Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/27"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 27 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 27 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028039.png ; $[ g _ { i } ] : Y \rightarrow P _ { i }$ ; confidence 0.743
+
1. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030158.png ; $( D ) \in K _ { 0 } ( C _ { r } ^ { * } ( \Gamma ) )$ ; confidence 0.954
  
2. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g0430204.png ; $\pi _ { k } : M _ { k } \rightarrow M$ ; confidence 0.990
+
2. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900120.png ; $U \in A$ ; confidence 0.954
  
3. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067036.png ; $M \supset U \rightarrow R ^ { n }$ ; confidence 0.264
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015061.png ; $U ( n ) / ( U ( n _ { 1 } ) \times \ldots \times U ( n _ { k } ) )$ ; confidence 0.954
  
4. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320126.png ; $\varphi _ { 0 } : U \rightarrow V$ ; confidence 0.652
+
4. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005047.png ; $\beta ( n , \alpha , \theta ; T )$ ; confidence 0.954
  
5. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033026.png ; $( 4 u ^ { 2 } , 2 u ^ { 2 } - u , u ^ { 2 } - u )$ ; confidence 0.974
+
5. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005076.png ; $P ( \square ^ { n } E )$ ; confidence 0.954
  
6. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034057.png ; $\omega ( A ) = \lambda c _ { 1 } ( A )$ ; confidence 0.717
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008032.png ; $\frac { f ^ { \prime } ( R ) } { f ( R ) } = \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.954
  
7. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340183.png ; $\sigma : \Sigma \rightarrow M$ ; confidence 0.970
+
7. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034096.png ; $\alpha _ { H } : X \rightarrow Z$ ; confidence 0.954
  
8. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034043.png ; $\omega ( J u , J v ) = \omega ( u , v )$ ; confidence 0.987
+
8. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009082.png ; $F _ { n , r } ^ { ( k ) } ( x )$ ; confidence 0.954
  
9. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064011.png ; $[ \operatorname { log } a ] _ { k }$ ; confidence 0.588
+
9. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001074.png ; $x _ { 3 } = f ( x ^ { \prime } ) , x ^ { \prime } = ( x _ { 1 } , x _ { 2 } )$ ; confidence 0.954
  
10. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005099.png ; $D _ { \alpha } + D _ { \alpha } ^ { t }$ ; confidence 0.089
+
10. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002045.png ; $F \subset G _ { \tau }$ ; confidence 0.954
  
11. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005022.png ; $E _ { i } ^ { * } \xi = \xi ^ { \prime }$ ; confidence 0.851
+
11. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023033.png ; $u \in V$ ; confidence 0.954
  
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003041.png ; $\Psi \circ f = F _ { K } \circ \Phi$ ; confidence 0.945
+
12. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840353.png ; $B > 0$ ; confidence 0.954
  
13. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t1300908.png ; $\pi _ { X } : T _ { X } \rightarrow X$ ; confidence 0.300
+
13. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052061.png ; $( B + u v ^ { T } ) ^ { - 1 } = ( I - \frac { ( B ^ { - 1 } u ) v ^ { T } } { 1 + v ^ { T } B ^ { - 1 } u } ) B ^ { - 1 }$ ; confidence 0.954
  
14. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t1200807.png ; $x , y , z _ { 1 } , \dots , z _ { s } \in Z$ ; confidence 0.629
+
14. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690084.png ; $0 \leq T \leq S$ ; confidence 0.954
  
15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t1201406.png ; $( \gamma _ { j - k } ) _ { j , k \geq 0 }$ ; confidence 0.624
+
15. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x1200205.png ; $Q = Q _ { s } ( R )$ ; confidence 0.954
  
16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201508.png ; $\xi , \eta _ { 1 } , \eta _ { 2 } \in A$ ; confidence 0.994
+
16. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005045.png ; $\{ T ( n , \alpha ) : n \in N , 0 < \alpha < 1 \}$ ; confidence 0.954
  
17. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356035.png ; $\mathfrak { M } _ { f } \cap A ^ { + }$ ; confidence 0.995
+
17. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020072.png ; $\lambda \in \Lambda$ ; confidence 0.954
  
18. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356041.png ; $\lambda _ { f } ( x ) : x \mapsto x y$ ; confidence 0.549
+
18. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049040.png ; $s _ { 1 } ^ { 2 } = \frac { 1 } { m - 1 } \sum _ { i } ( X _ { i } - X ) ^ { 2 } \quad \text { and } \quad s _ { 2 } ^ { 2 } = \frac { 1 } { n - 1 } \sum _ { j } ( Y _ { j } - Y ) ^ { 2 }$ ; confidence 0.954
  
19. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002030.png ; $| f ( x ) | \leq A e ^ { - \pi a x ^ { 2 } }$ ; confidence 0.666
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050296.png ; $G _ { k , q }$ ; confidence 0.954
  
20. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u1300203.png ; $\int | x - a | ^ { 2 } | f ( x ) | ^ { 2 } d x$ ; confidence 0.894
+
20. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023066.png ; $P \in L ^ { 2 } \text { skew } ( V ; V )$ ; confidence 0.954
  
21. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002059.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) \notin G$ ; confidence 0.953
+
21. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010146.png ; $M _ { 0 } \times R ^ { 1 } \approx M _ { 1 } \times R ^ { 1 }$ ; confidence 0.954
  
22. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020113.png ; $( x _ { 0 } , y _ { 0 } ) \in \Gamma ( F )$ ; confidence 0.973
+
22. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020180.png ; $F ( x ) = r \circ t ^ { - 1 } ( x )$ ; confidence 0.954
  
23. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900145.png ; $Z = \cup _ { p = 1 } ^ { N _ { 0 } } Z _ { p }$ ; confidence 0.512
+
23. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031025.png ; $C ^ { k } ( [ 0,1 ] ^ { d } )$ ; confidence 0.954
  
24. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900170.png ; $g ( \zeta ) = T ( \zeta ) f ( \zeta )$ ; confidence 1.000
+
24. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005037.png ; $V \rightarrow ( \text { End } V ) [ [ x , x ^ { - 1 } ] ]$ ; confidence 0.954
  
25. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007050.png ; $\sigma : R ^ { 2 n } \rightarrow C$ ; confidence 0.824
+
25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065025.png ; $c _ { \mu } = \int _ { - \pi } ^ { \pi } \operatorname { log } \mu ^ { \prime } ( \theta ) d \theta$ ; confidence 0.954
  
26. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008017.png ; $f ( q , p ) , g ( q , p ) \in S ( R ^ { 2 n } )$ ; confidence 0.238
+
26. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230155.png ; $R _ { i } - Z _ { i } R _ { i } Z _ { i } ^ { * } = G _ { i } J G _ { i } ^ { * }$ ; confidence 0.954
  
27. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090248.png ; $\Phi = \Phi ^ { + } \cup \Phi ^ { - }$ ; confidence 0.997
+
27. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033035.png ; $H ^ { * } ( X , C )$ ; confidence 0.954
  
28. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110101.png ; $\pi : Mp ( n ) \rightarrow Sp ( n )$ ; confidence 0.428
+
28. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001050.png ; $\chi ( n )$ ; confidence 0.954
  
29. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110223.png ; $\langle \xi \rangle = 1 + | \xi |$ ; confidence 0.979
+
29. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007070.png ; $\omega = \eta$ ; confidence 0.954
  
30. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080165.png ; $\Pi _ { 1 } ( \Sigma _ { g } , z _ { 0 } )$ ; confidence 0.977
+
30. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080132.png ; $u = A w$ ; confidence 0.954
  
31. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008080.png ; $y ^ { 2 } = P ^ { 2 } - 4 \Lambda ^ { 2 N }$ ; confidence 0.996
+
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050105.png ; $f : R ^ { 5 } \rightarrow R ^ { 5 }$ ; confidence 0.954
  
32. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008044.png ; $\int _ { A _ { i } } d \Omega _ { n } = 0$ ; confidence 0.316
+
32. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003034.png ; $\operatorname { dens } ( P _ { \alpha } ( X ) ) \leq \operatorname { card } ( \alpha )$ ; confidence 0.954
  
33. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008033.png ; $\lambda _ { 0 } = 2 \overline { u }$ ; confidence 0.998
+
33. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050105.png ; $\| U ( t , s ) \| _ { X } \leq M e ^ { \beta ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.953
  
34. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021073.png ; $( s _ { 1 } , \dots , s _ { k } , l _ { m } )$ ; confidence 0.756
+
34. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200209.png ; $\{ \hat { \phi } ( j ) \} _ { j \geq 0 }$ ; confidence 0.953
  
35. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021058.png ; $s _ { 1 } = s _ { 2 } = s _ { 3 } = s _ { 4 } = 1$ ; confidence 0.998
+
35. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023057.png ; $X K$ ; confidence 0.953
  
36. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021038.png ; $( s _ { 1 } , \dots , s _ { k } , B _ { m } )$ ; confidence 0.817
+
36. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002059.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) \notin G$ ; confidence 0.953
  
37. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z1300804.png ; $n \in N _ { 0 } = \{ 0,1,2 , \dots \}$ ; confidence 0.378
+
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008035.png ; $H > 3$ ; confidence 0.953
  
38. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111013.png ; $H ^ { n + 1 } ( X , A ; G ) \rightarrow$ ; confidence 0.634
+
38. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220142.png ; $X = \operatorname { Spec } ( K )$ ; confidence 0.953
  
39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799
+
39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026047.png ; $\| \Delta V \| ^ { 2 } = \sum _ { j = 1 } ^ { J } h | \Delta V _ { j } | ^ { 2 }$ ; confidence 0.953
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022041.png ; $r _ { ess } ( S ) \leq r _ { ess } ( T )$ ; confidence 0.574
+
40. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005018.png ; $g : x \rightarrow x g$ ; confidence 0.953
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240443.png ; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007087.png ; $D _ { A ( 0 ) } ( \delta , \infty )$ ; confidence 0.953
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310113.png ; $M ( C ( S ) , \alpha _ { 2 } , G _ { 2 } )$ ; confidence 0.980
+
42. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004092.png ; $P ( x , D ) u \in G ^ { S } ( U )$ ; confidence 0.953
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310112.png ; $M ( C ( S ) , \alpha _ { 1 } , G _ { 1 } )$ ; confidence 0.951
+
43. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012031.png ; $| p ^ { ( k ) } ( \xi ) |$ ; confidence 0.953
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040623.png ; $\Gamma \vDash S _ { P } \varphi$ ; confidence 0.843
+
44. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100103.png ; $N _ { E } ( V )$ ; confidence 0.953
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040720.png ; $S = \{ S _ { P } : \text { Pa set } \}$ ; confidence 0.480
+
45. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009019.png ; $| k ( t ) | = 1$ ; confidence 0.953
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004033.png ; $\operatorname { to } \varphi$ ; confidence 0.319
+
46. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008031.png ; $\overline { u } ( x , t ) = \frac { 1 } { 2 } \sum _ { i = 0 } ^ { 2 g } \lambda _ { i } - \sum _ { j = 0 } ^ { g } \alpha _ { j }$ ; confidence 0.953
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040745.png ; $\Sigma ( P , R ) \subseteq Fm P L$ ; confidence 0.283
+
47. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012064.png ; $f ( y | \mu , \Sigma , \nu ) \propto$ ; confidence 0.953
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004017.png ; $\Gamma , \Delta \subseteq Fm$ ; confidence 0.985
+
48. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001015.png ; $d \lambda$ ; confidence 0.953
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040789.png ; $g \circ h = g ^ { \prime } \circ h$ ; confidence 0.904
+
49. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m1201206.png ; $f : \square _ { R } A \rightarrow \square _ { R } R$ ; confidence 0.953
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005042.png ; $\lambda \in S _ { \theta _ { 0 } }$ ; confidence 0.519
+
50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009018.png ; $d ( u , \phi ) ( t ) = \operatorname { inf } \{ \| u - \phi ( x - v t - c ) \| _ { 1 } : c \in R \}$ ; confidence 0.953
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005035.png ; $\theta _ { 0 } \in ( \pi / 2 , \pi )$ ; confidence 0.996
+
51. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006046.png ; $\left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right)$ ; confidence 0.953
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050113.png ; $U ( . . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428
+
52. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d1301707.png ; $u = 0 \text { in } \partial \Omega$ ; confidence 0.953
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006046.png ; $0 \leq t _ { 1 } \leq t _ { k } \leq T$ ; confidence 0.984
+
53. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001040.png ; $c ( x , t )$ ; confidence 0.953
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007047.png ; $A u \in C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.969
+
54. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011036.png ; $H = 3$ ; confidence 0.953
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008060.png ; $( H ^ { 1 } ( \Omega ) ) ^ { \prime }$ ; confidence 0.731
+
55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007094.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = 0$ ; confidence 0.994
+
56. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080102.png ; $f = \operatorname { max } f ( x )$ ; confidence 0.998
+
57. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030038.png ; $( T ( a _ { 1 } , \dots , a _ { n } ) , d )$ ; confidence 0.266
+
58. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017016.png ; $m _ { 1 } \neq 0$ ; confidence 0.953
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015041.png ; $g \in G , X , Y \in \mathfrak { g }$ ; confidence 0.446
+
59. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232035.png ; $1 / \rho ^ { n - 2 }$ ; confidence 0.953
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023031.png ; $\| f _ { 1 } - P f \| \rightarrow 0$ ; confidence 0.984
+
60. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016052.png ; $C ( X , \tau ) : = \{ f \in C ( X ) : f ( \tau ( x ) ) = \overline { f ( x ) } , \forall x \in X \}$ ; confidence 0.953
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023027.png ; $\{ f _ { 1 } \} _ { 1 = 1 } ^ { \infty }$ ; confidence 0.308
+
61. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028024.png ; $A \otimes B$ ; confidence 0.953
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027018.png ; $T _ { X } = f , \quad x \in X , f \in Y$ ; confidence 0.787
+
62. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110179.png ; $S _ { \infty } ^ { n - 1 } \times S ^ { n - 1 }$ ; confidence 0.953
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027068.png ; $\phi ( t ) \rightarrow \infty$ ; confidence 0.999
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013065.png ; $| \theta _ { n + 1 } ^ { * } - \theta _ { n } ^ { * } |$ ; confidence 0.953
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026023.png ; $u : A \rightarrow A ^ { \prime }$ ; confidence 0.997
+
64. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900179.png ; $\zeta \in Z$ ; confidence 0.953
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260124.png ; $A = C \{ Z _ { 1 } , \dots , Z _ { Y } \}$ ; confidence 0.145
+
65. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065053.png ; $S _ { k } ( 0 ) \in D$ ; confidence 0.953
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260126.png ; $A ( X _ { 1 } , \dots , X _ { s _ { i } } )$ ; confidence 0.386
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002085.png ; $J = H$ ; confidence 0.953
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027014.png ; $W ( \rho ) = \prod W _ { P } ( \rho )$ ; confidence 0.995
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002044.png ; $u = g _ { t } ( v )$ ; confidence 0.953
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270132.png ; $\operatorname { Tr } ( x ^ { 2 } )$ ; confidence 0.977
+
68. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200401.png ; $\nu = \{ \nu _ { X } \} _ { X \in \Omega }$ ; confidence 0.953
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280100.png ; $( L _ { w } ( X , Y ) , L _ { W } ( X , Y ) * )$ ; confidence 0.428
+
69. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010117.png ; $e : X \rightarrow G B$ ; confidence 0.953
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028085.png ; $\phi _ { t } ( A ) = U _ { t } A V _ { - t }$ ; confidence 0.991
+
70. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i1300104.png ; $d _ { \chi } ^ { G } : C ^ { n \times n } \rightarrow C$ ; confidence 0.953
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029081.png ; $Y _ { id } = \Sigma \times S ^ { 1 }$ ; confidence 0.946
+
71. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010059.png ; $j = 1728 J$ ; confidence 0.952
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029051.png ; $[ 0,1 ] \times R \rightarrow M$ ; confidence 0.980
+
72. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120080/e1200806.png ; $\alpha : T A \rightarrow A$ ; confidence 0.952
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029027.png ; $x ^ { \pm } \in L _ { 0 } \cap L _ { 1 }$ ; confidence 0.943
+
73. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005067.png ; $0 < - ( K _ { X } + B ) g ( P ^ { 1 } ) \leq 2 d$ ; confidence 0.952
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030054.png ; $R _ { N } \in B ( E _ { N } , E _ { N - 1 } )$ ; confidence 0.118
+
74. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023022.png ; $\sigma : M \rightarrow E$ ; confidence 0.952
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032019.png ; $S _ { n } = Y _ { 1 } + \ldots + Y _ { n }$ ; confidence 0.526
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200127.png ; $G _ { i } < \infty$ ; confidence 0.952
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032022.png ; $E ( N ) = E ( S _ { N } ) ( E ( Y ) ) ^ { - 1 }$ ; confidence 0.527
+
76. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240110.png ; $H ^ { 1 } ( G ( \overline { Q } / Q ( \xi _ { L } ) ) ; T ( k - r ) )$ ; confidence 0.952
  
77. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501012.png ; $\phi _ { n } \circ \xi ^ { * } = \xi$ ; confidence 0.981
+
77. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200207.png ; $( u _ { 1 } ^ { * } , u _ { 2 } ^ { * } )$ ; confidence 0.952
  
78. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501021.png ; $\{ B _ { r } , \phi _ { r } , g _ { r } \}$ ; confidence 0.934
+
78. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002046.png ; $P$ ; confidence 0.952
  
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021097.png ; $W ^ { ( i ) } = \{ w \in W : l ( w ) = i \}$ ; confidence 0.838
+
79. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029088.png ; $( Y , S )$ ; confidence 0.952
  
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021075.png ; $\mathfrak { F } _ { \lambda }$ ; confidence 0.661
+
80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005029.png ; $f ( x , k ) = e ^ { i k x } + o ( 1 ) , x \rightarrow \infty$ ; confidence 0.952
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066082.png ; $\sum _ { i } | f _ { i } | > \delta > 0$ ; confidence 0.986
+
81. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018083.png ; $\alpha \mapsto \operatorname { sup } \{ \| f g _ { \alpha } \| / \| f \| : f \in I _ { E } \}$ ; confidence 0.952
  
82. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b1100202.png ; $b ( u , v ) = l ( v ) , \forall v \in V$ ; confidence 0.989
+
82. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005064.png ; $H : \mathfrak { F } \rightarrow \mathfrak { G }$ ; confidence 0.952
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002036.png ; $S : V ^ { \prime } \rightarrow U$ ; confidence 0.821
+
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004042.png ; $\| f \| = \| g \|$ ; confidence 0.952
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002015.png ; $\| \alpha _ { N } + \beta _ { N } \|$ ; confidence 0.358
+
84. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s1301309.png ; $\operatorname { har } ( F ) = 0$ ; confidence 0.952
  
85. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004016.png ; $\{ l _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.633
+
85. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020105.png ; $\| \varphi \| _ { * } \leq 1$ ; confidence 0.952
  
86. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040100.png ; $x x ^ { \prime } \in L _ { 1 } ( \mu )$ ; confidence 0.914
+
86. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520276.png ; $F ( A ) h _ { 0 }$ ; confidence 0.952
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005034.png ; $\{ f \in H ^ { \infty } ( B _ { E } ) :$ ; confidence 0.999
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240135.png ; $A$ ; confidence 0.952
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022063.png ; $H _ { M } ^ { \bullet } ( X , Q ( * ) ) z$ ; confidence 0.428
+
88. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220142.png ; $X = \operatorname { Spec } ( K )$ ; confidence 0.953
+
89. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290175.png ; $R ( M )$ ; confidence 0.952
  
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009027.png ; $\varphi \in C ^ { 1 } ( R ; R ^ { n } )$ ; confidence 0.977
+
90. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w1201304.png ; $\sigma _ { c } ( T )$ ; confidence 0.952
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010040.png ; $T _ { \varphi } f = P ( \varphi f )$ ; confidence 0.997
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012074.png ; $R > 1$ ; confidence 0.952
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010031.png ; $\int _ { D } | f | ^ { 2 } d A < \infty$ ; confidence 0.964
+
92. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005010.png ; $f ( x , v , t )$ ; confidence 0.952
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013064.png ; $B _ { 0 } ^ { * } \cong L _ { i j } ^ { 1 }$ ; confidence 0.463
+
93. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008016.png ; $E [ T _ { p } ]$ ; confidence 0.952
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013057.png ; $L _ { i j } ^ { p } ( G ) = L _ { i j } ^ { p }$ ; confidence 0.234
+
94. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008025.png ; $Q ( \partial / \partial x ) ( K _ { p } ( f ) - ( f ) )$ ; confidence 0.952
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150129.png ; $d ^ { * } : \Omega \rightarrow R$ ; confidence 0.795
+
95. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301708.png ; $d _ { 2 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r - \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } }$ ; confidence 0.952
  
96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015071.png ; $: \{ 0,1 \} ^ { n } \rightarrow R$ ; confidence 0.853
+
96. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190114.png ; $d ( x , m ) = \rho$ ; confidence 0.952
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015082.png ; $D _ { s } \oplus D _ { s } ^ { \perp }$ ; confidence 0.847
+
97. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002034.png ; $U \times V$ ; confidence 0.952
  
98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017014.png ; $( 1 + | \xi | ^ { 2 } ) ^ { \alpha / 2 }$ ; confidence 1.000
+
98. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520208.png ; $\epsilon _ { p + 1 } = \ldots = \epsilon _ { r } = - 1$ ; confidence 0.952
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015740/b01574017.png ; $\operatorname { Lip } \alpha$ ; confidence 0.714
+
99. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013087.png ; $\prod _ { i , j } l _ { i j } ^ { m _ { i j } }$ ; confidence 0.952
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202203.png ; $( x , v ) \in R ^ { N } \times R ^ { N }$ ; confidence 0.973
+
100. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520290.png ; $U : H \rightarrow L _ { \rho } ^ { 2 }$ ; confidence 0.952
  
101. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022080.png ; $M _ { 0 } ( \underline { u } , \xi )$ ; confidence 0.960
+
101. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101106.png ; $0 \leq n \leq q$ ; confidence 0.952
  
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b1301604.png ; $| f \| : = \{ \| f ( x ) \| : x \in X \}$ ; confidence 0.816
+
102. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013064.png ; $\zeta _ { \lambda } ^ { \mu } = 0 \text { if } \mu \neq \lambda , \mu \in SP ^ { - } ( n )$ ; confidence 0.952
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270103.png ; $F ( x ) = P ( T _ { 1 } - T _ { 0 } \leq x )$ ; confidence 0.782
+
103. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007014.png ; $\Delta$ ; confidence 0.952
  
104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027062.png ; $\sum _ { 1 } ^ { \infty } p _ { j } = 1$ ; confidence 0.962
+
104. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479703.png ; $\mu : A \otimes A \rightarrow A$ ; confidence 0.952
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032061.png ; $F ( s , t ) \leq F ( s _ { 1 } , t _ { 1 } )$ ; confidence 0.966
+
105. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737053.png ; $\alpha < 1$ ; confidence 0.952
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197096.png ; $\dot { k } \rightarrow \infty$ ; confidence 0.606
+
106. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i1200107.png ; $\int _ { 1 } ^ { \infty } g _ { \Phi } ( t ) d t = \infty$ ; confidence 0.952
  
107. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019060.png ; $b ( m ) = \# \{ n \in Z : n ^ { 2 } = m \}$ ; confidence 0.956
+
107. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005024.png ; $g : h \mapsto g h$ ; confidence 0.952
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019022.png ; $x ( h _ { 1 } ) + \ldots + x ( h _ { p } )$ ; confidence 0.963
+
108. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005025.png ; $\operatorname { Re } \mu _ { 0 } ( k , R ) = 0$ ; confidence 0.952
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019065.png ; $v _ { 1 } = [ \alpha _ { 1 } , q _ { 1 } ]$ ; confidence 0.993
+
109. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009076.png ; $\hbar \neq 0$ ; confidence 0.952
  
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037080.png ; $\{ 0,1 , \neg , \vee , \wedge \}$ ; confidence 0.961
+
110. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006094.png ; $\Gamma _ { 2 x } ( 2 x , 0 )$ ; confidence 0.952
  
111. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020088.png ; $\Delta _ { - } = - \Delta _ { + }$ ; confidence 0.970
+
111. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356046.png ; $\mathfrak { N } _ { f } / N _ { f }$ ; confidence 0.952
  
112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043026.png ; $Ad : B \otimes B \rightarrow B$ ; confidence 0.646
+
112. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006028.png ; $\rho \in L ^ { 5 / 3 } ( R ^ { 3 } )$ ; confidence 0.951
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043016.png ; $( B , \Delta , \varepsilon , S )$ ; confidence 0.932
+
113. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170158.png ; $k \leq [ n / 2 ] + 1$ ; confidence 0.951
  
114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430147.png ; $A _ { q } ^ { 2 } \times GL _ { q } ( 2 )$ ; confidence 0.769
+
114. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008041.png ; $\delta ( w | v ) = d ( w | v )$ ; confidence 0.951
  
115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022021.png ; $D _ { j } = \partial / \partial x$ ; confidence 0.333
+
115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011035.png ; $\cup S ^ { n } \subset S ^ { n + 2 }$ ; confidence 0.951
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023047.png ; $\operatorname { St } _ { G } ( u )$ ; confidence 0.627
+
116. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840340.png ; $[ x , y ] = ( G x , y )$ ; confidence 0.951
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b1302302.png ; $\{ H _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.818
+
117. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300119.png ; $O _ { \infty }$ ; confidence 0.951
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023048.png ; $\operatorname { St } _ { G } ( n )$ ; confidence 0.662
+
118. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020037.png ; $g _ { 1 } ( k )$ ; confidence 0.951
  
119. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023021.png ; $M _ { x } = m _ { 0 } \ldots m _ { x } - 1$ ; confidence 0.225
+
119. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003034.png ; $L _ { 1 } ( E )$ ; confidence 0.951
  
120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046044.png ; $V _ { H } = V _ { H } e \oplus V _ { H } f$ ; confidence 0.965
+
120. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260243.png ; $I ( B )$ ; confidence 0.951
  
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b1204908.png ; $m _ { i } : \Sigma \rightarrow X$ ; confidence 0.799
+
121. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006017.png ; $\mu _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }$ ; confidence 0.951
  
122. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049054.png ; $\{ m _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.687
+
122. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090168.png ; $\zeta \in \mu _ { p } \infty$ ; confidence 0.951
  
123. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026091.png ; $0 \notin f ( \partial \Omega )$ ; confidence 0.983
+
123. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500060.png ; $B ( y _ { i } , \epsilon ) \cap B ( y _ { j } , \epsilon ) = \emptyset$ ; confidence 0.951
  
124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026046.png ; $U \subset R ^ { n } \times [ 0,1 ]$ ; confidence 0.972
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310112.png ; $M ( C ( S ) , \alpha _ { 1 } , G _ { 1 } )$ ; confidence 0.951
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026026.png ; $y \notin f ( \partial \Omega )$ ; confidence 0.985
+
125. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007055.png ; $\theta _ { 0 } = 1.3247 \ldots > 1$ ; confidence 0.951
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027064.png ; $( K _ { 1 } ( A ) , Z ) \rightarrow 0$ ; confidence 0.742
+
126. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019031.png ; $L u = \operatorname { sin } ( x ) \frac { d ^ { 2 } u } { d x ^ { 2 } } - ( \frac { d u } { d x } ) ^ { 2 }$ ; confidence 0.951
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050035.png ; $l ( u ) = ( 2 u \| n \| n u \| ) ^ { 1 / 2 }$ ; confidence 0.409
+
127. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004055.png ; $s _ { \lambda ^ { \prime } } = \operatorname { det } ( e _ { \lambda _ { i } - i + j } )$ ; confidence 0.951
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051070.png ; $D = \{ x : f ( x ) \leq f ( x _ { 0 } ) \}$ ; confidence 0.992
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009014.png ; $u | < 1$ ; confidence 0.951
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302908.png ; $l _ { A } ( M / qM ) - e _ { q } ^ { 0 } ( M )$ ; confidence 0.285
+
129. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012030.png ; $Z _ { n } ( x ; - \sigma ) = ( - 1 ) ^ { n } Z _ { n } ( - x ; \sigma )$ ; confidence 0.951
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290146.png ; $\operatorname { dim } A \geq 2$ ; confidence 0.993
+
130. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020048.png ; $T ^ { * } R ^ { 3 }$ ; confidence 0.951
  
131. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290173.png ; $i \neq \operatorname { dim } A$ ; confidence 0.991
+
131. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007020.png ; $R ( t ) = I$ ; confidence 0.951
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029023.png ; $l _ { A } ( M / qM ) = e _ { q } ^ { 0 } ( M )$ ; confidence 0.247
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a0116208.png ; $p = \infty$ ; confidence 0.951
  
133. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290195.png ; $i \neq \operatorname { dim } R$ ; confidence 0.986
+
133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004021.png ; $\operatorname { Im } ( \gamma z ) > 1$ ; confidence 0.951
  
134. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290187.png ; $\operatorname { lim } A \geq 1$ ; confidence 0.959
+
134. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304903.png ; $r : P \rightarrow N$ ; confidence 0.951
  
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b1205509.png ; $b _ { \gamma } : M \rightarrow R$ ; confidence 0.849
+
135. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460104.png ; $M _ { 0 } , M _ { 1 }$ ; confidence 0.951
  
136. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055044.png ; $M \ni x \mapsto d ( x , ) \in C ( M )$ ; confidence 0.960
+
136. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012081.png ; $f _ { \infty } = f - \Sigma _ { \infty } \phi$ ; confidence 0.951
  
137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b1205507.png ; $d ( \gamma ( t ) , \gamma ( 0 ) ) = t$ ; confidence 0.995
+
137. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003035.png ; $C _ { C } ( \Gamma \backslash G ( R ) )$ ; confidence 0.951
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010172.png ; $a \in C ^ { n } \backslash \{ 0 \}$ ; confidence 0.282
+
138. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005025.png ; $x ^ { k + 1 } = x ^ { k } + \alpha _ { k } d ^ { k }$ ; confidence 0.951
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003011.png ; $f ( t , . ) : G \rightarrow R ^ { m }$ ; confidence 0.796
+
139. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951
  
140. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008014.png ; $A _ { 2 } \in C ^ { m \times ( n - m ) }$ ; confidence 0.737
+
140. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951
  
141. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070251.png ; $\nu _ { 1 } + \nu _ { 2 } + 2 \gamma g$ ; confidence 0.956
+
141. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012027.png ; $x , y \in E _ { 1 }$ ; confidence 0.951
  
142. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016028.png ; $\| x \| _ { 2 } = ( x ^ { T } x ) ^ { 1 / 2 }$ ; confidence 0.940
+
142. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018045.png ; $E _ { 1 } \cap E _ { 2 }$ ; confidence 0.951
  
143. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010018.png ; $A _ { i } \cap A _ { j } = \emptyset$ ; confidence 0.756
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220102.png ; $( X _ { C } , A ( j ) )$ ; confidence 0.951
  
144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c1301002.png ; $m : A \rightarrow [ 0 , \infty ]$ ; confidence 0.976
+
144. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300608.png ; $L _ { 1,1 } : = \{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty , q = \overline { q } \}$ ; confidence 0.951
  
145. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010017.png ; $\{ A ; \} _ { i = 1 } ^ { n } \subset A$ ; confidence 0.339
+
145. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002040.png ; $\lambda = \left( \begin{array} { l } { n } \\ { 3 } \end{array} \right) p ^ { 3 }$ ; confidence 0.951
  
146. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232702.png ; $A \rightarrow \overline { A }$ ; confidence 0.758
+
146. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011023.png ; $\| . \| : G \rightarrow [ 0 , + \infty )$ ; confidence 0.951
  
147. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017094.png ; $\operatorname { col } M ( n + 1 )$ ; confidence 0.972
+
147. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005030.png ; $H ^ { \infty } + C = \{ f + g : f \in H ^ { \infty } , g \in C \}$ ; confidence 0.951
  
148. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180312.png ; $\nabla g = 0 \in \otimes ^ { 3 } E$ ; confidence 0.942
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050292.png ; $P ^ { \# } ( n ) \sim G ^ { \# } ( n )$ ; confidence 0.951
  
149. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180398.png ; $\operatorname { det } g ^ { - 1 }$ ; confidence 0.667
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019056.png ; $L = L _ { k , q }$ ; confidence 0.951
  
150. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180182.png ; $\tau _ { 2 } \Theta = - \Theta$ ; confidence 0.618
+
150. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003029.png ; $\theta _ { 3 } ( z , q ) = \sum _ { k = - \infty } ^ { \infty } q ^ { k ^ { 2 } } e ^ { - 2 \pi i k z }$ ; confidence 0.951
  
151. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019023.png ; $\varphi ( [ 0 , t ] , x ) \subset N$ ; confidence 0.993
+
151. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010012.png ; $\nabla T$ ; confidence 0.951
  
152. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019067.png ; $S : = \operatorname { inv } ( N )$ ; confidence 0.893
+
152. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170131.png ; $K ^ { 2 } \times I$ ; confidence 0.951
  
153. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c1202104.png ; $P _ { N } ( A _ { N } ) \rightarrow 0$ ; confidence 0.399
+
153. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340171.png ; $H : \Sigma \times M \rightarrow R$ ; confidence 0.951
  
154. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210147.png ; $\alpha _ { x } / \tau _ { x } = O ( 1 )$ ; confidence 0.347
+
154. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003038.png ; $L _ { 2 } ( E )$ ; confidence 0.951
  
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021036.png ; $P _ { W } ( A _ { W } ) \rightarrow 0$ ; confidence 0.251
+
155. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016048.png ; $J \mapsto J ^ { \prime }$ ; confidence 0.951
  
156. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026010.png ; $u _ { j } ^ { n } = u ( x _ { j } , t _ { n } )$ ; confidence 0.913
+
156. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202705.png ; $p \in \Omega$ ; confidence 0.951
  
157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026060.png ; $( L _ { h k } U ) _ { j } ^ { n } \equiv 0$ ; confidence 0.337
+
157. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060163.png ; $f ( x , k ) = e ^ { i k x } + \int _ { x } ^ { \infty } A ( x , y ) e ^ { i k y } d y$ ; confidence 0.951
  
158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028011.png ; $\pi _ { N } ( X _ { N } , X _ { N } - 1 , X )$ ; confidence 0.214
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a1302506.png ; $\{ x y z \} = \{ y x z \}$ ; confidence 0.951
  
159. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029052.png ; $G = \text { Coker } ( \partial )$ ; confidence 0.756
+
159. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080161.png ; $L ( L _ { q } ( X ) )$ ; confidence 0.951
  
160. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300105.png ; $K = e ^ { - \beta h } \in T _ { 1 } ( H )$ ; confidence 0.501
+
160. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232043.png ; $J ( 0 ) = u ( x _ { 0 } )$ ; confidence 0.951
  
161. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002039.png ; $\overline { u } _ { 1 } \in U _ { 1 }$ ; confidence 0.867
+
161. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000145.png ; $\Gamma \vdash M : ( \sigma \rightarrow \tau )$ ; confidence 0.951
  
162. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002015.png ; $\alpha ( T E ) \leq k \alpha ( E )$ ; confidence 0.972
+
162. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013028.png ; $\tau ( G )$ ; confidence 0.950
  
163. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003029.png ; $f \in L ^ { 1 } ( R ) \cap L ^ { 2 } ( R )$ ; confidence 0.969
+
163. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225028.png ; $k + 2$ ; confidence 0.950
  
164. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024026.png ; $f ( x ) = \operatorname { sgn } x$ ; confidence 1.000
+
164. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006044.png ; $W ( t , U ) = \{ f \in A ( X , Y ) : f t ( A ) \subseteq U \}$ ; confidence 0.950
  
165. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302802.png ; $\sum _ { k = 0 } ^ { \infty } a _ { k }$ ; confidence 0.848
+
165. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021025.png ; $x \rightarrow G ( x , \alpha )$ ; confidence 0.950
  
166. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005023.png ; $2 ^ { x ^ { \prime } ( x ) - 1 } ) + m - 1$ ; confidence 0.127
+
166. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067038.png ; $GL ^ { k } ( u )$ ; confidence 0.950
  
167. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d1300605.png ; $: 2 ^ { \Xi } \rightarrow [ 0,1 ]$ ; confidence 0.219
+
167. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009033.png ; $1 / p ( \xi , \tau ) = p _ { 2 } ( \xi , \tau )$ ; confidence 0.950
  
168. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012023.png ; $F : C \rightarrow C ^ { \prime }$ ; confidence 0.568
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032057.png ; $\theta = p$ ; confidence 0.950
  
169. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012035.png ; $a : g \rightarrow g ^ { \prime }$ ; confidence 0.342
+
169. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059012.png ; $\Lambda = \cup _ { n = 0 } ^ { \infty } \Lambda _ { n }$ ; confidence 0.950
  
170. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d1201205.png ; $d : G \rightarrow G ^ { \prime }$ ; confidence 0.996
+
170. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510142.png ; $\infty ( L _ { 1 } )$ ; confidence 0.950
  
171. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014071.png ; $V _ { f } = \{ f ( a ) : a \in F _ { q } \}$ ; confidence 0.494
+
171. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006051.png ; $\omega \notin X$ ; confidence 0.950
  
172. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018076.png ; $A ( \Gamma ) \cong L ^ { 1 } ( G / H )$ ; confidence 0.996
+
172. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016030.png ; $R _ { nd } ( \Omega )$ ; confidence 0.950
  
173. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202502.png ; $f : U \rightarrow R ^ { \kappa }$ ; confidence 0.207
+
173. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004013.png ; $I ( u ) = \int _ { \Omega } F ( x , u ( x ) , \nabla u ( x ) , \ldots ) d x$ ; confidence 0.950
  
174. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280127.png ; $U \supset C ^ { n } \backslash D$ ; confidence 0.960
+
174. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026084.png ; $L ^ { 0 } ( \nu )$ ; confidence 0.950
  
175. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029082.png ; $\sum _ { n = 1 } ^ { \infty } y _ { n }$ ; confidence 0.637
+
175. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111060/b11106060.png ; $\| \phi \|$ ; confidence 0.950
  
176. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029018.png ; $f ( q ) = 1 / ( \sqrt { 5 } q ^ { 2 } )$ ; confidence 1.000
+
176. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500049.png ; $r < n$ ; confidence 0.950
  
177. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029021.png ; $\sum _ { q = 1 } ^ { \infty } q f ( q )$ ; confidence 0.980
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026022.png ; $p \geq 5$ ; confidence 0.950
  
178. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031019.png ; $h ( \lambda ) = g ( f ( \lambda ) )$ ; confidence 0.999
+
178. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011037.png ; $U = \frac { \Gamma } { 2 l } \operatorname { coth } \frac { \pi \dot { b } } { l }$ ; confidence 0.950
  
179. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012028.png ; $L ( \theta | Y _ { \text { aug } } )$ ; confidence 0.661
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059049.png ; $\sum d _ { n }$ ; confidence 0.950
  
180. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020116.png ; $S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.583
+
180. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003014.png ; $\exists \lambda > 0 \forall N \in N , N > 2 : \psi _ { N } \in C ^ { \lambda N }$ ; confidence 0.950
  
181. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002076.png ; $g \circ \alpha = \beta \circ f$ ; confidence 0.899
+
181. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001040.png ; $A \otimes _ { k } A$ ; confidence 0.950
  
182. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300204.png ; $( c ^ { \infty } ( \Omega ) ) ^ { N }$ ; confidence 0.515
+
182. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180335.png ; $C ( g )$ ; confidence 0.950
  
183. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009023.png ; $F _ { \nu } ^ { \mu \nu } = S ^ { \mu }$ ; confidence 0.749
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013170/a01317021.png ; $x < 0$ ; confidence 0.950
  
184. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300303.png ; $\rho : G / Q \rightarrow GL ( M )$ ; confidence 0.626
+
184. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012078.png ; $F ^ { 4 }$ ; confidence 0.950
  
185. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014036.png ; $f v _ { 1 } , \dots , v _ { \rho } ( f )$ ; confidence 0.257
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006083.png ; $\overline { H }$ ; confidence 0.950
  
186. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140109.png ; $\varepsilon \times \varphi$ ; confidence 0.540
+
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950
  
187. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e1201501.png ; $( x ^ { 1 } , \ldots , x ^ { n } ) = ( x )$ ; confidence 0.313
+
187. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001013.png ; $X ^ { ( r ) } \rightarrow V$ ; confidence 0.950
  
188. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016029.png ; $X = \partial \nmid \partial t$ ; confidence 0.839
+
188. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013036.png ; $S ^ { \prime } = S ^ { ( 1 ) }$ ; confidence 0.950
  
189. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e1201807.png ; $| a _ { n } | \rightarrow \infty$ ; confidence 0.710
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006063.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.950
  
190. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024017.png ; $K ( L ) \subset K ( L ^ { \prime } )$ ; confidence 0.977
+
190. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019016.png ; $k = - 1 / 2$ ; confidence 0.950
  
191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024088.png ; $\in H ^ { 1 } ( Z [ 1 / p L ] ; Z / M ( n ) )$ ; confidence 0.358
+
191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051019.png ; $f ( x _ { c } + \lambda d ) \leq f ( x _ { c } ) + \alpha \lambda d ^ { T } \nabla f ( x _ { c } )$ ; confidence 0.950
  
192. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026067.png ; $\theta _ { 2 } = - 1 / \sigma ^ { 2 }$ ; confidence 1.000
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051025.png ; $f ( x _ { c } + \lambda d ) < f ( x _ { c } )$ ; confidence 0.950
  
193. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001015.png ; $F : X \rightarrow X ^ { \prime }$ ; confidence 0.980
+
193. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036670/e03667019.png ; $s > s 0$ ; confidence 0.950
  
194. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001016.png ; $G : X ^ { \prime } \rightarrow X$ ; confidence 0.997
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023087.png ; $C R$ ; confidence 0.950
  
195. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001056.png ; $n ^ { 2 } \operatorname { log } q$ ; confidence 0.997
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110790/a11079040.png ; $T > 0$ ; confidence 0.950
  
196. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001030.png ; $R _ { i } = F _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671
+
196. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025050.png ; $( \varphi u ) ( \varphi v ) = F ^ { - 1 } ( F ( \varphi u ) ^ { * } F ( \varphi v ) )$ ; confidence 0.950
  
197. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005050.png ; $\operatorname { deg } f \geq 2$ ; confidence 0.995
+
197. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011032.png ; $\xi _ { i } ( y ) > 0$ ; confidence 0.950
  
198. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005057.png ; $\operatorname { deg } f \geq 4$ ; confidence 0.995
+
198. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005059.png ; $\Lambda _ { \varphi , w } ^ { * }$ ; confidence 0.950
  
199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005018.png ; $y ^ { n } ( ( x / y ) ^ { n } - 1 ) = z ^ { n }$ ; confidence 0.858
+
199. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013081.png ; $1 \leq i \leq \nu$ ; confidence 0.950
  
200. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f1300504.png ; $P : = \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.414
+
200. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023071.png ; $\delta _ { P } ( A ) + [ A , A ] ^ { \wedge } / 2 = 0$ ; confidence 0.950
  
201. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010061.png ; $\mu \in M _ { C } ^ { \dagger } ( G )$ ; confidence 0.289
+
201. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002030.png ; $I ( \gamma ) \subset R$ ; confidence 0.950
  
202. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016040.png ; $j - \operatorname { Spec } ( R )$ ; confidence 0.926
+
202. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015047.png ; $\phi _ { X } ( Z ) = \int _ { X } \operatorname { etr } ( i Z X ^ { \prime } ) f _ { X } ( X ) d X$ ; confidence 0.950
  
203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080139.png ; $G = \operatorname { Sp } ( 1 , n )$ ; confidence 0.862
+
203. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300304.png ; $G = GL _ { 2 } / Q$ ; confidence 0.950
  
204. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080176.png ; $B _ { p } ( G ) \subset M A _ { p } ( G )$ ; confidence 0.978
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018023.png ; $\Gamma , \Delta \subseteq Fm _ { L }$ ; confidence 0.950
  
205. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110135.png ; $f = \sum _ { k } f _ { \Delta _ { k } }$ ; confidence 0.926
+
205. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017044.png ; $L _ { \alpha } ^ { p } = F _ { \alpha } ^ { p , 2 }$ ; confidence 0.950
  
206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015089.png ; $\alpha ( A + T ) \leq \alpha ( A )$ ; confidence 0.999
+
206. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007018.png ; $v _ { t } = L ^ { t } v _ { 0 }$ ; confidence 0.950
  
207. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150103.png ; $i ( F ( x ) ) = i ( F ^ { \prime } ( x ) )$ ; confidence 0.998
+
207. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r1301207.png ; $[ x , y ] = \{ u \in E : x \prec u \prec y \}$ ; confidence 0.950
  
208. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023023.png ; $L _ { i } \in \Omega ^ { l } ( N ; T N )$ ; confidence 0.630
+
208. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202008.png ; $\lambda _ { r } > 0$ ; confidence 0.950
  
209. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290152.png ; $( X , \tau ) \in | L \square | O P |$ ; confidence 0.080
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007048.png ; $BS ( 2,3 )$ ; confidence 0.950
  
210. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981
+
210. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020106.png ; $x _ { 0 } \in g ^ { - 1 } ( y _ { 0 } )$ ; confidence 0.950
  
211. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002015.png ; $F ( z ) = P ( e ^ { z } , e ^ { \beta z } )$ ; confidence 0.998
+
211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070134.png ; $\hat { H } _ { 1 }$ ; confidence 0.950
  
212. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040104.png ; $\partial S ( \phi ) = S ( d \phi )$ ; confidence 0.504
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026072.png ; $\Delta \backslash f ( \partial \Omega )$ ; confidence 0.950
  
213. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006032.png ; $x = [ x _ { 1 } \ldots x _ { n } ] ^ { T }$ ; confidence 0.579
+
213. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020222.png ; $\lambda ( S ) \leq K h$ ; confidence 0.950
  
214. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004048.png ; $\varphi \in G ^ { 5 } 0 ( \Omega )$ ; confidence 0.374
+
214. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003040.png ; $g ( P )$ ; confidence 0.950
  
215. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601087.png ; $( W ^ { \prime } ; M _ { 1 } , M _ { 2 } )$ ; confidence 0.983
+
215. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026070.png ; $( a \lambda )$ ; confidence 0.950
  
216. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601023.png ; $W \approx M _ { 0 } \times [ 0,1 ]$ ; confidence 0.998
+
216. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003050.png ; $\{ w , v \} = \int \int _ { \Omega } [ A w ( x , y ) ] v ( x , y ) d x d y =$ ; confidence 0.949
  
217. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002028.png ; $f _ { I } = ( 1 / | I | ) \int _ { I } f d m$ ; confidence 0.927
+
217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210106.png ; $= z ^ { \lambda } \sum _ { j = 0 } ^ { \infty } z ^ { j } [ \sum _ { i + k = j } c _ { k } ( \lambda ) p _ { i } ( \lambda + k ) ] =$ ; confidence 0.949
  
218. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004035.png ; $G ( \omega _ { 1 } , \omega _ { 1 } )$ ; confidence 0.998
+
218. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002038.png ; $x \varphi \preceq x \psi$ ; confidence 0.949
  
219. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005010.png ; $( \partial _ { t } + \Delta ) u = 0$ ; confidence 0.998
+
219. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150215.png ; $A \in \Phi _ { - } ( D ( A ) , Y )$ ; confidence 0.949
  
220. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007037.png ; $\operatorname { deg } \Delta$ ; confidence 0.457
+
220. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070148.png ; $k ( C )$ ; confidence 0.949
  
221. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012040.png ; $t = d _ { Y } ^ { \prime } - d \gamma$ ; confidence 0.535
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b1102602.png ; $\rho / \lambda < 1$ ; confidence 0.949
  
222. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120128.png ; $\hat { \tau } : C \rightarrow Y$ ; confidence 0.898
+
222. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010037.png ; $G = \frac { 1 } { c } E \times B$ ; confidence 0.949
  
223. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012050.png ; $\varphi d z \varphi = \varphi$ ; confidence 0.891
+
223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620163.png ; $q ( x ) = \frac { - 8 \operatorname { sin } 2 x } { x } + 0 ( x ^ { - 2 } )$ ; confidence 0.949
  
224. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012057.png ; $X = \operatorname { im } ( \pi )$ ; confidence 0.987
+
224. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006065.png ; $1$ ; confidence 0.949
  
225. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012010.png ; $d ( h ( x ) , H ( x ) ) < \varepsilon$ ; confidence 0.999
+
225. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c11040011.png ; $H x \preceq H y$ ; confidence 0.949
  
226. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h1301207.png ; $d ( h ( x y ) , h ( x ) h ( y ) ) < \delta$ ; confidence 0.999
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040800.png ; $g : B \mapsto D$ ; confidence 0.949
  
227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002011.png ; $A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.410
+
227. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005013.png ; $( x - y ) ^ { - a }$ ; confidence 0.949
  
228. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005047.png ; $\beta ( n , \alpha , \theta ; T )$ ; confidence 0.954
+
228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004043.png ; $\langle w , \zeta - z \rangle \neq 0$ ; confidence 0.949
  
229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005038.png ; $t ( k ) = \frac { 1 } { \alpha ( k ) }$ ; confidence 0.990
+
229. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070128.png ; $= ( h ( , y ) , h ( , x ) ) _ { H }$ ; confidence 0.949
  
230. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007059.png ; $R _ { - } ^ { 3 } : = \{ x : x _ { 3 } < 0 \}$ ; confidence 0.559
+
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040181.png ; $( x _ { n } ) \subset L _ { 1 }$ ; confidence 0.949
  
231. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008098.png ; $[ S _ { i } ( S _ { i - 1 } + S _ { i + 1 } ) ]$ ; confidence 0.386
+
231. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036010.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + 1 _ { t } , t \geq 0$ ; confidence 0.949
  
232. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008035.png ; $X \mapsto X ^ { \prime \prime }$ ; confidence 0.986
+
232. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049041.png ; $X = \sum _ { i } X _ { i } / m$ ; confidence 0.949
  
233. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010053.png ; $\alpha _ { 2 } + 2 \alpha _ { 1 } = 0$ ; confidence 0.805
+
233. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003016.png ; $1 - P _ { 0 } ^ { ( 1 ) }$ ; confidence 0.949
  
234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009051.png ; $1 + r _ { 2 } ( k ) + \delta _ { p } ( k )$ ; confidence 0.948
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029086.png ; $\cong QH ^ { * } ( M ( Q ) )$ ; confidence 0.949
  
235. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090230.png ; $\Lambda = Z _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.661
+
235. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010055.png ; $H ^ { p } ( K , C )$ ; confidence 0.949
  
236. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090167.png ; $\zeta ^ { \gamma } = \zeta ^ { d }$ ; confidence 0.455
+
236. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008062.png ; $( l _ { 1 } - k ^ { 2 } ) f = p f _ { 2 }$ ; confidence 0.949
  
237. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009025.png ; $\cup _ { n \geq 0 } k ( \mu _ { p } n )$ ; confidence 0.584
+
237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010068.png ; $L ( s ) = \sum _ { n = 1 } ^ { \infty } c ( n ) n ^ { - s } , \operatorname { Re } s > k$ ; confidence 0.949
  
238. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001041.png ; $F | _ { l } : l \rightarrow C ^ { 2 }$ ; confidence 0.874
+
238. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004018.png ; $A$ ; confidence 0.949
  
239. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001055.png ; $\operatorname { deg } F \leq d$ ; confidence 0.992
+
239. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012035.png ; $p \neq 1$ ; confidence 0.949
  
240. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002040.png ; $w \mapsto i \frac { 1 - w } { 1 + w }$ ; confidence 0.976
+
240. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050110.png ; $S _ { 0 } ( z )$ ; confidence 0.949
  
241. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020183.png ; $P [ \tau \in \Pi ] = | I | / ( 2 \pi )$ ; confidence 0.199
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b01535096.png ; $A \subset X$ ; confidence 0.949
  
242. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004099.png ; $\operatorname { lk } ( K _ { 0 } )$ ; confidence 0.778
+
242. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020012.png ; $\zeta ( s ) = \sum _ { m \leq x } m ^ { - s } + \frac { x ^ { 1 - s } } { s - 1 } + O ( x ^ { - \sigma } )$ ; confidence 0.949
  
243. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004056.png ; $\operatorname { cr } ( D _ { L } )$ ; confidence 0.887
+
243. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047014.png ; $N ( ( T - \lambda I ) ^ { n } )$ ; confidence 0.949
  
244. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006028.png ; $\operatorname { deg } L > 2 g - 2$ ; confidence 0.977
+
244. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013016.png ; $0 < K \leq C$ ; confidence 0.949
  
245. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005020.png ; $\mu \overline { x } ^ { 1 } B _ { j }$ ; confidence 0.351
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012010/a01201092.png ; $k > 0$ ; confidence 0.949
  
246. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840332.png ; $K ( s , t ) = \overline { K ( t , s ) }$ ; confidence 0.898
+
246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016067.png ; $s = x _ { 1 } + x _ { 2 } + x _ { 3 }$ ; confidence 0.949
  
247. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840126.png ; $\overline { L + L ^ { \perp } } = K$ ; confidence 0.978
+
247. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040115.png ; $s > m f ( m - 1 )$ ; confidence 0.949
  
248. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840386.png ; $D _ { \alpha , \beta } \subset C$ ; confidence 0.972
+
248. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009084.png ; $g \in C ^ { \prime }$ ; confidence 0.949
  
249. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558403.png ; $[ , ] : K \times K \rightarrow C$ ; confidence 0.497
+
249. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l1201009.png ; $V _ { - } ( x ) : = \operatorname { max } \{ - V ( x ) , 0 \}$ ; confidence 0.949
  
250. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702049.png ; $( H ^ { i } ( X , F _ { n } ) ) _ { n \in N }$ ; confidence 0.296
+
250. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035500/e03550047.png ; $\xi ^ { \prime }$ ; confidence 0.949
  
251. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002055.png ; $a \preceq b _ { 1 } \ldots b _ { n }$ ; confidence 0.444
+
251. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006019.png ; $f \in H$ ; confidence 0.949
  
252. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003075.png ; $\int _ { \Omega } \varphi d \mu$ ; confidence 0.990
+
252. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005062.png ; $\{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : 1 \leq j \leq J \}$ ; confidence 0.949
  
253. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004099.png ; $( x \wedge y ^ { - 1 } x y ) \vee e = e$ ; confidence 0.990
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005025.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.948
  
254. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000202.png ; $\rho ^ { \prime } ( y ) = \rho ( y )$ ; confidence 0.998
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022017.png ; $h : Z \rightarrow C$ ; confidence 0.948
  
255. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004064.png ; $f _ { i + 1 } ^ { n } = a u _ { i + 1 } ^ { n }$ ; confidence 0.619
+
255. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773078.png ; $s > r$ ; confidence 0.948
  
256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004041.png ; $b _ { - 1 } = \frac { 1 } { 2 } c ( 1 + c )$ ; confidence 0.991
+
256. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006090.png ; $R _ { j } = Z ^ { - 1 / 3 } R _ { j } ^ { 0 }$ ; confidence 0.948
  
257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006060.png ; $h ^ { I I } ( z ) = h ( z ) + 2 \pi i W ( z )$ ; confidence 0.476
+
257. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200203.png ; $I = [ m + 1 , m + ( n + k ) ( 3 + \pi / k ) ]$ ; confidence 0.948
  
258. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008027.png ; $( x , y ) \mapsto ( x ^ { 2 } / 2 + i y )$ ; confidence 0.970
+
258. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013053.png ; $\nu ^ { 2 } \tau ( G ) = \operatorname { det } ( J + L )$ ; confidence 0.948
  
259. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009089.png ; $\wedge ( \mathfrak { g } ^ { * } )$ ; confidence 0.843
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004015.png ; $\| x \| \leq \| y \|$ ; confidence 0.948
  
260. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009035.png ; $[ d f , d g ] _ { P } = d \{ f , g \} _ { P }$ ; confidence 0.824
+
260. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009051.png ; $1 + r _ { 2 } ( k ) + \delta _ { p } ( k )$ ; confidence 0.948
  
261. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010067.png ; $L _ { 0 , n } ^ { 1 } = ( S _ { n } ) ^ { - n }$ ; confidence 0.914
+
261. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032070.png ; $p | q$ ; confidence 0.948
  
262. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100123.png ; $( | i \nabla + A | ^ { 2 } + E ) ^ { - 1 }$ ; confidence 0.996
+
262. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128042.png ; $Z \rightarrow X$ ; confidence 0.948
  
263. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015450/b01545017.png ; $\lambda \rightarrow \infty$ ; confidence 0.999
+
263. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100144.png ; $S ^ { 3 } \times S ^ { 1 }$ ; confidence 0.948
  
264. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006082.png ; $( z _ { k } , \ldots , z _ { k } + r - 1 )$ ; confidence 0.201
+
264. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011083.png ; $D v / D t$ ; confidence 0.948
  
265. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003048.png ; $P U ^ { \prime } \| Q A ^ { \prime }$ ; confidence 0.987
+
265. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007055.png ; $u : = u ( x , y ) : = u ( x , y , k _ { 0 } )$ ; confidence 0.948
  
266. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120146.png ; $K _ { S } ( \overline { \sigma } )$ ; confidence 0.615
+
266. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048037.png ; $H _ { S } ^ { 1 } ( D ) = \text { coker } D$ ; confidence 0.948
  
267. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120174.png ; $K _ { S } [ \overline { \sigma } ]$ ; confidence 0.675
+
267. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017012.png ; $\gamma = ( \gamma _ { i j } ) _ { i , j \geq 0 }$ ; confidence 0.948
  
268. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170209.png ; $\overline { K } \rightarrow K$ ; confidence 0.985
+
268. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011022.png ; $( G , \| \| )$ ; confidence 0.948
  
269. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170140.png ; $C ^ { * } \subset C ^ { 2 } \times I$ ; confidence 0.595
+
269. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f1201005.png ; $f ( \frac { a z + b } { c z + d } ) = ( c z + d ) ^ { k } f ( z )$ ; confidence 0.948
  
270. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170119.png ; $K ^ { \prime 2 } \searrow K ^ { 2 }$ ; confidence 0.809
+
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024098.png ; $[ H _ { f } ^ { 1 } ( K ; T ) : Z _ { p } y ]$ ; confidence 0.948
  
271. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019044.png ; $X + A ^ { * } ( t ) X + X A ( t ) + C ( t ) = 0$ ; confidence 0.594
+
271. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003010.png ; $( P )$ ; confidence 0.948
  
272. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m1200109.png ; $\langle u - v , j \rangle \geq 0$ ; confidence 0.940
+
272. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009038.png ; $O ( N )$ ; confidence 0.948
  
273. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200209.png ; $\langle u - v , j \rangle \leq 0$ ; confidence 0.916
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200405.png ; $x ^ { \prime } ( t ) = A x ( t ) , t > 0 ; \quad x ( 0 ) = x 0$ ; confidence 0.948
  
274. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007036.png ; $\chi - 3 ( n ) = ( \frac { - 3 } { N } )$ ; confidence 0.607
+
274. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030017.png ; $S , S ^ { \prime } \in H$ ; confidence 0.948
  
275. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007059.png ; $\sigma _ { 1 } = 1.17628 \ldots$ ; confidence 0.794
+
275. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006092.png ; $N = \lambda Z$ ; confidence 0.948
  
276. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010012.png ; $\Delta _ { x } = \{ 0 , \dots , n \}$ ; confidence 0.205
+
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948
  
277. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100142.png ; $( \tilde { G } , \tau ) / \Lambda$ ; confidence 0.762
+
277. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png ; $s ^ { 3 }$ ; confidence 0.948
  
278. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010029.png ; $\alpha \in \Delta _ { \gamma }$ ; confidence 0.482
+
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014039.png ; $a ( z )$ ; confidence 0.948
  
279. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130050/m1300501.png ; $a \leftrightarrow b a b ^ { - 1 }$ ; confidence 0.640
+
279. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060139.png ; $q ( x ) \in L _ { 1,1 } \cap L ^ { 2 } ( R _ { + } )$ ; confidence 0.948
  
280. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012017.png ; $[ A , f ] + [ B , g ] = [ A \cap B , f + g ]$ ; confidence 0.487
+
280. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060160.png ; $V _ { \lambda }$ ; confidence 0.948
  
281. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013095.png ; $( \epsilon \times \epsilon )$ ; confidence 0.996
+
281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026063.png ; $C = 1$ ; confidence 0.948
  
282. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c0229301.png ; $P ( \xi _ { 1 } , \dots , \xi _ { n } )$ ; confidence 0.726
+
282. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009022.png ; $F _ { \mu \nu } = g _ { \mu \alpha } g _ { \nu \beta } F ^ { \alpha \beta }$ ; confidence 0.948
  
283. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019041.png ; $\phi _ { 0 } , \phi _ { 1 } , \ldots$ ; confidence 0.443
+
283. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004096.png ; $t = 0.20$ ; confidence 0.948
  
284. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025038.png ; $g : K \rightarrow U ^ { \prime }$ ; confidence 0.788
+
284. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026033.png ; $\| V \| ^ { 2 } = \sum _ { j = 1 } ^ { J - 1 } h | V _ { j } | ^ { 2 }$ ; confidence 0.948
  
285. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025037.png ; $f : K \rightarrow U ^ { \prime }$ ; confidence 0.998
+
285. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013075.png ; $\operatorname { Jac } ( C )$ ; confidence 0.948
  
286. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120260/m12026013.png ; $f _ { j } = \sum _ { i } c _ { i } g _ { j }$ ; confidence 0.699
+
286. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003012.png ; $T ^ { * } M \otimes \varphi ^ { - 1 } T N$ ; confidence 0.948
  
287. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026073.png ; $\lambda / x \swarrow b _ { \mu }$ ; confidence 0.486
+
287. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520308.png ; $L _ { 2 } ( M , \sigma )$ ; confidence 0.948
  
288. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012016.png ; $\operatorname { size } ( x ) = n$ ; confidence 0.501
+
288. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620447.png ; $B \subset E$ ; confidence 0.948
  
289. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012049.png ; $f \in R [ x _ { 1 } , \dots , x _ { x } ]$ ; confidence 0.402
+
289. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023036.png ; $g ( y ) \geq g ( x ) + \langle y - x , \xi \rangle$ ; confidence 0.948
  
290. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006028.png ; $\mu _ { 1 } = 0 < \ldots < \mu _ { N }$ ; confidence 0.977
+
290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180497.png ; $( x , r )$ ; confidence 0.948
  
291. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006015.png ; $\mu _ { k } \rightarrow \infty$ ; confidence 0.888
+
291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200174.png ; $A = \frac { 1 } { 6 n } \operatorname { min } _ { n \leq x \leq 2 n } ( \frac { x } { 4 e ( m + x ) } ) ^ { x } | \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } |$ ; confidence 0.948
  
292. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201102.png ; $y _ { i } = x _ { i } + \epsilon _ { i }$ ; confidence 0.947
+
292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005028.png ; $\sqrt { 2 / \pi } F ( \tau ) G ( \tau )$ ; confidence 0.948
  
293. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011044.png ; $\xi _ { g } * ( \ldots , \ldots , )$ ; confidence 0.149
+
293. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695026.png ; $p ( n )$ ; confidence 0.948
  
294. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007079.png ; $\operatorname { tar } K \neq 2$ ; confidence 0.417
+
294. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003024.png ; $f ( x ) = - \frac { 1 } { \pi } \int _ { 0 } ^ { \infty } \frac { d F _ { x } ( q ) } { q }$ ; confidence 0.948
  
295. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752064.png ; $d j = \Delta j \nmid \Delta j - 1$ ; confidence 0.459
+
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048013.png ; $\alpha _ { 1 } = \beta$ ; confidence 0.948
  
296. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520160.png ; $( \lambda - a _ { i } ) ^ { n _ { i j } }$ ; confidence 0.620
+
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012022.png ; $\sum _ { k } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.948
  
297. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752087.png ; $\vec { K } = \vec { F } [ \lambda ]$ ; confidence 0.402
+
297. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001083.png ; $C _ { S } ( R ) = C _ { S } ( Q )$ ; confidence 0.948
  
298. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520251.png ; $( d _ { 1 } + \ldots + d _ { j - 1 } + 1 )$ ; confidence 0.967
+
298. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024023.png ; $f ( r - 1 ) ( x _ { 0 } )$ ; confidence 0.948
  
299. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010137.png ; $x _ { 3 } = f _ { m } ( x _ { 1 } , x _ { 2 } )$ ; confidence 0.853
+
299. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002060.png ; $\phi \in H ^ { \infty } + C$ ; confidence 0.948
  
300. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001041.png ; $f ( x ) \in L ^ { 2 } ( D ^ { \prime } )$ ; confidence 1.000
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007069.png ; $\frac { \sigma ( n ) } { n } > \frac { \sigma ( m ) } { m }$ ; confidence 0.948

Revision as of 00:10, 13 February 2020

List

1. i130030158.png ; $( D ) \in K _ { 0 } ( C _ { r } ^ { * } ( \Gamma ) )$ ; confidence 0.954

2. v096900120.png ; $U \in A$ ; confidence 0.954

3. a12015061.png ; $U ( n ) / ( U ( n _ { 1 } ) \times \ldots \times U ( n _ { k } ) )$ ; confidence 0.954

4. i12005047.png ; $\beta ( n , \alpha , \theta ; T )$ ; confidence 0.954

5. b12005076.png ; $P ( \square ^ { n } E )$ ; confidence 0.954

6. a13008032.png ; $\frac { f ^ { \prime } ( R ) } { f ( R ) } = \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.954

7. s12034096.png ; $\alpha _ { H } : X \rightarrow Z$ ; confidence 0.954

8. f13009082.png ; $F _ { n , r } ^ { ( k ) } ( x )$ ; confidence 0.954

9. o13001074.png ; $x _ { 3 } = f ( x ^ { \prime } ) , x ^ { \prime } = ( x _ { 1 } , x _ { 2 } )$ ; confidence 0.954

10. z13002045.png ; $F \subset G _ { \tau }$ ; confidence 0.954

11. b13023033.png ; $u \in V$ ; confidence 0.954

12. k055840353.png ; $B > 0$ ; confidence 0.954

13. b12052061.png ; $( B + u v ^ { T } ) ^ { - 1 } = ( I - \frac { ( B ^ { - 1 } u ) v ^ { T } } { 1 + v ^ { T } B ^ { - 1 } u } ) B ^ { - 1 }$ ; confidence 0.954

14. v09690084.png ; $0 \leq T \leq S$ ; confidence 0.954

15. x1200205.png ; $Q = Q _ { s } ( R )$ ; confidence 0.954

16. i12005045.png ; $\{ T ( n , \alpha ) : n \in N , 0 < \alpha < 1 \}$ ; confidence 0.954

17. c11020072.png ; $\lambda \in \Lambda$ ; confidence 0.954

18. f04049040.png ; $s _ { 1 } ^ { 2 } = \frac { 1 } { m - 1 } \sum _ { i } ( X _ { i } - X ) ^ { 2 } \quad \text { and } \quad s _ { 2 } ^ { 2 } = \frac { 1 } { n - 1 } \sum _ { j } ( Y _ { j } - Y ) ^ { 2 }$ ; confidence 0.954

19. a130050296.png ; $G _ { k , q }$ ; confidence 0.954

20. f12023066.png ; $P \in L ^ { 2 } \text { skew } ( V ; V )$ ; confidence 0.954

21. h046010146.png ; $M _ { 0 } \times R ^ { 1 } \approx M _ { 1 } \times R ^ { 1 }$ ; confidence 0.954

22. v120020180.png ; $F ( x ) = r \circ t ^ { - 1 } ( x )$ ; confidence 0.954

23. c12031025.png ; $C ^ { k } ( [ 0,1 ] ^ { d } )$ ; confidence 0.954

24. v13005037.png ; $V \rightarrow ( \text { End } V ) [ [ x , x ^ { - 1 } ] ]$ ; confidence 0.954

25. s13065025.png ; $c _ { \mu } = \int _ { - \pi } ^ { \pi } \operatorname { log } \mu ^ { \prime } ( \theta ) d \theta$ ; confidence 0.954

26. d120230155.png ; $R _ { i } - Z _ { i } R _ { i } Z _ { i } ^ { * } = G _ { i } J G _ { i } ^ { * }$ ; confidence 0.954

27. d03033035.png ; $H ^ { * } ( X , C )$ ; confidence 0.954

28. i13001050.png ; $\chi ( n )$ ; confidence 0.954

29. j13007070.png ; $\omega = \eta$ ; confidence 0.954

30. r130080132.png ; $u = A w$ ; confidence 0.954

31. t120050105.png ; $f : R ^ { 5 } \rightarrow R ^ { 5 }$ ; confidence 0.954

32. w12003034.png ; $\operatorname { dens } ( P _ { \alpha } ( X ) ) \leq \operatorname { card } ( \alpha )$ ; confidence 0.954

33. a120050105.png ; $\| U ( t , s ) \| _ { X } \leq M e ^ { \beta ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.953

34. h1200209.png ; $\{ \hat { \phi } ( j ) \} _ { j \geq 0 }$ ; confidence 0.953

35. s12023057.png ; $X K$ ; confidence 0.953

36. v12002059.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) \notin G$ ; confidence 0.953

37. t12008035.png ; $H > 3$ ; confidence 0.953

38. b110220142.png ; $X = \operatorname { Spec } ( K )$ ; confidence 0.953

39. c12026047.png ; $\| \Delta V \| ^ { 2 } = \sum _ { j = 1 } ^ { J } h | \Delta V _ { j } | ^ { 2 }$ ; confidence 0.953

40. c13005018.png ; $g : x \rightarrow x g$ ; confidence 0.953

41. a12007087.png ; $D _ { A ( 0 ) } ( \delta , \infty )$ ; confidence 0.953

42. g12004092.png ; $P ( x , D ) u \in G ^ { S } ( U )$ ; confidence 0.953

43. z13012031.png ; $| p ^ { ( k ) } ( \xi ) |$ ; confidence 0.953

44. l120100103.png ; $N _ { E } ( V )$ ; confidence 0.953

45. b12009019.png ; $| k ( t ) | = 1$ ; confidence 0.953

46. w13008031.png ; $\overline { u } ( x , t ) = \frac { 1 } { 2 } \sum _ { i = 0 } ^ { 2 g } \lambda _ { i } - \sum _ { j = 0 } ^ { g } \alpha _ { j }$ ; confidence 0.953

47. e12012064.png ; $f ( y | \mu , \Sigma , \nu ) \propto$ ; confidence 0.953

48. i13001015.png ; $d \lambda$ ; confidence 0.953

49. m1201206.png ; $f : \square _ { R } A \rightarrow \square _ { R } R$ ; confidence 0.953

50. b13009018.png ; $d ( u , \phi ) ( t ) = \operatorname { inf } \{ \| u - \phi ( x - v t - c ) \| _ { 1 } : c \in R \}$ ; confidence 0.953

51. k13006046.png ; $\left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right)$ ; confidence 0.953

52. d1301707.png ; $u = 0 \text { in } \partial \Omega$ ; confidence 0.953

53. c13001040.png ; $c ( x , t )$ ; confidence 0.953

54. w13011036.png ; $H = 3$ ; confidence 0.953

55. b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953

56. i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953

57. l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953

58. f12017016.png ; $m _ { 1 } \neq 0$ ; confidence 0.953

59. r08232035.png ; $1 / \rho ^ { n - 2 }$ ; confidence 0.953

60. b13016052.png ; $C ( X , \tau ) : = \{ f \in C ( X ) : f ( \tau ( x ) ) = \overline { f ( x ) } , \forall x \in X \}$ ; confidence 0.953

61. c12028024.png ; $A \otimes B$ ; confidence 0.953

62. f120110179.png ; $S _ { \infty } ^ { n - 1 } \times S ^ { n - 1 }$ ; confidence 0.953

63. a12013065.png ; $| \theta _ { n + 1 } ^ { * } - \theta _ { n } ^ { * } |$ ; confidence 0.953

64. v096900179.png ; $\zeta \in Z$ ; confidence 0.953

65. s13065053.png ; $S _ { k } ( 0 ) \in D$ ; confidence 0.953

66. b13002085.png ; $J = H$ ; confidence 0.953

67. s13002044.png ; $u = g _ { t } ( v )$ ; confidence 0.953

68. y1200401.png ; $\nu = \{ \nu _ { X } \} _ { X \in \Omega }$ ; confidence 0.953

69. e120010117.png ; $e : X \rightarrow G B$ ; confidence 0.953

70. i1300104.png ; $d _ { \chi } ^ { G } : C ^ { n \times n } \rightarrow C$ ; confidence 0.953

71. f12010059.png ; $j = 1728 J$ ; confidence 0.952

72. e1200806.png ; $\alpha : T A \rightarrow A$ ; confidence 0.952

73. k12005067.png ; $0 < - ( K _ { X } + B ) g ( P ^ { 1 } ) \leq 2 d$ ; confidence 0.952

74. e12023022.png ; $\sigma : M \rightarrow E$ ; confidence 0.952

75. b130200127.png ; $G _ { i } < \infty$ ; confidence 0.952

76. e120240110.png ; $H ^ { 1 } ( G ( \overline { Q } / Q ( \xi _ { L } ) ) ; T ( k - r ) )$ ; confidence 0.952

77. d1200207.png ; $( u _ { 1 } ^ { * } , u _ { 2 } ^ { * } )$ ; confidence 0.952

78. h12002046.png ; $P$ ; confidence 0.952

79. f13029088.png ; $( Y , S )$ ; confidence 0.952

80. i13005029.png ; $f ( x , k ) = e ^ { i k x } + o ( 1 ) , x \rightarrow \infty$ ; confidence 0.952

81. d13018083.png ; $\alpha \mapsto \operatorname { sup } \{ \| f g _ { \alpha } \| / \| f \| : f \in I _ { E } \}$ ; confidence 0.952

82. o13005064.png ; $H : \mathfrak { F } \rightarrow \mathfrak { G }$ ; confidence 0.952

83. b12004042.png ; $\| f \| = \| g \|$ ; confidence 0.952

84. s1301309.png ; $\operatorname { har } ( F ) = 0$ ; confidence 0.952

85. j120020105.png ; $\| \varphi \| _ { * } \leq 1$ ; confidence 0.952

86. n067520276.png ; $F ( A ) h _ { 0 }$ ; confidence 0.952

87. a130240135.png ; $A$ ; confidence 0.952

88. j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952

89. f130290175.png ; $R ( M )$ ; confidence 0.952

90. w1201304.png ; $\sigma _ { c } ( T )$ ; confidence 0.952

91. a01012074.png ; $R > 1$ ; confidence 0.952

92. k13005010.png ; $f ( x , v , t )$ ; confidence 0.952

93. q12008016.png ; $E [ T _ { p } ]$ ; confidence 0.952

94. k12008025.png ; $Q ( \partial / \partial x ) ( K _ { p } ( f ) - ( f ) )$ ; confidence 0.952

95. b1301708.png ; $d _ { 2 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r - \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } }$ ; confidence 0.952

96. e120190114.png ; $d ( x , m ) = \rho$ ; confidence 0.952

97. b11002034.png ; $U \times V$ ; confidence 0.952

98. n067520208.png ; $\epsilon _ { p + 1 } = \ldots = \epsilon _ { r } = - 1$ ; confidence 0.952

99. m13013087.png ; $\prod _ { i , j } l _ { i j } ^ { m _ { i j } }$ ; confidence 0.952

100. n067520290.png ; $U : H \rightarrow L _ { \rho } ^ { 2 }$ ; confidence 0.952

101. m1101106.png ; $0 \leq n \leq q$ ; confidence 0.952

102. p13013064.png ; $\zeta _ { \lambda } ^ { \mu } = 0 \text { if } \mu \neq \lambda , \mu \in SP ^ { - } ( n )$ ; confidence 0.952

103. w13007014.png ; $\Delta$ ; confidence 0.952

104. h0479703.png ; $\mu : A \otimes A \rightarrow A$ ; confidence 0.952

105. b01737053.png ; $\alpha < 1$ ; confidence 0.952

106. i1200107.png ; $\int _ { 1 } ^ { \infty } g _ { \Phi } ( t ) d t = \infty$ ; confidence 0.952

107. r13005024.png ; $g : h \mapsto g h$ ; confidence 0.952

108. g12005025.png ; $\operatorname { Re } \mu _ { 0 } ( k , R ) = 0$ ; confidence 0.952

109. l12009076.png ; $\hbar \neq 0$ ; confidence 0.952

110. i13006094.png ; $\Gamma _ { 2 x } ( 2 x , 0 )$ ; confidence 0.952

111. t09356046.png ; $\mathfrak { N } _ { f } / N _ { f }$ ; confidence 0.952

112. t12006028.png ; $\rho \in L ^ { 5 / 3 } ( R ^ { 3 } )$ ; confidence 0.951

113. c120170158.png ; $k \leq [ n / 2 ] + 1$ ; confidence 0.951

114. d11008041.png ; $\delta ( w | v ) = d ( w | v )$ ; confidence 0.951

115. m12011035.png ; $\cup S ^ { n } \subset S ^ { n + 2 }$ ; confidence 0.951

116. k055840340.png ; $[ x , y ] = ( G x , y )$ ; confidence 0.951

117. c120300119.png ; $O _ { \infty }$ ; confidence 0.951

118. t12020037.png ; $g _ { 1 } ( k )$ ; confidence 0.951

119. l11003034.png ; $L _ { 1 } ( E )$ ; confidence 0.951

120. m130260243.png ; $I ( B )$ ; confidence 0.951

121. n13006017.png ; $\mu _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }$ ; confidence 0.951

122. i130090168.png ; $\zeta \in \mu _ { p } \infty$ ; confidence 0.951

123. e03500060.png ; $B ( y _ { i } , \epsilon ) \cap B ( y _ { j } , \epsilon ) = \emptyset$ ; confidence 0.951

124. a120310112.png ; $M ( C ( S ) , \alpha _ { 1 } , G _ { 1 } )$ ; confidence 0.951

125. m12007055.png ; $\theta _ { 0 } = 1.3247 \ldots > 1$ ; confidence 0.951

126. f13019031.png ; $L u = \operatorname { sin } ( x ) \frac { d ^ { 2 } u } { d x ^ { 2 } } - ( \frac { d u } { d x } ) ^ { 2 }$ ; confidence 0.951

127. s12004055.png ; $s _ { \lambda ^ { \prime } } = \operatorname { det } ( e _ { \lambda _ { i } - i + j } )$ ; confidence 0.951

128. b12009014.png ; $u | < 1$ ; confidence 0.951

129. z13012030.png ; $Z _ { n } ( x ; - \sigma ) = ( - 1 ) ^ { n } Z _ { n } ( - x ; \sigma )$ ; confidence 0.951

130. m13020048.png ; $T ^ { * } R ^ { 3 }$ ; confidence 0.951

131. k12007020.png ; $R ( t ) = I$ ; confidence 0.951

132. a0116208.png ; $p = \infty$ ; confidence 0.951

133. s13004021.png ; $\operatorname { Im } ( \gamma z ) > 1$ ; confidence 0.951

134. s1304903.png ; $r : P \rightarrow N$ ; confidence 0.951

135. h0460104.png ; $M _ { 0 } , M _ { 1 }$ ; confidence 0.951

136. h12012081.png ; $f _ { \infty } = f - \Sigma _ { \infty } \phi$ ; confidence 0.951

137. e13003035.png ; $C _ { C } ( \Gamma \backslash G ( R ) )$ ; confidence 0.951

138. q12005025.png ; $x ^ { k + 1 } = x ^ { k } + \alpha _ { k } d ^ { k }$ ; confidence 0.951

139. t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951

140. m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951

141. h13012027.png ; $x , y \in E _ { 1 }$ ; confidence 0.951

142. d13018045.png ; $E _ { 1 } \cap E _ { 2 }$ ; confidence 0.951

143. b110220102.png ; $( X _ { C } , A ( j ) )$ ; confidence 0.951

144. i1300608.png ; $L _ { 1,1 } : = \{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty , q = \overline { q } \}$ ; confidence 0.951

145. j13002040.png ; $\lambda = \left( \begin{array} { l } { n } \\ { 3 } \end{array} \right) p ^ { 3 }$ ; confidence 0.951

146. d12011023.png ; $\| . \| : G \rightarrow [ 0 , + \infty )$ ; confidence 0.951

147. v11005030.png ; $H ^ { \infty } + C = \{ f + g : f \in H ^ { \infty } , g \in C \}$ ; confidence 0.951

148. a130050292.png ; $P ^ { \# } ( n ) \sim G ^ { \# } ( n )$ ; confidence 0.951

149. b13019056.png ; $L = L _ { k , q }$ ; confidence 0.951

150. z13003029.png ; $\theta _ { 3 } ( z , q ) = \sum _ { k = - \infty } ^ { \infty } q ^ { k ^ { 2 } } e ^ { - 2 \pi i k z }$ ; confidence 0.951

151. w12010012.png ; $\nabla T$ ; confidence 0.951

152. l120170131.png ; $K ^ { 2 } \times I$ ; confidence 0.951

153. s120340171.png ; $H : \Sigma \times M \rightarrow R$ ; confidence 0.951

154. l11003038.png ; $L _ { 2 } ( E )$ ; confidence 0.951

155. e12016048.png ; $J \mapsto J ^ { \prime }$ ; confidence 0.951

156. c1202705.png ; $p \in \Omega$ ; confidence 0.951

157. i130060163.png ; $f ( x , k ) = e ^ { i k x } + \int _ { x } ^ { \infty } A ( x , y ) e ^ { i k y } d y$ ; confidence 0.951

158. a1302506.png ; $\{ x y z \} = \{ y x z \}$ ; confidence 0.951

159. f120080161.png ; $L ( L _ { q } ( X ) )$ ; confidence 0.951

160. r08232043.png ; $J ( 0 ) = u ( x _ { 0 } )$ ; confidence 0.951

161. l057000145.png ; $\Gamma \vdash M : ( \sigma \rightarrow \tau )$ ; confidence 0.951

162. m13013028.png ; $\tau ( G )$ ; confidence 0.950

163. d03225028.png ; $k + 2$ ; confidence 0.950

164. e13006044.png ; $W ( t , U ) = \{ f \in A ( X , Y ) : f t ( A ) \subseteq U \}$ ; confidence 0.950

165. d13021025.png ; $x \rightarrow G ( x , \alpha )$ ; confidence 0.950

166. s09067038.png ; $GL ^ { k } ( u )$ ; confidence 0.950

167. b12009033.png ; $1 / p ( \xi , \tau ) = p _ { 2 } ( \xi , \tau )$ ; confidence 0.950

168. a13032057.png ; $\theta = p$ ; confidence 0.950

169. s13059012.png ; $\Lambda = \cup _ { n = 0 } ^ { \infty } \Lambda _ { n }$ ; confidence 0.950

170. s130510142.png ; $\infty ( L _ { 1 } )$ ; confidence 0.950

171. e13006051.png ; $\omega \notin X$ ; confidence 0.950

172. r13016030.png ; $R _ { nd } ( \Omega )$ ; confidence 0.950

173. y12004013.png ; $I ( u ) = \int _ { \Omega } F ( x , u ( x ) , \nabla u ( x ) , \ldots ) d x$ ; confidence 0.950

174. e12026084.png ; $L ^ { 0 } ( \nu )$ ; confidence 0.950

175. b11106060.png ; $\| \phi \|$ ; confidence 0.950

176. e03500049.png ; $r < n$ ; confidence 0.950

177. a13026022.png ; $p \geq 5$ ; confidence 0.950

178. v13011037.png ; $U = \frac { \Gamma } { 2 l } \operatorname { coth } \frac { \pi \dot { b } } { l }$ ; confidence 0.950

179. s13059049.png ; $\sum d _ { n }$ ; confidence 0.950

180. d13003014.png ; $\exists \lambda > 0 \forall N \in N , N > 2 : \psi _ { N } \in C ^ { \lambda N }$ ; confidence 0.950

181. y12001040.png ; $A \otimes _ { k } A$ ; confidence 0.950

182. c120180335.png ; $C ( g )$ ; confidence 0.950

183. a01317021.png ; $x < 0$ ; confidence 0.950

184. n12012078.png ; $F ^ { 4 }$ ; confidence 0.950

185. a13006083.png ; $\overline { H }$ ; confidence 0.950

186. b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950

187. h12001013.png ; $X ^ { ( r ) } \rightarrow V$ ; confidence 0.950

188. p12013036.png ; $S ^ { \prime } = S ^ { ( 1 ) }$ ; confidence 0.950

189. a12006063.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.950

190. m12019016.png ; $k = - 1 / 2$ ; confidence 0.950

191. b12051019.png ; $f ( x _ { c } + \lambda d ) \leq f ( x _ { c } ) + \alpha \lambda d ^ { T } \nabla f ( x _ { c } )$ ; confidence 0.950

192. b12051025.png ; $f ( x _ { c } + \lambda d ) < f ( x _ { c } )$ ; confidence 0.950

193. e03667019.png ; $s > s 0$ ; confidence 0.950

194. a12023087.png ; $C R$ ; confidence 0.950

195. a11079040.png ; $T > 0$ ; confidence 0.950

196. m13025050.png ; $( \varphi u ) ( \varphi v ) = F ^ { - 1 } ( F ( \varphi u ) ^ { * } F ( \varphi v ) )$ ; confidence 0.950

197. n12011032.png ; $\xi _ { i } ( y ) > 0$ ; confidence 0.950

198. o12005059.png ; $\Lambda _ { \varphi , w } ^ { * }$ ; confidence 0.950

199. m13013081.png ; $1 \leq i \leq \nu$ ; confidence 0.950

200. f12023071.png ; $\delta _ { P } ( A ) + [ A , A ] ^ { \wedge } / 2 = 0$ ; confidence 0.950

201. s13002030.png ; $I ( \gamma ) \subset R$ ; confidence 0.950

202. m12015047.png ; $\phi _ { X } ( Z ) = \int _ { X } \operatorname { etr } ( i Z X ^ { \prime } ) f _ { X } ( X ) d X$ ; confidence 0.950

203. e1300304.png ; $G = GL _ { 2 } / Q$ ; confidence 0.950

204. a13018023.png ; $\Gamma , \Delta \subseteq Fm _ { L }$ ; confidence 0.950

205. b12017044.png ; $L _ { \alpha } ^ { p } = F _ { \alpha } ^ { p , 2 }$ ; confidence 0.950

206. l12007018.png ; $v _ { t } = L ^ { t } v _ { 0 }$ ; confidence 0.950

207. r1301207.png ; $[ x , y ] = \{ u \in E : x \prec u \prec y \}$ ; confidence 0.950

208. s1202008.png ; $\lambda _ { r } > 0$ ; confidence 0.950

209. b13007048.png ; $BS ( 2,3 )$ ; confidence 0.950

210. v120020106.png ; $x _ { 0 } \in g ^ { - 1 } ( y _ { 0 } )$ ; confidence 0.950

211. e120070134.png ; $\hat { H } _ { 1 }$ ; confidence 0.950

212. b13026072.png ; $\Delta \backslash f ( \partial \Omega )$ ; confidence 0.950

213. j120020222.png ; $\lambda ( S ) \leq K h$ ; confidence 0.950

214. i13003040.png ; $g ( P )$ ; confidence 0.950

215. m13026070.png ; $( a \lambda )$ ; confidence 0.950

216. n13003050.png ; $\{ w , v \} = \int \int _ { \Omega } [ A w ( x , y ) ] v ( x , y ) d x d y =$ ; confidence 0.949

217. f120210106.png ; $= z ^ { \lambda } \sum _ { j = 0 } ^ { \infty } z ^ { j } [ \sum _ { i + k = j } c _ { k } ( \lambda ) p _ { i } ( \lambda + k ) ] =$ ; confidence 0.949

218. l11002038.png ; $x \varphi \preceq x \psi$ ; confidence 0.949

219. f120150215.png ; $A \in \Phi _ { - } ( D ( A ) , Y )$ ; confidence 0.949

220. c130070148.png ; $k ( C )$ ; confidence 0.949

221. b1102602.png ; $\rho / \lambda < 1$ ; confidence 0.949

222. e12010037.png ; $G = \frac { 1 } { c } E \times B$ ; confidence 0.949

223. s130620163.png ; $q ( x ) = \frac { - 8 \operatorname { sin } 2 x } { x } + 0 ( x ^ { - 2 } )$ ; confidence 0.949

224. d13006065.png ; $1$ ; confidence 0.949

225. c11040011.png ; $H x \preceq H y$ ; confidence 0.949

226. a130040800.png ; $g : B \mapsto D$ ; confidence 0.949

227. e13005013.png ; $( x - y ) ^ { - a }$ ; confidence 0.949

228. c12004043.png ; $\langle w , \zeta - z \rangle \neq 0$ ; confidence 0.949

229. r130070128.png ; $= ( h ( , y ) , h ( , x ) ) _ { H }$ ; confidence 0.949

230. b120040181.png ; $( x _ { n } ) \subset L _ { 1 }$ ; confidence 0.949

231. s13036010.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + 1 _ { t } , t \geq 0$ ; confidence 0.949

232. f04049041.png ; $X = \sum _ { i } X _ { i } / m$ ; confidence 0.949

233. q13003016.png ; $1 - P _ { 0 } ^ { ( 1 ) }$ ; confidence 0.949

234. a13029086.png ; $\cong QH ^ { * } ( M ( Q ) )$ ; confidence 0.949

235. p13010055.png ; $H ^ { p } ( K , C )$ ; confidence 0.949

236. o13008062.png ; $( l _ { 1 } - k ^ { 2 } ) f = p f _ { 2 }$ ; confidence 0.949

237. f12010068.png ; $L ( s ) = \sum _ { n = 1 } ^ { \infty } c ( n ) n ^ { - s } , \operatorname { Re } s > k$ ; confidence 0.949

238. l13004018.png ; $A$ ; confidence 0.949

239. h13012035.png ; $p \neq 1$ ; confidence 0.949

240. s120050110.png ; $S _ { 0 } ( z )$ ; confidence 0.949

241. b01535096.png ; $A \subset X$ ; confidence 0.949

242. d12020012.png ; $\zeta ( s ) = \sum _ { m \leq x } m ^ { - s } + \frac { x ^ { 1 - s } } { s - 1 } + O ( x ^ { - \sigma } )$ ; confidence 0.949

243. s13047014.png ; $N ( ( T - \lambda I ) ^ { n } )$ ; confidence 0.949

244. m12013016.png ; $0 < K \leq C$ ; confidence 0.949

245. a01201092.png ; $k > 0$ ; confidence 0.949

246. b12016067.png ; $s = x _ { 1 } + x _ { 2 } + x _ { 3 }$ ; confidence 0.949

247. g120040115.png ; $s > m f ( m - 1 )$ ; confidence 0.949

248. w13009084.png ; $g \in C ^ { \prime }$ ; confidence 0.949

249. l1201009.png ; $V _ { - } ( x ) : = \operatorname { max } \{ - V ( x ) , 0 \}$ ; confidence 0.949

250. e03550047.png ; $\xi ^ { \prime }$ ; confidence 0.949

251. l12006019.png ; $f \in H$ ; confidence 0.949

252. i13005062.png ; $\{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : 1 \leq j \leq J \}$ ; confidence 0.949

253. a12005025.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.948

254. a13022017.png ; $h : Z \rightarrow C$ ; confidence 0.948

255. h04773078.png ; $s > r$ ; confidence 0.948

256. t12006090.png ; $R _ { j } = Z ^ { - 1 / 3 } R _ { j } ^ { 0 }$ ; confidence 0.948

257. t120200203.png ; $I = [ m + 1 , m + ( n + k ) ( 3 + \pi / k ) ]$ ; confidence 0.948

258. m13013053.png ; $\nu ^ { 2 } \tau ( G ) = \operatorname { det } ( J + L )$ ; confidence 0.948

259. b12004015.png ; $\| x \| \leq \| y \|$ ; confidence 0.948

260. i13009051.png ; $1 + r _ { 2 } ( k ) + \delta _ { p } ( k )$ ; confidence 0.948

261. s12032070.png ; $p | q$ ; confidence 0.948

262. d03128042.png ; $Z \rightarrow X$ ; confidence 0.948

263. m120100144.png ; $S ^ { 3 } \times S ^ { 1 }$ ; confidence 0.948

264. m13011083.png ; $D v / D t$ ; confidence 0.948

265. i13007055.png ; $u : = u ( x , y ) : = u ( x , y , k _ { 0 } )$ ; confidence 0.948

266. s13048037.png ; $H _ { S } ^ { 1 } ( D ) = \text { coker } D$ ; confidence 0.948

267. c12017012.png ; $\gamma = ( \gamma _ { i j } ) _ { i , j \geq 0 }$ ; confidence 0.948

268. d12011022.png ; $( G , \| \| )$ ; confidence 0.948

269. f1201005.png ; $f ( \frac { a z + b } { c z + d } ) = ( c z + d ) ^ { k } f ( z )$ ; confidence 0.948

270. e12024098.png ; $[ H _ { f } ^ { 1 } ( K ; T ) : Z _ { p } y ]$ ; confidence 0.948

271. i13003010.png ; $( P )$ ; confidence 0.948

272. c13009038.png ; $O ( N )$ ; confidence 0.948

273. a1200405.png ; $x ^ { \prime } ( t ) = A x ( t ) , t > 0 ; \quad x ( 0 ) = x 0$ ; confidence 0.948

274. c12030017.png ; $S , S ^ { \prime } \in H$ ; confidence 0.948

275. t12006092.png ; $N = \lambda Z$ ; confidence 0.948

276. t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948

277. t12001064.png ; $s ^ { 3 }$ ; confidence 0.948

278. b12014039.png ; $a ( z )$ ; confidence 0.948

279. i130060139.png ; $q ( x ) \in L _ { 1,1 } \cap L ^ { 2 } ( R _ { + } )$ ; confidence 0.948

280. o130060160.png ; $V _ { \lambda }$ ; confidence 0.948

281. c12026063.png ; $C = 1$ ; confidence 0.948

282. e12009022.png ; $F _ { \mu \nu } = g _ { \mu \alpha } g _ { \nu \beta } F ^ { \alpha \beta }$ ; confidence 0.948

283. l12004096.png ; $t = 0.20$ ; confidence 0.948

284. c12026033.png ; $\| V \| ^ { 2 } = \sum _ { j = 1 } ^ { J - 1 } h | V _ { j } | ^ { 2 }$ ; confidence 0.948

285. t12013075.png ; $\operatorname { Jac } ( C )$ ; confidence 0.948

286. h12003012.png ; $T ^ { * } M \otimes \varphi ^ { - 1 } T N$ ; confidence 0.948

287. n067520308.png ; $L _ { 2 } ( M , \sigma )$ ; confidence 0.948

288. c021620447.png ; $B \subset E$ ; confidence 0.948

289. m12023036.png ; $g ( y ) \geq g ( x ) + \langle y - x , \xi \rangle$ ; confidence 0.948

290. c120180497.png ; $( x , r )$ ; confidence 0.948

291. t120200174.png ; $A = \frac { 1 } { 6 n } \operatorname { min } _ { n \leq x \leq 2 n } ( \frac { x } { 4 e ( m + x ) } ) ^ { x } | \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } |$ ; confidence 0.948

292. l12005028.png ; $\sqrt { 2 / \pi } F ( \tau ) G ( \tau )$ ; confidence 0.948

293. b01695026.png ; $p ( n )$ ; confidence 0.948

294. x12003024.png ; $f ( x ) = - \frac { 1 } { \pi } \int _ { 0 } ^ { \infty } \frac { d F _ { x } ( q ) } { q }$ ; confidence 0.948

295. s13048013.png ; $\alpha _ { 1 } = \beta$ ; confidence 0.948

296. b13012022.png ; $\sum _ { k } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.948

297. x12001083.png ; $C _ { S } ( R ) = C _ { S } ( Q )$ ; confidence 0.948

298. d03024023.png ; $f ( r - 1 ) ( x _ { 0 } )$ ; confidence 0.948

299. h12002060.png ; $\phi \in H ^ { \infty } + C$ ; confidence 0.948

300. a13007069.png ; $\frac { \sigma ( n ) } { n } > \frac { \sigma ( m ) } { m }$ ; confidence 0.948

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/27. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/27&oldid=44437