidence 0.882
  
19. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302050.png ; $S : M _ { k } \rightarrow W$ ; confidence 0.675
+
19. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001059.png ; $\overline { U } _ { 1 }$ ; confidence 0.882
  
20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062060.png ; $m _ { \alpha } ( \lambda )$ ; confidence 0.996
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032045.png ; $\theta = .5$ ; confidence 0.882
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062098.png ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.501
+
21. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066054.png ; $| K ( x , y ) | = O ( | x - y | ^ { - x } )$ ; confidence 0.882
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062097.png ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.997
+
22. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003017.png ; $| d \varphi | ^ { 2 } ( x ) = g ^ { i j } ( x ) h _ { \alpha \beta } ( \varphi ( x ) ) \cdot \frac { \partial \varphi ^ { \alpha } } { \partial x ^ { i } } \frac { \partial \varphi ^ { \beta } } { \partial x ^ { j } }$ ; confidence 0.882
  
23. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033012.png ; $\lambda ( v - 1 ) = k ( k - 1 )$ ; confidence 0.927
+
23. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005038.png ; $\Sigma ^ { i } ( f )$ ; confidence 0.882
  
24. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034055.png ; $\mathfrak { c } _ { 1 } ( A )$ ; confidence 0.336
+
24. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009013.png ; $C _ { U }$ ; confidence 0.882
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034073.png ; $x : S ^ { 1 } \rightarrow M$ ; confidence 0.602
+
25. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025630/c0256301.png ; $\{ T ^ { t } \}$ ; confidence 0.882
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340104.png ; $v : S ^ { 2 } \rightarrow M$ ; confidence 0.536
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070111.png ; $U _ { a }$ ; confidence 0.882
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034087.png ; $S _ { H } : P \rightarrow R$ ; confidence 0.554
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010068.png ; $( T f ) ( z ) = f ( - z )$ ; confidence 0.882
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034077.png ; $u : D ^ { 2 } \rightarrow M$ ; confidence 0.996
+
28. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018081.png ; $\xi ( t ) = \frac { 1 } { \sqrt { \omega _ { N + 1 } } } \int _ { R ^ { N } } \frac { e ^ { i ( t , \lambda ) } - 1 } { | \lambda | ^ { ( N + 1 ) / 2 } } W ( d \lambda )$ ; confidence 0.882
  
29. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035014.png ; $f ( Z ^ { t - 1 } , t , \theta )$ ; confidence 0.998
+
29. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
  
30. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063020.png ; $( y _ { 1 } , \dots , y _ { s } )$ ; confidence 0.828
+
30. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222073.png ; $x = x ( t , u , v )$ ; confidence 0.882
  
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002031.png ; $( X _ { n } ) _ { n \in Z } ^ { d }$ ; confidence 0.191
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003054.png ; $( V )$ ; confidence 0.882
  
32. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050137.png ; $0 \in \sigma _ { T } ( A , H )$ ; confidence 0.943
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001026.png ; $f _ { 0 } ^ { \prime \prime } ( c ) > 0$ ; confidence 0.882
  
33. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050127.png ; $M _ { \sigma _ { T } } ( B , X )$ ; confidence 0.695
+
33. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p1201208.png ; $g ^ { \prime } = \phi g$ ; confidence 0.882
  
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003024.png ; $\sqrt { \varphi ( z ) } d z$ ; confidence 0.999
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040786.png ; $A , B \in K$ ; confidence 0.882
  
35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005091.png ; $( j _ { 1 } , \dots , j _ { s } )$ ; confidence 0.699
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040126.png ; $4$ ; confidence 0.882
  
36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005026.png ; $x \in \Sigma ^ { i , j } ( f )$ ; confidence 0.749
+
36. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007013.png ; $GCD ( h ( n ) , q ) = 1$ ; confidence 0.882
  
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050122.png ; $f : V ^ { n } \rightarrow R$ ; confidence 0.774
+
37. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001027.png ; $\hat { f } ( x _ { i } ) = c ( x _ { i } )$ ; confidence 0.882
  
38. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006057.png ; $E ^ { TF } ( N ) = E ^ { TF } ( Z )$ ; confidence 0.573
+
38. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012084.png ; $\alpha f = \alpha q$ ; confidence 0.882
  
39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060143.png ; $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$ ; confidence 0.915
+
39. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022062.png ; $L y + p ( x ) y = 0$ ; confidence 0.882
  
40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070119.png ; $\Theta _ { \Lambda } ( q )$ ; confidence 0.982
+
40. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090295.png ; $\mathfrak { n } ^ { + } = \sum _ { \alpha \in \Phi ^ { + } } \mathfrak { g } _ { \alpha }$ ; confidence 0.882
  
41. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008018.png ; $F ( X , Y ) \in O _ { S } [ X , Y ]$ ; confidence 0.994
+
41. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008062.png ; $S _ { i } = + 1$ ; confidence 0.881
  
42. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011025.png ; $( X ( T _ { A } ) , Y ( T _ { A } ) )$ ; confidence 0.980
+
42. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002012.png ; $P ( \wedge ^ { k } C ^ { n } )$ ; confidence 0.881
  
43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011024.png ; $( T ( T _ { A } ) , F ( T _ { A } ) )$ ; confidence 0.778
+
43. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021068.png ; $M _ { C }$ ; confidence 0.881
  
44. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013047.png ; $( T , . ) : T \rightarrow Y$ ; confidence 0.751
+
44. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014054.png ; $A _ { 1 } = I$ ; confidence 0.881
  
45. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014071.png ; $h _ { i } \in Gl ( v _ { i } , K )$ ; confidence 0.537
+
45. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010017.png ; $\tau _ { A }$ ; confidence 0.881
  
46. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014070.png ; $h _ { j } \in Gl ( v _ { j } , K )$ ; confidence 0.752
+
46. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110210/c11021038.png ; $P$ ; confidence 0.881
  
47. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014062.png ; $\beta : j \rightarrow i$ ; confidence 0.961
+
47. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030025.png ; $\gamma : R ^ { n } \rightarrow R ^ { k }$ ; confidence 0.881
  
48. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140138.png ; $q : Z ^ { l } \rightarrow Z$ ; confidence 0.628
+
48. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011055.png ; $G _ { p , n } ( x ) = \sum _ { i = 1 } ^ { N } 1 _ { \{ n p _ { i n } \geq x \} }$ ; confidence 0.881
  
49. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014031.png ; $\beta : i \rightarrow j$ ; confidence 0.901
+
49. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008063.png ; $= \frac { \rho } { 2 ( 1 - \rho ) } \sum _ { p = 1 } ^ { P } \lambda _ { p } b _ { p } ^ { ( 2 ) } + \rho \frac { \Delta ^ { 2 } } { 2 R } +$ ; confidence 0.881
  
50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013081.png ; $\langle p , y \rangle = 0$ ; confidence 0.903
+
50. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003043.png ; $( X , \| \| )$ ; confidence 0.881
  
51. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013056.png ; $\tau ( x , y ) = \tau ( x - y )$ ; confidence 0.998
+
51. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026055.png ; $[ l , \Omega , y ] = 1$ ; confidence 0.881
  
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013039.png ; $W _ { N } \supset W _ { N } + 1$ ; confidence 0.291
+
52. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013011.png ; $\sigma ( T ) \backslash \sigma _ { d } ( T )$ ; confidence 0.881
  
53. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014034.png ; $\phi \mapsto T _ { \phi }$ ; confidence 0.998
+
53. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004041.png ; $1 \leq i \leq l$ ; confidence 0.881
  
54. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014082.png ; $\| u - h \| _ { L } \infty < 1$ ; confidence 0.879
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881
  
55. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t0935607.png ; $f ( x x ^ { * } ) = f ( x ^ { * } x )$ ; confidence 0.775
+
55. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005065.png ; $H _ { new } = H _ { k + 1 }$ ; confidence 0.881
  
56. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356039.png ; $s ( x , y ) = \phi ( y ^ { * } x )$ ; confidence 0.999
+
56. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052065.png ; $G ( x ) = 0$ ; confidence 0.881
  
57. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200148.png ; $\dot { k } \in [ m + 1 , m + n ]$ ; confidence 0.349
+
57. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020211.png ; $\operatorname { Deg } ( F , \overline { D } \square ^ { n + 1 } , \theta )$ ; confidence 0.881
  
58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200130.png ; $| 1 - z | + 1 | > \delta _ { 2 }$ ; confidence 0.770
+
58. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200508.png ; $| S _ { k } ( 0 ) | = 1$ ; confidence 0.881
  
59. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020085.png ; $\theta \approx 0,2784$ ; confidence 0.749
+
59. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d130180101.png ; $f \in J _ { E }$ ; confidence 0.881
  
60. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002065.png ; $\operatorname { lim } Q$ ; confidence 0.660
+
60. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027061.png ; $p _ { j } \geq 0$ ; confidence 0.881
  
61. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020142.png ; $\operatorname { deg } F$ ; confidence 0.536
+
61. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004053.png ; $d _ { - 1 } - d _ { 1 } = - c , d _ { - 1 } + d _ { 1 } = c ^ { 2 }$ ; confidence 0.881
  
62. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002029.png ; $f ^ { - 1 } ( Y _ { 0 } ) = X _ { 0 }$ ; confidence 0.998
+
62. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001089.png ; $R ^ { * } N$ ; confidence 0.881
  
63. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002064.png ; $d _ { k } = rd _ { Y } M _ { k }$ ; confidence 0.623
+
63. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001023.png ; $X _ { t }$ ; confidence 0.881
  
64. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007039.png ; $w \rightarrow + \infty$ ; confidence 0.996
+
64. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001029.png ; $y ^ { \prime } ( n )$ ; confidence 0.881
  
65. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003011.png ; $\mu ( E ) | < \varepsilon$ ; confidence 0.946
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050027.png ; $\int _ { 0 } ^ { t } f ( W _ { s } ) d s = \int 1 ( t , x ) f ( x ) d x$ ; confidence 0.880
  
66. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900135.png ; $\phi ( x ^ { * } x ) < \infty$ ; confidence 0.996
+
66. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007056.png ; $S ( k )$ ; confidence 0.880
  
67. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900189.png ; $T ( \zeta ) \in A ( \zeta )$ ; confidence 0.999
+
67. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022047.png ; $K ^ { ( j ) } i ( X ) \subset K _ { i } ( X ) \otimes Q$ ; confidence 0.880
  
68. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030146.png ; $f \in \Omega ^ { \prime }$ ; confidence 0.993
+
68. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090355.png ; $M _ { K } = K \otimes _ { Z } M$ ; confidence 0.880
  
69. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030143.png ; $\gamma _ { 0 } \in \Gamma$ ; confidence 0.989
+
69. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021077.png ; $x _ { i } \neq 0$ ; confidence 0.880
  
70. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004037.png ; $N : M \rightarrow S ^ { 2 }$ ; confidence 0.998
+
70. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007040.png ; $( u , v ) _ { + } : = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.880
  
71. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w1300402.png ; $X : M \rightarrow R ^ { n }$ ; confidence 0.386
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230148.png ; $f _ { 1 } ( T ) = W ^ { ( n - k ) / 2 } f ( T )$ ; confidence 0.880
  
72. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w1200508.png ; $C ^ { \infty } ( R ^ { m } , R )$ ; confidence 0.341
+
72. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026082.png ; $g : B [ R ] \rightarrow R ^ { n }$ ; confidence 0.880
  
73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005052.png ; $f : R ^ { m } \rightarrow R$ ; confidence 0.517
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050176.png ; $F _ { q }$ ; confidence 0.880
  
74. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006034.png ; $h \circ f - h \circ g \in A$ ; confidence 0.890
+
74. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900123.png ; $P < Q$ ; confidence 0.880
  
75. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006014.png ; $( C ^ { \infty } ( M , R ) , A )$ ; confidence 0.985
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023046.png ; $d w [ k ] = d w _ { 1 } \wedge \ldots \wedge d w _ { k - 1 } \wedge d w _ { k + 1 } \wedge \ldots \wedge d w _ { n }$ ; confidence 0.880
  
76. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090229.png ; $\nabla ( \lambda ) ^ { * }$ ; confidence 0.998
+
76. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030104.png ; $\sum _ { j = m } ^ { \infty } f _ { j } ( x ) \varepsilon ^ { j }$ ; confidence 0.880
  
77. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090355.png ; $M _ { K } = K \otimes _ { Z } M$ ; confidence 0.880
+
77. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007054.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z )$ ; confidence 0.880
  
78. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009020.png ; $( E ^ { \otimes \gamma } )$ ; confidence 0.789
+
78. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520286.png ; $D _ { K _ { \rho } } = \{ F ( \xi ) : \int _ { - \infty } ^ { + \infty } \xi ^ { 2 } | F ( \xi ) | ^ { 2 } d \rho ( \xi ) < \infty \}$ ; confidence 0.880
  
79. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090402.png ; $d \lambda _ { \mu } \neq 0$ ; confidence 0.604
+
79. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029093.png ; $( \operatorname { mod } 1 )$ ; confidence 0.880
  
80. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110235.png ; $\alpha \in S ( m _ { 1 } , G )$ ; confidence 0.307
+
80. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051050.png ; $n \in O$ ; confidence 0.880
  
81. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110148.png ; $a _ { 1 } , \dots , a _ { 2 } , x$ ; confidence 0.151
+
81. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007019.png ; $m \geq m _ { 0 } > 0$ ; confidence 0.880
  
82. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110152.png ; $d Y _ { 1 } \ldots d Y _ { 2 k }$ ; confidence 0.797
+
82. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006028.png ; $n \in Z _ { 3 }$ ; confidence 0.880
  
83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110260.png ; $H ( 1 , G ) = L ^ { 2 } ( R ^ { n } )$ ; confidence 0.572
+
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042026.png ; $l _ { V } : V \rightarrow \underline { 1 } \otimes V$ ; confidence 0.880
  
84. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080163.png ; $\psi ( z _ { 0 } , z _ { 0 } ) = I$ ; confidence 0.925
+
84. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300401.png ; $\frac { a _ { 0 } } { 2 } + \sum _ { k = 1 } ^ { \infty } ( a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x )$ ; confidence 0.880
  
85. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080194.png ; $\{ .30 \sim \omega ^ { 0 }$ ; confidence 0.545
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270128.png ; $N + Q$ ; confidence 0.880
  
86. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008050.png ; $T _ { m } = \epsilon t _ { m }$ ; confidence 0.579
+
86. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015026.png ; $K = \{ B _ { r _ { 1 } } , B _ { r _ { 2 } } \}$ ; confidence 0.879
  
87. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018010.png ; $E W ( A ) W ( B ) = m ( A \cap B )$ ; confidence 0.702
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040403.png ; $P K$ ; confidence 0.879
  
88. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018013.png ; $W ^ { ( N ) } ( t ) = W ( R _ { t } )$ ; confidence 0.962
+
88. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014082.png ; $\| u - h \| _ { L } \infty < 1$ ; confidence 0.879
  
89. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019046.png ; $( X \psi ) ( x ) = x \psi ( x )$ ; confidence 0.993
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010033.png ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879
  
90. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301208.png ; $A _ { \lambda } \in CL ( X )$ ; confidence 0.956
+
90. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011072.png ; $Q = H _ { D ^ { n } } ( \tilde { O } )$ ; confidence 0.879
  
91. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021023.png ; $\{ A _ { i } \} _ { i = 1 } ^ { k }$ ; confidence 0.642
+
91. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058015.png ; $Q = [ \xi _ { l } ^ { 0 } ] ^ { 2 } - [ \xi _ { r } ^ { 0 } ] ^ { 2 }$ ; confidence 0.879
  
92. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021063.png ; $( 1,1,1,1 , R ) = ( 1,4 , R )$ ; confidence 1.000
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007020.png ; $945 = 3 ^ { 3 } .5 .7$ ; confidence 0.879
  
93. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021065.png ; $( s _ { 1 } , \dots , s _ { k } )$ ; confidence 0.837
+
93. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070119.png ; $R = q ^ { - 1 / 2 } \left( \begin{array} { c c c c } { q } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { q - q ^ { - 1 } } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { q } \end{array} \right)$ ; confidence 0.879
  
94. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001028.png ; $x ^ { \sigma } = q ^ { - 1 } x q$ ; confidence 0.889
+
94. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840120.png ; $L ^ { \perp } = \{ x : [ x , L ] = \{ 0 \} \}$ ; confidence 0.879
  
95. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010022.png ; $( \varphi \wedge \psi )$ ; confidence 0.998
+
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040201.png ; $L _ { p }$ ; confidence 0.879
  
96. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010085.png ; $v , v _ { 1 } , \dots , v _ { N }$ ; confidence 0.314
+
96. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006040.png ; $A _ { 1 } , A _ { 2 } : H \rightarrow H$ ; confidence 0.879
  
97. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007080.png ; $U \in SGL _ { n } ( \Gamma )$ ; confidence 0.919
+
97. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110020/d11002048.png ; $H _ { N }$ ; confidence 0.879
  
98. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007082.png ; $\gamma _ { i } \in \Gamma$ ; confidence 0.986
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240222.png ; $r$ ; confidence 0.879
  
99. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008017.png ; $z = x + i y = r e ^ { i \theta }$ ; confidence 0.991
+
99. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007021.png ; $\alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.879
  
100. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111018.png ; $\cup \lambda X \lambda$ ; confidence 0.446
+
100. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030056.png ; $n = p ^ { 1 }$ ; confidence 0.879
  
101. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006042.png ; $P _ { q }$ ; confidence 0.879
  
102. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010148.png ; $T ^ { 2 } \times SO ( 3 )$ ; confidence 0.990
+
102. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004011.png ; $f _ { k } ( z )$ ; confidence 0.878
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240431.png ; $a ^ { \prime } \Theta$ ; confidence 0.987
+
103. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005034.png ; $f ( x , k ) = b ( k ) g ( x , k ) + a ( k ) g ( x , - k )$ ; confidence 0.878
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240509.png ; $E [ Z _ { 32 } , Z _ { 33 } ] = 0$ ; confidence 0.584
+
104. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006013.png ; $c _ { 1 } ( L ) ^ { \operatorname { dim } X } > 0$ ; confidence 0.878
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731
+
105. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018035.png ; $g ( n ) = \sum _ { d | n } f ( d ) \Leftrightarrow f ( n ) = \sum _ { d | n } g ( d ) \mu ( \frac { n } { d } )$ ; confidence 0.878
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275
+
106. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010021.png ; $d s _ { N } ^ { 2 }$ ; confidence 0.878
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852
+
107. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004094.png ; $K _ { 0 } = K _ { BN }$ ; confidence 0.878
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902
+
108. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013047.png ; $S \cup T$ ; confidence 0.878
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240391.png ; $( M _ { H } M _ { E } ^ { - 1 } ) >$ ; confidence 0.858
+
109. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202008.png ; $M _ { 4 } = \operatorname { min } _ { 1 \leq j < k \leq n } | z _ { j } - z _ { k } |$ ; confidence 0.878
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240223.png ; $\zeta _ { i } = E ( z _ { i } )$ ; confidence 0.903
+
110. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020070/c0200706.png ; $- 12$ ; confidence 0.878
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240462.png ; $t _ { 1 } , \ldots , t _ { p }$ ; confidence 0.651
+
111. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l1301003.png ; $x \notin \overline { D } \subset R ^ { 2 }$ ; confidence 0.878
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040225.png ; $\varphi \approx \psi$ ; confidence 1.000
+
112. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006098.png ; $H \phi$ ; confidence 0.878
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004042.png ; $\operatorname { Th } D$ ; confidence 0.496
+
113. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005073.png ; $\Theta _ { \Delta } ( z ) = H + z G ( I - z T ) ^ { - 1 } F$ ; confidence 0.878
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050298.png ; $X _ { 1 } , \ldots , X _ { k }$ ; confidence 0.553
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010039.png ; $\forall x _ { i } \in D ( A )$ ; confidence 0.878
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050293.png ; $n \rightarrow \infty$ ; confidence 0.989
+
115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003011.png ; $y \in V ^ { - }$ ; confidence 0.878
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429
+
116. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170159.png ; $M ( n )$ ; confidence 0.878
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005027.png ; $f \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.535
+
117. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013055.png ; $( N _ { * } ^ { 1 } , N _ { * } ^ { 2 } )$ ; confidence 0.878
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200603.png ; $\Omega \subset R ^ { m }$ ; confidence 0.887
+
118. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017096.png ; $\sum s _ { j } x _ { j }$ ; confidence 0.878
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006013.png ; $x \in \partial \Omega$ ; confidence 0.540
+
119. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002075.png ; $\gamma ^ { d } \cap \alpha _ { 1 } = \ldots = \gamma ^ { d } \cap \alpha _ { q } = \emptyset$ ; confidence 0.878
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008065.png ; $v _ { 0 } = i A ( t ) ^ { 1 / 2 } u$ ; confidence 0.805
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060125.png ; $T ^ { \# } ( n )$ ; confidence 0.878
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007043.png ; $\sigma ( d ) / d < \alpha$ ; confidence 0.998
+
121. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020069.png ; $z _ { 1 } = \ldots = z _ { m } = 1$ ; confidence 0.878
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012016.png ; $x = A v \text { and } y = B v$ ; confidence 0.983
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a0136703.png ; $N > 0$ ; confidence 0.878
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013047.png ; $I / 2 - h _ { \theta } ^ { * }$ ; confidence 0.938
+
123. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011025.png ; $z = m l$ ; confidence 0.878
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160177.png ; $x _ { j t } , y _ { i t } \geq 0$ ; confidence 0.937
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b1105803.png ; $E ^ { * }$ ; confidence 0.878
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018085.png ; $\operatorname { ln } 2$ ; confidence 1.000
+
125. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050058.png ; $K ^ { \prime }$ ; confidence 0.878
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180103.png ; $F ^ { \prime } ( x ) \neq 1$ ; confidence 1.000
+
126. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020102.png ; $x \preceq z \preceq y \Rightarrow z \in H$ ; confidence 0.878
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014012.png ; $l _ { 2 } ( f ( x ) , f ( y ) ) = r$ ; confidence 0.303
+
127. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544032.png ; $D ^ { - }$ ; confidence 0.877
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180115.png ; $R \subseteq U \times U$ ; confidence 0.982
+
128. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025051.png ; $( x , \xi ) \in R ^ { x } \times S ^ { x - 1 }$ ; confidence 0.877
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020040.png ; $t _ { 1 } , \ldots , t _ { x }$ ; confidence 0.448
+
129. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v11006021.png ; $w ( x , y )$ ; confidence 0.877
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023081.png ; $\Omega \subset C ^ { x }$ ; confidence 0.494
+
130. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006039.png ; $\operatorname { ldim } ( P ) = \operatorname { dim } ( Q )$ ; confidence 0.877
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023052.png ; $\partial \Omega _ { Y }$ ; confidence 0.521
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012053.png ; $F \circ f \in A ^ { * }$ ; confidence 0.877
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202303.png ; $f \in C ( \partial D )$ ; confidence 0.993
+
132. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015170/b01517023.png ; $\{ a _ { k } \}$ ; confidence 0.877
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023053.png ; $\Omega _ { r } = r \Omega$ ; confidence 0.761
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050177.png ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027054.png ; $j \rightarrow \infty$ ; confidence 0.986
+
134. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051010.png ; $F ( u ) = \{ v \in V : ( u , v ) \in E \}$ ; confidence 0.877
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027013.png ; $Q _ { n } y \rightarrow y$ ; confidence 0.932
+
135. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023021.png ; $K _ { i } \in \Omega ^ { k _ { i } } ( M ; T M )$ ; confidence 0.877
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027012.png ; $P _ { N } x \rightarrow x$ ; confidence 0.705
+
136. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006021.png ; $Q _ { x _ { 0 } } ^ { T }$ ; confidence 0.877
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a1302606.png ; $\zeta ( 2 ) = \pi ^ { 2 } / 6$ ; confidence 0.999
+
137. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110156.png ; $\Delta \subset \subset \Gamma$ ; confidence 0.877
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026017.png ; $\zeta ( 2 n + 1 ) \notin Q$ ; confidence 0.849
+
138. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520250.png ; $d j \neq 0$ ; confidence 0.877
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026046.png ; $y \cong \mathfrak { y }$ ; confidence 0.510
+
139. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167027.png ; $( \xi \oplus \sigma , \eta \oplus \sigma , \zeta \oplus \text { id } \sigma )$ ; confidence 0.877
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028021.png ; $z \mapsto z ^ { \gamma }$ ; confidence 0.701
+
140. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014018.png ; $\theta ( a _ { 0 } , a _ { 1 } )$ ; confidence 0.877
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029047.png ; $\phi : M \rightarrow M$ ; confidence 0.998
+
141. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n1200105.png ; $\nu ( t ) : = ( 1 / ( 1 - t ) , 0 )$ ; confidence 0.877
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029021.png ; $x \in L _ { 0 } \cap L _ { 1 }$ ; confidence 0.604
+
142. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e1201103.png ; $\nabla B = 0$ ; confidence 0.877
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029063.png ; $Q \rightarrow \Sigma$ ; confidence 0.994
+
143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007080.png ; $\{ p _ { M } \in P ( k ) : M \in \Gamma \}$ ; confidence 0.877
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310123.png ; $T ^ { \prime } \leq o ( T )$ ; confidence 0.973
+
144. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017097.png ; $M ( n + 2 ) , M ( n + 3 ) , \ldots$ ; confidence 0.877
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032027.png ; $H _ { 1 } : \theta = q = 1 - p$ ; confidence 0.898
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002062.png ; $3$ ; confidence 0.876
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032038.png ; $S _ { 1 } , S _ { 2 } , \ldots$ ; confidence 0.517
+
146. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010047.png ; $1 / 2 < \gamma < 3 / 2$ ; confidence 0.876
  
147. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021064.png ; $\theta \in \Theta ( M )$ ; confidence 0.998
+
147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290144.png ; $M = dim$ ; confidence 0.876
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650260.png ; $f _ { 1 } , \ldots , f _ { x }$ ; confidence 0.439
+
148. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110620/b11062013.png ; $C _ { f }$ ; confidence 0.876
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001012.png ; $X : = K \backslash G ( R )$ ; confidence 0.873
+
149. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180302.png ; $R ( \nabla ) : E \rightarrow \otimes ^ { 3 } E$ ; confidence 0.876
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001091.png ; $V ^ { * } = X ^ { * } / \Gamma$ ; confidence 0.997
+
150. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037014.png ; $\| \lambda \| = \operatorname { sup } _ { 0 \leq s < t \leq 1 } | \operatorname { log } \{ ( t - s ) ^ { - 1 } ( \lambda ( t ) - \lambda ( s ) ) \} |$ ; confidence 0.876
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b1300205.png ; $x \circ y : = ( x y + y x ) / 2$ ; confidence 0.935
+
151. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027020.png ; $d w [ k ] = d w _ { 1 } \wedge \ldots \wedge d w _ { k - 1 } \wedge d w _ { k + 1 } \wedge \ldots \wedge d w _ { n }$ ; confidence 0.876
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040104.png ; $X ^ { \prime \prime } = X$ ; confidence 0.975
+
152. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022024.png ; $\int _ { T } | u ( x ) | ^ { p } d x$ ; confidence 0.876
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040183.png ; $x ^ { * } \in L _ { \infty }$ ; confidence 0.977
+
153. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005084.png ; $P = \{ p _ { 1 } , \dots , p _ { n } \} \subset R ^ { k }$ ; confidence 0.876
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004077.png ; $( L _ { 1 } , L _ { \infty } )$ ; confidence 0.996
+
154. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006024.png ; $Q ^ { \pm }$ ; confidence 0.876
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b1200405.png ; $X \subset L ^ { 0 } ( \mu )$ ; confidence 0.760
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008032.png ; $N _ { A } = ( \# \frac { A } { n } + o ( 1 ) ) x \operatorname { log } x$ ; confidence 0.876
  
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005039.png ; $\phi : A \rightarrow C$ ; confidence 0.699
+
156. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700044.png ; $( \lambda x M ) x = M$ ; confidence 0.876
  
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005033.png ; $A _ { b } ( B _ { E } ) \equiv$ ; confidence 0.944
+
157. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006017.png ; $\tilde { \gamma } - \gamma = i ( \sigma _ { 1 } \Phi \Phi ^ { * } \sigma _ { 2 } - \sigma _ { 2 } \Phi \Phi ^ { * } \sigma _ { 1 } )$ ; confidence 0.876
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005074.png ; $H ^ { \infty } ( B _ { l p } )$ ; confidence 0.717
+
158. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010074.png ; $\alpha \in S ^ { n - 1 }$ ; confidence 0.876
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b1300706.png ; $a ^ { - 1 } b ^ { m } a b ^ { - n }$ ; confidence 0.910
+
159. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961016.png ; $[ H , \rho ] = H \rho - \rho H$ ; confidence 0.876
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058063.png ; $\hat { l } _ { \uparrow }$ ; confidence 0.204
+
160. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023039.png ; $R _ { t } ( x )$ ; confidence 0.876
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009088.png ; $f ( z ) \in B ( \alpha / m )$ ; confidence 0.970
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015049.png ; $N = \{ X \in \mathfrak { g } :$ ; confidence 0.876
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009018.png ; $\dot { k } = \dot { k } ( t )$ ; confidence 0.465
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027081.png ; $Y _ { n } \subset Y _ { n + 1 }$ ; confidence 0.876
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009029.png ; $\Omega \subset R ^ { x }$ ; confidence 0.706
+
163. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003089.png ; $R _ { nd } ( \Omega ) = B / I _ { nd }$ ; confidence 0.876
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010045.png ; $\overline { \varphi }$ ; confidence 0.429
+
164. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003093.png ; $[ L ^ { 1 } ( \mu ) ]$ ; confidence 0.875
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b1201509.png ; $\Omega = \{ 0,1 \} ^ { x }$ ; confidence 0.612
+
165. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s086520167.png ; $\sigma _ { p } ( T )$ ; confidence 0.875
  
166. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015055.png ; $d _ { 1 } ^ { * } d _ { 2 } ^ { * }$ ; confidence 0.558
+
166. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004051.png ; $P _ { - } \psi ( t )$ ; confidence 0.875
  
167. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201606.png ; $\sum _ { j } p _ { i k } , j = 1$ ; confidence 0.557
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004024.png ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875
  
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020058.png ; $x ( n + 1 ) = A x ( n ) + b u ( n )$ ; confidence 0.995
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145024.png ; $p 3$ ; confidence 0.875
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297086.png ; $p ^ { \prime } = p / ( p - 1 )$ ; confidence 1.000
+
169. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100112.png ; $K _ { E } ( V )$ ; confidence 0.875
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a01298054.png ; $N \rightarrow \infty$ ; confidence 0.999
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302403.png ; $n \times 1$ ; confidence 0.875
  
171. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012024.png ; $R = ( - \infty , \infty )$ ; confidence 0.964
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200305.png ; $f \in L ^ { 2 } ( R )$ ; confidence 0.875
  
172. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012038.png ; $( f ^ { * } d \mu ) _ { N } ( x )$ ; confidence 0.803
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260113.png ; $A ( X )$ ; confidence 0.875
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022039.png ; $f ( t , x , \xi ) \in R ^ { p }$ ; confidence 0.990
+
173. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029085.png ; $| x - x _ { x } | < y _ { x }$ ; confidence 0.875
  
174. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027085.png ; $\sum | b _ { n } | < \infty$ ; confidence 0.985
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
  
175. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270100.png ; $a ( t ) \equiv E h ( Z ( t ) )$ ; confidence 0.465
+
175. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027029.png ; $F ( x ) = P ( X _ { 1 } \leq x )$ ; confidence 0.725
+
176. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g0433705.png ; $D f ( x _ { 0 } , h ) = \frac { d } { d t } f ( x _ { 0 } + t h ) | _ { t = 0 } =$ ; confidence 0.875
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b1202706.png ; $X _ { 1 } , X _ { 2 } , \ldots$ ; confidence 0.435
+
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430117.png ; $S \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { c c } { q ^ { 2 } \delta + ( 1 - q ^ { 2 } ) \alpha } & { - q ^ { 2 } \beta } \\ { - q ^ { 2 } \gamma } & { \alpha } \end{array} \right)$ ; confidence 0.875
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030025.png ; $| \eta | ^ { 2 } = \lambda$ ; confidence 0.998
+
178. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300906.png ; $m _ { \nu } w _ { \nu }$ ; confidence 0.875
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031058.png ; $R \rightarrow \infty$ ; confidence 0.998
+
179. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008087.png ; $C ^ { K }$ ; confidence 0.875
  
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032072.png ; $a _ { n } + 1 = F ( 1 , a _ { n } )$ ; confidence 0.612
+
180. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667068.png ; $k = 4$ ; confidence 0.875
  
181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203207.png ; $| x | | _ { p } = | | u | | _ { p }$ ; confidence 0.151
+
181. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019067.png ; $\{ m , a \} \equiv \{ m , b \}$ ; confidence 0.875
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225031.png ; $z = ( z 1 , \dots , z _ { r } )$ ; confidence 0.277
+
182. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v1100504.png ; $( R ^ { n } )$ ; confidence 0.875
  
183. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034074.png ; $\| f \| \leq 2 f ( z _ { 0 } )$ ; confidence 0.755
+
183. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170182.png ; $Wh ( \pi )$ ; confidence 0.875
  
184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301909.png ; $\alpha \in ( 1 / 3,2 / 3 )$ ; confidence 0.960
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300163.png ; $D ( 2 n _ { 1 } )$ ; confidence 0.875
  
185. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019049.png ; $1 \ll | \alpha / q | \ll 1$ ; confidence 0.668
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110380/a110380105.png ; $x _ { 1 } , \ldots , x _ { x }$ ; confidence 0.348
+
186. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110030/d11003021.png ; $\Phi _ { Q }$ ; confidence 0.875
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060310.png ; $\underline { \sigma }$ ; confidence 0.159
+
187. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012024.png ; $1 ( A )$ ; confidence 0.875
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037024.png ; $g _ { 1 } , \ldots , g _ { k }$ ; confidence 0.510
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050132.png ; $R ^ { N }$ ; confidence 0.875
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200102.png ; $\beta \neq - \alpha$ ; confidence 0.992
+
189. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021720/c02172025.png ; $( - 1 ) ^ { x }$ ; confidence 0.874
  
190. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020048.png ; $\alpha _ { i j } \neq 0$ ; confidence 0.797
+
190. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014013.png ; $\lambda _ { 1 } > \ldots > \lambda _ { 2 m } \geq 0$ ; confidence 0.874
  
191. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020035.png ; $e _ { i } , f _ { i } , h _ { i j }$ ; confidence 0.822
+
191. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667095.png ; $b = v$ ; confidence 0.874
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400127.png ; $w ( p - \delta ) + \delta$ ; confidence 1.000
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004016.png ; $| x | \leq | y |$ ; confidence 0.874
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040081.png ; $h ^ { * } \mapsto - h ^ { * }$ ; confidence 0.861
+
193. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001041.png ; $F | _ { l } : l \rightarrow C ^ { 2 }$ ; confidence 0.874
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042048.png ; $\phi : W \rightarrow Z$ ; confidence 0.996
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010299.png ; $m$ ; confidence 0.874
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430148.png ; $B \times H \nsim B ^ { * }$ ; confidence 0.440
+
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022079.png ; $2$ ; confidence 0.874
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440121.png ; $N _ { G } ( D ) \subseteq H$ ; confidence 0.987
+
196. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001018.png ; $x ^ { q ^ { d } } - x$ ; confidence 0.874
  
197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440110.png ; $C _ { G } ( D ) \subseteq H$ ; confidence 0.976
+
197. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020163.png ; $\tau = \operatorname { inf } \{ t > 0 : | B _ { t } | = 1 \}$ ; confidence 0.874
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028011.png ; $( G ( n ) , M ) \cong M _ { x }$ ; confidence 0.909
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040143.png ; $| x | = | x _ { 0 } | ^ { 1 - \theta } | x _ { 1 } | ^ { \theta }$ ; confidence 0.874
  
199. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028042.png ; $B ( 2 n ) \simeq B ( 2 n + 1 )$ ; confidence 0.999
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431035.png ; $\Leftrightarrow$ ; confidence 0.874
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028051.png ; $H * \Omega ^ { \infty } X$ ; confidence 0.488
+
200. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009055.png ; $\{ f _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.874
  
201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050050.png ; $( t , x ) \mapsto l ( t , x )$ ; confidence 0.484
+
201. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906701.png ; $( C , U )$ ; confidence 0.874
  
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b1205001.png ; $W = \{ W _ { t } : t \geq 0 \}$ ; confidence 0.999
+
202. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002021.png ; $S N = \pi ^ { - 1 } ( N ) \subset U M$ ; confidence 0.874
  
203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051064.png ; $\nabla ^ { 2 } f ( x ^ { * } )$ ; confidence 0.995
+
203. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034018.png ; $SH ^ { * } ( M , \omega ) = SH ^ { * } ( M , \omega , \phi )$ ; confidence 0.874
  
204. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052092.png ; $B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.996
+
204. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016049.png ; $q _ { 1 } = x _ { 1 } + x _ { 3 } , \quad q _ { 2 } = x _ { 2 } + x _ { 4 }$ ; confidence 0.874
  
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290197.png ; $[ H _ { M } ^ { e } ( R ) ] _ { r }$ ; confidence 0.095
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162016.png ; $m > 2$ ; confidence 0.874
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290191.png ; $\mathfrak { M } = R _ { + }$ ; confidence 0.991
+
206. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001041.png ; $C ^ { 0 , \sigma _ { 1 } ( t ) } ( \Omega )$ ; confidence 0.874
  
207. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b1205304.png ; $K ( , s ) \in L ^ { 1 } ( \mu )$ ; confidence 0.501
+
207. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100235.png ; $D _ { n }$ ; confidence 0.874
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a011840147.png ; $i \rightarrow \infty$ ; confidence 0.996
+
208. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013025.png ; $W _ { 1 } = S _ { 1 } e ^ { \sum _ { 1 } ^ { \infty } x _ { k } \Lambda ^ { k } }$ ; confidence 0.873
  
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030049.png ; $\beta = 1 + ( m - 1 ) 2 ^ { m }$ ; confidence 0.975
+
209. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004099.png ; $\sum _ { j = 1 } ^ { n } \xi _ { j } d x _ { j }$ ; confidence 0.873
  
210. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055017.png ; $b _ { \gamma } ^ { - 1 } ( t )$ ; confidence 0.979
+
210. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003035.png ; $\operatorname { Map } ( X \times Z , Y ) \rightarrow \operatorname { Map } ( X , \operatorname { Map } ( Z , Y ) )$ ; confidence 0.873
  
211. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003030.png ; $U ^ { 1 } , U ^ { 2 } , \ldots$ ; confidence 0.603
+
211. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007031.png ; $Z H$ ; confidence 0.873
  
212. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004068.png ; $\Omega = \{ z : | z | < r \}$ ; confidence 0.681
+
212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018067.png ; $\rho ( x , y ) = \langle x - y , x - y \rangle ^ { 1 / 2 }$ ; confidence 0.873
  
213. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008057.png ; $E , A \in C ^ { r \times n }$ ; confidence 0.155
+
213. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032018.png ; $( 1,3 ) \oplus R ^ { 1,3 }$ ; confidence 0.873
  
214. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070191.png ; $R ^ { \prime } ( P ) = R ( P )$ ; confidence 1.000
+
214. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008011.png ; $\Delta$ ; confidence 0.873
  
215. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070229.png ; $T _ { 1 } \in \Re ( C _ { 1 } )$ ; confidence 0.967
+
215. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005072.png ; $\operatorname { cosh } \delta = | - X _ { 0 } Y _ { 0 } + \sum X _ { t } Y _ { t } |$ ; confidence 0.873
  
216. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070102.png ; $d _ { 1 } , \ldots , d _ { k }$ ; confidence 0.289
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001012.png ; $X : = K \backslash G ( R )$ ; confidence 0.873
  
217. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070101.png ; $P _ { 1 } , \ldots , P _ { n }$ ; confidence 0.406
+
217. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236032.png ; $E ^ { 3 }$ ; confidence 0.873
  
218. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070230.png ; $T _ { 2 } \in \Re ( C _ { 2 } )$ ; confidence 0.946
+
218. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630124.png ; $u | _ { \partial \Omega } \in H _ { 2 } ^ { \rho } ( \partial \Omega )$ ; confidence 0.873
  
219. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009026.png ; $L _ { i , j } u _ { j } = f _ { i }$ ; confidence 0.385
+
219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005068.png ; $S : = \{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : 1 \leq j \leq J , k _ { j } > 0 , m _ { j } ^ { + } > 0 , k > 0 \}$ ; confidence 0.873
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104201.png ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040741.png ; $R ^ { \prime }$ ; confidence 0.873
  
221. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211023.png ; $x _ { 0 } < \ldots < x _ { k }$ ; confidence 0.829
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240408.png ; $y _ { i j k }$ ; confidence 0.873
  
222. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015058.png ; $C ^ { \infty } ( \Omega )$ ; confidence 0.986
+
222. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160100.png ; $w \in A$ ; confidence 0.873
  
223. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301507.png ; $D ^ { \prime } ( \Omega )$ ; confidence 0.999
+
223. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002051.png ; $q = v ^ { * }$ ; confidence 0.873
  
224. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015071.png ; $G ^ { \infty } ( \Omega )$ ; confidence 0.992
+
224. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024049.png ; $x ( t ) \in R ^ { n }$ ; confidence 0.873
  
225. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015054.png ; $O ( \varepsilon ^ { q } )$ ; confidence 0.433
+
225. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016032.png ; $A = L D L ^ { T }$ ; confidence 0.873
  
226. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015014.png ; $\alpha \in N _ { 0 } ^ { x }$ ; confidence 0.224
+
226. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003029.png ; $\operatorname { sup } _ { i \in I } \mu _ { i } \in D$ ; confidence 0.873
  
227. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015037.png ; $\Lambda = ( 0 , \infty )$ ; confidence 0.999
+
227. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006027.png ; $\alpha \leq k$ ; confidence 0.873
  
228. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015072.png ; $C ^ { \infty } ( \Omega )$ ; confidence 0.992
+
228. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026051.png ; $B ( H )$ ; confidence 0.873
  
229. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017072.png ; $\gamma _ { i } + i _ { j } + k$ ; confidence 0.064
+
229. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007053.png ; $j _ { e } ( z ) = J ( z )$ ; confidence 0.873
  
230. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016022.png ; $NP = NTIME [ n ^ { Q ( 1 ) } ]$ ; confidence 0.489
+
230. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026052.png ; $\| \Delta ( U ^ { n } - u ^ { n } ) \| \leq \| \Delta ( U ^ { 0 } - u ^ { 0 } ) \| + O ( h ^ { 2 } + k ^ { 2 } )$ ; confidence 0.873
  
231. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c1301604.png ; $S \subset \Sigma ^ { * }$ ; confidence 0.389
+
231. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051087.png ; $\{ s _ { k } , y _ { k } \} _ { k = 0 } ^ { n - 1 }$ ; confidence 0.873
  
232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180121.png ; $\varepsilon \times x$ ; confidence 0.408
+
232. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006080.png ; $2$ ; confidence 0.873
  
233. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018075.png ; $\varphi = \mu d \sigma$ ; confidence 0.999
+
233. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007078.png ; $c M$ ; confidence 0.873
  
234. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180393.png ; $q _ { 1 } + \ldots + q _ { m }$ ; confidence 0.759
+
234. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070125.png ; $g = 0 \Leftrightarrow C$ ; confidence 0.873
  
235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018023.png ; $x ^ { 1 } , \ldots , x ^ { p }$ ; confidence 0.527
+
235. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007032.png ; $w = \phi + i \psi$ ; confidence 0.873
  
236. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180380.png ; $M \subset R ^ { \gamma }$ ; confidence 0.394
+
236. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005014.png ; $15$ ; confidence 0.873
  
237. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020019.png ; $W = ( M \times ( 0,1 ] , J )$ ; confidence 0.999
+
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049041.png ; $\{ A _ { j n _ { k } } \}$ ; confidence 0.872
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202007.png ; $S ^ { k } \times D ^ { m - k }$ ; confidence 0.941
+
238. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028062.png ; $A ( D ) ^ { * } \simeq A ( \tilde { D } )$ ; confidence 0.872
  
239. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021041.png ; $\{ P _ { h } ^ { \prime } \}$ ; confidence 0.534
+
239. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007058.png ; $F ^ { ( k + 1 ) } \in \{ \Gamma , k + 2 , v \}$ ; confidence 0.872
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015630/b01563012.png ; $m \rightarrow \infty$ ; confidence 0.976
+
240. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520488.png ; $\Phi ^ { ( 3 ) } = O ( | Z | ^ { 2 } )$ ; confidence 0.872
  
241. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021065.png ; $\{ L _ { n } ^ { \prime } \}$ ; confidence 0.914
+
241. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230113.png ; $[ \omega \wedge D _ { 1 } , D _ { 2 } ] =$ ; confidence 0.872
  
242. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021073.png ; $d P _ { n } ^ { \prime } / d P$ ; confidence 0.515
+
242. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017013.png ; $W = \operatorname { lin } ( w )$ ; confidence 0.872
  
243. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210129.png ; $\Delta _ { N } ( \theta )$ ; confidence 0.745
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016053.png ; $N ( . )$ ; confidence 0.872
  
244. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583041.png ; $T ^ { * n } \rightarrow 0$ ; confidence 0.484
+
244. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013029.png ; $f _ { j } ( x ) \in Z _ { p } ^ { n }$ ; confidence 0.872
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c1202308.png ; $\theta \in S ^ { \perp }$ ; confidence 0.601
+
245. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005023.png ; $T V _ { X }$ ; confidence 0.872
  
246. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025015.png ; $T _ { 1 } < \ldots < T _ { n }$ ; confidence 0.889
+
246. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010163.png ; $v _ { \varepsilon } ( \alpha , \theta )$ ; confidence 0.872
  
247. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029038.png ; $X \rightarrow B ( \mu )$ ; confidence 0.935
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150146.png ; $n > \delta$ ; confidence 0.872
  
248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026037.png ; $\phi = \lambda d V _ { A }$ ; confidence 0.999
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006012.png ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872
  
249. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002071.png ; $R ^ { \prime } \subset R$ ; confidence 0.511
+
249. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304709.png ; $\nu ( \lambda )$ ; confidence 0.872
  
250. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200606.png ; $u [ 1 ] = u + 2 \sigma _ { X }$ ; confidence 0.745
+
250. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007059.png ; $\rightarrow \omega ( 1 - | F ( z ) | ) / ( 1 - | z | ) = d ( \omega ) < \infty$ ; confidence 0.872
  
251. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003030.png ; $\hat { f } \in L ^ { 1 } ( R )$ ; confidence 0.905
+
251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190130.png ; $[ a , b ] \subseteq T$ ; confidence 0.872
  
252. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025011.png ; $l _ { k } \geq | p _ { k } ( x )$ ; confidence 0.845
+
252. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010051.png ; $T ( \square _ { \alpha } \varphi ) = \square _ { \alpha } ( T ( \varphi ) )$ ; confidence 0.872
  
253. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008032.png ; $( L _ { , w } ^ { H } , w ^ { H } )$ ; confidence 0.513
+
253. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021013.png ; $G$ ; confidence 0.872
  
254. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008041.png ; $\delta ( w | v ) = d ( w | v )$ ; confidence 0.951
+
254. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016057.png ; $\chi _ { \lambda I - T } < 0$ ; confidence 0.872
  
255. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008035.png ; $b \in \partial \Delta$ ; confidence 0.754
+
255. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327020.png ; $p \notin \overline { I \backslash p }$ ; confidence 0.872
  
256. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018011.png ; $u \rightarrow \infty$ ; confidence 0.994
+
256. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002043.png ; $H _ { \phi } : H ^ { 2 } \rightarrow H _ { - } ^ { 2 }$ ; confidence 0.872
  
257. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015043.png ; $Q [ \zeta _ { \dot { e } } ]$ ; confidence 0.184
+
257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170190.png ; $Wh ^ { * } ( \pi )$ ; confidence 0.872
  
258. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011037.png ; $C = C _ { 0 } \oplus C _ { 1 }$ ; confidence 0.935
+
258. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015061.png ; $K _ { 0 } \in K$ ; confidence 0.872
  
259. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013010.png ; $0 \leq \theta \leq \pi$ ; confidence 0.997
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020086.png ; $\mathfrak { g } _ { \pm } = \oplus _ { \alpha \in \Delta _ { \pm } } \mathfrak { g } ^ { \alpha }$ ; confidence 0.871
  
260. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020030.png ; $T \rightarrow \infty$ ; confidence 0.996
+
260. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030097.png ; $\psi _ { i - 1 } : F _ { m } \rightarrow B ( m , n , i - 1 )$ ; confidence 0.871
  
261. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022060.png ; $w ^ { \prime } + p ( z ) w = 0$ ; confidence 0.999
+
261. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002021.png ; $x = x ^ { x }$ ; confidence 0.871
  
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230112.png ; $u _ { i } = ( \beta _ { i } 1 )$ ; confidence 0.887
+
262. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200904.png ; $\nabla \cdot H = 0$ ; confidence 0.871
  
263. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018087.png ; $J ^ { O } \underline { E }$ ; confidence 0.126
+
263. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007054.png ; $( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } \rho ( p , q , 0 ) \hat { \sigma } ( p , q ) d p d q =$ ; confidence 0.871
  
264. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024020.png ; $\mathfrak { g } ^ { * } / G$ ; confidence 0.592
+
264. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004042.png ; $d s ^ { 2 } = \frac { 1 } { 4 } ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | ^ { 2 } = \frac { 1 } { 2 } \sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 }$ ; confidence 0.871
  
265. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202504.png ; $f : U \rightarrow f [ U ]$ ; confidence 0.998
+
265. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014044.png ; $T _ { \phi } = \operatorname { dim } \operatorname { Ker } T _ { \phi } - \operatorname { dim } \operatorname { Ker } T _ { \phi } ^ { * } = 0$ ; confidence 0.871
  
266. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028092.png ; $U ^ { \prime } \subset U$ ; confidence 0.997
+
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871
  
267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200106.png ; $m : f [ A ] \rightarrow B$ ; confidence 0.995
+
267. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170240.png ; $C ( 4 )$ ; confidence 0.871
  
268. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200104.png ; $e : A \rightarrow f [ A ]$ ; confidence 0.940
+
268. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i1200101.png ; $W ^ { 1 } L _ { \Phi } ( \Omega )$ ; confidence 0.871
  
269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012027.png ; $Y _ { obs } = M ( Y _ { aug } )$ ; confidence 0.923
+
269. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034045.png ; $u , v \in T M$ ; confidence 0.871
  
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012054.png ; $\sum _ { i } f _ { i } h _ { i }$ ; confidence 0.653
+
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203205.png ; $S : L ^ { 1 } \rightarrow Y$ ; confidence 0.871
  
271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002016.png ; $X \rightarrow X \vee X$ ; confidence 0.992
+
271. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201705.png ; $X ^ { n } + A _ { 1 } X ^ { n - 1 } + \ldots + A _ { n - 1 } X + A _ { n } = 0$ ; confidence 0.871
  
272. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020101.png ; $V \vee S \simeq W \vee S$ ; confidence 0.607
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032053.png ; $F ( s , t ) = \| t x + s y \| \text { for all } s , t \geq 0$ ; confidence 0.871
  
273. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002011.png ; $E ^ { \prime } ( \Omega )$ ; confidence 0.998
+
273. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020191.png ; $\operatorname { deg } ( F , \overline { D } \square ^ { n + 1 } , \theta ) = k$ ; confidence 0.871
  
274. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e1200504.png ; $L \subset \Sigma ^ { * }$ ; confidence 0.869
+
274. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200107.png ; $m = 2 i + 1$ ; confidence 0.871
  
275. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007039.png ; $f \in \{ \Gamma , k , v \}$ ; confidence 0.985
+
275. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006041.png ; $N L$ ; confidence 0.871
  
276. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015052.png ; $g ^ { 2 } j , k ^ { \prime } 2$ ; confidence 0.068
+
276. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054032.png ; $x ( \alpha ) = x _ { 12 } ( \alpha )$ ; confidence 0.871
  
277. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015046.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.973
+
277. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051070.png ; $G = G _ { 1 } + \ldots + G _ { m }$ ; confidence 0.871
  
278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015051.png ; $\dot { X } \square ^ { i }$ ; confidence 0.801
+
278. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180132.png ; $\mu ( E , F ) = ( - 1 ) ^ { d }$ ; confidence 0.871
  
279. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015048.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.983
+
279. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380240.png ; $2$ ; confidence 0.871
  
280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016048.png ; $J \mapsto J ^ { \prime }$ ; confidence 0.951
+
280. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080153.png ; $P ( f \otimes g ) = f ^ { * } g$ ; confidence 0.871
  
281. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019019.png ; $Q ( \alpha - b ) = Q ( c - d )$ ; confidence 0.586
+
281. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300707.png ; $( \# A ) ^ { 1 / 2 }$ ; confidence 0.871
  
282. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019027.png ; $\alpha , \dot { b } \in P$ ; confidence 0.334
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032017.png ; $N = k$ ; confidence 0.871
  
283. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019097.png ; $\sqrt { \sigma ( x , x ) }$ ; confidence 0.993
+
283. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200709.png ; $a _ { 1 } \sigma _ { 1 } ( u ) + \ldots + a _ { t } \sigma _ { t } ( u ) \neq 0$ ; confidence 0.871
  
284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023092.png ; $\sigma ( x ) = ( x , y ( x ) )$ ; confidence 0.997
+
284. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180149.png ; $\langle \tilde { \gamma } ( X ) , Y \rangle = g ( X \otimes Y ) \in R$ ; confidence 0.871
  
285. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023023.png ; $\sigma ( x ) = ( x , y ( x ) )$ ; confidence 0.998
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025055.png ; $\frac { \overline { \Omega } \Omega ^ { \prime } } { 2 \operatorname { sin } \omega } = \overline { O \Omega } = \overline { O \Omega ^ { \prime } } = R \sqrt { 1 - 4 \operatorname { sin } ^ { 2 } \omega }$ ; confidence 0.871
  
286. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024022.png ; $P _ { \ell } ( x ) \in Z [ x ]$ ; confidence 0.160
+
286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043082.png ; $U _ { q } ( n _ { + } )$ ; confidence 0.871
  
287. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024072.png ; $y ^ { 2 } = x ^ { 3 } - p ^ { 2 } x$ ; confidence 0.998
+
287. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007068.png ; $( f , g ) : = ( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , \sum _ { m = 1 } ^ { M } K ( x , z _ { m } ) \beta _ { m } ) =$ ; confidence 0.871
  
288. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007076.png ; $S \ll ( T / N ) ^ { p } N ^ { Y }$ ; confidence 0.236
+
288. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001020.png ; $v ( x , \alpha , k ) = \frac { e ^ { i k r } } { r } A ( \alpha ^ { \prime } , \alpha , k ) + o ( \frac { 1 } { r } )$ ; confidence 0.871
  
289. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300705.png ; $A \rightarrow \infty$ ; confidence 0.979
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016071.png ; $d S _ { t } / d u _ { t } = c _ { 1 }$ ; confidence 0.870
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490129.png ; $X _ { 1 } , \ldots , X _ { m }$ ; confidence 0.132
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160163.png ; $\sum _ { j = 1 } ^ { M } \sum _ { t = 1 } ^ { T } c _ { j t } x _ { j t } \leq B$ ; confidence 0.870
  
291. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e1202701.png ; $x _ { 1 } < \ldots < x _ { m }$ ; confidence 0.335
+
291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014043.png ; $t _ { i } ( z )$ ; confidence 0.870
  
292. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030590/d03059031.png ; $y _ { 1 } , \ldots , y _ { x }$ ; confidence 0.659
+
292. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302708.png ; $p = n$ ; confidence 0.870
  
293. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001029.png ; $u _ { i } Y \rightarrow X$ ; confidence 0.462
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302405.png ; $( n \times m )$ ; confidence 0.870
  
294. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002011.png ; $c ( x ) = c ^ { a } ( x ) T _ { a }$ ; confidence 0.167
+
294. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005084.png ; $= ( m - n ) L ( m + n ) + \frac { 1 } { 12 } ( m ^ { 3 } - m ) \delta _ { n + m , 0 } c$ ; confidence 0.870
  
295. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004019.png ; $f ^ { * * } = ( f ^ { * } ) ^ { * }$ ; confidence 0.840
+
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014020.png ; $\{ 1 ^ { \prime } < 1 < 2 ^ { \prime } < 2 < \ldots \}$ ; confidence 0.870
  
296. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f1300705.png ; $a _ { 1 } = \alpha _ { 2 } = 1$ ; confidence 0.408
+
296. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002055.png ; $\hat { \theta } = \psi _ { \mu } ( X )$ ; confidence 0.870
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329042.png ; $n _ { 1 } , \ldots , n _ { k }$ ; confidence 0.348
+
297. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h048420160.png ; $O ( U )$ ; confidence 0.870
  
298. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010094.png ; $L _ { C } ^ { 1 } ( \hat { G } )$ ; confidence 0.479
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870
  
299. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026810/c02681011.png ; $Y _ { 1 } , \ldots , Y _ { n }$ ; confidence 0.655
+
299. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m1302009.png ; $L _ { Y } P = 0$ ; confidence 0.870
  
300. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013020.png ; $\phi : F \rightarrow X$ ; confidence 0.995
+
300. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014077.png ; $\{ D _ { N } ( x , 1 ) \}$ ; confidence 0.870

Revision as of 00:10, 13 February 2020

List

1. i130060148.png ; $q ( x ) \in C _ { 0 } ^ { \infty } ( R + )$ ; confidence 0.883

2. c12002085.png ; $x , y \in R ^ { n }$ ; confidence 0.883

3. l05700086.png ; $F c _ { k } = c _ { f } ( k )$ ; confidence 0.883

4. l05732010.png ; $a < 1$ ; confidence 0.883

5. r13009022.png ; $\sigma ( w x + \theta )$ ; confidence 0.883

6. m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883

7. a130060134.png ; $K _ { 0 } > 1$ ; confidence 0.883

8. c13025040.png ; $\lambda _ { k } ( t ) = \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta } I _ { k } ( t )$ ; confidence 0.883

9. h04708061.png ; $\pi$ ; confidence 0.883

10. s12004079.png ; $\rho : GL _ { l } \rightarrow GL _ { m }$ ; confidence 0.883

11. l120170184.png ; $Wh ^ { * } ( \pi ) \subseteq Wh ( \pi )$ ; confidence 0.883

12. f12005035.png ; $\phi _ { f } \phi _ { g } = \phi _ { f g }$ ; confidence 0.883

13. t12013030.png ; $= \oint _ { z = \infty } \tau _ { n + 1 } ( x , y - [ z ] ) \tau _ { m } ( x ^ { \prime } , y ^ { \prime } + [ z ] ) x$ ; confidence 0.883

14. e12001084.png ; $( \mathfrak { E } , M )$ ; confidence 0.883

15. m12025022.png ; $\pi _ { k } ( X , * ) \rightarrow \pi _ { k } ( Y , * )$ ; confidence 0.883

16. w13006016.png ; $D _ { g , n } = \overline { M _ { g , n } } - M _ { g , n }$ ; confidence 0.883

17. r13007035.png ; $\| u \| : = ( u , u ) ^ { 1 / 2 }$ ; confidence 0.883

18. a12018054.png ; $( S _ { n } )$ ; confidence 0.882

19. z12001059.png ; $\overline { U } _ { 1 }$ ; confidence 0.882

20. a13032045.png ; $\theta = .5$ ; confidence 0.882

21. b11066054.png ; $| K ( x , y ) | = O ( | x - y | ^ { - x } )$ ; confidence 0.882

22. h12003017.png ; $| d \varphi | ^ { 2 } ( x ) = g ^ { i j } ( x ) h _ { \alpha \beta } ( \varphi ( x ) ) \cdot \frac { \partial \varphi ^ { \alpha } } { \partial x ^ { i } } \frac { \partial \varphi ^ { \beta } } { \partial x ^ { j } }$ ; confidence 0.882

23. t12005038.png ; $\Sigma ^ { i } ( f )$ ; confidence 0.882

24. f12009013.png ; $C _ { U }$ ; confidence 0.882

25. c0256301.png ; $\{ T ^ { t } \}$ ; confidence 0.882

26. a130070111.png ; $U _ { a }$ ; confidence 0.882

27. b13010068.png ; $( T f ) ( z ) = f ( - z )$ ; confidence 0.882

28. w12018081.png ; $\xi ( t ) = \frac { 1 } { \sqrt { \omega _ { N + 1 } } } \int _ { R ^ { N } } \frac { e ^ { i ( t , \lambda ) } - 1 } { | \lambda | ^ { ( N + 1 ) / 2 } } W ( d \lambda )$ ; confidence 0.882

29. s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882

30. m06222073.png ; $x = x ( t , u , v )$ ; confidence 0.882

31. b13003054.png ; $( V )$ ; confidence 0.882

32. c13001026.png ; $f _ { 0 } ^ { \prime \prime } ( c ) > 0$ ; confidence 0.882

33. p1201208.png ; $g ^ { \prime } = \phi g$ ; confidence 0.882

34. a130040786.png ; $A , B \in K$ ; confidence 0.882

35. a110040126.png ; $4$ ; confidence 0.882

36. e13007013.png ; $GCD ( h ( n ) , q ) = 1$ ; confidence 0.882

37. m13001027.png ; $\hat { f } ( x _ { i } ) = c ( x _ { i } )$ ; confidence 0.882

38. m12012084.png ; $\alpha f = \alpha q$ ; confidence 0.882

39. d11022062.png ; $L y + p ( x ) y = 0$ ; confidence 0.882

40. w120090295.png ; $\mathfrak { n } ^ { + } = \sum _ { \alpha \in \Phi ^ { + } } \mathfrak { g } _ { \alpha }$ ; confidence 0.882

41. i12008062.png ; $S _ { i } = + 1$ ; confidence 0.881

42. q12002012.png ; $P ( \wedge ^ { k } C ^ { n } )$ ; confidence 0.881

43. t12021068.png ; $M _ { C }$ ; confidence 0.881

44. c13014054.png ; $A _ { 1 } = I$ ; confidence 0.881

45. r13010017.png ; $\tau _ { A }$ ; confidence 0.881

46. c11021038.png ; $P$ ; confidence 0.881

47. d12030025.png ; $\gamma : R ^ { n } \rightarrow R ^ { k }$ ; confidence 0.881

48. z13011055.png ; $G _ { p , n } ( x ) = \sum _ { i = 1 } ^ { N } 1 _ { \{ n p _ { i n } \geq x \} }$ ; confidence 0.881

49. q12008063.png ; $= \frac { \rho } { 2 ( 1 - \rho ) } \sum _ { p = 1 } ^ { P } \lambda _ { p } b _ { p } ^ { ( 2 ) } + \rho \frac { \Delta ^ { 2 } } { 2 R } +$ ; confidence 0.881

50. e11003043.png ; $( X , \| \| )$ ; confidence 0.881

51. b13026055.png ; $[ l , \Omega , y ] = 1$ ; confidence 0.881

52. w12013011.png ; $\sigma ( T ) \backslash \sigma _ { d } ( T )$ ; confidence 0.881

53. s12004041.png ; $1 \leq i \leq l$ ; confidence 0.881

54. a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881

55. q12005065.png ; $H _ { new } = H _ { k + 1 }$ ; confidence 0.881

56. b12052065.png ; $G ( x ) = 0$ ; confidence 0.881

57. v120020211.png ; $\operatorname { Deg } ( F , \overline { D } \square ^ { n + 1 } , \theta )$ ; confidence 0.881

58. s1200508.png ; $| S _ { k } ( 0 ) | = 1$ ; confidence 0.881

59. d130180101.png ; $f \in J _ { E }$ ; confidence 0.881

60. b12027061.png ; $p _ { j } \geq 0$ ; confidence 0.881

61. l12004053.png ; $d _ { - 1 } - d _ { 1 } = - c , d _ { - 1 } + d _ { 1 } = c ^ { 2 }$ ; confidence 0.881

62. x12001089.png ; $R ^ { * } N$ ; confidence 0.881

63. q12001023.png ; $X _ { t }$ ; confidence 0.881

64. z13001029.png ; $y ^ { \prime } ( n )$ ; confidence 0.881

65. b12050027.png ; $\int _ { 0 } ^ { t } f ( W _ { s } ) d s = \int 1 ( t , x ) f ( x ) d x$ ; confidence 0.880

66. k13007056.png ; $S ( k )$ ; confidence 0.880

67. b11022047.png ; $K ^ { ( j ) } i ( X ) \subset K _ { i } ( X ) \otimes Q$ ; confidence 0.880

68. w120090355.png ; $M _ { K } = K \otimes _ { Z } M$ ; confidence 0.880

69. w12021077.png ; $x _ { i } \neq 0$ ; confidence 0.880

70. r13007040.png ; $( u , v ) _ { + } : = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.880

71. s120230148.png ; $f _ { 1 } ( T ) = W ^ { ( n - k ) / 2 } f ( T )$ ; confidence 0.880

72. b13026082.png ; $g : B [ R ] \rightarrow R ^ { n }$ ; confidence 0.880

73. a130050176.png ; $F _ { q }$ ; confidence 0.880

74. v096900123.png ; $P < Q$ ; confidence 0.880

75. a12023046.png ; $d w [ k ] = d w _ { 1 } \wedge \ldots \wedge d w _ { k - 1 } \wedge d w _ { k + 1 } \wedge \ldots \wedge d w _ { n }$ ; confidence 0.880

76. g130030104.png ; $\sum _ { j = m } ^ { \infty } f _ { j } ( x ) \varepsilon ^ { j }$ ; confidence 0.880

77. j13007054.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z )$ ; confidence 0.880

78. n067520286.png ; $D _ { K _ { \rho } } = \{ F ( \xi ) : \int _ { - \infty } ^ { + \infty } \xi ^ { 2 } | F ( \xi ) | ^ { 2 } d \rho ( \xi ) < \infty \}$ ; confidence 0.880

79. d12029093.png ; $( \operatorname { mod } 1 )$ ; confidence 0.880

80. s13051050.png ; $n \in O$ ; confidence 0.880

81. m13007019.png ; $m \geq m _ { 0 } > 0$ ; confidence 0.880

82. d12006028.png ; $n \in Z _ { 3 }$ ; confidence 0.880

83. b12042026.png ; $l _ { V } : V \rightarrow \underline { 1 } \otimes V$ ; confidence 0.880

84. i1300401.png ; $\frac { a _ { 0 } } { 2 } + \sum _ { k = 1 } ^ { \infty } ( a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x )$ ; confidence 0.880

85. a120270128.png ; $N + Q$ ; confidence 0.880

86. p12015026.png ; $K = \{ B _ { r _ { 1 } } , B _ { r _ { 2 } } \}$ ; confidence 0.879

87. a130040403.png ; $P K$ ; confidence 0.879

88. t12014082.png ; $\| u - h \| _ { L } \infty < 1$ ; confidence 0.879

89. a12010033.png ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879

90. f12011072.png ; $Q = H _ { D ^ { n } } ( \tilde { O } )$ ; confidence 0.879

91. s13058015.png ; $Q = [ \xi _ { l } ^ { 0 } ] ^ { 2 } - [ \xi _ { r } ^ { 0 } ] ^ { 2 }$ ; confidence 0.879

92. a13007020.png ; $945 = 3 ^ { 3 } .5 .7$ ; confidence 0.879

93. q120070119.png ; $R = q ^ { - 1 / 2 } \left( \begin{array} { c c c c } { q } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { q - q ^ { - 1 } } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { q } \end{array} \right)$ ; confidence 0.879

94. k055840120.png ; $L ^ { \perp } = \{ x : [ x , L ] = \{ 0 \} \}$ ; confidence 0.879

95. b120040201.png ; $L _ { p }$ ; confidence 0.879

96. o13006040.png ; $A _ { 1 } , A _ { 2 } : H \rightarrow H$ ; confidence 0.879

97. d11002048.png ; $H _ { N }$ ; confidence 0.879

98. a130240222.png ; $r$ ; confidence 0.879

99. i13007021.png ; $\alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.879

100. b13030056.png ; $n = p ^ { 1 }$ ; confidence 0.879

101. a13006042.png ; $P _ { q }$ ; confidence 0.879

102. l06004011.png ; $f _ { k } ( z )$ ; confidence 0.878

103. i13005034.png ; $f ( x , k ) = b ( k ) g ( x , k ) + a ( k ) g ( x , - k )$ ; confidence 0.878

104. k12006013.png ; $c _ { 1 } ( L ) ^ { \operatorname { dim } X } > 0$ ; confidence 0.878

105. m13018035.png ; $g ( n ) = \sum _ { d | n } f ( d ) \Leftrightarrow f ( n ) = \sum _ { d | n } g ( d ) \mu ( \frac { n } { d } )$ ; confidence 0.878

106. i12010021.png ; $d s _ { N } ^ { 2 }$ ; confidence 0.878

107. i12004094.png ; $K _ { 0 } = K _ { BN }$ ; confidence 0.878

108. p12013047.png ; $S \cup T$ ; confidence 0.878

109. t1202008.png ; $M _ { 4 } = \operatorname { min } _ { 1 \leq j < k \leq n } | z _ { j } - z _ { k } |$ ; confidence 0.878

110. c0200706.png ; $- 12$ ; confidence 0.878

111. l1301003.png ; $x \notin \overline { D } \subset R ^ { 2 }$ ; confidence 0.878

112. l12006098.png ; $H \phi$ ; confidence 0.878

113. o13005073.png ; $\Theta _ { \Delta } ( z ) = H + z G ( I - z T ) ^ { - 1 } F$ ; confidence 0.878

114. a12010039.png ; $\forall x _ { i } \in D ( A )$ ; confidence 0.878

115. b13003011.png ; $y \in V ^ { - }$ ; confidence 0.878

116. c120170159.png ; $M ( n )$ ; confidence 0.878

117. m12013055.png ; $( N _ { * } ^ { 1 } , N _ { * } ^ { 2 } )$ ; confidence 0.878

118. s12017096.png ; $\sum s _ { j } x _ { j }$ ; confidence 0.878

119. h13002075.png ; $\gamma ^ { d } \cap \alpha _ { 1 } = \ldots = \gamma ^ { d } \cap \alpha _ { q } = \emptyset$ ; confidence 0.878

120. a130060125.png ; $T ^ { \# } ( n )$ ; confidence 0.878

121. t12020069.png ; $z _ { 1 } = \ldots = z _ { m } = 1$ ; confidence 0.878

122. a0136703.png ; $N > 0$ ; confidence 0.878

123. v13011025.png ; $z = m l$ ; confidence 0.878

124. b1105803.png ; $E ^ { * }$ ; confidence 0.878

125. a11050058.png ; $K ^ { \prime }$ ; confidence 0.878

126. l110020102.png ; $x \preceq z \preceq y \Rightarrow z \in H$ ; confidence 0.878

127. c02544032.png ; $D ^ { - }$ ; confidence 0.877

128. m13025051.png ; $( x , \xi ) \in R ^ { x } \times S ^ { x - 1 }$ ; confidence 0.877

129. v11006021.png ; $w ( x , y )$ ; confidence 0.877

130. i12006039.png ; $\operatorname { ldim } ( P ) = \operatorname { dim } ( Q )$ ; confidence 0.877

131. b13012053.png ; $F \circ f \in A ^ { * }$ ; confidence 0.877

132. b01517023.png ; $\{ a _ { k } \}$ ; confidence 0.877

133. a130050177.png ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877

134. s13051010.png ; $F ( u ) = \{ v \in V : ( u , v ) \in E \}$ ; confidence 0.877

135. f12023021.png ; $K _ { i } \in \Omega ^ { k _ { i } } ( M ; T M )$ ; confidence 0.877

136. d03006021.png ; $Q _ { x _ { 0 } } ^ { T }$ ; confidence 0.877

137. f120110156.png ; $\Delta \subset \subset \Gamma$ ; confidence 0.877

138. n067520250.png ; $d j \neq 0$ ; confidence 0.877

139. d03167027.png ; $( \xi \oplus \sigma , \eta \oplus \sigma , \zeta \oplus \text { id } \sigma )$ ; confidence 0.877

140. p12014018.png ; $\theta ( a _ { 0 } , a _ { 1 } )$ ; confidence 0.877

141. n1200105.png ; $\nu ( t ) : = ( 1 / ( 1 - t ) , 0 )$ ; confidence 0.877

142. e1201103.png ; $\nabla B = 0$ ; confidence 0.877

143. e12007080.png ; $\{ p _ { M } \in P ( k ) : M \in \Gamma \}$ ; confidence 0.877

144. c12017097.png ; $M ( n + 2 ) , M ( n + 3 ) , \ldots$ ; confidence 0.877

145. a11002062.png ; $3$ ; confidence 0.876

146. l12010047.png ; $1 / 2 < \gamma < 3 / 2$ ; confidence 0.876

147. b130290144.png ; $M = dim$ ; confidence 0.876

148. b11062013.png ; $C _ { f }$ ; confidence 0.876

149. c120180302.png ; $R ( \nabla ) : E \rightarrow \otimes ^ { 3 } E$ ; confidence 0.876

150. s13037014.png ; $\| \lambda \| = \operatorname { sup } _ { 0 \leq s < t \leq 1 } | \operatorname { log } \{ ( t - s ) ^ { - 1 } ( \lambda ( t ) - \lambda ( s ) ) \} |$ ; confidence 0.876

151. m12027020.png ; $d w [ k ] = d w _ { 1 } \wedge \ldots \wedge d w _ { k - 1 } \wedge d w _ { k + 1 } \wedge \ldots \wedge d w _ { n }$ ; confidence 0.876

152. b13022024.png ; $\int _ { T } | u ( x ) | ^ { p } d x$ ; confidence 0.876

153. g13005084.png ; $P = \{ p _ { 1 } , \dots , p _ { n } \} \subset R ^ { k }$ ; confidence 0.876

154. d12006024.png ; $Q ^ { \pm }$ ; confidence 0.876

155. c13008032.png ; $N _ { A } = ( \# \frac { A } { n } + o ( 1 ) ) x \operatorname { log } x$ ; confidence 0.876

156. l05700044.png ; $( \lambda x M ) x = M$ ; confidence 0.876

157. o13006017.png ; $\tilde { \gamma } - \gamma = i ( \sigma _ { 1 } \Phi \Phi ^ { * } \sigma _ { 2 } - \sigma _ { 2 } \Phi \Phi ^ { * } \sigma _ { 1 } )$ ; confidence 0.876

158. l13010074.png ; $\alpha \in S ^ { n - 1 }$ ; confidence 0.876

159. l05961016.png ; $[ H , \rho ] = H \rho - \rho H$ ; confidence 0.876

160. m12023039.png ; $R _ { t } ( x )$ ; confidence 0.876

161. a12015049.png ; $N = \{ X \in \mathfrak { g } :$ ; confidence 0.876

162. a13027081.png ; $Y _ { n } \subset Y _ { n + 1 }$ ; confidence 0.876

163. g13003089.png ; $R _ { nd } ( \Omega ) = B / I _ { nd }$ ; confidence 0.876

164. l11003093.png ; $[ L ^ { 1 } ( \mu ) ]$ ; confidence 0.875

165. s086520167.png ; $\sigma _ { p } ( T )$ ; confidence 0.875

166. e13004051.png ; $P _ { - } \psi ( t )$ ; confidence 0.875

167. a12004024.png ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875

168. a01145024.png ; $p 3$ ; confidence 0.875

169. l120100112.png ; $K _ { E } ( V )$ ; confidence 0.875

170. a1302403.png ; $n \times 1$ ; confidence 0.875

171. b1200305.png ; $f \in L ^ { 2 } ( R )$ ; confidence 0.875

172. a120260113.png ; $A ( X )$ ; confidence 0.875

173. d12029085.png ; $| x - x _ { x } | < y _ { x }$ ; confidence 0.875

174. a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875

175. i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875

176. g0433705.png ; $D f ( x _ { 0 } , h ) = \frac { d } { d t } f ( x _ { 0 } + t h ) | _ { t = 0 } =$ ; confidence 0.875

177. b120430117.png ; $S \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { c c } { q ^ { 2 } \delta + ( 1 - q ^ { 2 } ) \alpha } & { - q ^ { 2 } \beta } \\ { - q ^ { 2 } \gamma } & { \alpha } \end{array} \right)$ ; confidence 0.875

178. d0300906.png ; $m _ { \nu } w _ { \nu }$ ; confidence 0.875

179. k12008087.png ; $C ^ { K }$ ; confidence 0.875

180. b01667068.png ; $k = 4$ ; confidence 0.875

181. e12019067.png ; $\{ m , a \} \equiv \{ m , b \}$ ; confidence 0.875

182. v1100504.png ; $( R ^ { n } )$ ; confidence 0.875

183. l120170182.png ; $Wh ( \pi )$ ; confidence 0.875

184. b130300163.png ; $D ( 2 n _ { 1 } )$ ; confidence 0.875

185. a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875

186. d11003021.png ; $\Phi _ { Q }$ ; confidence 0.875

187. f13012024.png ; $1 ( A )$ ; confidence 0.875

188. a120050132.png ; $R ^ { N }$ ; confidence 0.875

189. c02172025.png ; $( - 1 ) ^ { x }$ ; confidence 0.874

190. s13014013.png ; $\lambda _ { 1 } > \ldots > \lambda _ { 2 m } \geq 0$ ; confidence 0.874

191. b01667095.png ; $b = v$ ; confidence 0.874

192. b12004016.png ; $| x | \leq | y |$ ; confidence 0.874

193. j12001041.png ; $F | _ { l } : l \rightarrow C ^ { 2 }$ ; confidence 0.874

194. a110010299.png ; $m$ ; confidence 0.874

195. b12022079.png ; $2$ ; confidence 0.874

196. f13001018.png ; $x ^ { q ^ { d } } - x$ ; confidence 0.874

197. j120020163.png ; $\tau = \operatorname { inf } \{ t > 0 : | B _ { t } | = 1 \}$ ; confidence 0.874

198. b120040143.png ; $| x | = | x _ { 0 } | ^ { 1 - \theta } | x _ { 1 } | ^ { \theta }$ ; confidence 0.874

199. a01431035.png ; $\Leftrightarrow$ ; confidence 0.874

200. w13009055.png ; $\{ f _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.874

201. s0906701.png ; $( C , U )$ ; confidence 0.874

202. s13002021.png ; $S N = \pi ^ { - 1 } ( N ) \subset U M$ ; confidence 0.874

203. s12034018.png ; $SH ^ { * } ( M , \omega ) = SH ^ { * } ( M , \omega , \phi )$ ; confidence 0.874

204. b12016049.png ; $q _ { 1 } = x _ { 1 } + x _ { 3 } , \quad q _ { 2 } = x _ { 2 } + x _ { 4 }$ ; confidence 0.874

205. a01162016.png ; $m > 2$ ; confidence 0.874

206. i12001041.png ; $C ^ { 0 , \sigma _ { 1 } ( t ) } ( \Omega )$ ; confidence 0.874

207. b110100235.png ; $D _ { n }$ ; confidence 0.874

208. t12013025.png ; $W _ { 1 } = S _ { 1 } e ^ { \sum _ { 1 } ^ { \infty } x _ { k } \Lambda ^ { k } }$ ; confidence 0.873

209. g12004099.png ; $\sum _ { j = 1 } ^ { n } \xi _ { j } d x _ { j }$ ; confidence 0.873

210. l12003035.png ; $\operatorname { Map } ( X \times Z , Y ) \rightarrow \operatorname { Map } ( X , \operatorname { Map } ( Z , Y ) )$ ; confidence 0.873

211. z13007031.png ; $Z H$ ; confidence 0.873

212. s12018067.png ; $\rho ( x , y ) = \langle x - y , x - y \rangle ^ { 1 / 2 }$ ; confidence 0.873

213. s12032018.png ; $( 1,3 ) \oplus R ^ { 1,3 }$ ; confidence 0.873

214. d13008011.png ; $\Delta$ ; confidence 0.873

215. l06005072.png ; $\operatorname { cosh } \delta = | - X _ { 0 } Y _ { 0 } + \sum X _ { t } Y _ { t } |$ ; confidence 0.873

216. b13001012.png ; $X : = K \backslash G ( R )$ ; confidence 0.873

217. c02236032.png ; $E ^ { 3 }$ ; confidence 0.873

218. n066630124.png ; $u | _ { \partial \Omega } \in H _ { 2 } ^ { \rho } ( \partial \Omega )$ ; confidence 0.873

219. i13005068.png ; $S : = \{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : 1 \leq j \leq J , k _ { j } > 0 , m _ { j } ^ { + } > 0 , k > 0 \}$ ; confidence 0.873

220. a130040741.png ; $R ^ { \prime }$ ; confidence 0.873

221. a130240408.png ; $y _ { i j k }$ ; confidence 0.873

222. c130160100.png ; $w \in A$ ; confidence 0.873

223. d12002051.png ; $q = v ^ { * }$ ; confidence 0.873

224. f12024049.png ; $x ( t ) \in R ^ { n }$ ; confidence 0.873

225. c12016032.png ; $A = L D L ^ { T }$ ; confidence 0.873

226. l11003029.png ; $\operatorname { sup } _ { i \in I } \mu _ { i } \in D$ ; confidence 0.873

227. o12006027.png ; $\alpha \leq k$ ; confidence 0.873

228. m13026051.png ; $B ( H )$ ; confidence 0.873

229. t12007053.png ; $j _ { e } ( z ) = J ( z )$ ; confidence 0.873

230. c12026052.png ; $\| \Delta ( U ^ { n } - u ^ { n } ) \| \leq \| \Delta ( U ^ { 0 } - u ^ { 0 } ) \| + O ( h ^ { 2 } + k ^ { 2 } )$ ; confidence 0.873

231. b12051087.png ; $\{ s _ { k } , y _ { k } \} _ { k = 0 } ^ { n - 1 }$ ; confidence 0.873

232. l12006080.png ; $2$ ; confidence 0.873

233. c12007078.png ; $c M$ ; confidence 0.873

234. c130070125.png ; $g = 0 \Leftrightarrow C$ ; confidence 0.873

235. v13007032.png ; $w = \phi + i \psi$ ; confidence 0.873

236. c13005014.png ; $15$ ; confidence 0.873

237. b12049041.png ; $\{ A _ { j n _ { k } } \}$ ; confidence 0.872

238. d12028062.png ; $A ( D ) ^ { * } \simeq A ( \tilde { D } )$ ; confidence 0.872

239. e12007058.png ; $F ^ { ( k + 1 ) } \in \{ \Gamma , k + 2 , v \}$ ; confidence 0.872

240. n067520488.png ; $\Phi ^ { ( 3 ) } = O ( | Z | ^ { 2 } )$ ; confidence 0.872

241. f120230113.png ; $[ \omega \wedge D _ { 1 } , D _ { 2 } ] =$ ; confidence 0.872

242. f12017013.png ; $W = \operatorname { lin } ( w )$ ; confidence 0.872

243. a12016053.png ; $N ( . )$ ; confidence 0.872

244. l12013029.png ; $f _ { j } ( x ) \in Z _ { p } ^ { n }$ ; confidence 0.872

245. t12005023.png ; $T V _ { X }$ ; confidence 0.872

246. o130010163.png ; $v _ { \varepsilon } ( \alpha , \theta )$ ; confidence 0.872

247. b120150146.png ; $n > \delta$ ; confidence 0.872

248. a12006012.png ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872

249. s1304709.png ; $\nu ( \lambda )$ ; confidence 0.872

250. j13007059.png ; $\rightarrow \omega ( 1 - | F ( z ) | ) / ( 1 - | z | ) = d ( \omega ) < \infty$ ; confidence 0.872

251. e120190130.png ; $[ a , b ] \subseteq T$ ; confidence 0.872

252. f13010051.png ; $T ( \square _ { \alpha } \varphi ) = \square _ { \alpha } ( T ( \varphi ) )$ ; confidence 0.872

253. d13021013.png ; $G$ ; confidence 0.872

254. f12016057.png ; $\chi _ { \lambda I - T } < 0$ ; confidence 0.872

255. c02327020.png ; $p \notin \overline { I \backslash p }$ ; confidence 0.872

256. h12002043.png ; $H _ { \phi } : H ^ { 2 } \rightarrow H _ { - } ^ { 2 }$ ; confidence 0.872

257. l120170190.png ; $Wh ^ { * } ( \pi )$ ; confidence 0.872

258. p12015061.png ; $K _ { 0 } \in K$ ; confidence 0.872

259. b13020086.png ; $\mathfrak { g } _ { \pm } = \oplus _ { \alpha \in \Delta _ { \pm } } \mathfrak { g } ^ { \alpha }$ ; confidence 0.871

260. b13030097.png ; $\psi _ { i - 1 } : F _ { m } \rightarrow B ( m , n , i - 1 )$ ; confidence 0.871

261. d12002021.png ; $x = x ^ { x }$ ; confidence 0.871

262. e1200904.png ; $\nabla \cdot H = 0$ ; confidence 0.871

263. w12007054.png ; $( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } \rho ( p , q , 0 ) \hat { \sigma } ( p , q ) d p d q =$ ; confidence 0.871

264. w13004042.png ; $d s ^ { 2 } = \frac { 1 } { 4 } ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | ^ { 2 } = \frac { 1 } { 2 } \sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 }$ ; confidence 0.871

265. t12014044.png ; $T _ { \phi } = \operatorname { dim } \operatorname { Ker } T _ { \phi } - \operatorname { dim } \operatorname { Ker } T _ { \phi } ^ { * } = 0$ ; confidence 0.871

266. a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871

267. l120170240.png ; $C ( 4 )$ ; confidence 0.871

268. i1200101.png ; $W ^ { 1 } L _ { \Phi } ( \Omega )$ ; confidence 0.871

269. s12034045.png ; $u , v \in T M$ ; confidence 0.871

270. d1203205.png ; $S : L ^ { 1 } \rightarrow Y$ ; confidence 0.871

271. m1201705.png ; $X ^ { n } + A _ { 1 } X ^ { n - 1 } + \ldots + A _ { n - 1 } X + A _ { n } = 0$ ; confidence 0.871

272. b12032053.png ; $F ( s , t ) = \| t x + s y \| \text { for all } s , t \geq 0$ ; confidence 0.871

273. v120020191.png ; $\operatorname { deg } ( F , \overline { D } \square ^ { n + 1 } , \theta ) = k$ ; confidence 0.871

274. t1200107.png ; $m = 2 i + 1$ ; confidence 0.871

275. k12006041.png ; $N L$ ; confidence 0.871

276. s13054032.png ; $x ( \alpha ) = x _ { 12 } ( \alpha )$ ; confidence 0.871

277. s13051070.png ; $G = G _ { 1 } + \ldots + G _ { m }$ ; confidence 0.871

278. m130180132.png ; $\mu ( E , F ) = ( - 1 ) ^ { d }$ ; confidence 0.871

279. c023380240.png ; $2$ ; confidence 0.871

280. f120080153.png ; $P ( f \otimes g ) = f ^ { * } g$ ; confidence 0.871

281. e1300707.png ; $( \# A ) ^ { 1 / 2 }$ ; confidence 0.871

282. a13032017.png ; $N = k$ ; confidence 0.871

283. d1200709.png ; $a _ { 1 } \sigma _ { 1 } ( u ) + \ldots + a _ { t } \sigma _ { t } ( u ) \neq 0$ ; confidence 0.871

284. c120180149.png ; $\langle \tilde { \gamma } ( X ) , Y \rangle = g ( X \otimes Y ) \in R$ ; confidence 0.871

285. b13025055.png ; $\frac { \overline { \Omega } \Omega ^ { \prime } } { 2 \operatorname { sin } \omega } = \overline { O \Omega } = \overline { O \Omega ^ { \prime } } = R \sqrt { 1 - 4 \operatorname { sin } ^ { 2 } \omega }$ ; confidence 0.871

286. b12043082.png ; $U _ { q } ( n _ { + } )$ ; confidence 0.871

287. r13007068.png ; $( f , g ) : = ( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , \sum _ { m = 1 } ^ { M } K ( x , z _ { m } ) \beta _ { m } ) =$ ; confidence 0.871

288. o13001020.png ; $v ( x , \alpha , k ) = \frac { e ^ { i k r } } { r } A ( \alpha ^ { \prime } , \alpha , k ) + o ( \frac { 1 } { r } )$ ; confidence 0.871

289. a12016071.png ; $d S _ { t } / d u _ { t } = c _ { 1 }$ ; confidence 0.870

290. a120160163.png ; $\sum _ { j = 1 } ^ { M } \sum _ { t = 1 } ^ { T } c _ { j t } x _ { j t } \leq B$ ; confidence 0.870

291. b12014043.png ; $t _ { i } ( z )$ ; confidence 0.870

292. d0302708.png ; $p = n$ ; confidence 0.870

293. a1302405.png ; $( n \times m )$ ; confidence 0.870

294. v13005084.png ; $= ( m - n ) L ( m + n ) + \frac { 1 } { 12 } ( m ^ { 3 } - m ) \delta _ { n + m , 0 } c$ ; confidence 0.870

295. s13014020.png ; $\{ 1 ^ { \prime } < 1 < 2 ^ { \prime } < 2 < \ldots \}$ ; confidence 0.870

296. n12002055.png ; $\hat { \theta } = \psi _ { \mu } ( X )$ ; confidence 0.870

297. h048420160.png ; $O ( U )$ ; confidence 0.870

298. a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870

299. m1302009.png ; $L _ { Y } P = 0$ ; confidence 0.870

300. d12014077.png ; $\{ D _ { N } ( x , 1 ) \}$ ; confidence 0.870

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/35. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/35&oldid=44445