Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/19"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 19 out of 19 with 83 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.)
 
(AUTOMATIC EDIT of page 19 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050850/i05085060.png ; $A < \operatorname { ln } d X$ ; confidence 0.106
+
1. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058480/l05848093.png ; $K [ \text { End } V$ ; confidence 0.805
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022079.png ; $M _ { t }$ ; confidence 0.106
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680200.png ; $r$ ; confidence 0.805
  
3. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377057.png ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140121.png ; $\sigma ( 1 ) = s$ ; confidence 0.805
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104
+
4. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805
  
5. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103
+
5. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680012.png ; $T ^ { S }$ ; confidence 0.805
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015015.png ; $F ( t | S ) = F ( a ( t ) | S _ { y } ) , \quad t \geq 0$ ; confidence 0.102
+
6. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686069.png ; $f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$ ; confidence 0.805
  
7. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
+
7. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110150/r11015028.png ; $M \dot { y } = f ( y )$ ; confidence 0.805
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055045.png ; $g \neq \theta$ ; confidence 0.098
+
8. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004020.png ; $\operatorname { Im } z > 1$ ; confidence 0.805
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004010.png ; $\lambda \varphi 0 , \ldots , \varphi _ { x } - 1$ ; confidence 0.095
+
9. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267059.png ; $\Gamma ( U , O _ { X } ) ^ { * }$ ; confidence 0.805
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $Q$ ; confidence 0.095
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082096.png ; $G : \mathfrak { G } \rightarrow \mathscr { K }$ ; confidence 0.805
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050216.png ; $A _ { 2 } = \prod _ { m _ { 2 } } ^ { 2 } \geq 2 \zeta ( m ^ { 2 } ) = 2.49$ ; confidence 0.094
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008065.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m } \end{array} \right.$ ; confidence 0.804
  
12. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083460/s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094
+
12. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180161.png ; $g ^ { - 1 }$ ; confidence 0.804
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040331.png ; $\operatorname { Id } E ( x , x ) \text { and } x , E ( x , y ) | _ { D } y$ ; confidence 0.093
+
13. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110170/p11017040.png ; $\{ . . \}$ ; confidence 0.804
  
14. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150450.png ; $\operatorname { sin } 0$ ; confidence 0.092
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005049.png ; $\leq B \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T$ ; confidence 0.804
  
15. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073760/p0737605.png ; $\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$ ; confidence 0.090
+
15. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014099.png ; $R$ ; confidence 0.804
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105507.png ; $\varepsilon \in C$ ; confidence 0.090
+
16. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c02055044.png ; $8$ ; confidence 0.804
  
17. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060131.png ; $F ^ { \# } ( n )$ ; confidence 0.804
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013016.png ; $8$ ; confidence 0.804
  
19. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
+
19. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804
  
20. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820155.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$ ; confidence 0.087
+
20. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090273.png ; $\varepsilon$ ; confidence 0.804
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024018.png ; $E _ { i }$ ; confidence 0.085
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052062.png ; $q \leq 1$ ; confidence 0.804
  
22. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007036.png ; $3 ^ { 3 } .5 .7,3 ^ { 2 } .5 ^ { 2 } .7,3 ^ { 2 } .5 .7 ^ { 2 }$ ; confidence 0.804
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006022.png ; $\beta ( A , B ) = \operatorname { sup } _ { C \in A \otimes B } | P _ { A \otimes B } ( C ) - ( P _ { A } \times P _ { B } ) ( C ) | =$ ; confidence 0.084
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001089.png ; $| I - B A \| < 1$ ; confidence 0.804
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040304.png ; $O ( a , b )$ ; confidence 0.083
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a11035025.png ; $\phi _ { \lambda } ( t )$ ; confidence 0.804
  
25. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
+
25. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010093.png ; $E _ { 6 }$ ; confidence 0.803
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032011.png ; $+ h \sum _ { j = 1 } ^ { s } B _ { j } ( h T ) [ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { m j } ^ { ( j ) } + 1 ]$ ; confidence 0.083
+
26. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070228.png ; $C _ { 2 }$ ; confidence 0.803
  
27. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960167.png ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082
+
27. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104057.png ; $- u _ { 3 }$ ; confidence 0.803
  
28. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $V _ { V }$ ; confidence 0.082
+
28. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003027.png ; $3$ ; confidence 0.803
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043025.png ; $q _ { i h } = \sum _ { j \in S } p _ { i } q _ { h } , \quad i \in S \backslash H , \quad h \in H$ ; confidence 0.082
+
29. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077490/r0774902.png ; $G / R$ ; confidence 0.803
  
30. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320130.png ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081
+
30. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082055.png ; $Y = ( Y _ { 1 } , \ldots , Y _ { n } )$ ; confidence 0.803
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300409.png ; $\lambda ^ { F m } ( \varphi 0 , \dots , \varphi _ { m } - 1 )$ ; confidence 0.080
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082019.png ; $H _ { \mathfrak { K } } ( X , G ( Y ) )$ ; confidence 0.803
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040736.png ; $^ { * } L D S = \cup \{ \text { Alg } Mod ^ { * } L D S _ { P } : \text { Paset } \}$ ; confidence 0.080
+
32. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090343.png ; $h = h _ { \beta } \in h$ ; confidence 0.803
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040627.png ; $\langle F m _ { P } , \operatorname { mod } e l s s _ { P } \rangle$ ; confidence 0.080
+
33. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149019.png ; $y = - \frac { P _ { 0 } ( x _ { 1 } , \ldots , x _ { x } ) } { P _ { 1 } ( x _ { 1 } , \ldots , x _ { x } ) }$ ; confidence 0.803
  
34. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c0270004.png ; $E _ { e } ^ { t X } 1$ ; confidence 0.078
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220109.png ; $( L _ { 2 } , P _ { 2 } )$ ; confidence 0.802
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040335.png ; $E ( x , y ) \nmid _ { D } E ( y , x ) , \quad E ( x , y ) , E ( y , z ) | _ { D } E ( x , z )$ ; confidence 0.078
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210103.png ; $2 \pi i c$ ; confidence 0.802
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240422.png ; $1$ ; confidence 0.077
+
36. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054049.png ; $\alpha , b \in F ^ { * }$ ; confidence 0.802
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021072.png ; $\mathfrak { C } 1 , \ldots , \mathfrak { C } _ { x }$ ; confidence 0.076
+
37. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060135.png ; $W _ { N } \rightarrow W _ { n }$ ; confidence 0.076
+
38. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802
  
39. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335707.png ; $\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.076
+
39. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802
  
40. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070370/o07037028.png ; $\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$ ; confidence 0.076
+
40. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076040/q07604075.png ; $\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$ ; confidence 0.802
  
41. https://www.encyclopediaofmath.org/legacyimages/t/t110/t110020/t11002078.png ; $M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$ ; confidence 0.076
+
41. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680048.png ; $\leq \nu _ { i } ^ { s }$ ; confidence 0.802
  
42. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086590/s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075
+
42. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590523.png ; $( i 0 , U )$ ; confidence 0.802
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050123.png ; $S _ { e } ^ { - s A ( t , u ) } \supset e ^ { - s A ( t , u ) } S$ ; confidence 0.075
+
43. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510199.png ; $\operatorname { su } ( 2 p , 2 ( n - p ) )$ ; confidence 0.801
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040245.png ; $I _ { A / P } ^ { B }$ ; confidence 0.075
+
44. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925070.png ; $\Gamma \subset \operatorname { GL } ( n , F )$ ; confidence 0.801
  
45. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c02203033.png ; $C _ { \omega }$ ; confidence 0.073
+
45. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646018.png ; $[ a ]$ ; confidence 0.801
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a0102404.png ; $F ( z , w ) \equiv \alpha _ { 0 } ( z ) w ^ { \prime \prime } + \alpha _ { 1 } ( z ) w ^ { \prime \prime } - 1 + \ldots + \alpha _ { x } ( z ) = 0$ ; confidence 0.073
+
46. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012800/a01280065.png ; $\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$ ; confidence 0.072
+
47. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801
  
48. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
+
48. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872025.png ; $( x ^ { p } ) = ( a d x ) ^ { p }$ ; confidence 0.801
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068024.png ; $\operatorname { lim } _ { x \rightarrow \infty } \left( \begin{array} { c } { \sum _ { n \leq x , n \atop x } 1 } \\ { \frac { n ( n ) \neq 0 } { x } } \end{array} \right) = 1$ ; confidence 0.072
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010270.png ; $\operatorname { min } _ { i } | \hat { \lambda } - \lambda _ { i } | \leq \operatorname { max } \{ r \psi , r ^ { 1 / r } \psi ^ { 1 / r } \}$ ; confidence 0.800
  
50. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010035.png ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071
+
50. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830169.png ; $Y _ { n + 1 } G - F \in F \{ Y _ { 1 } , \ldots , Y _ { n + 1 } \}$ ; confidence 0.800
  
51. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021089.png ; $\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$ ; confidence 0.071
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a11049014.png ; $-$ ; confidence 0.800
  
52. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s08742067.png ; $\{ f \rangle _ { P } \sim | V |$ ; confidence 0.071
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010068.png ; $u - \Delta u = f$ ; confidence 0.800
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040605.png ; $g _ { S _ { P } , \mathfrak { M } } ( \varphi ) = \operatorname { mng } _ { S } _ { P } , \mathfrak { M } ( \psi )$ ; confidence 0.071
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a0116401.png ; $C P ^ { 3 }$ ; confidence 0.800
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040539.png ; $t _ { G } \theta _ { 0 } , \ldots , \theta _ { n - 1 } \gg \xi$ ; confidence 0.070
+
54. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020160/c02016022.png ; $K _ { X } K _ { X }$ ; confidence 0.800
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018019.png ; $z \frac { \operatorname { lim } } { z \rightarrow z _ { 0 } } \quad S ( z ) = S ( z 0 )$ ; confidence 0.069
+
55. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780429.png ; $\phi ^ { h } ( pt )$ ; confidence 0.800
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010198.png ; $\leq \| T \| ^ { T ^ { - 1 } } \| \| \delta A \| \frac { 1 } { \operatorname { min } } | \hat { \lambda } - \lambda _ { i } |$ ; confidence 0.069
+
56. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038380/f03838022.png ; $C _ { 0 }$ ; confidence 0.800
  
57. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615033.png ; $\operatorname { Re } _ { c _ { N } } = n$ ; confidence 0.069
+
57. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s087820182.png ; $\| y \| = \operatorname { max } _ { i } | y _ { i } |$ ; confidence 0.800
  
58. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099024.png ; $r \in C ^ { 3 }$ ; confidence 0.800
  
59. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d03334050.png ; $c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$ ; confidence 0.068
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110250/a11025015.png ; $1 / T$ ; confidence 0.800
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040530.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n - 1 } \gg \varphi _ { n }$ ; confidence 0.068
+
60. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001058.png ; $t ( z _ { 1 } , z _ { 2 } ) = ( e ^ { i t } z _ { 1 } , e ^ { i \alpha t } z _ { 2 } ) , \quad t \in R$ ; confidence 0.800
  
61. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012087.png ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032013.png ; $T \approx f _ { y } ( t _ { m } , u _ { m } )$ ; confidence 0.800
  
62. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t093230103.png ; $\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$ ; confidence 0.066
+
62. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040425.png ; $\langle A , F \rangle \in M od ^ { * } L D$ ; confidence 0.065
+
63. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005034.png ; $\operatorname { lim } _ { t \rightarrow S } U ( t , s ) u _ { 0 } = u _ { 0 } \text { for } u _ { 0 } \in \overline { D ( A ( s ) ) }$ ; confidence 0.064
+
64. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360142.png ; $P _ { 8 }$ ; confidence 0.799
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008023.png ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061
+
65. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067310/n06731043.png ; $B O$ ; confidence 0.799
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040414.png ; $^ { * } L D = S PP _ { U } Mod ^ { * } L _ { D }$ ; confidence 0.061
+
66. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030037.png ; $C ^ { 4 } P ^ { 3 }$ ; confidence 0.060
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040799.png ; $D \in K$ ; confidence 0.799
  
68. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661030.png ; $R _ { y } ^ { t }$ ; confidence 0.060
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600168.png ; $H _ { m _ { 1 } }$ ; confidence 0.799
  
69. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087300/s08730040.png ; $Q _ { 1 }$ ; confidence 0.060
+
69. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058490/l058490126.png ; $G$ ; confidence 0.799
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040145.png ; $T , \varphi \operatorname { log } 5 \psi$ ; confidence 0.060
+
70. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010135.png ; $x , y \in \Omega$ ; confidence 0.799
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016069.png ; $\| x \| _ { A } = \langle A x , x \rangle ^ { 1 / 2 }$ ; confidence 0.059
+
71. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771049.png ; $X ( T _ { 0 } / Z ( G ) ^ { 0 } ) _ { Q }$ ; confidence 0.799
  
72. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011024.png ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011720/a01172010.png ; $X _ { 0 }$ ; confidence 0.798
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a11035026.png ; $\delta _ { \lambda } ( t ) \psi ^ { ( x , y ) _ { \nu } } ( t )$ ; confidence 0.057
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033022.png ; $U _ { 0 } ^ { * * } = \emptyset$ ; confidence 0.798
  
74. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434801.png ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057
+
74. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798
  
75. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m0650309.png ; $x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$ ; confidence 0.056
+
75. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240244.png ; $= \operatorname { sin } \gamma q$ ; confidence 0.055
+
76. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003022.png ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798
  
77. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441010.png ; $A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$ ; confidence 0.055
+
77. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040309.png ; $\epsilon 0,0 ( x , y , z , w ) \approx \epsilon 0,1 ( x , y , z , w ) , \ldots , \epsilon _ { m - 1,0 } ( x , y , z , w ) \approx \epsilon _ { m - 1 } , 1 ( x , y , z , w )$ ; confidence 0.055
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a11049019.png ; $F ^ { 2 } = F , F X = \operatorname { ker } D \text { and } \exists R \in R _ { D } F R = 0 \}$ ; confidence 0.798
  
79. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691064.png ; $( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$ ; confidence 0.053
+
79. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872051.png ; $x ^ { [ p ] } \in M$ ; confidence 0.798
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050148.png ; $= 1 + \sum | p _ { 1 } | ^ { - r _ { 1 } z } \ldots | p _ { x _ { 2 } } | ^ { - r _ { m } z } =$ ; confidence 0.052
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040298.png ; $A \in Q$ ; confidence 0.797
  
81. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054200/j05420029.png ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051
+
81. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w0975909.png ; $WC ( A , k ) = 0$ ; confidence 0.797
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022078.png ; $W = \left\| \begin{array} { c c c c c c } { \pi i } & { \ldots } & { 0 } & { a _ { 11 } } & { \ldots } & { a _ { 1 p } } \\ { \cdots } & { \cdots } & { \cdots } & { \cdots } & { \cdots } & { \cdots } \\ { 0 } & { \ldots } & { \pi i } & { a _ { p 1 } } & { \ldots } & { a _ { p p } } \end{array} \right\|$ ; confidence 0.051
+
82. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014039.png ; $E _ { 6 }$ ; confidence 0.797
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200801.png ; $\left. \begin{array}{l}{ \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = \sum _ { i , j = 1 } ^ { m } \frac { \partial } { \partial x _ { i } } \{ \alpha _ { j } , ( x ) \frac { \partial u } { \partial x _ { j } } \} + c ( x ) u + f ( x , t ) }\\{ ( x , t ) \in \Omega \times [ 0 , T ] }\\{ u ( x , 0 ) = u _ { 0 } ( x ) , \frac { \partial u } { \partial t } ( x , 0 ) = u _ { 1 } ( x ) , x \in \Omega }\end{array} \right.$ ; confidence 0.050
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970176.png ; $d _ { 2 n - 1 } = d _ { 2 n }$ ; confidence 0.797
 +
 
 +
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020048.png ; $\alpha _ { i j } \neq 0$ ; confidence 0.797
 +
 
 +
85. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249026.png ; $G$ ; confidence 0.797
 +
 
 +
86. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001038.png ; $\| \phi _ { q } \| _ { q } = 1$ ; confidence 0.797
 +
 
 +
87. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201607.png ; $S _ { i } ( t | \{ u _ { i } ( t ) \} , \{ C _ { i j } ( t ) \} )$ ; confidence 0.797
 +
 
 +
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240535.png ; $k ( X _ { 2 } ) = p$ ; confidence 0.797
 +
 
 +
89. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820145.png ; $G _ { m } ( X , Y ) = X + Y + X Y$ ; confidence 0.797
 +
 
 +
90. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013092.png ; $H ^ { T }$ ; confidence 0.796
 +
 
 +
91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015081.png ; $Ad ^ { * } : G \rightarrow GL ( g ^ { * } )$ ; confidence 0.796
 +
 
 +
92. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796
 +
 
 +
93. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796
 +
 
 +
94. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037024.png ; $\{ t _ { k } : k \geq 1 \} \subset R _ { + }$ ; confidence 0.796
 +
 
 +
95. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110590/a1105909.png ; $n \in N$ ; confidence 0.796
 +
 
 +
96. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053070.png ; $2 ^ { r }$ ; confidence 0.795
 +
 
 +
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070113.png ; $\alpha \in R$ ; confidence 0.795
 +
 
 +
98. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120295.png ; $\| f \| = \operatorname { max } _ { z \in G _ { p } } | f ( z ) |$ ; confidence 0.795
 +
 
 +
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795
 +
 
 +
100. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057450/l05745021.png ; $v \in C ( \overline { G } )$ ; confidence 0.795
 +
 
 +
101. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065580/m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795
 +
 
 +
102. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p11023076.png ; $x \in R ^ { + }$ ; confidence 0.795
 +
 
 +
103. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795
 +
 
 +
104. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072140/p0721405.png ; $H ^ { * } ( X _ { s } )$ ; confidence 0.795
 +
 
 +
105. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d0307003.png ; $\pi : X \rightarrow S$ ; confidence 0.795
 +
 
 +
106. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157109.png ; $q \geq 1$ ; confidence 0.794
 +
 
 +
107. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174017.png ; $1 \rightarrow A ( k ) \rightarrow \text { Aut } A \rightarrow G \rightarrow 1$ ; confidence 0.794
 +
 
 +
108. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012010.png ; $b _ { j }$ ; confidence 0.794
 +
 
 +
109. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700134.png ; $p : \kappa \rightarrow O$ ; confidence 0.794
 +
 
 +
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007070.png ; $1 \leq m < n$ ; confidence 0.794
 +
 
 +
111. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090260.png ; $1 = | \Sigma |$ ; confidence 0.794
 +
 
 +
112. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001099.png ; $\delta b$ ; confidence 0.794
 +
 
 +
113. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220112.png ; $\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$ ; confidence 0.794
 +
 
 +
114. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830278.png ; $u \leq \theta u$ ; confidence 0.794
 +
 
 +
115. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068190/o0681907.png ; $T ( t ) x$ ; confidence 0.794
 +
 
 +
116. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794
 +
 
 +
117. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080620/r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794
 +
 
 +
118. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794
 +
 
 +
119. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524022.png ; $x \in [ 0,2 ]$ ; confidence 0.794
 +
 
 +
120. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032014.png ; $T = 0$ ; confidence 0.794
 +
 
 +
121. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a1104604.png ; $\vec { h } \| \vec { v } \perp \vec { B }$ ; confidence 0.794
 +
 
 +
122. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090406.png ; $d \lambda _ { \mu }$ ; confidence 0.794
 +
 
 +
123. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149040.png ; $y _ { 0 } ^ { 1 } , \ldots , y _ { 0 } ^ { k }$ ; confidence 0.794
 +
 
 +
124. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a0104607.png ; $\delta f ( a , )$ ; confidence 0.793
 +
 
 +
125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240474.png ; $X _ { 1 }$ ; confidence 0.793
 +
 
 +
126. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015042.png ; $X \in q$ ; confidence 0.793
 +
 
 +
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793
 +
 
 +
128. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793
 +
 
 +
129. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793
 +
 
 +
130. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h04794088.png ; $e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$ ; confidence 0.793
 +
 
 +
131. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769069.png ; $\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$ ; confidence 0.793
 +
 
 +
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240310.png ; $\eta i$ ; confidence 0.793
 +
 
 +
133. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010037.png ; $T _ { N } ( g )$ ; confidence 0.793
 +
 
 +
134. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872094.png ; $L _ { Z }$ ; confidence 0.792
 +
 
 +
135. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350116.png ; $V ( \Re ) > 2 ^ { n } d ( \Lambda )$ ; confidence 0.792
 +
 
 +
136. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093890/t09389045.png ; $o ( N ) / N \rightarrow 0$ ; confidence 0.792
 +
 
 +
137. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028064.png ; $\chi ( G ) < \operatorname { girth } ( G )$ ; confidence 0.791
 +
 
 +
138. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791
 +
 
 +
139. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326056.png ; $d \Phi$ ; confidence 0.791
 +
 
 +
140. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145038.png ; $Cl ( X )$ ; confidence 0.791
 +
 
 +
141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017023.png ; $\lambda ^ { * }$ ; confidence 0.791
 +
 
 +
142. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797061.png ; $\iota : \{ e \} \rightarrow G$ ; confidence 0.791
 +
 
 +
143. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a11049018.png ; $F _ { D } = \{ F \in L _ { 0 } ( X )$ ; confidence 0.790
 +
 
 +
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240453.png ; $q = 1$ ; confidence 0.790
 +
 
 +
145. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790
 +
 
 +
146. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872084.png ; $x ^ { [ p ^ { m } ] } = ( x ^ { [ p ^ { m - 1 } ] } ) ^ { [ p ] } = 0$ ; confidence 0.790
 +
 
 +
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240155.png ; $c ^ { \prime } \beta$ ; confidence 0.790
 +
 
 +
148. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022011.png ; $\nu = 1 , \ldots , 2 p$ ; confidence 0.790
 +
 
 +
149. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006042.png ; $\beta _ { X } ( s )$ ; confidence 0.790
 +
 
 +
150. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201606.png ; $L _ { i } \leq \sum u _ { i } ( t ) \leq U _ { i }$ ; confidence 0.789
 +
 
 +
151. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009020.png ; $( E ^ { \otimes \gamma } )$ ; confidence 0.789
 +
 
 +
152. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960118.png ; $\sigma G \subset G K$ ; confidence 0.789
 +
 
 +
153. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789
 +
 
 +
154. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182064.png ; $\phi _ { i }$ ; confidence 0.789
 +
 
 +
155. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820101.png ; $1 \in Z$ ; confidence 0.788
 +
 
 +
156. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025640/c0256402.png ; $\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$ ; confidence 0.788
 +
 
 +
157. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a0102207.png ; $C ^ { p }$ ; confidence 0.788
 +
 
 +
158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042041.png ; $\Psi$ ; confidence 0.788
 +
 
 +
159. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451093.png ; $M _ { k }$ ; confidence 0.788
 +
 
 +
160. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183078.png ; $[ Y _ { 1 } , \ldots , Y _ { n } ]$ ; confidence 0.787
 +
 
 +
161. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120278.png ; $G \supset F$ ; confidence 0.787
 +
 
 +
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050290.png ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787
 +
 
 +
163. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in N ^ { Q _ { 0 } }$ ; confidence 0.787
 +
 
 +
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180156.png ; $13$ ; confidence 0.787
 +
 
 +
165. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420158.png ; $A _ { \theta }$ ; confidence 0.786
 +
 
 +
166. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d0316809.png ; $\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$ ; confidence 0.786
 +
 
 +
167. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786
 +
 
 +
168. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090270/s0902702.png ; $\alpha < t < b$ ; confidence 0.786
 +
 
 +
169. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786
 +
 
 +
170. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524023.png ; $u _ { 2 } ( x ) = 0$ ; confidence 0.786
 +
 
 +
171. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759026.png ; $VC ( A , k )$ ; confidence 0.786
 +
 
 +
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040542.png ; $i < m$ ; confidence 0.786
 +
 
 +
173. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a010950115.png ; $S ( X , Y ) = S _ { j k } ^ { i } \xi ^ { j } \eta ^ { k } e _ { i } = \Omega ^ { i } ( X , Y ) e _ { i }$ ; confidence 0.786
 +
 
 +
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a1202005.png ; $L _ { 0 } ( X ) = \{ A \in L ( X ) : \operatorname { dom } A = X \}$ ; confidence 0.786
 +
 
 +
175. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590228.png ; $R = \{ R _ { 1 } > 0 , \ldots , R _ { n } > 0 \}$ ; confidence 0.785
 +
 
 +
176. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071049.png ; $( M / Q _ { i } ) = p _ { i }$ ; confidence 0.785
 +
 
 +
177. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164059.png ; $| D | \geq n - \pi + p _ { x } ( V ) + 1 - i$ ; confidence 0.785
 +
 
 +
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240490.png ; $X _ { 2 }$ ; confidence 0.785
 +
 
 +
179. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { x }$ ; confidence 0.785
 +
 
 +
180. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763054.png ; $\chi \in P _ { \phi }$ ; confidence 0.785
 +
 
 +
181. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054081.png ; $b = p ^ { \alpha } r , p ^ { \beta } s$ ; confidence 0.785
 +
 
 +
182. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201808.png ; $T _ { n } = \frac { S _ { n } S _ { n + 2 } - S _ { n + 1 } ^ { 2 } } { S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n } } = S _ { n } - \frac { \Delta S _ { n } } { \Delta ^ { 2 } S _ { n } }$ ; confidence 0.785
 +
 
 +
183. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096095.png ; $SL _ { 2 }$ ; confidence 0.785
 +
 
 +
184. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082045.png ; $H ( B ) = \operatorname { nil } ( B ) ^ { n }$ ; confidence 0.784
 +
 
 +
185. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082083.png ; $F _ { u } ^ { \prime } ( X , Y )$ ; confidence 0.784
 +
 
 +
186. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015210/b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784
 +
 
 +
187. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784
 +
 
 +
188. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110010/r110010322.png ; $j$ ; confidence 0.784
 +
 
 +
189. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087550/s08755022.png ; $\alpha \leq p b$ ; confidence 0.784
 +
 
 +
190. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130043.png ; $G / G ^ { \prime }$ ; confidence 0.784
 +
 
 +
191. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082029.png ; $\theta : F + G$ ; confidence 0.783
 +
 
 +
192. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014049.png ; $\operatorname { dim } : K _ { 0 } ( Q ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.783
 +
 
 +
193. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012092.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c _ { t } = y _ { 0 }$ ; confidence 0.783
 +
 
 +
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783
 +
 
 +
195. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310159.png ; $\Omega$ ; confidence 0.783
 +
 
 +
196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016079.png ; $[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$ ; confidence 0.783
 +
 
 +
197. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012160/a0121604.png ; $\phi = \operatorname { am } z$ ; confidence 0.783
 +
 
 +
198. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081250/r08125011.png ; $H ( t ) = E N$ ; confidence 0.783
 +
 
 +
199. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783
 +
 
 +
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030027.png ; $X = * \cup \cup _ { \alpha \in A } e ^ { n _ { \alpha } + 1 }$ ; confidence 0.783
 +
 
 +
201. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018049.png ; $B = 1$ ; confidence 0.783
 +
 
 +
202. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121044.png ; $w _ { 1 } ( z )$ ; confidence 0.783
 +
 
 +
203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240180.png ; $= E ( y _ { i j k } )$ ; confidence 0.782
 +
 
 +
204. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
 +
 
 +
205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420138.png ; $I \mapsto I$ ; confidence 0.782
 +
 
 +
206. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316047.png ; $p _ { 1 } \otimes \sim p _ { 2 }$ ; confidence 0.782
 +
 
 +
207. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130175.png ; $a = 0$ ; confidence 0.782
 +
 
 +
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008039.png ; $D ( A ) = \{ u \in X : S ( . ) u \in C ^ { 2 } ( R ; X ) \}$ ; confidence 0.781
 +
 
 +
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040752.png ; $\varphi _ { r } \in Fm _ { P }$ ; confidence 0.781
 +
 
 +
210. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480116.png ; $b _ { 0 }$ ; confidence 0.781
 +
 
 +
211. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095025.png ; $= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$ ; confidence 0.781
 +
 
 +
212. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165040.png ; $j \in J$ ; confidence 0.781
 +
 
 +
213. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183016.png ; $\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ ; confidence 0.780
 +
 
 +
214. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u0952405.png ; $( b + a ) / 2$ ; confidence 0.780
 +
 
 +
215. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082070.png ; $G \simeq H ^ { A } = H _ { C } ( A , Y )$ ; confidence 0.780
 +
 
 +
216. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h046280131.png ; $X ( T )$ ; confidence 0.780
 +
 
 +
217. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600250.png ; $f$ ; confidence 0.780
 +
 
 +
218. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430123.png ; $k = R$ ; confidence 0.780
 +
 
 +
219. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008032.png ; $t \in R$ ; confidence 0.780
 +
 
 +
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240147.png ; $\mu$ ; confidence 0.780
 +
 
 +
221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010024.png ; $| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \|$ ; confidence 0.780
 +
 
 +
222. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090401.png ; $d _ { \lambda \lambda } = 1$ ; confidence 0.780
 +
 
 +
223. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d03412078.png ; $K = \{ t ^ { r } \}$ ; confidence 0.780
 +
 
 +
224. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a1203106.png ; $W ^ { * }$ ; confidence 0.779
 +
 
 +
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779
 +
 
 +
226. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a01178016.png ; $b a P$ ; confidence 0.779
 +
 
 +
227. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779
 +
 
 +
228. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010166.png ; $\hat { k } ( 2 \alpha + \beta )$ ; confidence 0.779
 +
 
 +
229. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960166.png ; $\alpha \notin F$ ; confidence 0.779
 +
 
 +
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008063.png ; $\frac { d } { d t } \left( \begin{array} { l } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) =$ ; confidence 0.779
 +
 
 +
231. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116019.png ; $\phi$ ; confidence 0.779
 +
 
 +
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050203.png ; $P$ ; confidence 0.779
 +
 
 +
233. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m11012011.png ; $SL ( 2 , C )$ ; confidence 0.778
 +
 
 +
234. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094200/t09420034.png ; $g$ ; confidence 0.778
 +
 
 +
235. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064550/m06455029.png ; $G \rightarrow R _ { + } ^ { * }$ ; confidence 0.778
 +
 
 +
236. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027023.png ; $n \in Z$ ; confidence 0.778
 +
 
 +
237. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110019.png ; $\alpha , b , c \in A$ ; confidence 0.778
 +
 
 +
238. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a11046019.png ; $E \equiv E _ { k } + E _ { v } = 2 E _ { h } = 2 E _ { v }$ ; confidence 0.778
 +
 
 +
239. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077490/r0774903.png ; $G / R$ ; confidence 0.777
 +
 
 +
240. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590275.png ; $\phi _ { \alpha } ( \alpha ) = 0$ ; confidence 0.777
 +
 
 +
241. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872040.png ; $\operatorname { dim } _ { k } U _ { p } ( L ) = p ^ { n }$ ; confidence 0.777
 +
 
 +
242. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082098.png ; $\alpha _ { i } ( Z ) = Z _ { i } +$ ; confidence 0.777
 +
 
 +
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240248.png ; $( q , n - r )$ ; confidence 0.777
 +
 
 +
244. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559029.png ; $\alpha = \phi _ { 2 } ( \tau _ { 2 } )$ ; confidence 0.777
 +
 
 +
245. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110610/b11061011.png ; $K ^ { * }$ ; confidence 0.777
 +
 
 +
246. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042120/f04212073.png ; $\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$ ; confidence 0.777
 +
 
 +
247. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634090.png ; $x \in V _ { n }$ ; confidence 0.777
 +
 
 +
248. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080930/r08093013.png ; $\overline { A } z = \overline { u }$ ; confidence 0.777
 +
 
 +
249. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004040.png ; $X _ { g } ^ { * }$ ; confidence 0.777
 +
 
 +
250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240435.png ; $\operatorname { tr } ( N \Theta )$ ; confidence 0.777
 +
 
 +
251. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013054.png ; $\gamma _ { n } = n ^ { - 2 / 3 }$ ; confidence 0.776
 +
 
 +
252. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315068.png ; $\square ^ { 1 } P ^ { i } = P$ ; confidence 0.776
 +
 
 +
253. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057870/l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776
 +
 
 +
254. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620198.png ; $z \square ^ { ( s ) }$ ; confidence 0.776
 +
 
 +
255. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a0106406.png ; $k$ ; confidence 0.776
 +
 
 +
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060117.png ; $G ^ { \# } ( n ) \sim C Z _ { G } ( q ^ { - 1 } ) q ^ { n } n ^ { - \alpha } \text { asn } \rightarrow \infty$ ; confidence 0.776
 +
 
 +
257. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010104.png ; $A \pm \Delta A ] x = [ b \pm \Delta b$ ; confidence 0.776
 +
 
 +
258. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040229.png ; $\hat { K } _ { A } \subset P ^ { 3 }$ ; confidence 0.776
 +
 
 +
259. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010970/a0109707.png ; $e _ { 1 }$ ; confidence 0.776
 +
 
 +
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180110.png ; $c _ { i } ( R ) \subseteq \square ^ { n } U$ ; confidence 0.776
 +
 
 +
261. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001020.png ; $G _ { g } ( x ) = g G _ { x } g ^ { - 1 }$ ; confidence 0.775
 +
 
 +
262. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105012.png ; $\operatorname { Spec } \Gamma ( U _ { i } , A )$ ; confidence 0.775
 +
 
 +
263. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278060.png ; $B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$ ; confidence 0.775
 +
 
 +
264. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775
 +
 
 +
265. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076250/q076250144.png ; $x \in E _ { + } ( s )$ ; confidence 0.775
 +
 
 +
266. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r082050121.png ; $AH _ { p }$ ; confidence 0.775
 +
 
 +
267. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872032.png ; $x ^ { p }$ ; confidence 0.775
 +
 
 +
268. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103048.png ; $g _ { \alpha } = 1$ ; confidence 0.775
 +
 
 +
269. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150044.png ; $\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$ ; confidence 0.775
 +
 
 +
270. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040087.png ; $T ^ { * } ( t ) x ^ { * } \in ( X ^ { \odot } ) ^ { d d }$ ; confidence 0.775
 +
 
 +
271. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769082.png ; $\pi : G \times _ { H } F \rightarrow G / H$ ; confidence 0.775
 +
 
 +
272. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010047.png ; $f \in L$ ; confidence 0.774
 +
 
 +
273. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774
 +
 
 +
274. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851094.png ; $\mathfrak { h } _ { 1 } \rightarrow \mathfrak { h } _ { 2 }$ ; confidence 0.774
 +
 
 +
275. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040252.png ; $A _ { c }$ ; confidence 0.774
 +
 
 +
276. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600163.png ; $1 \leq h _ { m } \leq h . \phi ( m )$ ; confidence 0.774
 +
 
 +
277. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301601.png ; $c ^ { \infty } ( \Omega ) ^ { N }$ ; confidence 0.774
 +
 
 +
278. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130016.png ; $1 \rightarrow K _ { x } \rightarrow G \rightarrow J ^ { x } \rightarrow 1$ ; confidence 0.774
 +
 
 +
279. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025025.png ; $Y$ ; confidence 0.773
 +
 
 +
280. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058170/l05817023.png ; $\{ i _ { k } \}$ ; confidence 0.773
 +
 
 +
281. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773
 +
 
 +
282. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090720/s09072010.png ; $a \neq a _ { 0 }$ ; confidence 0.773
 +
 
 +
283. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146018.png ; $z$ ; confidence 0.773
 +
 
 +
284. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081038.png ; $( . . )$ ; confidence 0.772
 +
 
 +
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png ; $\pi$ ; confidence 0.772
 +
 
 +
286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040019.png ; $m \in M$ ; confidence 0.772
 +
 
 +
287. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631035.png ; $i > j$ ; confidence 0.772
 +
 
 +
288. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310135.png ; $A \rightarrow \text { Mat } ( n , k )$ ; confidence 0.772
 +
 
 +
289. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103092.png ; $( n _ { \alpha } + 1 ) \alpha \notin \Phi _ { k } ( G )$ ; confidence 0.771
 +
 
 +
290. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960203.png ; $SL ( 2 , K )$ ; confidence 0.771
 +
 
 +
291. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058500/l05850025.png ; $r ( b )$ ; confidence 0.771
 +
 
 +
292. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510196.png ; $C _ { I }$ ; confidence 0.771
 +
 
 +
293. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100190.png ; $\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$ ; confidence 0.771
 +
 
 +
294. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872031.png ; $x [ p ]$ ; confidence 0.771
 +
 
 +
295. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859057.png ; $X \circ Y - Y \circ X$ ; confidence 0.771
 +
 
 +
296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240104.png ; $y _ { i }$ ; confidence 0.771
 +
 
 +
297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240205.png ; $X _ { 3 } \beta \neq 0$ ; confidence 0.771
 +
 
 +
298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015082.png ; $( Ad , g )$ ; confidence 0.771
 +
 
 +
299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046050.png ; $\tilde { D } = \{ \xi : x + \xi h \in D \}$ ; confidence 0.771
 +
 
 +
300. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650124.png ; $\nu ( F _ { i } ) = n _ { i }$ ; confidence 0.771

Latest revision as of 09:58, 17 October 2019

List

1. l05848093.png ; $K [ \text { End } V$ ; confidence 0.805

2. a110680200.png ; $r$ ; confidence 0.805

3. a014140121.png ; $\sigma ( 1 ) = s$ ; confidence 0.805

4. d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805

5. q07680012.png ; $T ^ { S }$ ; confidence 0.805

6. q07686069.png ; $f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$ ; confidence 0.805

7. r11015028.png ; $M \dot { y } = f ( y )$ ; confidence 0.805

8. s13004020.png ; $\operatorname { Im } z > 1$ ; confidence 0.805

9. p07267059.png ; $\Gamma ( U , O _ { X } ) ^ { * }$ ; confidence 0.805

10. a01082096.png ; $G : \mathfrak { G } \rightarrow \mathscr { K }$ ; confidence 0.805

11. a13008065.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m } \end{array} \right.$ ; confidence 0.804

12. c120180161.png ; $g ^ { - 1 }$ ; confidence 0.804

13. p11017040.png ; $\{ . . \}$ ; confidence 0.804

14. a12005049.png ; $\leq B \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T$ ; confidence 0.804

15. t13014099.png ; $R$ ; confidence 0.804

16. c02055044.png ; $8$ ; confidence 0.804

17. a130060131.png ; $F ^ { \# } ( n )$ ; confidence 0.804

18. a13013016.png ; $8$ ; confidence 0.804

19. d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804

20. w120090273.png ; $\varepsilon$ ; confidence 0.804

21. a01052062.png ; $q \leq 1$ ; confidence 0.804

22. a13007036.png ; $3 ^ { 3 } .5 .7,3 ^ { 2 } .5 ^ { 2 } .7,3 ^ { 2 } .5 .7 ^ { 2 }$ ; confidence 0.804

23. a11001089.png ; $| I - B A \| < 1$ ; confidence 0.804

24. a11035025.png ; $\phi _ { \lambda } ( t )$ ; confidence 0.804

25. r13010093.png ; $E _ { 6 }$ ; confidence 0.803

26. c130070228.png ; $C _ { 2 }$ ; confidence 0.803

27. c02104057.png ; $- u _ { 3 }$ ; confidence 0.803

28. e13003027.png ; $3$ ; confidence 0.803

29. r0774902.png ; $G / R$ ; confidence 0.803

30. f04082055.png ; $Y = ( Y _ { 1 } , \ldots , Y _ { n } )$ ; confidence 0.803

31. a01082019.png ; $H _ { \mathfrak { K } } ( X , G ( Y ) )$ ; confidence 0.803

32. w120090343.png ; $h = h _ { \beta } \in h$ ; confidence 0.803

33. a01149019.png ; $y = - \frac { P _ { 0 } ( x _ { 1 } , \ldots , x _ { x } ) } { P _ { 1 } ( x _ { 1 } , \ldots , x _ { x } ) }$ ; confidence 0.803

34. a110220109.png ; $( L _ { 2 } , P _ { 2 } )$ ; confidence 0.802

35. a010210103.png ; $2 \pi i c$ ; confidence 0.802

36. s13054049.png ; $\alpha , b \in F ^ { * }$ ; confidence 0.802

37. e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802

38. l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802

39. p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802

40. q07604075.png ; $\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$ ; confidence 0.802

41. q07680048.png ; $\leq \nu _ { i } ^ { s }$ ; confidence 0.802

42. s085590523.png ; $( i 0 , U )$ ; confidence 0.802

43. l058510199.png ; $\operatorname { su } ( 2 p , 2 ( n - p ) )$ ; confidence 0.801

44. l05925070.png ; $\Gamma \subset \operatorname { GL } ( n , F )$ ; confidence 0.801

45. c02646018.png ; $[ a ]$ ; confidence 0.801

46. l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801

47. p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801

48. l05872025.png ; $( x ^ { p } ) = ( a d x ) ^ { p }$ ; confidence 0.801

49. a110010270.png ; $\operatorname { min } _ { i } | \hat { \lambda } - \lambda _ { i } | \leq \operatorname { max } \{ r \psi , r ^ { 1 / r } \psi ^ { 1 / r } \}$ ; confidence 0.800

50. d031830169.png ; $Y _ { n + 1 } G - F \in F \{ Y _ { 1 } , \ldots , Y _ { n + 1 } \}$ ; confidence 0.800

51. a11049014.png ; $-$ ; confidence 0.800

52. a12010068.png ; $u - \Delta u = f$ ; confidence 0.800

53. a0116401.png ; $C P ^ { 3 }$ ; confidence 0.800

54. c02016022.png ; $K _ { X } K _ { X }$ ; confidence 0.800

55. c022780429.png ; $\phi ^ { h } ( pt )$ ; confidence 0.800

56. f03838022.png ; $C _ { 0 }$ ; confidence 0.800

57. s087820182.png ; $\| y \| = \operatorname { max } _ { i } | y _ { i } |$ ; confidence 0.800

58. a01099024.png ; $r \in C ^ { 3 }$ ; confidence 0.800

59. a11025015.png ; $1 / T$ ; confidence 0.800

60. o07001058.png ; $t ( z _ { 1 } , z _ { 2 } ) = ( e ^ { i t } z _ { 1 } , e ^ { i \alpha t } z _ { 2 } ) , \quad t \in R$ ; confidence 0.800

61. a11032013.png ; $T \approx f _ { y } ( t _ { m } , u _ { m } )$ ; confidence 0.800

62. t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799

63. c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799

64. l058360142.png ; $P _ { 8 }$ ; confidence 0.799

65. n06731043.png ; $B O$ ; confidence 0.799

66. w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799

67. a130040799.png ; $D \in K$ ; confidence 0.799

68. a011600168.png ; $H _ { m _ { 1 } }$ ; confidence 0.799

69. l058490126.png ; $G$ ; confidence 0.799

70. o070010135.png ; $x , y \in \Omega$ ; confidence 0.799

71. w09771049.png ; $X ( T _ { 0 } / Z ( G ) ^ { 0 } ) _ { Q }$ ; confidence 0.799

72. a01172010.png ; $X _ { 0 }$ ; confidence 0.798

73. a11033022.png ; $U _ { 0 } ^ { * * } = \emptyset$ ; confidence 0.798

74. t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798

75. c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798

76. g13003022.png ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798

77. h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798

78. a11049019.png ; $F ^ { 2 } = F , F X = \operatorname { ker } D \text { and } \exists R \in R _ { D } F R = 0 \}$ ; confidence 0.798

79. l05872051.png ; $x ^ { [ p ] } \in M$ ; confidence 0.798

80. a130040298.png ; $A \in Q$ ; confidence 0.797

81. w0975909.png ; $WC ( A , k ) = 0$ ; confidence 0.797

82. t13014039.png ; $E _ { 6 }$ ; confidence 0.797

83. a012970176.png ; $d _ { 2 n - 1 } = d _ { 2 n }$ ; confidence 0.797

84. b13020048.png ; $\alpha _ { i j } \neq 0$ ; confidence 0.797

85. d03249026.png ; $G$ ; confidence 0.797

86. y11001038.png ; $\| \phi _ { q } \| _ { q } = 1$ ; confidence 0.797

87. a1201607.png ; $S _ { i } ( t | \{ u _ { i } ( t ) \} , \{ C _ { i j } ( t ) \} )$ ; confidence 0.797

88. a130240535.png ; $k ( X _ { 2 } ) = p$ ; confidence 0.797

89. f040820145.png ; $G _ { m } ( X , Y ) = X + Y + X Y$ ; confidence 0.797

90. t13013092.png ; $H ^ { T }$ ; confidence 0.796

91. a12015081.png ; $Ad ^ { * } : G \rightarrow GL ( g ^ { * } )$ ; confidence 0.796

92. b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796

93. m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796

94. a11037024.png ; $\{ t _ { k } : k \geq 1 \} \subset R _ { + }$ ; confidence 0.796

95. a1105909.png ; $n \in N$ ; confidence 0.796

96. s13053070.png ; $2 ^ { r }$ ; confidence 0.795

97. a130070113.png ; $\alpha \in R$ ; confidence 0.795

98. d034120295.png ; $\| f \| = \operatorname { max } _ { z \in G _ { p } } | f ( z ) |$ ; confidence 0.795

99. a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795

100. l05745021.png ; $v \in C ( \overline { G } )$ ; confidence 0.795

101. m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795

102. p11023076.png ; $x \in R ^ { + }$ ; confidence 0.795

103. s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795

104. p0721405.png ; $H ^ { * } ( X _ { s } )$ ; confidence 0.795

105. d0307003.png ; $\pi : X \rightarrow S$ ; confidence 0.795

106. b0157109.png ; $q \geq 1$ ; confidence 0.794

107. a01174017.png ; $1 \rightarrow A ( k ) \rightarrow \text { Aut } A \rightarrow G \rightarrow 1$ ; confidence 0.794

108. a12012010.png ; $b _ { j }$ ; confidence 0.794

109. d030700134.png ; $p : \kappa \rightarrow O$ ; confidence 0.794

110. a13007070.png ; $1 \leq m < n$ ; confidence 0.794

111. w120090260.png ; $1 = | \Sigma |$ ; confidence 0.794

112. a11001099.png ; $\delta b$ ; confidence 0.794

113. a110220112.png ; $\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$ ; confidence 0.794

114. d031830278.png ; $u \leq \theta u$ ; confidence 0.794

115. o0681907.png ; $T ( t ) x$ ; confidence 0.794

116. q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794

117. r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794

118. y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794

119. u09524022.png ; $x \in [ 0,2 ]$ ; confidence 0.794

120. a11032014.png ; $T = 0$ ; confidence 0.794

121. a1104604.png ; $\vec { h } \| \vec { v } \perp \vec { B }$ ; confidence 0.794

122. w120090406.png ; $d \lambda _ { \mu }$ ; confidence 0.794

123. a01149040.png ; $y _ { 0 } ^ { 1 } , \ldots , y _ { 0 } ^ { k }$ ; confidence 0.794

124. a0104607.png ; $\delta f ( a , )$ ; confidence 0.793

125. a130240474.png ; $X _ { 1 }$ ; confidence 0.793

126. a12015042.png ; $X \in q$ ; confidence 0.793

127. a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793

128. a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793

129. c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793

130. h04794088.png ; $e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$ ; confidence 0.793

131. h04769069.png ; $\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$ ; confidence 0.793

132. a130240310.png ; $\eta i$ ; confidence 0.793

133. a11010037.png ; $T _ { N } ( g )$ ; confidence 0.793

134. l05872094.png ; $L _ { Z }$ ; confidence 0.792

135. g044350116.png ; $V ( \Re ) > 2 ^ { n } d ( \Lambda )$ ; confidence 0.792

136. t09389045.png ; $o ( N ) / N \rightarrow 0$ ; confidence 0.792

137. a11028064.png ; $\chi ( G ) < \operatorname { girth } ( G )$ ; confidence 0.791

138. h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791

139. t09326056.png ; $d \Phi$ ; confidence 0.791

140. a01145038.png ; $Cl ( X )$ ; confidence 0.791

141. a12017023.png ; $\lambda ^ { * }$ ; confidence 0.791

142. h04797061.png ; $\iota : \{ e \} \rightarrow G$ ; confidence 0.791

143. a11049018.png ; $F _ { D } = \{ F \in L _ { 0 } ( X )$ ; confidence 0.790

144. a130240453.png ; $q = 1$ ; confidence 0.790

145. t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790

146. l05872084.png ; $x ^ { [ p ^ { m } ] } = ( x ^ { [ p ^ { m - 1 } ] } ) ^ { [ p ] } = 0$ ; confidence 0.790

147. a130240155.png ; $c ^ { \prime } \beta$ ; confidence 0.790

148. a01022011.png ; $\nu = 1 , \ldots , 2 p$ ; confidence 0.790

149. a11006042.png ; $\beta _ { X } ( s )$ ; confidence 0.790

150. a1201606.png ; $L _ { i } \leq \sum u _ { i } ( t ) \leq U _ { i }$ ; confidence 0.789

151. w12009020.png ; $( E ^ { \otimes \gamma } )$ ; confidence 0.789

152. e036960118.png ; $\sigma G \subset G K$ ; confidence 0.789

153. e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789

154. a01182064.png ; $\phi _ { i }$ ; confidence 0.789

155. f040820101.png ; $1 \in Z$ ; confidence 0.788

156. c0256402.png ; $\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$ ; confidence 0.788

157. a0102207.png ; $C ^ { p }$ ; confidence 0.788

158. b12042041.png ; $\Psi$ ; confidence 0.788

159. m06451093.png ; $M _ { k }$ ; confidence 0.788

160. d03183078.png ; $[ Y _ { 1 } , \ldots , Y _ { n } ]$ ; confidence 0.787

161. d034120278.png ; $G \supset F$ ; confidence 0.787

162. a130050290.png ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787

163. t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in N ^ { Q _ { 0 } }$ ; confidence 0.787

164. a130180156.png ; $13$ ; confidence 0.787

165. a110420158.png ; $A _ { \theta }$ ; confidence 0.786

166. d0316809.png ; $\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$ ; confidence 0.786

167. p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786

168. s0902702.png ; $\alpha < t < b$ ; confidence 0.786

169. y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786

170. u09524023.png ; $u _ { 2 } ( x ) = 0$ ; confidence 0.786

171. w09759026.png ; $VC ( A , k )$ ; confidence 0.786

172. a130040542.png ; $i < m$ ; confidence 0.786

173. a010950115.png ; $S ( X , Y ) = S _ { j k } ^ { i } \xi ^ { j } \eta ^ { k } e _ { i } = \Omega ^ { i } ( X , Y ) e _ { i }$ ; confidence 0.786

174. a1202005.png ; $L _ { 0 } ( X ) = \{ A \in L ( X ) : \operatorname { dom } A = X \}$ ; confidence 0.786

175. s085590228.png ; $R = \{ R _ { 1 } > 0 , \ldots , R _ { n } > 0 \}$ ; confidence 0.785

176. a01071049.png ; $( M / Q _ { i } ) = p _ { i }$ ; confidence 0.785

177. a01164059.png ; $| D | \geq n - \pi + p _ { x } ( V ) + 1 - i$ ; confidence 0.785

178. a130240490.png ; $X _ { 2 }$ ; confidence 0.785

179. b01539032.png ; $d ^ { x }$ ; confidence 0.785

180. r07763054.png ; $\chi \in P _ { \phi }$ ; confidence 0.785

181. s13054081.png ; $b = p ^ { \alpha } r , p ^ { \beta } s$ ; confidence 0.785

182. a1201808.png ; $T _ { n } = \frac { S _ { n } S _ { n + 2 } - S _ { n + 1 } ^ { 2 } } { S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n } } = S _ { n } - \frac { \Delta S _ { n } } { \Delta ^ { 2 } S _ { n } }$ ; confidence 0.785

183. b11096095.png ; $SL _ { 2 }$ ; confidence 0.785

184. f04082045.png ; $H ( B ) = \operatorname { nil } ( B ) ^ { n }$ ; confidence 0.784

185. f04082083.png ; $F _ { u } ^ { \prime } ( X , Y )$ ; confidence 0.784

186. b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784

187. d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784

188. r110010322.png ; $j$ ; confidence 0.784

189. s08755022.png ; $\alpha \leq p b$ ; confidence 0.784

190. a01130043.png ; $G / G ^ { \prime }$ ; confidence 0.784

191. a01082029.png ; $\theta : F + G$ ; confidence 0.783

192. t13014049.png ; $\operatorname { dim } : K _ { 0 } ( Q ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.783

193. a12012092.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c _ { t } = y _ { 0 }$ ; confidence 0.783

194. a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783

195. a120310159.png ; $\Omega$ ; confidence 0.783

196. a11016079.png ; $[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$ ; confidence 0.783

197. a0121604.png ; $\phi = \operatorname { am } z$ ; confidence 0.783

198. r08125011.png ; $H ( t ) = E N$ ; confidence 0.783

199. v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783

200. a11030027.png ; $X = * \cup \cup _ { \alpha \in A } e ^ { n _ { \alpha } + 1 }$ ; confidence 0.783

201. a01018049.png ; $B = 1$ ; confidence 0.783

202. a01121044.png ; $w _ { 1 } ( z )$ ; confidence 0.783

203. a130240180.png ; $= E ( y _ { i j k } )$ ; confidence 0.782

204. t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782

205. a110420138.png ; $I \mapsto I$ ; confidence 0.782

206. t09316047.png ; $p _ { 1 } \otimes \sim p _ { 2 }$ ; confidence 0.782

207. b110130175.png ; $a = 0$ ; confidence 0.782

208. a12008039.png ; $D ( A ) = \{ u \in X : S ( . ) u \in C ^ { 2 } ( R ; X ) \}$ ; confidence 0.781

209. a130040752.png ; $\varphi _ { r } \in Fm _ { P }$ ; confidence 0.781

210. a011480116.png ; $b _ { 0 }$ ; confidence 0.781

211. i05095025.png ; $= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$ ; confidence 0.781

212. a01165040.png ; $j \in J$ ; confidence 0.781

213. d03183016.png ; $\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ ; confidence 0.780

214. u0952405.png ; $( b + a ) / 2$ ; confidence 0.780

215. a01082070.png ; $G \simeq H ^ { A } = H _ { C } ( A , Y )$ ; confidence 0.780

216. h046280131.png ; $X ( T )$ ; confidence 0.780

217. a011600250.png ; $f$ ; confidence 0.780

218. a012430123.png ; $k = R$ ; confidence 0.780

219. a12008032.png ; $t \in R$ ; confidence 0.780

220. a130240147.png ; $\mu$ ; confidence 0.780

221. a12010024.png ; $| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \|$ ; confidence 0.780

222. w120090401.png ; $d _ { \lambda \lambda } = 1$ ; confidence 0.780

223. d03412078.png ; $K = \{ t ^ { r } \}$ ; confidence 0.780

224. a1203106.png ; $W ^ { * }$ ; confidence 0.779

225. a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779

226. a01178016.png ; $b a P$ ; confidence 0.779

227. t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779

228. a110010166.png ; $\hat { k } ( 2 \alpha + \beta )$ ; confidence 0.779

229. e036960166.png ; $\alpha \notin F$ ; confidence 0.779

230. a12008063.png ; $\frac { d } { d t } \left( \begin{array} { l } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) =$ ; confidence 0.779

231. a01116019.png ; $\phi$ ; confidence 0.779

232. a130050203.png ; $P$ ; confidence 0.779

233. m11012011.png ; $SL ( 2 , C )$ ; confidence 0.778

234. t09420034.png ; $g$ ; confidence 0.778

235. m06455029.png ; $G \rightarrow R _ { + } ^ { * }$ ; confidence 0.778

236. b11027023.png ; $n \in Z$ ; confidence 0.778

237. a01110019.png ; $\alpha , b , c \in A$ ; confidence 0.778

238. a11046019.png ; $E \equiv E _ { k } + E _ { v } = 2 E _ { h } = 2 E _ { v }$ ; confidence 0.778

239. r0774903.png ; $G / R$ ; confidence 0.777

240. s085590275.png ; $\phi _ { \alpha } ( \alpha ) = 0$ ; confidence 0.777

241. l05872040.png ; $\operatorname { dim } _ { k } U _ { p } ( L ) = p ^ { n }$ ; confidence 0.777

242. f04082098.png ; $\alpha _ { i } ( Z ) = Z _ { i } +$ ; confidence 0.777

243. a130240248.png ; $( q , n - r )$ ; confidence 0.777

244. s08559029.png ; $\alpha = \phi _ { 2 } ( \tau _ { 2 } )$ ; confidence 0.777

245. b11061011.png ; $K ^ { * }$ ; confidence 0.777

246. f04212073.png ; $\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$ ; confidence 0.777

247. n06634090.png ; $x \in V _ { n }$ ; confidence 0.777

248. r08093013.png ; $\overline { A } z = \overline { u }$ ; confidence 0.777

249. s13004040.png ; $X _ { g } ^ { * }$ ; confidence 0.777

250. a130240435.png ; $\operatorname { tr } ( N \Theta )$ ; confidence 0.777

251. a12013054.png ; $\gamma _ { n } = n ^ { - 2 / 3 }$ ; confidence 0.776

252. c02315068.png ; $\square ^ { 1 } P ^ { i } = P$ ; confidence 0.776

253. l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776

254. m062620198.png ; $z \square ^ { ( s ) }$ ; confidence 0.776

255. a0106406.png ; $k$ ; confidence 0.776

256. a130060117.png ; $G ^ { \# } ( n ) \sim C Z _ { G } ( q ^ { - 1 } ) q ^ { n } n ^ { - \alpha } \text { asn } \rightarrow \infty$ ; confidence 0.776

257. a110010104.png ; $A \pm \Delta A ] x = [ b \pm \Delta b$ ; confidence 0.776

258. a110040229.png ; $\hat { K } _ { A } \subset P ^ { 3 }$ ; confidence 0.776

259. a0109707.png ; $e _ { 1 }$ ; confidence 0.776

260. a130180110.png ; $c _ { i } ( R ) \subseteq \square ^ { n } U$ ; confidence 0.776

261. o07001020.png ; $G _ { g } ( x ) = g G _ { x } g ^ { - 1 }$ ; confidence 0.775

262. a01105012.png ; $\operatorname { Spec } \Gamma ( U _ { i } , A )$ ; confidence 0.775

263. c02278060.png ; $B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$ ; confidence 0.775

264. i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775

265. q076250144.png ; $x \in E _ { + } ( s )$ ; confidence 0.775

266. r082050121.png ; $AH _ { p }$ ; confidence 0.775

267. l05872032.png ; $x ^ { p }$ ; confidence 0.775

268. r08103048.png ; $g _ { \alpha } = 1$ ; confidence 0.775

269. a01150044.png ; $\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$ ; confidence 0.775

270. a11040087.png ; $T ^ { * } ( t ) x ^ { * } \in ( X ^ { \odot } ) ^ { d d }$ ; confidence 0.775

271. h04769082.png ; $\pi : G \times _ { H } F \rightarrow G / H$ ; confidence 0.775

272. a11010047.png ; $f \in L$ ; confidence 0.774

273. b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774

274. l05851094.png ; $\mathfrak { h } _ { 1 } \rightarrow \mathfrak { h } _ { 2 }$ ; confidence 0.774

275. a110040252.png ; $A _ { c }$ ; confidence 0.774

276. a011600163.png ; $1 \leq h _ { m } \leq h . \phi ( m )$ ; confidence 0.774

277. r1301601.png ; $c ^ { \infty } ( \Omega ) ^ { N }$ ; confidence 0.774

278. a01130016.png ; $1 \rightarrow K _ { x } \rightarrow G \rightarrow J ^ { x } \rightarrow 1$ ; confidence 0.774

279. c13025025.png ; $Y$ ; confidence 0.773

280. l05817023.png ; $\{ i _ { k } \}$ ; confidence 0.773

281. r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773

282. s09072010.png ; $a \neq a _ { 0 }$ ; confidence 0.773

283. a01146018.png ; $z$ ; confidence 0.773

284. a01081038.png ; $( . . )$ ; confidence 0.772

285. a110420123.png ; $\pi$ ; confidence 0.772

286. b12040019.png ; $m \in M$ ; confidence 0.772

287. q07631035.png ; $i > j$ ; confidence 0.772

288. q076310135.png ; $A \rightarrow \text { Mat } ( n , k )$ ; confidence 0.772

289. r08103092.png ; $( n _ { \alpha } + 1 ) \alpha \notin \Phi _ { k } ( G )$ ; confidence 0.771

290. e036960203.png ; $SL ( 2 , K )$ ; confidence 0.771

291. l05850025.png ; $r ( b )$ ; confidence 0.771

292. l058510196.png ; $C _ { I }$ ; confidence 0.771

293. w098100190.png ; $\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$ ; confidence 0.771

294. l05872031.png ; $x [ p ]$ ; confidence 0.771

295. l05859057.png ; $X \circ Y - Y \circ X$ ; confidence 0.771

296. a130240104.png ; $y _ { i }$ ; confidence 0.771

297. a130240205.png ; $X _ { 3 } \beta \neq 0$ ; confidence 0.771

298. a12015082.png ; $( Ad , g )$ ; confidence 0.771

299. a01046050.png ; $\tilde { D } = \{ \xi : x + \xi h \in D \}$ ; confidence 0.771

300. a011650124.png ; $\nu ( F _ { i } ) = n _ { i }$ ; confidence 0.771

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/19. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/19&oldid=43926