Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/17"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 17 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 17 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006054.png ; $h ( \zeta + i \epsilon ) - h ( \zeta - i \epsilon ) =$ ; confidence 0.999
+
1. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510114.png ; $k = \infty ( K )$ ; confidence 0.989
  
2. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004015.png ; $g _ { k } ( z ) = z ^ { k } ( \operatorname { mod } f ( z ) )$ ; confidence 0.963
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301904.png ; $e ( x ) = \operatorname { exp } ( 2 \pi i x )$ ; confidence 0.989
  
3. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600402.png ; $f ( z ) = a _ { 0 } z ^ { x } + \ldots + a _ { x } - 1 z + a _ { x } =$ ; confidence 0.362
+
3. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021080.png ; $\lambda _ { i } - \lambda _ { j } \in N$ ; confidence 0.989
  
4. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019010.png ; $\lambda _ { j } + \overline { \lambda } _ { k } = 0$ ; confidence 0.991
+
4. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101608.png ; $L ( n + 1 )$ ; confidence 0.989
  
5. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019030.png ; $x = \operatorname { col } ( x _ { 1 } \ldots x _ { x } )$ ; confidence 0.350
+
5. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230153.png ; $( i \times i )$ ; confidence 0.989
  
6. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011070.png ; $( F ^ { x } , h : F \rightarrow F ) \rightarrow T ( h )$ ; confidence 0.496
+
6. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008048.png ; $( 4 \frac { \partial ^ { 2 } } { \partial z \partial z } - D ^ { 2 } - 2 ( \alpha + 1 ) D ) f =$ ; confidence 0.989
  
7. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013053.png ; $\nu ^ { 2 } \tau ( G ) = \operatorname { det } ( J + L )$ ; confidence 0.948
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412069.png ; $L ( s , \chi )$ ; confidence 0.989
  
8. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016019.png ; $X \sim E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.921
+
8. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g04435011.png ; $V _ { F }$ ; confidence 0.989
  
9. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140133.png ; $\operatorname { det } \| 1 / b _ { j } ^ { l } \| \neq 0$ ; confidence 0.675
+
9. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005018.png ; $( y - x ) ^ { \alpha + \beta } ( \frac { \partial u } { \partial y } - \frac { \partial u } { \partial x } ) | _ { x = y } = \nu ( x )$ ; confidence 0.989
  
10. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377017.png ; $p ( z ) = z ^ { n } + a _ { n } - 1 z ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.300
+
10. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001026.png ; $V \rightarrow R$ ; confidence 0.989
  
11. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m1202106.png ; $\lambda A : = \{ \lambda \alpha : \alpha \in A \}$ ; confidence 0.811
+
11. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015011.png ; $E _ { M } ( D ( \Omega ) )$ ; confidence 0.989
  
12. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020023.png ; $j : \mathfrak { g } \rightarrow C ^ { \infty } ( M )$ ; confidence 0.989
+
12. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006041.png ; $u v = D \alpha D \beta D$ ; confidence 0.989
  
13. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025040.png ; $( \delta ( x ) , \text { vp } 1 / x ) \notin M _ { 1 } ( R )$ ; confidence 0.654
+
13. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042070/f042070183.png ; $f ( x + y ) = f ( x ) f ( y )$ ; confidence 0.989
  
14. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520492.png ; $\Lambda ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.749
+
14. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260130.png ; $\Theta ( \mu )$ ; confidence 0.989
  
15. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010112.png ; $\alpha ^ { \prime } , \alpha \in S ^ { 2 } , k _ { 0 } > 0$ ; confidence 0.901
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022025.png ; $\varepsilon \rightarrow 0$ ; confidence 0.989
  
16. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014025.png ; $\hat { f } _ { p } : = \partial \hat { f } / \partial p$ ; confidence 0.844
+
16. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009021.png ; $G _ { 0 } = R$ ; confidence 0.989
  
17. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003055.png ; $( \text { id } \otimes \pi ) \Delta f = f \otimes 1$ ; confidence 0.831
+
17. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510109.png ; $\gamma ( v )$ ; confidence 0.989
  
18. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003022.png ; $X f = ( \langle X , \rangle \otimes id _ { A } ) L ( f )$ ; confidence 0.246
+
18. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004066.png ; $\sum _ { j = 1 } ^ { n } \frac { \partial r } { \partial \zeta _ { j } } ( \zeta _ { j } ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.989
  
19. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003015.png ; $P _ { 0 } ^ { ( 1 ) } = P _ { 0 } \otimes I \otimes \ldots$ ; confidence 0.653
+
19. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b1100202.png ; $b ( u , v ) = l ( v ) , \forall v \in V$ ; confidence 0.989
  
20. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q1200502.png ; $x ^ { k + 1 } = x ^ { k } - [ D F ( x ^ { k } ) ] ^ { - 1 } F ( x ^ { k } )$ ; confidence 0.991
+
20. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840189.png ; $\sum \rho ( \lambda ) \leq \kappa$ ; confidence 0.989
  
21. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232020.png ; $u ( x ) = - \int _ { H } g ( x , y ; H ) d \mu ( y ) + h ^ { * } ( x )$ ; confidence 0.836
+
21. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012082.png ; $\nabla _ { \infty } = \nabla - \phi \Sigma _ { \infty } \nabla$ ; confidence 0.989
  
22. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232026.png ; $\{ x \in R ^ { n } : 0 \leq r \leq | x - x _ { 0 } | \leq R \}$ ; confidence 0.848
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016017.png ; $C ^ { k } ( [ 0,1 ] )$ ; confidence 0.989
  
23. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232010.png ; $u ( x ) = - \int _ { K } E _ { x } ( | x - y | ) d \mu ( y ) + h ( x )$ ; confidence 0.745
+
23. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008066.png ; $\int _ { 0 } ^ { \infty } p ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0$ ; confidence 0.989
  
24. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011028.png ; $x _ { 1 } \prec \ldots \prec x _ { \alpha } \prec . .$ ; confidence 0.398
+
24. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001032.png ; $g ( \xi ^ { \alpha } , \xi ^ { b } ) = \delta _ { \alpha b }$ ; confidence 0.989
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036020.png ; $\int _ { 0 } ^ { t } l _ { ( 0 ) } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.301
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120290/a1202906.png ; $F _ { \sigma }$ ; confidence 0.989
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016015.png ; $e ( U ^ { i } , f ) \leq C _ { 1 } m _ { i } ^ { - k } \| f \| _ { k }$ ; confidence 0.554
+
26. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807030.png ; $( 0 , \Sigma )$ ; confidence 0.989
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041048.png ; $d \mu _ { 1 } = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta } d x$ ; confidence 0.993
+
27. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015020.png ; $\int _ { X } f _ { X } ( X ) d X = 1$ ; confidence 0.989
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021020.png ; $\pi ^ { * } \nu _ { 2 } \in E ( \mu , \Delta _ { S } ^ { 2 } )$ ; confidence 0.459
+
28. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004052.png ; $f ( z ) = \int \partial D f ( \zeta ) K ( s )$ ; confidence 0.989
  
29. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049015.png ; $r ( P ) : = \operatorname { max } \{ r ( p ) : p \in P \}$ ; confidence 0.995
+
29. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160166.png ; $\geq 2 / 3$ ; confidence 0.989
  
30. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023031.png ; $X _ { 1 } \sim \operatorname { RS } _ { p , m } ( \phi )$ ; confidence 0.546
+
30. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300909.png ; $\alpha ( x ) = \frac { x + ( x ^ { 2 } + 4 ) ^ { 1 / 2 } } { 2 } , \beta ( x ) = \frac { x - ( x ^ { 2 } + 4 ) ^ { 1 / 2 } } { 2 }$ ; confidence 0.989
  
31. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510121.png ; $\gamma : V \rightarrow Z ^ { 0 } \cup \{ \infty \}$ ; confidence 0.994
+
31. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006070.png ; $Q \rightarrow R$ ; confidence 0.989
  
32. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026031.png ; $D _ { t } ^ { * } : ( L ^ { 2 } ) \rightarrow \Gamma ^ { - }$ ; confidence 0.902
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100207.png ; $( v , k , \lambda )$ ; confidence 0.989
  
33. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026010.png ; $( L ^ { 2 } ) \equiv L ^ { 2 } ( S ^ { \prime } ( R ) , d \mu )$ ; confidence 0.605
+
33. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080134.png ; $J _ { 2 } < 0$ ; confidence 0.989
  
34. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059012.png ; $\Lambda = \cup _ { n = 0 } ^ { \infty } \Lambda _ { n }$ ; confidence 0.950
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016034.png ; $p _ { 12,3 } = 1$ ; confidence 0.989
  
35. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062087.png ; $\mu _ { ac } ( A ) = \int _ { A } f ( \lambda ) d \lambda$ ; confidence 0.981
+
35. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001059.png ; $x ( n )$ ; confidence 0.989
  
36. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120300/s12030014.png ; $X ^ { h G } = \operatorname { Map } _ { G } ( E _ { G } , X )$ ; confidence 0.654
+
36. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090114.png ; $\mu _ { p } ( K / k )$ ; confidence 0.989
  
37. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032037.png ; $I = \langle x \otimes y - B ( x \otimes y ) \rangle$ ; confidence 0.920
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006040.png ; $A _ { i } = A ( \Gamma _ { i } )$ ; confidence 0.989
  
38. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034018.png ; $SH ^ { * } ( M , \omega ) = SH ^ { * } ( M , \omega , \phi )$ ; confidence 0.874
+
38. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003056.png ; $H ^ { * } \operatorname { Map } ( B E , X ) \approx T _ { E } H ^ { * } X$ ; confidence 0.989
  
39. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034019.png ; $( N , \varpi ) = ( M , \omega ) \times ( M , - \omega )$ ; confidence 0.867
+
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052066.png ; $G = B _ { 0 } ^ { - 1 } F ( x )$ ; confidence 0.989
  
40. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340146.png ; $\alpha _ { H } ( \not \gamma ) - \alpha _ { H } ( x ) = 1$ ; confidence 0.073
+
40. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017067.png ; $[ R _ { j } , R _ { k } ]$ ; confidence 0.989
  
41. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064047.png ; $\theta _ { 1 } , \dots , \theta _ { R } \in [ 0,2 \pi )$ ; confidence 0.575
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031048.png ; $M ( K )$ ; confidence 0.989
  
42. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699
+
42. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026028.png ; $k = 2 m$ ; confidence 0.989
  
43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005032.png ; $D _ { A } : = \sum _ { i = 1 } ^ { n } A _ { i } \otimes E _ { i }$ ; confidence 0.808
+
43. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001019.png ; $V : = X / \Gamma$ ; confidence 0.989
  
44. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005089.png ; $\ldots - ( i _ { r } - 1 - i _ { r } ) \cdot \mu _ { i _ { r } }$ ; confidence 0.102
+
44. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300304.png ; $( x , y , z ) \mapsto \{ x y z \}$ ; confidence 0.989
  
45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050121.png ; $Q _ { x } = T W _ { x } / \operatorname { Im } ( d f _ { x } )$ ; confidence 0.686
+
45. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210134.png ; $L _ { 2 } ( \theta )$ ; confidence 0.989
  
46. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006013.png ; $V ( x ) = \sum _ { j = 1 } ^ { K } Z _ { j } | x - r _ { j } | ^ { - 1 }$ ; confidence 0.959
+
46. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032016.png ; $[ x , y ] = - ( - 1 ) ^ { p ( x ) p ( y ) } [ y , x ] , [ x , [ y , z ] ] = [ [ x , y ] , z ] + ( - 1 ) ^ { p ( x ) p ( y ) } [ y , [ x , z ] ]$ ; confidence 0.989
  
47. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130103.png ; $\operatorname { Ext } _ { \Delta } ^ { i } ( T , T ) = 0$ ; confidence 0.343
+
47. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013047.png ; $e = n \hbar / 2 g$ ; confidence 0.989
  
48. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301304.png ; $\operatorname { Ext } _ { \Delta } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420
+
48. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005049.png ; $\Lambda ^ { k } ( X )$ ; confidence 0.989
  
49. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014064.png ; $G l _ { Q } ( d ) = \prod _ { j \in Q _ { 0 } } Gl ( v _ { j } , K )$ ; confidence 0.225
+
49. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009038.png ; $L ^ { 1 } ( R )$ ; confidence 0.989
  
50. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015038.png ; $[ T _ { f _ { 1 } } , T _ { f _ { 2 } } ] \notin K ( H ^ { 2 } ( S ) )$ ; confidence 0.862
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420143.png ; $1$ ; confidence 0.989
  
51. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021026.png ; $( u , v ) = \int _ { z } ^ { \phi } u ( x ) v ( x ) \rho ( x ) d x$ ; confidence 0.386
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240396.png ; $M _ { H }$ ; confidence 0.989
  
52. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020179.png ; $r : X \times Y \supset \Gamma ( F ) \rightarrow Y$ ; confidence 0.918
+
52. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302903.png ; $d = \operatorname { dim } A$ ; confidence 0.989
  
53. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020178.png ; $t : X \times Y \supset \Gamma ( F ) \rightarrow X$ ; confidence 0.996
+
53. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023058.png ; $E ( L ) = \frac { \partial L } { \partial y } - D ( \frac { \partial L } { \partial y ^ { \prime } } )$ ; confidence 0.989
  
54. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011074.png ; $d M _ { 1 } = \rho \frac { \Gamma \dot { b } } { l } ( - U )$ ; confidence 0.910
+
54. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547051.png ; $\alpha \wedge ( d \alpha ) ^ { n }$ ; confidence 0.989
  
55. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v1200602.png ; $B _ { 2 n } = A _ { 2 n } - \sum _ { p - 1 | 2 n } \frac { 1 } { p }$ ; confidence 0.931
+
55. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006031.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$ ; confidence 0.989
  
56. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030138.png ; $\{ \gamma \in \Gamma _ { m } : f ( \gamma ) \neq 0 \}$ ; confidence 0.936
+
56. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110147.png ; $\beta = \beta ( \alpha , c ) < 1$ ; confidence 0.989
  
57. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030148.png ; $\{ \gamma \in \Gamma _ { n } : f ( \gamma ) \neq 0 \}$ ; confidence 0.965
+
57. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003035.png ; $A w$ ; confidence 0.989
  
58. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004048.png ; $( W , V ) = - \operatorname { Re } ( \eta ( W ) d g ( V ) )$ ; confidence 0.640
+
58. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001024.png ; $( X ) \neq 0$ ; confidence 0.989
  
59. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006036.png ; $\omega _ { WP } = \Sigma _ { j } d l _ { j } / d \tau _ { j }$ ; confidence 0.110
+
59. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304708.png ; $\lambda \mapsto ( T - \lambda I ) ^ { - 1 }$ ; confidence 0.989
  
60. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006095.png ; $\xi ( f g ) = \xi ( f ) g + f . \xi ( g ) + \xi ( f ) . \xi ( g )$ ; confidence 0.513
+
60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023015.png ; $- X$ ; confidence 0.989
  
61. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010031.png ; $\square ^ { \prime \prime } \Gamma _ { i j k } ^ { t }$ ; confidence 0.230
+
61. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020022.png ; $H ( G )$ ; confidence 0.989
  
62. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090164.png ; $E ^ { \otimes r } \rightarrow \Delta ( \lambda )$ ; confidence 0.978
+
62. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016028.png ; $f ( d t ^ { 2 } - \omega d \theta ^ { 2 } ) - r ^ { 2 } f ^ { - 1 } d \theta ^ { 2 } - \Omega ^ { 2 } ( d r ^ { 2 } + d z ^ { 2 } )$ ; confidence 0.989
  
63. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110208.png ; $\Delta p _ { j } \Delta q ; \sim h _ { j } ^ { - 1 } \geq 1$ ; confidence 0.394
+
63. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001033.png ; $I \subset X ^ { ( 1 ) }$ ; confidence 0.989
  
64. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011016.png ; $\hat { u } ( \xi ) = \int e ^ { - 2 i \pi x . \xi } u ( x ) d x$ ; confidence 0.202
+
64. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021047.png ; $B ( G _ { 1 } )$ ; confidence 0.989
  
65. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110263.png ; $a ^ { w } : H ( m m _ { 1 } , G ) \rightarrow H ( m _ { 1 } , G )$ ; confidence 0.582
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025010.png ; $k \leq q + 1$ ; confidence 0.989
  
66. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110237.png ; $r _ { N } ( \alpha , b ) \in S ( m _ { 1 } m _ { 2 } H ^ { N } , G )$ ; confidence 0.797
+
66. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040107.png ; $( v ^ { - 1 } - v ) / z$ ; confidence 0.989
  
67. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011086.png ; $( x _ { k } , \xi _ { k } ) \mapsto ( \xi _ { k } , - x _ { k } )$ ; confidence 0.986
+
67. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797078.png ; $\Delta x$ ; confidence 0.989
  
68. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008051.png ; $\vec { \theta } = \sum t _ { \gamma } \vec { V } _ { N }$ ; confidence 0.150
+
68. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120165.png ; $H ( \pi , n )$ ; confidence 0.989
  
69. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010103.png ; $\sigma V , V ^ { y } = \tau V ^ { y } , V ^ { J } R _ { V } ^ { J }$ ; confidence 0.057
+
69. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006030.png ; $f ( 0 ) = g ( 0 ) = x \in M$ ; confidence 0.989
  
70. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001056.png ; $Z ( x ( n ) ) = \frac { z ( z - 1 ) } { ( z + 2 ) ^ { 3 } ( z + 3 ) } =$ ; confidence 0.993
+
70. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021022.png ; $t ( M ; 2,1 )$ ; confidence 0.989
  
71. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002027.png ; $\underline { f } + \mathfrak { a } \mathfrak { p }$ ; confidence 0.295
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013018.png ; $S ( F )$ ; confidence 0.989
  
72. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002023.png ; $\underline { f } _ { + a \mathfrak { p } } = + \infty$ ; confidence 0.254
+
72. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002034.png ; $F , F _ { \tau } \subset P$ ; confidence 0.989
  
73. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005014.png ; $\mathfrak { D } = \operatorname { Der } _ { k } ( R )$ ; confidence 0.968
+
73. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572408.png ; $t \in R ^ { + }$ ; confidence 0.989
  
74. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011078.png ; $E [ \mu _ { n + 1 } ( x ) | \mu _ { n } ( . ) ] - \mu _ { n } ( x ) =$ ; confidence 0.292
+
74. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006034.png ; $A x = \lambda x$ ; confidence 0.989
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
+
75. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002023.png ; $8 \pi k$ ; confidence 0.989
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240312.png ; $SS _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j } ) ^ { 2 }$ ; confidence 0.817
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021016.png ; $L ( \lambda )$ ; confidence 0.989
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240517.png ; $V _ { j j ^ { \prime } } = Z _ { 3 j } ^ { \prime } Z _ { 3 j }$ ; confidence 0.760
+
77. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340199.png ; $( H _ { 1 } , J )$ ; confidence 0.989
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040278.png ; $\Gamma \cup \{ \varphi , \psi \} \subseteq Fm$ ; confidence 0.985
+
78. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004066.png ; $( x ^ { 0 } , \xi ^ { 0 } ) \notin \Gamma$ ; confidence 0.989
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040280.png ; $\Gamma \dagger _ { D } \Delta ( \varphi , \psi )$ ; confidence 0.188
+
79. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201205.png ; $\theta ^ { ( 0 ) } \in \Theta$ ; confidence 0.989
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040636.png ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417
+
80. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008045.png ; $\epsilon \in O _ { S } ^ { * }$ ; confidence 0.989
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040146.png ; $T , \psi \dagger \operatorname { si } \varphi$ ; confidence 0.330
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240542.png ; $( T _ { 1 } , T _ { 2 } )$ ; confidence 0.989
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007036.png ; $3 ^ { 3 } .5 .7,3 ^ { 2 } .5 ^ { 2 } .7,3 ^ { 2 } .5 .7 ^ { 2 }$ ; confidence 0.804
+
82. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300107.png ; $Q _ { D } ( v , z )$ ; confidence 0.989
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030043.png ; $\theta _ { Y } : ( T W , d ) \rightarrow C * \Omega Y$ ; confidence 0.683
+
83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030143.png ; $\gamma _ { 0 } \in \Gamma$ ; confidence 0.989
  
84. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030015.png ; $( T V \leq n , d ) \rightarrow C * \Omega X _ { n } + 1$ ; confidence 0.259
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680177.png ; $x \leq y$ ; confidence 0.989
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013050.png ; $\Gamma ^ { * } = h _ { \theta } ^ { * } \square ^ { - 1 }$ ; confidence 0.966
+
85. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029045.png ; $\sum _ { q = 1 } ^ { N } \varphi ( q ) f ( q )$ ; confidence 0.989
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180117.png ; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946
+
86. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030011.png ; $b : R _ { + } \times R ^ { n } \rightarrow L ( R ^ { n } , R ^ { n } )$ ; confidence 0.989
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180166.png ; $Id _ { i j } = \{ q \in \square ^ { \omega } U : q = q \}$ ; confidence 0.179
+
87. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013021.png ; $M = \operatorname { Im } ( P _ { \sigma } )$ ; confidence 0.989
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027060.png ; $| T _ { R } ( x ) - T _ { n } ( y ) \| \geq \phi ( \| x - y \| )$ ; confidence 0.473
+
88. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840141.png ; $T \subset T ^ { + }$ ; confidence 0.989
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027086.png ; $W ( \overline { \rho } ) = \overline { W ( \rho ) }$ ; confidence 0.899
+
89. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008056.png ; $\partial _ { i } \rightarrow \partial _ { i } + \epsilon ( \partial / \partial T _ { i } )$ ; confidence 0.989
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028072.png ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.760
+
90. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040021.png ; $E _ { m }$ ; confidence 0.989
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010023.png ; $- F _ { n + 1 } ( X , q _ { i } + \sigma \eta , p _ { n + 1 } ) )$ ; confidence 0.943
+
91. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001055.png ; $\gamma \wedge ( d \gamma ) ^ { n } \neq 0$ ; confidence 0.989
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210145.png ; $d _ { 0 } : M ( \lambda ) \rightarrow L ( \lambda )$ ; confidence 0.994
+
92. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008037.png ; $f \rightarrow K _ { p } ( f )$ ; confidence 0.989
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002059.png ; $U _ { x } ( y ) = 2 x \circ ( x \circ y ) - x ^ { 2 } \circ y$ ; confidence 0.538
+
93. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020021.png ; $B ( H ( G ) )$ ; confidence 0.989
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002090.png ; $x \circ y : = ( x | 1 ) y + ( y | 1 ) x - ( x | \sigma ( y ) ) 1$ ; confidence 0.827
+
94. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520220.png ; $M _ { n \times n } ( K )$ ; confidence 0.989
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220108.png ; $H _ { D } ^ { l + 1 } ( X / R , R ( i + 1 - m ) ) \rightarrow 0$ ; confidence 0.240
+
95. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o1300202.png ; $| d ( K ) |$ ; confidence 0.989
  
96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015034.png ; $\operatorname { Cov } _ { P } ( d ^ { * } , d _ { 0 } ) = 0$ ; confidence 0.797
+
96. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047013.png ; $n \geq \nu ( \lambda )$ ; confidence 0.989
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015036.png ; $d _ { 0 } \in \cap _ { P \in P } L _ { 2 } ( \Omega , A , P )$ ; confidence 0.096
+
97. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080121.png ; $d Q$ ; confidence 0.989
  
98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150134.png ; $E _ { P _ { R } ^ { m } } ( d ) = E _ { P _ { R } ^ { m } } ( d ^ { * } )$ ; confidence 0.312
+
98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031038.png ; $1 / p \geq ( n + 1 + 2 \delta ) / 2 n$ ; confidence 0.989
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
+
99. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140137.png ; $\phi _ { \lambda } \in L ^ { \infty }$ ; confidence 0.989
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020038.png ; $T ( \theta ) = P _ { H ( \theta ) } S | _ { H ( \theta ) }$ ; confidence 0.601
+
100. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190202.png ; $d ( x , y ) \geq 0$ ; confidence 0.989
  
101. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b1202005.png ; $\sum _ { n = 0 } ^ { \infty } | a _ { n } | ^ { 2 } < \infty$ ; confidence 0.997
+
101. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201207.png ; $Q ( \theta | \theta ^ { ( t ) } ) = \int \operatorname { log } f ( \theta , \phi ) f ( \phi | \theta ^ { ( t ) } ) d \phi$ ; confidence 0.989
  
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120109.png ; $f \notin B _ { 2 , \infty } ^ { \varepsilon + 1 / 2 }$ ; confidence 0.968
+
102. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021066.png ; $s _ { i } > 0$ ; confidence 0.989
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022088.png ; $\underline { \Xi } = R ^ { N } \times [ 0 , \infty [$ ; confidence 0.106
+
103. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150112.png ; $F ( x ) \in C ^ { k } ( \Omega , Y )$ ; confidence 0.989
  
104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b1202406.png ; $\delta = \operatorname { diag } ( z ^ { k _ { i } } )$ ; confidence 0.989
+
104. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000139.png ; $S ( T , \alpha ) = H _ { \alpha } ( T ( B ( 0,1 ) ) , H )$ ; confidence 0.989
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027070.png ; $a _ { N } = \sum _ { 0 } ^ { N } b _ { N } - j u _ { j } , n \geq 0$ ; confidence 0.115
+
105. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690038.png ; $P H$ ; confidence 0.989
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031036.png ; $( n - 1 - 2 \delta ) / 2 n < 1 / p < ( n - 1 + 2 \delta ) / 2 n$ ; confidence 0.999
+
106. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013036.png ; $m ( \chi )$ ; confidence 0.989
  
107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031030.png ; $( n - 1 - 2 \delta ) / 2 n < 1 / p < ( n + 1 + 2 \delta ) / 2 n$ ; confidence 0.999
+
107. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011023.png ; $M = S ^ { 3 }$ ; confidence 0.989
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031018.png ; $\| M _ { R } ^ { \delta } f - f \| _ { p } \rightarrow 0$ ; confidence 0.973
+
108. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020023.png ; $j : \mathfrak { g } \rightarrow C ^ { \infty } ( M )$ ; confidence 0.989
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031060.png ; $[ f _ { S } ^ { + } ( x _ { 0 } ) + f _ { S } ^ { - } ( x _ { 0 } ) ] / 2$ ; confidence 0.989
+
109. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061190/l06119016.png ; $0 < \lambda \leq 1$ ; confidence 0.989
  
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032052.png ; $F : [ 0 , \infty ) ^ { 2 } \rightarrow [ 0 , \infty )$ ; confidence 1.000
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052056.png ; $q > 0$ ; confidence 0.989
  
111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032053.png ; $F ( s , t ) = \| t x + s y \| \text { for all } s , t \geq 0$ ; confidence 0.871
+
111. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003049.png ; $\varepsilon ^ { * } ( T )$ ; confidence 0.989
  
112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034012.png ; $\alpha = ( \alpha _ { 1 } , \ldots , \alpha _ { n } )$ ; confidence 0.370
+
112. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002010.png ; $A \subseteq \Gamma _ { p }$ ; confidence 0.989
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034010.png ; $\sum _ { \alpha } | c _ { \alpha } z ^ { \alpha } | < 1$ ; confidence 0.913
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003020.png ; $( J , J )$ ; confidence 0.989
  
114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037083.png ; $\operatorname { exp } ( \Omega ( n ^ { 1 / d - 1 } ) )$ ; confidence 0.403
+
114. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007024.png ; $H _ { + } \subset H _ { 0 } \subset H _ { - }$ ; confidence 0.989
  
115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020038.png ; $[ h _ { i j } f _ { k } ] = - \delta _ { i j } a _ { i k } f _ { k }$ ; confidence 0.791
+
115. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190151.png ; $[ p , x ] \ni q$ ; confidence 0.989
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023016.png ; $\overline { m } = \{ m _ { x } \} _ { x = 0 } ^ { \infty }$ ; confidence 0.639
+
116. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c12005018.png ; $H ^ { p } ( T )$ ; confidence 0.989
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049029.png ; $m ( A ) - k m ( B ) \leq m ( A \cup B ) \leq m ( A ) + k m ( B )$ ; confidence 0.525
+
117. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014076.png ; $\{ x ^ { n } \}$ ; confidence 0.989
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028021.png ; $\Sigma ^ { n } A / \{ Sq ^ { i } : 2 i > n \} A \cong G ( n )$ ; confidence 0.921
+
118. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028026.png ; $\phi \in A _ { 0 } ( Q )$ ; confidence 0.989
  
119. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b1110408.png ; $n ^ { p } - n - p \equiv 0 ( \operatorname { mod } p )$ ; confidence 0.988
+
119. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019044.png ; $M _ { - 1 } = 0$ ; confidence 0.989
  
120. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030097.png ; $\psi _ { i - 1 } : F _ { m } \rightarrow B ( m , n , i - 1 )$ ; confidence 0.871
+
120. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007026.png ; $\delta = M ( 1 + x + y - x y ) = 1.7916228$ ; confidence 0.989
  
121. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002042.png ; $( \text { a.c. } A ^ { \alpha } f ) _ { \alpha = 0 } = f$ ; confidence 0.528
+
121. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003039.png ; $( \partial ^ { 2 } / \partial x ^ { 2 } + \partial ^ { 2 } / \partial y ^ { 2 } )$ ; confidence 0.989
  
122. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002019.png ; $0 \neq \mathfrak { c } _ { \lambda , } , v < \infty$ ; confidence 0.278
+
122. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304102.png ; $\{ \mu _ { i } \} _ { i = 0 } ^ { N }$ ; confidence 0.989
  
123. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004066.png ; $| \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.903
+
123. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012042.png ; $\nabla ^ { \prime }$ ; confidence 0.989
  
124. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200808.png ; $\varphi ( A ) = \sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } = 0$ ; confidence 0.804
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031060.png ; $[ f _ { S } ^ { + } ( x _ { 0 } ) + f _ { S } ^ { - } ( x _ { 0 } ) ] / 2$ ; confidence 0.989
  
125. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009014.png ; $P _ { N } u = \sum _ { j = 0 } ^ { N } u ( x _ { j } ) C _ { j } ( x )$ ; confidence 0.979
+
125. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021033.png ; $B ( G ) \cap C _ { 00 } ( G ; C ) \subset A ( G )$ ; confidence 0.989
  
126. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009019.png ; $P _ { N } u ( x ) = \sum _ { n = 0 } ^ { N } a _ { n } T _ { n } ( x )$ ; confidence 0.466
+
126. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002093.png ; $m _ { 0 } < m$ ; confidence 0.989
  
127. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015052.png ; $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ ; confidence 0.904
+
127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c12023016.png ; $F \cap R$ ; confidence 0.989
  
128. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180322.png ; $W ( g ) = R ( g ) - g A ( g ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.700
+
128. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050106.png ; $S ( z ) = B ( z ) ^ { - 1 } S _ { 0 } ( z )$ ; confidence 0.989
  
129. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018060.png ; $+ F ( d x \bigotimes d y + d y \otimes d x ) + G d y Q d y$ ; confidence 0.130
+
129. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840319.png ; $J = J ^ { * } = J ^ { - 1 }$ ; confidence 0.989
  
130. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018079.png ; $g = \lambda \mu ( d u \otimes d u - d v \otimes d v )$ ; confidence 0.958
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026010.png ; $0 < | a _ { n } \zeta ( 3 ) - c _ { n } | < ( \sqrt { 2 } - 1 ) ^ { 4 n }$ ; confidence 0.989
  
131. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180399.png ; $\tilde { \nabla } ^ { \not Y } R ( \mathfrak { g } )$ ; confidence 0.107
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025028.png ; $L ( V , V ) \oplus V$ ; confidence 0.989
  
132. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180489.png ; $\lambda _ { \mathscr { B } } \in C ^ { \infty } ( N )$ ; confidence 0.289
+
132. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017063.png ; $k ( e ^ { - i \lambda } )$ ; confidence 0.989
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180239.png ; $\{ p _ { 1 } , \dots , p _ { 4 m } \} = \{ 1 , \dots , 4 m \}$ ; confidence 0.607
+
133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015064.png ; $( \Delta ^ { \alpha } \xi | \eta ) = ( \xi | \Delta ^ { \overline { \alpha } } \eta )$ ; confidence 0.989
  
134. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019032.png ; $H ^ { q } ( B \Gamma , C ) \simeq H ^ { q } ( \Gamma , C )$ ; confidence 0.082
+
134. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i1300507.png ; $t - ( k )$ ; confidence 0.989
  
135. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019025.png ; $\varphi : \Gamma ^ { \gamma + 1 } \rightarrow C$ ; confidence 0.449
+
135. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007031.png ; $H _ { - } \supset H _ { 0 }$ ; confidence 0.989
  
136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202005.png ; $\alpha \wedge ( d \alpha ) ^ { \alpha - 1 } \neq 0$ ; confidence 0.253
+
136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008070.png ; $( \Lambda , M )$ ; confidence 0.989
  
137. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025041.png ; $N _ { k } ( t ) - \int _ { 0 } ^ { t } \lambda _ { k } ( s ) d s$ ; confidence 0.991
+
137. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006019.png ; $x = p ( y )$ ; confidence 0.989
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025010.png ; $\beta ^ { T } = ( \beta _ { 1 } , \dots , \beta _ { p } )$ ; confidence 0.759
+
138. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014038.png ; $\overline { \phi } \in H ^ { \infty }$ ; confidence 0.989
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028045.png ; $\gamma : \omega \square Gpd \rightarrow C rs$ ; confidence 0.415
+
139. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030027.png ; $R ^ { + }$ ; confidence 0.989
  
140. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202803.png ; $C _ { 2 } \rightarrow C _ { 1 } \rightarrow C _ { 0 }$ ; confidence 0.754
+
140. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009034.png ; $G \rightarrow G ^ { * } \mu$ ; confidence 0.988
  
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029014.png ; $\pi _ { 2 } ( X , A , x ) \rightarrow \pi _ { 1 } ( A , x )$ ; confidence 0.907
+
141. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006082.png ; $z \notin \{ x , y \}$ ; confidence 0.988
  
142. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130010/d1300102.png ; $h ( x , y ) = \sum _ { k = 1 } ^ { n } f _ { k } ( x ) g _ { k } ( y )$ ; confidence 0.870
+
142. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003026.png ; $u : I \rightarrow G$ ; confidence 0.988
  
143. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300909.png ; $P _ { \nu } + R _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.519
+
143. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010074.png ; $C V _ { p } ( G ) \neq \lambda ^ { p } ( M ^ { 1 } ( G ) )$ ; confidence 0.988
  
144. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020136.png ; $\vec { \mathfrak { c } } \frac { 1 } { \vec { k } } < 0$ ; confidence 0.229
+
144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070224.png ; $( \nu _ { 1 } , \nu _ { 2 } )$ ; confidence 0.988
  
145. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002012.png ; $U _ { 1 } = \{ u _ { 1 } \geq 0 : g ( u _ { 1 } ) > - \infty \}$ ; confidence 0.995
+
145. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020169.png ; $q \circ p ^ { - 1 } ( x ) \subset F ( x )$ ; confidence 0.988
  
146. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020109.png ; $\vec { \mathfrak { c } } _ { \vec { k } } ^ { 2 } \geq 0$ ; confidence 0.103
+
146. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000197.png ; $\rho = [ [ M ] ]$ ; confidence 0.988
  
147. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006016.png ; $T ( f ) ( x , t ) = f ( q x , t ) , \quad x , q \in R , q \neq 0$ ; confidence 0.994
+
147. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b1205301.png ; $T : L ^ { 1 } ( \mu ) \rightarrow L ^ { p } ( \nu )$ ; confidence 0.988
  
148. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024017.png ; $\frac { 1 } { 2 } \{ f ( x _ { 0 } + t ) - f ( x _ { 0 } - t ) \} =$ ; confidence 0.999
+
148. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003040.png ; $L ^ { \prime } ( E )$ ; confidence 0.988
  
149. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d0302405.png ; $\frac { 1 } { 2 } \{ f ( x _ { 0 } + t ) + f ( x _ { 0 } - t ) \} =$ ; confidence 0.997
+
149. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009017.png ; $\sigma : R \rightarrow R$ ; confidence 0.988
  
150. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025010.png ; $\sum _ { k = 1 } ^ { n } l _ { k } \frac { h ^ { k } } { k ! } < 1$ ; confidence 0.988
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png ; $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ ; confidence 0.988
  
151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019011.png ; $H _ { 0 } ^ { 1 } ( \Omega ) = W _ { 0 } ^ { 1,2 } ( \Omega )$ ; confidence 0.989
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004031.png ; $( f _ { n } )$ ; confidence 0.988
  
152. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028025.png ; $\phi \in A _ { 0 } ( \overline { C } \backslash D )$ ; confidence 0.856
+
152. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017021.png ; $d B _ { t } = r B _ { t } d t$ ; confidence 0.988
  
153. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203003.png ; $d X ( t ) = \alpha ( t , X ( t ) ) d t + b ( t , X ( t ) ) d B ( t )$ ; confidence 0.979
+
153. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767026.png ; $x , y , z , t \in G$ ; confidence 0.988
  
154. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001094.png ; $G : \mathfrak { A } \rightarrow \mathfrak { X }$ ; confidence 0.900
+
154. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840265.png ; $p < 0$ ; confidence 0.988
  
155. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001023.png ; $\operatorname { deg } f _ { i } \leq c _ { n } d ^ { n }$ ; confidence 0.317
+
155. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556073.png ; $K ( z , w )$ ; confidence 0.988
  
156. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e1300409.png ; $\Omega ( t ) \psi ( 0 ) = U _ { 0 } ( - t ) U ( t ) \psi ( 0 )$ ; confidence 0.999
+
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017047.png ; $W _ { 1 } ^ { 2 }$ ; confidence 0.988
  
157. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000102.png ; $I ( \rho ) = \frac { d \rho } { d ( \mu \times \mu ) }$ ; confidence 0.918
+
157. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004017.png ; $P _ { L } ( v , z )$ ; confidence 0.988
  
158. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190195.png ; $\mu ( \Phi ) = \mu ( \Phi _ { 1 } ) + \mu ( \Phi _ { 2 } )$ ; confidence 0.998
+
158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008012.png ; $A = [ A _ { 1 } , A _ { 2 } ]$ ; confidence 0.988
  
159. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024019.png ; $c _ { L } \in H ^ { 1 } ( G ( \overline { K } / K ( L ) ) ; A )$ ; confidence 0.867
+
159. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024067.png ; $u \in C ( J _ { t } )$ ; confidence 0.988
  
160. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006044.png ; $W ( t , U ) = \{ f \in A ( X , Y ) : f t ( A ) \subseteq U \}$ ; confidence 0.950
+
160. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003025.png ; $P _ { 1 } \psi / ( 1 - p _ { 0 } )$ ; confidence 0.988
  
161. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100129.png ; $s p \hat { T } = ( \operatorname { supp } T ) ^ { - 1 }$ ; confidence 0.163
+
161. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f1301303.png ; $M \subset E$ ; confidence 0.988
  
162. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f1201701.png ; $G = \langle x _ { 1 } , \dots , x _ { N } : r = 1 \rangle$ ; confidence 0.261
+
162. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001073.png ; $J F ( x )$ ; confidence 0.988
  
163. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024068.png ; $J _ { t } = [ - h ( t ) , - g ( t ) ] \subset ( - \infty , 0 ]$ ; confidence 0.975
+
163. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040148.png ; $s _ { 0 } > 1$ ; confidence 0.988
  
164. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001057.png ; $B ^ { * } = ( \gamma _ { 0 } , \dots , \gamma _ { n - 1 } )$ ; confidence 0.666
+
164. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025010.png ; $\sum _ { k = 1 } ^ { n } l _ { k } \frac { h ^ { k } } { k ! } < 1$ ; confidence 0.988
  
165. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040108.png ; $L = L _ { 2 } = D _ { x _ { 1 } } + i x _ { 1 } ^ { h } D _ { x _ { 2 } }$ ; confidence 0.598
+
165. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012034.png ; $\Phi g : d g \rightarrow d ^ { \prime } g$ ; confidence 0.988
  
166. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020127.png ; $\| \phi - f \| _ { L } \propto ( T ) = \| H _ { \phi } \|$ ; confidence 0.328
+
166. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003047.png ; $P T \| Q A$ ; confidence 0.988
  
167. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005031.png ; $\beta _ { 0 } ( \phi , \rho ) = \int _ { N } \phi \rho$ ; confidence 0.296
+
167. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017021.png ; $C V _ { 2 } ( G )$ ; confidence 0.988
  
168. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120143.png ; $\pi : \overline { B } ( H ( Y ) ) \rightarrow H ( Y )$ ; confidence 0.997
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009023.png ; $\frac { d \tau } { \tau } = p ( f , \tau ) \frac { d f } { f }$ ; confidence 0.988
  
169. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012084.png ; $\phi _ { \infty } = \phi \Sigma _ { \infty } \phi$ ; confidence 0.990
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c13013020.png ; $d K / d t$ ; confidence 0.988
  
170. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001012.png ; $\int _ { 1 } ^ { \infty } g _ { \Phi } ( t ) d t < \infty$ ; confidence 0.837
+
170. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001036.png ; $L _ { \Phi _ { 1 } } ( \Omega )$ ; confidence 0.988
  
171. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i1200107.png ; $\int _ { 1 } ^ { \infty } g _ { \Phi } ( t ) d t = \infty$ ; confidence 0.952
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110040/b1100402.png ; $\Theta _ { 1 }$ ; confidence 0.988
  
172. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i1300104.png ; $d _ { \chi } ^ { G } : C ^ { n \times n } \rightarrow C$ ; confidence 0.953
+
172. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000196.png ; $M \in \Lambda$ ; confidence 0.988
  
173. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003072.png ; $T _ { vert } ^ { * } Y : = T ^ { * } Y / \pi ^ { * } ( T ^ { * } B )$ ; confidence 0.749
+
173. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019025.png ; $x , y , t \geq 1$ ; confidence 0.988
  
174. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004012.png ; $A = \{ | h _ { 1 } ( z ) | < 1 , \dots , | h _ { 1 } ( z ) | < 1 \}$ ; confidence 0.358
+
174. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024039.png ; $\left( \begin{array} { c c } { 0 } & { K ( a , b ) } \\ { 0 } & { 0 } \end{array} \right)$ ; confidence 0.988
  
175. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060182.png ; $f ( k ) = 1 + \int _ { 0 } ^ { \infty } A ( y ) e ^ { i k y } d y$ ; confidence 0.992
+
175. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007029.png ; $x ^ { - 1 } H x = G$ ; confidence 0.988
  
176. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007081.png ; $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.945
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310132.png ; $A ^ { \infty }$ ; confidence 0.988
  
177. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009044.png ; $E _ { 1 } ( k ) \rightarrow \prod _ { p | p } U _ { 1 , p }$ ; confidence 0.675
+
177. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200222.png ; $( K / ( 8 e ( m + K ) ) ) ^ { K }$ ; confidence 0.988
  
178. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002057.png ; $\phi ( x ) = ( 1 + x ) \operatorname { ln } ( 1 + x ) - x$ ; confidence 0.988
+
178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021050.png ; $\lambda = \lambda _ { i }$ ; confidence 0.988
  
179. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020199.png ; $e ^ { i \vartheta } \mapsto k _ { \vartheta } ( z )$ ; confidence 0.869
+
179. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001046.png ; $\chi _ { \lambda } \preceq \chi _ { \mu }$ ; confidence 0.988
  
180. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004086.png ; $P _ { L } ( v , z ) = \sum \alpha _ { i } , j v ^ { i } z ^ { j }$ ; confidence 0.464
+
180. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601078.png ; $\tau ( W , M _ { 0 } ) = ( - 1 ) ^ { n - 1 } \tau ^ { * } ( W , M _ { 1 } )$ ; confidence 0.988
  
181. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002039.png ; $\tau = P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 2 } ) > 0 ] +$ ; confidence 0.722
+
181. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006012.png ; $\operatorname { lim } _ { t \rightarrow 0 } \Phi ( t ) / t = 0$ ; confidence 0.988
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021072.png ; $\mathfrak { C } 1 , \ldots , \mathfrak { C } _ { x }$ ; confidence 0.076
+
182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006055.png ; $C \Gamma$ ; confidence 0.988
  
183. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005017.png ; $\lambda = n ^ { - 1 } c = ( \pi \sigma ^ { 2 } N ) ^ { - 1 }$ ; confidence 0.974
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026094.png ; $( R , a )$ ; confidence 0.988
  
184. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013021.png ; $E _ { 2 } ^ { 2 } i - 1 _ { ( n + 1 ) } = T _ { 2 } i - 1 _ { ( n + 1 ) }$ ; confidence 0.405
+
184. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011065.png ; $u = x - x ^ { 0 }$ ; confidence 0.988
  
185. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002069.png ; $( x \vee y ) ^ { - 1 } = x ^ { - 1 } / \backslash y ^ { - 1 }$ ; confidence 0.318
+
185. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120030/i1200309.png ; $\epsilon ^ { - 1 }$ ; confidence 0.988
  
186. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003029.png ; $\operatorname { sup } _ { i \in I } \mu _ { i } \in D$ ; confidence 0.873
+
186. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305107.png ; $S \neq Z ^ { 0 }$ ; confidence 0.988
  
187. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000145.png ; $\Gamma \vdash M : ( \sigma \rightarrow \tau )$ ; confidence 0.951
+
187. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005081.png ; $S ( z ) = S _ { 1 } ( z ) S _ { 2 } ( z )$ ; confidence 0.988
  
188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008020.png ; $( x , y , t ) \mapsto ( z , w ) = ( x + i y , t + i | z | ^ { 2 } )$ ; confidence 0.972
+
188. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019099.png ; $\sigma ( x , y )$ ; confidence 0.988
  
189. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003059.png ; $l = 2 \pi k \operatorname { sinh } \frac { r } { k }$ ; confidence 0.996
+
189. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601045.png ; $M _ { 0 } \times [ 0,1 ]$ ; confidence 0.988
  
190. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202008.png ; $\cup _ { i = 1 } ^ { m } A _ { i } \cup ( - A _ { i } ) = S ^ { x }$ ; confidence 0.233
+
190. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070130.png ; $K ( x , y ) \in H$ ; confidence 0.988
  
191. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m1201206.png ; $f : \square _ { R } A \rightarrow \square _ { R } R$ ; confidence 0.953
+
191. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301609.png ; $\Gamma \in S$ ; confidence 0.988
  
192. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007022.png ; $\{ 0 \} \cup \{ m \} \cup [ m + \epsilon , \infty )$ ; confidence 0.999
+
192. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080127.png ; $u \in R ( A )$ ; confidence 0.988
  
193. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013012.png ; $\frac { d N } { d t } = \lambda N ( 1 - \frac { N } { K } )$ ; confidence 0.971
+
193. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008081.png ; $y = \Lambda ^ { N } ( w - \frac { 1 } { w } ) , P = \lambda ^ { N } - \sum _ { 2 } ^ { N } u _ { k } \lambda ^ { N - k } = \Lambda ^ { N } ( w + \frac { 1 } { w } )$ ; confidence 0.988
  
194. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140143.png ; $S = \{ \zeta : | \zeta _ { j } | = 1 , j = 2 , \dots , n \}$ ; confidence 0.322
+
194. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028025.png ; $\{ X , Y \} \approx \{ D Y , D X \}$ ; confidence 0.988
  
195. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021013.png ; $u \in S ^ { n - 1 } : = \{ v \in E : \langle v , v \} = 1 \}$ ; confidence 0.379
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005023.png ; $0 \leq s \leq r \leq t \leq T$ ; confidence 0.988
  
196. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023033.png ; $R = R _ { \geq 0 } v \subset \overline { N E } ( X / S )$ ; confidence 0.623
+
196. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023054.png ; $0 < s < t < T$ ; confidence 0.988
  
197. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230157.png ; $\mu ^ { * } K _ { X } = K _ { Y } + \sum _ { k } d _ { k } D _ { k }$ ; confidence 0.867
+
197. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005064.png ; $A X _ { 1 } = X _ { 2 } A$ ; confidence 0.988
  
198. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027017.png ; $= \sum _ { \alpha \in Z _ { f } } \varphi ( \alpha )$ ; confidence 0.799
+
198. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h04739017.png ; $J = P _ { + } - P _ { - }$ ; confidence 0.988
  
199. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026097.png ; $\overline { \alpha } : M ( A ) \rightarrow M ( B )$ ; confidence 0.998
+
199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023079.png ; $K \in \Omega ^ { k } ( M ; T M )$ ; confidence 0.988
  
200. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003032.png ; $\langle A f , g \rangle = \langle f , A g \rangle$ ; confidence 0.805
+
200. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013066.png ; $H _ { + } \cap H _ { - }$ ; confidence 0.988
  
201. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003051.png ; $= \int \int _ { \Omega } w ( x , y ) [ A v ( x , y ) ] d x d y$ ; confidence 0.996
+
201. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010053.png ; $z _ { j } ^ { \prime }$ ; confidence 0.988
  
202. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011015.png ; $B _ { \alpha } = \{ x \in R : \xi ( x ) \geq \alpha \}$ ; confidence 0.570
+
202. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015440/b01544012.png ; $\sigma _ { 2 } ^ { 2 }$ ; confidence 0.988
  
203. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520208.png ; $\epsilon _ { p + 1 } = \ldots = \epsilon _ { r } = - 1$ ; confidence 0.952
+
203. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040139.png ; $\chi ^ { \lambda } \chi ^ { \mu }$ ; confidence 0.988
  
204. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520315.png ; $\{ \alpha ^ { * } ( f ) : f \in L _ { 2 } ( M , \sigma ) \}$ ; confidence 0.765
+
204. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230145.png ; $f ( X X ^ { \prime } )$ ; confidence 0.988
  
205. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520302.png ; $L ^ { 2 } = \sum \oplus L _ { \rho _ { \alpha } } ^ { 2 }$ ; confidence 0.985
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041057.png ; $n \geq 3$ ; confidence 0.988
  
206. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005063.png ; $G : \mathfrak { H } \rightarrow \mathfrak { G }$ ; confidence 0.981
+
206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110211.png ; $G ( \zeta )$ ; confidence 0.988
  
207. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005064.png ; $H : \mathfrak { F } \rightarrow \mathfrak { G }$ ; confidence 0.952
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008036.png ; $\operatorname { ln } ( f ( x ) / g ( x ; m , s ) )$ ; confidence 0.988
  
208. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005062.png ; $F : \mathfrak { F } \rightarrow \mathfrak { H }$ ; confidence 0.693
+
208. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300808.png ; $f _ { g }$ ; confidence 0.988
  
209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060109.png ; $\xi _ { 1 } \lambda _ { 1 } + \xi _ { 2 } \lambda _ { 2 }$ ; confidence 0.995
+
209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300705.png ; $\phi \mapsto \phi \circ f$ ; confidence 0.988
  
210. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006087.png ; $A _ { k } ^ { ( 2 ) } = U A _ { k } ^ { ( 1 ) } U ^ { - 1 } ( k = 1,2 )$ ; confidence 0.896
+
210. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059060.png ; $O A$ ; confidence 0.988
  
211. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014010.png ; $\hat { f } ( - \alpha , - p ) = \hat { f } ( \alpha , p )$ ; confidence 0.852
+
211. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012042.png ; $\sigma _ { 1 } ^ { 3 } \sigma _ { 2 } ^ { - 1 } \sigma _ { 1 } \sigma _ { 2 } ^ { - 1 }$ ; confidence 0.988
  
212. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050110.png ; $| h ( a ) - h ( x ) | / | h ( b ) - h ( x ) | \leq \eta ( \rho )$ ; confidence 0.791
+
212. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g1300704.png ; $A ^ { - 1 }$ ; confidence 0.988
  
213. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007018.png ; $R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$ ; confidence 0.994
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b1110408.png ; $n ^ { p } - n - p \equiv 0 ( \operatorname { mod } p )$ ; confidence 0.988
  
214. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070146.png ; $\int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) = G ( t )$ ; confidence 0.793
+
214. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120145.png ; $A _ { \infty }$ ; confidence 0.988
  
215. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008044.png ; $D _ { z _ { 0 } , r } : = \{ z : | z - z _ { 0 } | \leq r \} \in D$ ; confidence 0.905
+
215. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110350/c11035013.png ; $\mu y$ ; confidence 0.988
  
216. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008097.png ; $( \varphi ; \varphi _ { m } ) _ { 0 } = \delta _ { j m }$ ; confidence 0.290
+
216. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380266.png ; $N$ ; confidence 0.988
  
217. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010014.png ; $( X , Y ) / \operatorname { rad } _ { A } ^ { 2 } ( X , Y )$ ; confidence 0.982
+
217. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027012.png ; $T T ^ { * } - T ^ { * } T \in K ( H )$ ; confidence 0.988
  
218. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018018.png ; $( \alpha \beta ) ^ { * } = \beta ^ { * } \alpha ^ { * }$ ; confidence 0.991
+
218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005038.png ; $M ( A )$ ; confidence 0.988
  
219. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018067.png ; $\rho ( x , y ) = \langle x - y , x - y \rangle ^ { 1 / 2 }$ ; confidence 0.873
+
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420159.png ; $\lambda _ { W } : V \otimes W \rightarrow W \otimes V$ ; confidence 0.988
  
220. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230152.png ; $A _ { 1 } ( n \times n ) , \dots , A _ { s } ( n \times n )$ ; confidence 0.724
+
220. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015045.png ; $\eta \in A ^ { \prime } \rightarrow \pi ^ { \prime } ( \eta ) \xi$ ; confidence 0.988
  
221. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051063.png ; $\Gamma = \Gamma _ { 1 } + \ldots + \Gamma _ { m }$ ; confidence 0.966
+
221. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030128.png ; $P _ { + } f = 0$ ; confidence 0.988
  
222. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025041.png ; $h ( x ) = x ^ { \alpha } \operatorname { exp } ( - x )$ ; confidence 0.990
+
222. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000126.png ; $\alpha \in V$ ; confidence 0.988
  
223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058014.png ; $I = [ \xi _ { l } ^ { 0 } ] ^ { 2 } + [ \xi _ { r } ^ { 0 } ] ^ { 2 }$ ; confidence 0.798
+
223. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004025.png ; $x , y , z , t$ ; confidence 0.988
  
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058015.png ; $Q = [ \xi _ { l } ^ { 0 } ] ^ { 2 } - [ \xi _ { r } ^ { 0 } ] ^ { 2 }$ ; confidence 0.879
+
224. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m1300709.png ; $m _ { 0 } > 0$ ; confidence 0.988
  
225. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027018.png ; $S _ { m } [ f ] = \sum _ { v = 1 } ^ { m } b _ { v , m } f ( y v , m )$ ; confidence 0.495
+
225. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010072.png ; $\nabla f _ { j } \in L ^ { 2 } ( R ^ { n } )$ ; confidence 0.988
  
226. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320122.png ; $\operatorname { ev } _ { X } ( f \otimes 1 ) = f ( x )$ ; confidence 0.536
+
226. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010061.png ; $a ( x , \alpha , p - q )$ ; confidence 0.988
  
227. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306509.png ; $\Phi _ { N } ( z ) = \sum _ { k = 0 } ^ { n } b _ { n k } z ^ { k }$ ; confidence 0.486
+
227. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520301.png ; $K = \sum \oplus K _ { \rho _ { \alpha } }$ ; confidence 0.988
  
228. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002016.png ; $T = \cap _ { N \geq 0 } \sigma ( X _ { n } : | n | \geq N )$ ; confidence 0.531
+
228. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840182.png ; $E _ { \lambda } ^ { \prime } < \infty$ ; confidence 0.988
  
229. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005031.png ; $D _ { A } : \Lambda ( X ) \rightarrow \Lambda ( X )$ ; confidence 0.982
+
229. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005085.png ; $e ( T , V ) = \operatorname { lim } _ { n \rightarrow \infty } \frac { m ( n ; T , V ) } { n }$ ; confidence 0.988
  
230. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010028.png ; $F = \{ Y : \operatorname { Hom } _ { H } ( T , Y ) = 0 \}$ ; confidence 0.937
+
230. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015068.png ; $r _ { 1 } + r _ { 2 } < 1$ ; confidence 0.988
  
231. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015067.png ; $( \Delta \xi ^ { \# } | \eta ^ { \# } ) = ( \eta | \xi )$ ; confidence 0.891
+
231. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204309.png ; $B \otimes C$ ; confidence 0.988
  
232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020056.png ; $0 \leq d ^ { \prime } , d ^ { \prime \prime } \leq 3$ ; confidence 0.986
+
232. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016920/b01692031.png ; $| x - y |$ ; confidence 0.988
  
233. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020058.png ; $s _ { k } = z _ { 1 } ^ { k } + \ldots + z _ { \gamma } ^ { k }$ ; confidence 0.405
+
233. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025028.png ; $( u , v ) \in M ( \Omega )$ ; confidence 0.988
  
234. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005037.png ; $V \rightarrow ( \text { End } V ) [ [ x , x ^ { - 1 } ] ]$ ; confidence 0.954
+
234. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009053.png ; $1 / P ( \xi )$ ; confidence 0.988
  
235. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002085.png ; $f ^ { * } : H ^ { Y } ( Y , G ) \rightarrow H ^ { Y } ( X , G )$ ; confidence 0.263
+
235. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002077.png ; $P \cap P = \{ e \}$ ; confidence 0.988
  
236. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020218.png ; $\kappa ( F , \overline { D } \square ^ { n + 1 } ) = k$ ; confidence 0.659
+
236. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027012.png ; $f \in C _ { 2 } \pi$ ; confidence 0.988
  
237. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004053.png ; $\chi ^ { \prime } ( G ) = \chi _ { l } ^ { \prime } ( G )$ ; confidence 0.998
+
237. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045056.png ; $( X _ { 2 } , Y _ { 3 } )$ ; confidence 0.988
  
238. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v11006017.png ; $\{ ( x , y , z ) : ( x , y ) \in \Omega , | z | \leq h / 2 \}$ ; confidence 0.997
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040154.png ; $f \in L _ { 1 } ( \mu )$ ; confidence 0.988
  
239. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011073.png ; $M _ { 1 } = \rho \Delta V i b = \rho \Gamma \dot { b }$ ; confidence 0.425
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052071.png ; $F ^ { \prime } ( x _ { 0 } )$ ; confidence 0.988
  
240. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006040.png ; $^ { + } ( S ^ { 1 } ) / \operatorname { Mob } ( S ^ { 1 } )$ ; confidence 0.479
+
240. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007019.png ; $E \rightarrow F$ ; confidence 0.988
  
241. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010013.png ; $D T _ { j } ^ { i } = \nabla _ { k } T _ { j } ^ { i } d x ^ { k } =$ ; confidence 0.298
+
241. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900173.png ; $T f = g$ ; confidence 0.988
  
242. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008054.png ; $W ( f ) = \int _ { X } f ( u ) \Omega ( u ) d \mu _ { X } ( u )$ ; confidence 0.956
+
242. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010135.png ; $\tau ( W \times P , M _ { 0 } \times P ) = \tau ( W , M _ { 0 } ) \chi ( P )$ ; confidence 0.988
  
243. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090186.png ; $\operatorname { Ind } _ { \overline { H } } ^ { G }$ ; confidence 0.452
+
243. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002057.png ; $\phi ( x ) = ( 1 + x ) \operatorname { ln } ( 1 + x ) - x$ ; confidence 0.988
  
244. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090116.png ; $\Delta ( \lambda ) = K GL _ { n } ( K ) z _ { \lambda }$ ; confidence 0.499
+
244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020067.png ; $R _ { n } > 1 / 2$ ; confidence 0.988
  
245. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090356.png ; $\{ x _ { \alpha } ( t ) : t \in K , \alpha \in \Phi \}$ ; confidence 0.553
+
245. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023062.png ; $i _ { K } ( \omega \otimes X ) = i _ { K } ( \omega ) \otimes X$ ; confidence 0.988
  
246. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110131.png ; $R _ { x } ^ { n } \times R _ { \xi } ^ { n } \times ( 0,1 ]$ ; confidence 0.471
+
246. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065032.png ; $D _ { \mu } ( z ) = \operatorname { exp } \{ \frac { 1 } { 4 \pi } \int _ { - \pi } ^ { \pi } \operatorname { log } \mu ^ { \prime } ( \theta ) R ( e ^ { i \theta } , z ) d \theta \}$ ; confidence 0.988
  
247. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110201.png ; $G _ { X } \leq C ( 1 + G _ { X } ^ { g } ( X - Y ) ) ^ { N } G _ { Y }$ ; confidence 0.586
+
247. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022030.png ; $\Gamma _ { 0 } ( 2 )$ ; confidence 0.988
  
248. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008030.png ; $\sigma _ { 1 } = \sum _ { i = 0 } ^ { 2 g } \lambda _ { i }$ ; confidence 0.909
+
248. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140117.png ; $T _ { \phi } = -$ ; confidence 0.988
  
249. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018057.png ; $G ( A ) = \cap _ { \epsilon } > 0 H ( A _ { \epsilon } )$ ; confidence 0.901
+
249. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011016.png ; $\Delta U$ ; confidence 0.988
  
250. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a11061087.png ; $f ( \alpha )$ ; confidence 0.988
  
251. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001098.png ; $\operatorname { ln } n ( F ) = \langle 1 \rangle$ ; confidence 0.808
+
251. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l1200303.png ; $\operatorname { Map } ( X , Y ) = [ X , Y ]$ ; confidence 0.988
  
252. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001021.png ; $B _ { 12 } B _ { 23 } B _ { 12 } = B _ { 23 } B _ { 12 } B _ { 23 }$ ; confidence 0.984
+
252. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008022.png ; $\lambda _ { 0 } < \ldots < \lambda _ { 2 g }$ ; confidence 0.988
  
253. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001012.png ; $\tau U , V ^ { \prime } ( u \otimes v ) = v \otimes u$ ; confidence 0.378
+
253. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059020/l05902047.png ; $0 < x \leq 1$ ; confidence 0.988
  
254. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001023.png ; $R _ { 12 } R _ { 23 } R _ { 12 } = R _ { 23 } R _ { 12 } R _ { 23 }$ ; confidence 0.998
+
254. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021012.png ; $E = 0$ ; confidence 0.988
  
255. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001018.png ; $| z | > \operatorname { max } \{ R _ { 1 } , R _ { 2 } \}$ ; confidence 0.966
+
255. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i1300509.png ; $i k$ ; confidence 0.988
  
256. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005011.png ; $\delta ( a b ) = a \delta ( b ) + b \delta ( \alpha )$ ; confidence 0.581
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040511.png ; $\{ F / \Omega C : F \in C \}$ ; confidence 0.988
  
257. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001084.png ; $\{ \text { ad } e _ { - } ^ { p } _ { - 1 } ^ { k } : 0 < k < m \}$ ; confidence 0.187
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044011.png ; $D X$ ; confidence 0.988
  
258. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916
+
258. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005066.png ; $Y _ { 0 } x ^ { 0 } + \sum Y _ { t } x ^ { t } = 0$ ; confidence 0.988
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013040.png ; $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { n } Q _ { j } z ^ { n - j }$ ; confidence 0.991
+
259. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002055.png ; $M _ { k } ( f ) \subset Y$ ; confidence 0.988
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
+
260. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w1201307.png ; $T + S$ ; confidence 0.988
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240109.png ; $( \alpha , \beta , \gamma ) ^ { \prime } = \beta$ ; confidence 1.000
+
261. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667094.png ; $b \geq v$ ; confidence 0.988
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240306.png ; $SS _ { e } = \| y - \hat { \eta } _ { \Omega } \| ^ { 2 }$ ; confidence 0.596
+
262. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011023.png ; $\{ X ; \preceq \}$ ; confidence 0.988
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200405.png ; $x ^ { \prime } ( t ) = A x ( t ) , t > 0 ; \quad x ( 0 ) = x 0$ ; confidence 0.948
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007011.png ; $p = 2 ^ { n + 1 } - 1$ ; confidence 0.988
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040456.png ; $h ( \psi _ { 0 } ) , \ldots , h ( \psi _ { n } - 1 ) \in F$ ; confidence 0.578
+
264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050016.png ; $t \mapsto M _ { t }$ ; confidence 0.988
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004010.png ; $\lambda \varphi 0 , \ldots , \varphi _ { x } - 1$ ; confidence 0.095
+
265. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007050.png ; $h < r D$ ; confidence 0.988
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040279.png ; $\Gamma , \varphi \operatorname { log } \psi$ ; confidence 0.484
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204003.png ; $G \times E \rightarrow E$ ; confidence 0.988
  
267. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050280.png ; $N _ { G } ^ { \# } ( x ) = \sum _ { n \leq x } G ^ { \# } ( n )$ ; confidence 0.928
+
267. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002040.png ; $K [ X ]$ ; confidence 0.988
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005095.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ]$ ; confidence 0.919
+
268. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005072.png ; $M _ { 0 }$ ; confidence 0.988
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050123.png ; $S _ { e } ^ { - s A ( t , u ) } \supset e ^ { - s A ( t , u ) } S$ ; confidence 0.075
+
269. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017058.png ; $d \leq l + n - 1$ ; confidence 0.988
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
+
270. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601079.png ; $n = \operatorname { dim } W$ ; confidence 0.988
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007060.png ; $u ^ { \prime } \in B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.960
+
271. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013033.png ; $P _ { \sigma } P _ { \tau } = 0 = P _ { \tau } P _ { \sigma }$ ; confidence 0.988
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008011.png ; $\xi = ( \xi _ { 1 } , \ldots , \xi _ { m } ) \in R ^ { m }$ ; confidence 0.645
+
272. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900121.png ; $P = U ^ { * } U$ ; confidence 0.988
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070100.png ; $n ^ { \prime 0 } / n ^ { 0 } \geq 2 ^ { 1 / 4 } \sim 1,19$ ; confidence 0.911
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240505.png ; $Z _ { 12 } , Z _ { 13 }$ ; confidence 0.988
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032032.png ; $u _ { M } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h \lambda ) u _ { m }$ ; confidence 0.130
+
274. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002037.png ; $( X _ { 2 } , Y _ { 2 } )$ ; confidence 0.988
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016073.png ; $\lambda c _ { 1 } + \lambda ^ { 2 } c _ { 1 } + \ldots$ ; confidence 0.264
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101802.png ; $n \geq 5$ ; confidence 0.988
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017016.png ; $b ( t ) = F ( t ) + \int _ { 0 } ^ { t } K ( t - s ) b ( s ) d s$ ; confidence 0.998
+
276. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010083.png ; $\sigma ( A _ { p } ( G ) ^ { \prime } , A _ { p } ( G ) )$ ; confidence 0.988
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024010.png ; $v _ { \infty } ( f ) = - \operatorname { log } | f |$ ; confidence 0.960
+
277. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003020.png ; $\operatorname { inf } ( | \mu | , | \nu | ) = 0$ ; confidence 0.988
  
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010028.png ; $\frac { d } { d t } G ( t ) = L G ( t ) + [ L , A ^ { * } ] G ( t )$ ; confidence 0.933
+
278. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006031.png ; $\mu _ { k } \leq \lambda _ { k }$ ; confidence 0.988
  
279. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040128.png ; $x \mapsto \int _ { \Omega } x x ^ { \prime } d \mu$ ; confidence 0.712
+
279. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301506.png ; $z _ { \Gamma } = O ( \Gamma ^ { - 1 / 2 } )$ ; confidence 0.988
  
280. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005035.png ; $H _ { \hat { \mu } C } ^ { \infty } ( B _ { E } ) \equiv$ ; confidence 0.120
+
280. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060141.png ; $B \ll Z ^ { 4 / 3 }$ ; confidence 0.988
  
281. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010069.png ; $T ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } / ( 1 + | z | ^ { 2 } ) ^ { 2 }$ ; confidence 0.994
+
281. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029080.png ; $x _ { n } \in [ 0,1 ]$ ; confidence 0.988
  
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012016.png ; $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.980
+
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052067.png ; $G ^ { \prime } ( x ^ { * } )$ ; confidence 0.988
  
283. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013094.png ; $\int _ { D } z ^ { n } | \varphi ( z ) | ^ { p } d A ( z ) = 0$ ; confidence 0.336
+
283. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023065.png ; $K ^ { \prime } = ( K _ { 1 } ^ { \prime } , K _ { 2 } ^ { \prime } )$ ; confidence 0.988
  
284. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017015.png ; $G _ { \alpha } G _ { \beta } = G _ { \alpha + \beta }$ ; confidence 0.992
+
284. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006068.png ; $B \otimes A \rightarrow A \otimes B$ ; confidence 0.987
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012057.png ; $d = \{ d k \} \frac { \infty } { k ^ { 2 } = } - \infty$ ; confidence 0.101
+
285. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d0316702.png ; $K ( X , A )$ ; confidence 0.987
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022082.png ; $H ( f , \xi ) = f _ { 0 } \operatorname { ln } f _ { 0 }$ ; confidence 0.995
+
286. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180213.png ; $\tau ^ { - 1 } p$ ; confidence 0.987
  
287. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017028.png ; $d V _ { t } = \phi _ { t } d S _ { t } + \psi _ { t } d B _ { t }$ ; confidence 0.968
+
287. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040187.png ; $r > n / 2$ ; confidence 0.987
  
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203409.png ; $\sum _ { \alpha } c _ { \alpha } z ^ { \alpha } | < 1$ ; confidence 0.840
+
288. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021031.png ; $L ( u ( z , \lambda ) ) = \pi ( \lambda ) z ^ { \lambda }$ ; confidence 0.987
  
289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034019.png ; $D ^ { 0 } = \{ z : | z _ { 1 } | + \ldots + | z _ { n } | < 1 \}$ ; confidence 0.529
+
289. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004093.png ; $u _ { R } = 0$ ; confidence 0.987
  
290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020037.png ; $[ h _ { i j } e _ { k } ] = \delta _ { i j } a _ { i k } e _ { k }$ ; confidence 0.162
+
290. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009013.png ; $( \phi , A ) = 0$ ; confidence 0.987
  
291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042025.png ; $r V : V \rightarrow V \otimes \underline { 1 }$ ; confidence 0.123
+
291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420129.png ; $A ( R )$ ; confidence 0.987
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420106.png ; $\phi : G \times G \times G \rightarrow k ^ { * }$ ; confidence 0.979
+
292. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110670/b11067054.png ; $B ( R )$ ; confidence 0.987
  
293. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025051.png ; $\angle \Omega O \Omega ^ { \prime } = 2 \omega$ ; confidence 0.996
+
293. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023096.png ; $[ K , L ] \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.987
  
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050047.png ; $E ( \operatorname { exp } ( - u \alpha _ { x } ) ) =$ ; confidence 0.527
+
294. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080164.png ; $B _ { p } ( G )$ ; confidence 0.987
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056013.png ; $\lambda _ { 1 } \leq 2 ( n - 1 ) \delta h + 10 h ^ { 2 }$ ; confidence 0.999
+
295. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408030.png ; $( X ; A , B , * )$ ; confidence 0.987
  
296. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007037.png ; $\operatorname { lim } _ { L } \leftarrow ^ { n }$ ; confidence 0.188
+
296. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026028.png ; $w ( t )$ ; confidence 0.987
  
297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007010.png ; $x _ { i } = \operatorname { dom } \alpha _ { i + 1 }$ ; confidence 0.721
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002010.png ; $\mu _ { n } = \mu \circ T ^ { - n }$ ; confidence 0.987
  
298. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070121.png ; $g = \frac { ( n - 1 ) ( n - 2 ) } { 2 } - \sum \delta ( P )$ ; confidence 0.995
+
298. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001045.png ; $A = M _ { n } ( k )$ ; confidence 0.987
  
299. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070111.png ; $\delta ( P ) = \sum \frac { d ( Q ) ( d ( Q ) - 1 ) } { 2 }$ ; confidence 0.895
+
299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037052.png ; $C _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.987
  
300. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211032.png ; $p _ { 1 } ( \theta ) + \ldots + p _ { k } ( \theta ) = 1$ ; confidence 0.998
+
300. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070127.png ; $K ( x , y ) : = \int _ { T } h ( t , y ) \overline { h ( t , x ) } d m ( t ) =$ ; confidence 0.987

Revision as of 00:10, 13 February 2020

List

1. s130510114.png ; $k = \infty ( K )$ ; confidence 0.989

2. b1301904.png ; $e ( x ) = \operatorname { exp } ( 2 \pi i x )$ ; confidence 0.989

3. f12021080.png ; $\lambda _ { i } - \lambda _ { j } \in N$ ; confidence 0.989

4. f1101608.png ; $L ( n + 1 )$ ; confidence 0.989

5. d120230153.png ; $( i \times i )$ ; confidence 0.989

6. z13008048.png ; $( 4 \frac { \partial ^ { 2 } } { \partial z \partial z } - D ^ { 2 } - 2 ( \alpha + 1 ) D ) f =$ ; confidence 0.989

7. c02412069.png ; $L ( s , \chi )$ ; confidence 0.989

8. g04435011.png ; $V _ { F }$ ; confidence 0.989

9. e13005018.png ; $( y - x ) ^ { \alpha + \beta } ( \frac { \partial u } { \partial y } - \frac { \partial u } { \partial x } ) | _ { x = y } = \nu ( x )$ ; confidence 0.989

10. h12001026.png ; $V \rightarrow R$ ; confidence 0.989

11. c13015011.png ; $E _ { M } ( D ( \Omega ) )$ ; confidence 0.989

12. h13006041.png ; $u v = D \alpha D \beta D$ ; confidence 0.989

13. f042070183.png ; $f ( x + y ) = f ( x ) f ( y )$ ; confidence 0.989

14. e120260130.png ; $\Theta ( \mu )$ ; confidence 0.989

15. b12022025.png ; $\varepsilon \rightarrow 0$ ; confidence 0.989

16. w13009021.png ; $G _ { 0 } = R$ ; confidence 0.989

17. s130510109.png ; $\gamma ( v )$ ; confidence 0.989

18. i12004066.png ; $\sum _ { j = 1 } ^ { n } \frac { \partial r } { \partial \zeta _ { j } } ( \zeta _ { j } ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.989

19. b1100202.png ; $b ( u , v ) = l ( v ) , \forall v \in V$ ; confidence 0.989

20. k055840189.png ; $\sum \rho ( \lambda ) \leq \kappa$ ; confidence 0.989

21. h12012082.png ; $\nabla _ { \infty } = \nabla - \phi \Sigma _ { \infty } \nabla$ ; confidence 0.989

22. s12016017.png ; $C ^ { k } ( [ 0,1 ] )$ ; confidence 0.989

23. o13008066.png ; $\int _ { 0 } ^ { \infty } p ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0$ ; confidence 0.989

24. t12001032.png ; $g ( \xi ^ { \alpha } , \xi ^ { b } ) = \delta _ { \alpha b }$ ; confidence 0.989

25. a1202906.png ; $F _ { \sigma }$ ; confidence 0.989

26. h04807030.png ; $( 0 , \Sigma )$ ; confidence 0.989

27. m12015020.png ; $\int _ { X } f _ { X } ( X ) d X = 1$ ; confidence 0.989

28. i12004052.png ; $f ( z ) = \int \partial D f ( \zeta ) K ( s )$ ; confidence 0.989

29. c130160166.png ; $\geq 2 / 3$ ; confidence 0.989

30. f1300909.png ; $\alpha ( x ) = \frac { x + ( x ^ { 2 } + 4 ) ^ { 1 / 2 } } { 2 } , \beta ( x ) = \frac { x - ( x ^ { 2 } + 4 ) ^ { 1 / 2 } } { 2 }$ ; confidence 0.989

31. e13006070.png ; $Q \rightarrow R$ ; confidence 0.989

32. a1100207.png ; $( v , k , \lambda )$ ; confidence 0.989

33. i120080134.png ; $J _ { 2 } < 0$ ; confidence 0.989

34. b12016034.png ; $p _ { 12,3 } = 1$ ; confidence 0.989

35. z13001059.png ; $x ( n )$ ; confidence 0.989

36. i130090114.png ; $\mu _ { p } ( K / k )$ ; confidence 0.989

37. c13006040.png ; $A _ { i } = A ( \Gamma _ { i } )$ ; confidence 0.989

38. l12003056.png ; $H ^ { * } \operatorname { Map } ( B E , X ) \approx T _ { E } H ^ { * } X$ ; confidence 0.989

39. b12052066.png ; $G = B _ { 0 } ^ { - 1 } F ( x )$ ; confidence 0.989

40. l12017067.png ; $[ R _ { j } , R _ { k } ]$ ; confidence 0.989

41. a12031048.png ; $M ( K )$ ; confidence 0.989

42. b11026028.png ; $k = 2 m$ ; confidence 0.989

43. b13001019.png ; $V : = X / \Gamma$ ; confidence 0.989

44. b1300304.png ; $( x , y , z ) \mapsto \{ x y z \}$ ; confidence 0.989

45. c120210134.png ; $L _ { 2 } ( \theta )$ ; confidence 0.989

46. s12032016.png ; $[ x , y ] = - ( - 1 ) ^ { p ( x ) p ( y ) } [ y , x ] , [ x , [ y , z ] ] = [ [ x , y ] , z ] + ( - 1 ) ^ { p ( x ) p ( y ) } [ y , [ x , z ] ]$ ; confidence 0.989

47. d13013047.png ; $e = n \hbar / 2 g$ ; confidence 0.989

48. t13005049.png ; $\Lambda ^ { k } ( X )$ ; confidence 0.989

49. b13009038.png ; $L ^ { 1 } ( R )$ ; confidence 0.989

50. a110420143.png ; $1$ ; confidence 0.989

51. a130240396.png ; $M _ { H }$ ; confidence 0.989

52. b1302903.png ; $d = \operatorname { dim } A$ ; confidence 0.989

53. e12023058.png ; $E ( L ) = \frac { \partial L } { \partial y } - D ( \frac { \partial L } { \partial y ^ { \prime } } )$ ; confidence 0.989

54. c02547051.png ; $\alpha \wedge ( d \alpha ) ^ { n }$ ; confidence 0.989

55. k12006031.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$ ; confidence 0.989

56. z130110147.png ; $\beta = \beta ( \alpha , c ) < 1$ ; confidence 0.989

57. n13003035.png ; $A w$ ; confidence 0.989

58. f12001024.png ; $( X ) \neq 0$ ; confidence 0.989

59. s1304708.png ; $\lambda \mapsto ( T - \lambda I ) ^ { - 1 }$ ; confidence 0.989

60. s12023015.png ; $- X$ ; confidence 0.989

61. d12020022.png ; $H ( G )$ ; confidence 0.989

62. e12016028.png ; $f ( d t ^ { 2 } - \omega d \theta ^ { 2 } ) - r ^ { 2 } f ^ { - 1 } d \theta ^ { 2 } - \Omega ^ { 2 } ( d r ^ { 2 } + d z ^ { 2 } )$ ; confidence 0.989

63. h12001033.png ; $I \subset X ^ { ( 1 ) }$ ; confidence 0.989

64. f13021047.png ; $B ( G _ { 1 } )$ ; confidence 0.989

65. a12025010.png ; $k \leq q + 1$ ; confidence 0.989

66. j130040107.png ; $( v ^ { - 1 } - v ) / z$ ; confidence 0.989

67. h04797078.png ; $\Delta x$ ; confidence 0.989

68. h120120165.png ; $H ( \pi , n )$ ; confidence 0.989

69. w12006030.png ; $f ( 0 ) = g ( 0 ) = x \in M$ ; confidence 0.989

70. t12021022.png ; $t ( M ; 2,1 )$ ; confidence 0.989

71. s13013018.png ; $S ( F )$ ; confidence 0.989

72. z13002034.png ; $F , F _ { \tau } \subset P$ ; confidence 0.989

73. l0572408.png ; $t \in R ^ { + }$ ; confidence 0.989

74. g13006034.png ; $A x = \lambda x$ ; confidence 0.989

75. m13002023.png ; $8 \pi k$ ; confidence 0.989

76. b12021016.png ; $L ( \lambda )$ ; confidence 0.989

77. s120340199.png ; $( H _ { 1 } , J )$ ; confidence 0.989

78. g12004066.png ; $( x ^ { 0 } , \xi ^ { 0 } ) \notin \Gamma$ ; confidence 0.989

79. e1201205.png ; $\theta ^ { ( 0 ) } \in \Theta$ ; confidence 0.989

80. t12008045.png ; $\epsilon \in O _ { S } ^ { * }$ ; confidence 0.989

81. a130240542.png ; $( T _ { 1 } , T _ { 2 } )$ ; confidence 0.989

82. j1300107.png ; $Q _ { D } ( v , z )$ ; confidence 0.989

83. w120030143.png ; $\gamma _ { 0 } \in \Gamma$ ; confidence 0.989

84. a110680177.png ; $x \leq y$ ; confidence 0.989

85. d12029045.png ; $\sum _ { q = 1 } ^ { N } \varphi ( q ) f ( q )$ ; confidence 0.989

86. d12030011.png ; $b : R _ { + } \times R ^ { n } \rightarrow L ( R ^ { n } , R ^ { n } )$ ; confidence 0.989

87. r13013021.png ; $M = \operatorname { Im } ( P _ { \sigma } )$ ; confidence 0.989

88. k055840141.png ; $T \subset T ^ { + }$ ; confidence 0.989

89. w13008056.png ; $\partial _ { i } \rightarrow \partial _ { i } + \epsilon ( \partial / \partial T _ { i } )$ ; confidence 0.989

90. b12040021.png ; $E _ { m }$ ; confidence 0.989

91. h12001055.png ; $\gamma \wedge ( d \gamma ) ^ { n } \neq 0$ ; confidence 0.989

92. k12008037.png ; $f \rightarrow K _ { p } ( f )$ ; confidence 0.989

93. d12020021.png ; $B ( H ( G ) )$ ; confidence 0.989

94. n067520220.png ; $M _ { n \times n } ( K )$ ; confidence 0.989

95. o1300202.png ; $| d ( K ) |$ ; confidence 0.989

96. s13047013.png ; $n \geq \nu ( \lambda )$ ; confidence 0.989

97. w130080121.png ; $d Q$ ; confidence 0.989

98. b12031038.png ; $1 / p \geq ( n + 1 + 2 \delta ) / 2 n$ ; confidence 0.989

99. t120140137.png ; $\phi _ { \lambda } \in L ^ { \infty }$ ; confidence 0.989

100. e120190202.png ; $d ( x , y ) \geq 0$ ; confidence 0.989

101. e1201207.png ; $Q ( \theta | \theta ^ { ( t ) } ) = \int \operatorname { log } f ( \theta , \phi ) f ( \phi | \theta ^ { ( t ) } ) d \phi$ ; confidence 0.989

102. w12021066.png ; $s _ { i } > 0$ ; confidence 0.989

103. f120150112.png ; $F ( x ) \in C ^ { k } ( \Omega , Y )$ ; confidence 0.989

104. e035000139.png ; $S ( T , \alpha ) = H _ { \alpha } ( T ( B ( 0,1 ) ) , H )$ ; confidence 0.989

105. v09690038.png ; $P H$ ; confidence 0.989

106. s13013036.png ; $m ( \chi )$ ; confidence 0.989

107. d11011023.png ; $M = S ^ { 3 }$ ; confidence 0.989

108. m13020023.png ; $j : \mathfrak { g } \rightarrow C ^ { \infty } ( M )$ ; confidence 0.989

109. l06119016.png ; $0 < \lambda \leq 1$ ; confidence 0.989

110. a01052056.png ; $q > 0$ ; confidence 0.989

111. m12003049.png ; $\varepsilon ^ { * } ( T )$ ; confidence 0.989

112. j13002010.png ; $A \subseteq \Gamma _ { p }$ ; confidence 0.989

113. b13003020.png ; $( J , J )$ ; confidence 0.989

114. r13007024.png ; $H _ { + } \subset H _ { 0 } \subset H _ { - }$ ; confidence 0.989

115. e120190151.png ; $[ p , x ] \ni q$ ; confidence 0.989

116. c12005018.png ; $H ^ { p } ( T )$ ; confidence 0.989

117. d12014076.png ; $\{ x ^ { n } \}$ ; confidence 0.989

118. d12028026.png ; $\phi \in A _ { 0 } ( Q )$ ; confidence 0.989

119. m13019044.png ; $M _ { - 1 } = 0$ ; confidence 0.989

120. m12007026.png ; $\delta = M ( 1 + x + y - x y ) = 1.7916228$ ; confidence 0.989

121. n13003039.png ; $( \partial ^ { 2 } / \partial x ^ { 2 } + \partial ^ { 2 } / \partial y ^ { 2 } )$ ; confidence 0.989

122. s1304102.png ; $\{ \mu _ { i } \} _ { i = 0 } ^ { N }$ ; confidence 0.989

123. h12012042.png ; $\nabla ^ { \prime }$ ; confidence 0.989

124. b12031060.png ; $[ f _ { S } ^ { + } ( x _ { 0 } ) + f _ { S } ^ { - } ( x _ { 0 } ) ] / 2$ ; confidence 0.989

125. f13021033.png ; $B ( G ) \cap C _ { 00 } ( G ; C ) \subset A ( G )$ ; confidence 0.989

126. n12002093.png ; $m _ { 0 } < m$ ; confidence 0.989

127. c12023016.png ; $F \cap R$ ; confidence 0.989

128. s120050106.png ; $S ( z ) = B ( z ) ^ { - 1 } S _ { 0 } ( z )$ ; confidence 0.989

129. k055840319.png ; $J = J ^ { * } = J ^ { - 1 }$ ; confidence 0.989

130. a13026010.png ; $0 < | a _ { n } \zeta ( 3 ) - c _ { n } | < ( \sqrt { 2 } - 1 ) ^ { 4 n }$ ; confidence 0.989

131. a13025028.png ; $L ( V , V ) \oplus V$ ; confidence 0.989

132. w13017063.png ; $k ( e ^ { - i \lambda } )$ ; confidence 0.989

133. t12015064.png ; $( \Delta ^ { \alpha } \xi | \eta ) = ( \xi | \Delta ^ { \overline { \alpha } } \eta )$ ; confidence 0.989

134. i1300507.png ; $t - ( k )$ ; confidence 0.989

135. r13007031.png ; $H _ { - } \supset H _ { 0 }$ ; confidence 0.989

136. c12008070.png ; $( \Lambda , M )$ ; confidence 0.989

137. e12006019.png ; $x = p ( y )$ ; confidence 0.989

138. t12014038.png ; $\overline { \phi } \in H ^ { \infty }$ ; confidence 0.989

139. a13030027.png ; $R ^ { + }$ ; confidence 0.989

140. h13009034.png ; $G \rightarrow G ^ { * } \mu$ ; confidence 0.988

141. i12006082.png ; $z \notin \{ x , y \}$ ; confidence 0.988

142. c12003026.png ; $u : I \rightarrow G$ ; confidence 0.988

143. f13010074.png ; $C V _ { p } ( G ) \neq \lambda ^ { p } ( M ^ { 1 } ( G ) )$ ; confidence 0.988

144. c130070224.png ; $( \nu _ { 1 } , \nu _ { 2 } )$ ; confidence 0.988

145. v120020169.png ; $q \circ p ^ { - 1 } ( x ) \subset F ( x )$ ; confidence 0.988

146. l057000197.png ; $\rho = [ [ M ] ]$ ; confidence 0.988

147. b1205301.png ; $T : L ^ { 1 } ( \mu ) \rightarrow L ^ { p } ( \nu )$ ; confidence 0.988

148. l11003040.png ; $L ^ { \prime } ( E )$ ; confidence 0.988

149. r13009017.png ; $\sigma : R \rightarrow R$ ; confidence 0.988

150. a1300104.png ; $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ ; confidence 0.988

151. b12004031.png ; $( f _ { n } )$ ; confidence 0.988

152. b13017021.png ; $d B _ { t } = r B _ { t } d t$ ; confidence 0.988

153. l05767026.png ; $x , y , z , t \in G$ ; confidence 0.988

154. k055840265.png ; $p < 0$ ; confidence 0.988

155. b01556073.png ; $K ( z , w )$ ; confidence 0.988

156. b12017047.png ; $W _ { 1 } ^ { 2 }$ ; confidence 0.988

157. j13004017.png ; $P _ { L } ( v , z )$ ; confidence 0.988

158. c12008012.png ; $A = [ A _ { 1 } , A _ { 2 } ]$ ; confidence 0.988

159. f12024067.png ; $u \in C ( J _ { t } )$ ; confidence 0.988

160. q13003025.png ; $P _ { 1 } \psi / ( 1 - p _ { 0 } )$ ; confidence 0.988

161. f1301303.png ; $M \subset E$ ; confidence 0.988

162. j12001073.png ; $J F ( x )$ ; confidence 0.988

163. g120040148.png ; $s _ { 0 } > 1$ ; confidence 0.988

164. d03025010.png ; $\sum _ { k = 1 } ^ { n } l _ { k } \frac { h ^ { k } } { k ! } < 1$ ; confidence 0.988

165. d12012034.png ; $\Phi g : d g \rightarrow d ^ { \prime } g$ ; confidence 0.988

166. l06003047.png ; $P T \| Q A$ ; confidence 0.988

167. f13017021.png ; $C V _ { 2 } ( G )$ ; confidence 0.988

168. b12009023.png ; $\frac { d \tau } { \tau } = p ( f , \tau ) \frac { d f } { f }$ ; confidence 0.988

169. c13013020.png ; $d K / d t$ ; confidence 0.988

170. i12001036.png ; $L _ { \Phi _ { 1 } } ( \Omega )$ ; confidence 0.988

171. b1100402.png ; $\Theta _ { 1 }$ ; confidence 0.988

172. l057000196.png ; $M \in \Lambda$ ; confidence 0.988

173. m12019025.png ; $x , y , t \geq 1$ ; confidence 0.988

174. f13024039.png ; $\left( \begin{array} { c c } { 0 } & { K ( a , b ) } \\ { 0 } & { 0 } \end{array} \right)$ ; confidence 0.988

175. z13007029.png ; $x ^ { - 1 } H x = G$ ; confidence 0.988

176. a120310132.png ; $A ^ { \infty }$ ; confidence 0.988

177. t120200222.png ; $( K / ( 8 e ( m + K ) ) ) ^ { K }$ ; confidence 0.988

178. f12021050.png ; $\lambda = \lambda _ { i }$ ; confidence 0.988

179. i13001046.png ; $\chi _ { \lambda } \preceq \chi _ { \mu }$ ; confidence 0.988

180. h04601078.png ; $\tau ( W , M _ { 0 } ) = ( - 1 ) ^ { n - 1 } \tau ^ { * } ( W , M _ { 1 } )$ ; confidence 0.988

181. o12006012.png ; $\operatorname { lim } _ { t \rightarrow 0 } \Phi ( t ) / t = 0$ ; confidence 0.988

182. e12006055.png ; $C \Gamma$ ; confidence 0.988

183. a12026094.png ; $( R , a )$ ; confidence 0.988

184. m13011065.png ; $u = x - x ^ { 0 }$ ; confidence 0.988

185. i1200309.png ; $\epsilon ^ { - 1 }$ ; confidence 0.988

186. s1305107.png ; $S \neq Z ^ { 0 }$ ; confidence 0.988

187. s12005081.png ; $S ( z ) = S _ { 1 } ( z ) S _ { 2 } ( z )$ ; confidence 0.988

188. e12019099.png ; $\sigma ( x , y )$ ; confidence 0.988

189. h04601045.png ; $M _ { 0 } \times [ 0,1 ]$ ; confidence 0.988

190. r130070130.png ; $K ( x , y ) \in H$ ; confidence 0.988

191. r1301609.png ; $\Gamma \in S$ ; confidence 0.988

192. r130080127.png ; $u \in R ( A )$ ; confidence 0.988

193. w13008081.png ; $y = \Lambda ^ { N } ( w - \frac { 1 } { w } ) , P = \lambda ^ { N } - \sum _ { 2 } ^ { N } u _ { k } \lambda ^ { N - k } = \Lambda ^ { N } ( w + \frac { 1 } { w } )$ ; confidence 0.988

194. s12028025.png ; $\{ X , Y \} \approx \{ D Y , D X \}$ ; confidence 0.988

195. a12005023.png ; $0 \leq s \leq r \leq t \leq T$ ; confidence 0.988

196. m12023054.png ; $0 < s < t < T$ ; confidence 0.988

197. s12005064.png ; $A X _ { 1 } = X _ { 2 } A$ ; confidence 0.988

198. h04739017.png ; $J = P _ { + } - P _ { - }$ ; confidence 0.988

199. f12023079.png ; $K \in \Omega ^ { k } ( M ; T M )$ ; confidence 0.988

200. d13013066.png ; $H _ { + } \cap H _ { - }$ ; confidence 0.988

201. k12010053.png ; $z _ { j } ^ { \prime }$ ; confidence 0.988

202. b01544012.png ; $\sigma _ { 2 } ^ { 2 }$ ; confidence 0.988

203. s120040139.png ; $\chi ^ { \lambda } \chi ^ { \mu }$ ; confidence 0.988

204. s120230145.png ; $f ( X X ^ { \prime } )$ ; confidence 0.988

205. a11041057.png ; $n \geq 3$ ; confidence 0.988

206. f120110211.png ; $G ( \zeta )$ ; confidence 0.988

207. a13008036.png ; $\operatorname { ln } ( f ( x ) / g ( x ; m , s ) )$ ; confidence 0.988

208. w1300808.png ; $f _ { g }$ ; confidence 0.988

209. s1300705.png ; $\phi \mapsto \phi \circ f$ ; confidence 0.988

210. b11059060.png ; $O A$ ; confidence 0.988

211. p13012042.png ; $\sigma _ { 1 } ^ { 3 } \sigma _ { 2 } ^ { - 1 } \sigma _ { 1 } \sigma _ { 2 } ^ { - 1 }$ ; confidence 0.988

212. g1300704.png ; $A ^ { - 1 }$ ; confidence 0.988

213. b1110408.png ; $n ^ { p } - n - p \equiv 0 ( \operatorname { mod } p )$ ; confidence 0.988

214. h120120145.png ; $A _ { \infty }$ ; confidence 0.988

215. c11035013.png ; $\mu y$ ; confidence 0.988

216. d031380266.png ; $N$ ; confidence 0.988

217. b13027012.png ; $T T ^ { * } - T ^ { * } T \in K ( H )$ ; confidence 0.988

218. b12005038.png ; $M ( A )$ ; confidence 0.988

219. b120420159.png ; $\lambda _ { W } : V \otimes W \rightarrow W \otimes V$ ; confidence 0.988

220. t12015045.png ; $\eta \in A ^ { \prime } \rightarrow \pi ^ { \prime } ( \eta ) \xi$ ; confidence 0.988

221. i130030128.png ; $P _ { + } f = 0$ ; confidence 0.988

222. l057000126.png ; $\alpha \in V$ ; confidence 0.988

223. l11004025.png ; $x , y , z , t$ ; confidence 0.988

224. m1300709.png ; $m _ { 0 } > 0$ ; confidence 0.988

225. l12010072.png ; $\nabla f _ { j } \in L ^ { 2 } ( R ^ { n } )$ ; confidence 0.988

226. l13010061.png ; $a ( x , \alpha , p - q )$ ; confidence 0.988

227. n067520301.png ; $K = \sum \oplus K _ { \rho _ { \alpha } }$ ; confidence 0.988

228. k055840182.png ; $E _ { \lambda } ^ { \prime } < \infty$ ; confidence 0.988

229. i12005085.png ; $e ( T , V ) = \operatorname { lim } _ { n \rightarrow \infty } \frac { m ( n ; T , V ) } { n }$ ; confidence 0.988

230. p12015068.png ; $r _ { 1 } + r _ { 2 } < 1$ ; confidence 0.988

231. b1204309.png ; $B \otimes C$ ; confidence 0.988

232. b01692031.png ; $| x - y |$ ; confidence 0.988

233. m13025028.png ; $( u , v ) \in M ( \Omega )$ ; confidence 0.988

234. m12009053.png ; $1 / P ( \xi )$ ; confidence 0.988

235. l11002077.png ; $P \cap P = \{ e \}$ ; confidence 0.988

236. d03027012.png ; $f \in C _ { 2 } \pi$ ; confidence 0.988

237. s13045056.png ; $( X _ { 2 } , Y _ { 3 } )$ ; confidence 0.988

238. b120040154.png ; $f \in L _ { 1 } ( \mu )$ ; confidence 0.988

239. b12052071.png ; $F ^ { \prime } ( x _ { 0 } )$ ; confidence 0.988

240. d12007019.png ; $E \rightarrow F$ ; confidence 0.988

241. v096900173.png ; $T f = g$ ; confidence 0.988

242. h046010135.png ; $\tau ( W \times P , M _ { 0 } \times P ) = \tau ( W , M _ { 0 } ) \chi ( P )$ ; confidence 0.988

243. j13002057.png ; $\phi ( x ) = ( 1 + x ) \operatorname { ln } ( 1 + x ) - x$ ; confidence 0.988

244. t12020067.png ; $R _ { n } > 1 / 2$ ; confidence 0.988

245. f12023062.png ; $i _ { K } ( \omega \otimes X ) = i _ { K } ( \omega ) \otimes X$ ; confidence 0.988

246. s13065032.png ; $D _ { \mu } ( z ) = \operatorname { exp } \{ \frac { 1 } { 4 \pi } \int _ { - \pi } ^ { \pi } \operatorname { log } \mu ^ { \prime } ( \theta ) R ( e ^ { i \theta } , z ) d \theta \}$ ; confidence 0.988

247. m13022030.png ; $\Gamma _ { 0 } ( 2 )$ ; confidence 0.988

248. t120140117.png ; $T _ { \phi } = -$ ; confidence 0.988

249. v13011016.png ; $\Delta U$ ; confidence 0.988

250. a11061087.png ; $f ( \alpha )$ ; confidence 0.988

251. l1200303.png ; $\operatorname { Map } ( X , Y ) = [ X , Y ]$ ; confidence 0.988

252. w13008022.png ; $\lambda _ { 0 } < \ldots < \lambda _ { 2 g }$ ; confidence 0.988

253. l05902047.png ; $0 < x \leq 1$ ; confidence 0.988

254. t12021012.png ; $E = 0$ ; confidence 0.988

255. i1300509.png ; $i k$ ; confidence 0.988

256. a130040511.png ; $\{ F / \Omega C : F \in C \}$ ; confidence 0.988

257. s13044011.png ; $D X$ ; confidence 0.988

258. l06005066.png ; $Y _ { 0 } x ^ { 0 } + \sum Y _ { t } x ^ { t } = 0$ ; confidence 0.988

259. v12002055.png ; $M _ { k } ( f ) \subset Y$ ; confidence 0.988

260. w1201307.png ; $T + S$ ; confidence 0.988

261. b01667094.png ; $b \geq v$ ; confidence 0.988

262. r11011023.png ; $\{ X ; \preceq \}$ ; confidence 0.988

263. a13007011.png ; $p = 2 ^ { n + 1 } - 1$ ; confidence 0.988

264. b12050016.png ; $t \mapsto M _ { t }$ ; confidence 0.988

265. h13007050.png ; $h < r D$ ; confidence 0.988

266. b1204003.png ; $G \times E \rightarrow E$ ; confidence 0.988

267. f12002040.png ; $K [ X ]$ ; confidence 0.988

268. b12005072.png ; $M _ { 0 }$ ; confidence 0.988

269. w12017058.png ; $d \leq l + n - 1$ ; confidence 0.988

270. h04601079.png ; $n = \operatorname { dim } W$ ; confidence 0.988

271. r13013033.png ; $P _ { \sigma } P _ { \tau } = 0 = P _ { \tau } P _ { \sigma }$ ; confidence 0.988

272. v096900121.png ; $P = U ^ { * } U$ ; confidence 0.988

273. a130240505.png ; $Z _ { 12 } , Z _ { 13 }$ ; confidence 0.988

274. k13002037.png ; $( X _ { 2 } , Y _ { 2 } )$ ; confidence 0.988

275. a0101802.png ; $n \geq 5$ ; confidence 0.988

276. f13010083.png ; $\sigma ( A _ { p } ( G ) ^ { \prime } , A _ { p } ( G ) )$ ; confidence 0.988

277. l11003020.png ; $\operatorname { inf } ( | \mu | , | \nu | ) = 0$ ; confidence 0.988

278. n13006031.png ; $\mu _ { k } \leq \lambda _ { k }$ ; confidence 0.988

279. b1301506.png ; $z _ { \Gamma } = O ( \Gamma ^ { - 1 / 2 } )$ ; confidence 0.988

280. t120060141.png ; $B \ll Z ^ { 4 / 3 }$ ; confidence 0.988

281. d12029080.png ; $x _ { n } \in [ 0,1 ]$ ; confidence 0.988

282. b12052067.png ; $G ^ { \prime } ( x ^ { * } )$ ; confidence 0.988

283. s12023065.png ; $K ^ { \prime } = ( K _ { 1 } ^ { \prime } , K _ { 2 } ^ { \prime } )$ ; confidence 0.988

284. w12006068.png ; $B \otimes A \rightarrow A \otimes B$ ; confidence 0.987

285. d0316702.png ; $K ( X , A )$ ; confidence 0.987

286. c120180213.png ; $\tau ^ { - 1 } p$ ; confidence 0.987

287. g120040187.png ; $r > n / 2$ ; confidence 0.987

288. f12021031.png ; $L ( u ( z , \lambda ) ) = \pi ( \lambda ) z ^ { \lambda }$ ; confidence 0.987

289. l12004093.png ; $u _ { R } = 0$ ; confidence 0.987

290. m13009013.png ; $( \phi , A ) = 0$ ; confidence 0.987

291. b120420129.png ; $A ( R )$ ; confidence 0.987

292. b11067054.png ; $B ( R )$ ; confidence 0.987

293. f12023096.png ; $[ K , L ] \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.987

294. f120080164.png ; $B _ { p } ( G )$ ; confidence 0.987

295. t09408030.png ; $( X ; A , B , * )$ ; confidence 0.987

296. d12026028.png ; $w ( t )$ ; confidence 0.987

297. a13002010.png ; $\mu _ { n } = \mu \circ T ^ { - n }$ ; confidence 0.987

298. y12001045.png ; $A = M _ { n } ( k )$ ; confidence 0.987

299. b12037052.png ; $C _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.987

300. r130070127.png ; $K ( x , y ) : = \int _ { T } h ( t , y ) \overline { h ( t , x ) } d m ( t ) =$ ; confidence 0.987

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/17. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/17&oldid=44427