Difference between revisions of "User:Maximilian Janisch/latexlist/latex/5"
(AUTOMATIC EDIT of page 5 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.) |
(AUTOMATIC EDIT of page 5 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087032.png ; | + | 1. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087032.png ; $\pi ( \chi )$ ; confidence 0.978 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087020.png ; | + | 2. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087020.png ; $C ^ { \infty } ( G )$ ; confidence 0.980 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; | + | 3. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $L \cup O$ ; confidence 0.130 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; | + | 4. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005022.png ; | + | 5. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005022.png ; $m - 2 r$ ; confidence 1.000 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; | + | 6. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; $Z \in X$ ; confidence 0.820 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006091.png ; | + | 7. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006091.png ; $m _ { B } ( A ) = 0$ ; confidence 0.968 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006089.png ; | + | 8. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006089.png ; $m B$ ; confidence 0.535 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031010/d03101088.png ; | + | 9. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031010/d03101088.png ; $S ^ { 4 k - 1 }$ ; confidence 0.950 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008069.png ; | + | 10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008069.png ; $H = C ^ { n }$ ; confidence 0.847 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; | + | 11. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031100/d0311001.png ; | + | 12. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031100/d0311001.png ; $\zeta ( s ) = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } }$ ; confidence 0.995 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125086.png ; | + | 13. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125086.png ; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125044.png ; | + | 14. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125044.png ; $\phi : A \rightarrow A$ ; confidence 0.991 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128063.png ; | + | 15. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128063.png ; $s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$ ; confidence 0.953 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280173.png ; | + | 16. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280173.png ; $R ^ { i } F = H ^ { i } \circ R ^ { * } F$ ; confidence 0.941 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128077.png ; | + | 17. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128077.png ; $f t = g t$ ; confidence 0.997 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; | + | 18. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; | + | 19. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380332.png ; | + | 20. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380332.png ; $E = N$ ; confidence 0.995 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; | + | 21. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380296.png ; | + | 22. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380296.png ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314205.png ; | + | 23. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314205.png ; $k [ ( T _ { i j } ) _ { 1 \leq i \leq d } ]$ ; confidence 0.679 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; | + | 24. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031540/d03154015.png ; | + | 25. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031540/d03154015.png ; $G r$ ; confidence 0.809 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009046.png ; | + | 26. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009046.png ; $1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$ ; confidence 0.512 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009024.png ; | + | 27. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009024.png ; $1 \leq u \leq 2$ ; confidence 0.976 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009051.png ; | + | 28. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009051.png ; $u > 1$ ; confidence 0.987 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168056.png ; | + | 29. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d0316809.png ; | + | 30. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d0316809.png ; $\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$ ; confidence 0.786 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; | + | 31. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; | + | 32. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $Z _ { h }$ ; confidence 0.217 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175013.png ; | + | 33. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175013.png ; $\overline { G } = G + \Gamma$ ; confidence 0.752 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031770/d03177042.png ; | + | 34. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031770/d03177042.png ; $t = t _ { 0 } = x _ { 0 } ( 0 )$ ; confidence 0.983 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830278.png ; | + | 35. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830278.png ; $u \leq \theta u$ ; confidence 0.794 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830344.png ; | + | 36. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830344.png ; $\operatorname { rank } ( A _ { i } ) = \operatorname { rank } ( B _ { i } )$ ; confidence 0.983 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830290.png ; | + | 37. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830290.png ; $A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$ ; confidence 0.523 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830239.png ; | + | 38. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830239.png ; $G ( G / F _ { 1 } ) = G _ { 1 }$ ; confidence 0.998 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830269.png ; | + | 39. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830152.png ; | + | 40. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830152.png ; $G \neq 0$ ; confidence 0.999 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830116.png ; | + | 41. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830116.png ; $\{ A \}$ ; confidence 0.999 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; | + | 42. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185095.png ; | + | 43. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185095.png ; $x \neq \pm 1$ ; confidence 0.956 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185088.png ; | + | 44. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185088.png ; $( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$ ; confidence 1.000 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d031850109.png ; | + | 45. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d031850109.png ; $( \frac { u } { v } ) ^ { \prime } = \frac { u ^ { \prime } v - u v ^ { \prime } } { v ^ { 2 } }$ ; confidence 0.958 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185094.png ; | + | 46. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185094.png ; $( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.996 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031890/d03189028.png ; | + | 47. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031890/d03189028.png ; $\Delta \rightarrow 0$ ; confidence 0.981 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d03191048.png ; | + | 48. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d03191048.png ; $x _ { 2 } ( t )$ ; confidence 0.998 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d0319107.png ; | + | 49. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d0319107.png ; $\dot { x } = f ( t )$ ; confidence 0.623 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d03191051.png ; | + | 50. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d03191051.png ; $x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$ ; confidence 0.998 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031920/d03192079.png ; | + | 51. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031920/d03192079.png ; $0 < l < n$ ; confidence 0.998 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031930/d031930232.png ; | + | 52. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031930/d031930232.png ; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195029.png ; | + | 53. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195029.png ; $W _ { 2 } ^ { p }$ ; confidence 0.986 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195033.png ; | + | 54. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031990/d031990131.png ; | + | 55. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031990/d031990131.png ; $R _ { L } = H ( V )$ ; confidence 0.569 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201064.png ; | + | 56. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201064.png ; $( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$ ; confidence 0.980 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201093.png ; | + | 57. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201093.png ; $n - m$ ; confidence 0.998 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201062.png ; | + | 58. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201062.png ; $\partial x / u = \partial t / 1$ ; confidence 0.967 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206019.png ; | + | 59. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206019.png ; $\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$ ; confidence 0.933 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206068.png ; | + | 60. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206068.png ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032100/d032100109.png ; | + | 61. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032100/d032100109.png ; $\dot { x } ( t ) = A x ( t - h ) - D x ( t )$ ; confidence 0.986 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; | + | 62. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032110/d03211024.png ; | + | 63. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032110/d03211024.png ; $z = \phi _ { i }$ ; confidence 0.976 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130352.png ; | + | 64. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130352.png ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130227.png ; | + | 65. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130227.png ; $\int _ { S } \omega$ ; confidence 0.561 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130311.png ; | + | 66. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130311.png ; $\omega \in \Omega ^ { d } [ X ]$ ; confidence 0.948 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d032150132.png ; | + | 67. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d032150132.png ; $\hat { V }$ ; confidence 0.359 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032240/d03224071.png ; | + | 68. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032240/d03224071.png ; $d \omega = d \square ^ { * } \omega = 0$ ; confidence 0.954 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225022.png ; | + | 69. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225022.png ; $\partial M$ ; confidence 0.831 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232015.png ; | + | 70. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232015.png ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232034.png ; | + | 71. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232034.png ; $u ( x _ { i } )$ ; confidence 0.997 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233032.png ; | + | 72. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233032.png ; $r \in F$ ; confidence 0.671 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233040.png ; | + | 73. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233040.png ; $b _ { 0 }$ ; confidence 0.363 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233041.png ; | + | 74. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233041.png ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032360/d03236035.png ; | + | 75. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032360/d03236035.png ; $\frac { \partial u } { \partial t } + u \frac { \partial u } { \partial x } = D \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } }$ ; confidence 0.994 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450444.png ; | + | 76. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450444.png ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450146.png ; | + | 77. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450146.png ; $\operatorname { dim } X \times Y < \operatorname { dim } X + \operatorname { dim } Y$ ; confidence 0.994 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450371.png ; | + | 78. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450371.png ; $\{ fd ( M )$ ; confidence 0.531 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450404.png ; | + | 79. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450404.png ; $[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$ ; confidence 0.618 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; | + | 80. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032480/d03248013.png ; | + | 81. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032480/d03248013.png ; $d ( I ^ { n } ) = n$ ; confidence 0.754 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249024.png ; | + | 82. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249024.png ; $s \in Z$ ; confidence 0.983 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249026.png ; | + | 83. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249026.png ; $G$ ; confidence 0.797 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600176.png ; | + | 84. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d03261012.png ; | + | 85. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d0326107.png ; | + | 86. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d0326107.png ; $a x + b y = 1$ ; confidence 0.602 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; | + | 87. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d032890165.png ; | + | 88. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d032890165.png ; $\operatorname { li } x / \phi ( d )$ ; confidence 0.594 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d03289066.png ; | + | 89. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d03289066.png ; $s = - 2 \nu - \delta$ ; confidence 0.945 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201904.png ; | + | 90. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201904.png ; $C _ { 0 } ^ { \infty } ( \Omega ) \subset L _ { 2 } ( \Omega )$ ; confidence 0.992 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018028.png ; | + | 91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018028.png ; $H ^ { p } ( d \theta / 2 \pi )$ ; confidence 0.994 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018084.png ; | + | 92. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018084.png ; $C ( G )$ ; confidence 1.000 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017013.png ; | + | 93. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017013.png ; $0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq$ ; confidence 0.992 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032920/d03292042.png ; | + | 94. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032920/d03292042.png ; $\sigma > h$ ; confidence 0.998 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032920/d03292035.png ; | + | 95. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032920/d03292035.png ; $s = 0$ ; confidence 0.992 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022035.png ; | + | 96. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022035.png ; $L y = g$ ; confidence 0.990 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023041.png ; | + | 97. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033110/d03311036.png ; | + | 98. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033110/d03311036.png ; $| \{ Z \} _ { n } | \rightarrow \infty$ ; confidence 0.988 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033160/d03316011.png ; | + | 99. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033160/d03316011.png ; $\sigma _ { i } ^ { z }$ ; confidence 0.702 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033180/d03318044.png ; | + | 100. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033180/d03318044.png ; $e ( B / A ) f ( B / A ) = n$ ; confidence 0.996 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033180/d03318055.png ; | + | 101. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033180/d03318055.png ; $f ( B / A ) = 1$ ; confidence 0.999 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; | + | 102. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033210/d03321058.png ; | + | 103. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033210/d03321058.png ; $R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$ ; confidence 0.981 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033280/d03328018.png ; | + | 104. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033280/d03328018.png ; $x d y$ ; confidence 0.999 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340103.png ; | + | 105. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340103.png ; $\gamma$ ; confidence 0.589 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d03334050.png ; | + | 106. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d03334050.png ; $c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$ ; confidence 0.068 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340195.png ; | + | 107. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340195.png ; $\lambda _ { 3 } = K \sum _ { i j } \frac { \delta _ { i j } ^ { 2 } } { \sigma ^ { 2 } }$ ; confidence 0.991 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023063.png ; | + | 108. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230125.png ; | + | 109. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230125.png ; $T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$ ; confidence 0.997 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023076.png ; | + | 110. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023076.png ; $Z ^ { * }$ ; confidence 0.508 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023093.png ; | + | 111. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023093.png ; $| f _ { i } | < 1$ ; confidence 0.997 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023095.png ; | + | 112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023095.png ; $R - F R F ^ { * } = G J G ^ { * }$ ; confidence 0.996 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; | + | 113. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; $\sigma _ { k }$ ; confidence 0.198 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033430/d03343022.png ; | + | 114. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033430/d03343022.png ; $x \in D _ { B }$ ; confidence 0.620 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346020.png ; | + | 115. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346020.png ; $| w - \beta _ { 0 } | = | \zeta _ { 0 } |$ ; confidence 0.997 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460124.png ; | + | 116. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460124.png ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346022.png ; | + | 117. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346022.png ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d033530372.png ; | + | 118. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d033530372.png ; $d _ { n } \ll p _ { n } ^ { \theta }$ ; confidence 0.957 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353095.png ; | + | 119. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353095.png ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353048.png ; | + | 120. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d033530133.png ; | + | 121. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d033530133.png ; $\zeta ( \sigma + i t ) \neq 0$ ; confidence 0.991 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335708.png ; | + | 122. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335708.png ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335707.png ; | + | 123. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335707.png ; $\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.076 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335705.png ; | + | 124. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335705.png ; $\alpha \sum _ { i \in I } b _ { i } = \sum _ { i \in I } a b _ { i }$ ; confidence 0.661 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; | + | 125. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; | + | 126. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; | + | 127. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033630/d03363020.png ; | + | 128. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033630/d03363020.png ; $\operatorname { lim } _ { x \rightarrow \infty } e ^ { - x } \sum _ { n = 0 } ^ { \infty } \frac { s _ { n } x ^ { n } } { n ! }$ ; confidence 0.659 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033680/d03368022.png ; | + | 129. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033680/d03368022.png ; $[ A : F ] = [ L : F ] ^ { 2 }$ ; confidence 0.997 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372075.png ; | + | 130. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372075.png ; $\sigma > 1 / 2$ ; confidence 0.999 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372050.png ; | + | 131. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372050.png ; $\gamma _ { k } < \sigma < 1$ ; confidence 0.998 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379044.png ; | + | 132. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379044.png ; $\Delta _ { D } ( z )$ ; confidence 0.999 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379012.png ; | + | 133. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379012.png ; $D \backslash K$ ; confidence 0.979 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338502.png ; | + | 134. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338502.png ; $x \square ^ { j }$ ; confidence 0.818 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339309.png ; | + | 135. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339309.png ; $p _ { 1 } / p _ { 2 }$ ; confidence 0.981 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d03399055.png ; | + | 136. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d03399055.png ; $y ^ { \prime } ( b ) + v ( b ) y ( b ) = \gamma ( b )$ ; confidence 0.998 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d03399034.png ; | + | 137. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d03399034.png ; $y ^ { \prime } ( b ) + \psi y ( b ) = \beta$ ; confidence 0.993 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033980/d03398025.png ; | + | 138. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033980/d03398025.png ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; | + | 139. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120272.png ; | + | 140. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120272.png ; $A _ { 0 } ( G )$ ; confidence 0.996 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120271.png ; | + | 141. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120271.png ; $\infty \in G$ ; confidence 0.992 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; | + | 142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280152.png ; | + | 143. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280152.png ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029018.png ; | + | 144. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029018.png ; $f ( q ) = 1 / ( \sqrt { 5 } q ^ { 2 } )$ ; confidence 1.000 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203009.png ; | + | 145. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203009.png ; $Y ( t ) \in R ^ { m }$ ; confidence 0.934 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203201.png ; | + | 146. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203201.png ; $T : L ^ { 1 } \rightarrow X$ ; confidence 0.986 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034260/d03426025.png ; | + | 147. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034260/d03426025.png ; $\delta ( t )$ ; confidence 1.000 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034280/d03428088.png ; | + | 148. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034280/d03428088.png ; $S _ { g } ( w _ { 0 } )$ ; confidence 0.921 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; | + | 149. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012065.png ; | + | 150. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002045.png ; | + | 151. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002045.png ; $T$ ; confidence 0.914 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; | + | 152. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002023.png ; | + | 153. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002023.png ; $74$ ; confidence 0.496 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020102.png ; | + | 154. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020102.png ; $V \not \equiv W$ ; confidence 0.489 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002010.png ; | + | 155. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002010.png ; $\varphi$ ; confidence 0.858 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511022.png ; | + | 156. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511022.png ; $\Sigma - 1$ ; confidence 0.852 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005039.png ; | + | 157. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005039.png ; $h ^ { i } ( w ) = g ^ { i } ( w )$ ; confidence 0.992 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006018.png ; | + | 158. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006018.png ; $T p ( A _ { y } ) = A$ ; confidence 0.900 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006038.png ; | + | 159. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006038.png ; $Y \rightarrow J ^ { 1 } Y$ ; confidence 0.987 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007012.png ; | + | 160. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035160/e0351605.png ; | + | 161. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035160/e0351605.png ; $L ( u ) + \lambda u = 0$ ; confidence 0.993 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035160/e03516059.png ; | + | 162. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035160/e03516059.png ; $\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$ ; confidence 0.519 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; | + | 163. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517077.png ; | + | 164. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517077.png ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; | + | 165. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003029.png ; | + | 166. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003029.png ; $K _ { \infty }$ ; confidence 0.984 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003020.png ; | + | 167. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003020.png ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250110.png ; | + | 168. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250110.png ; $f = u _ { 1 } + i u _ { 2 }$ ; confidence 0.994 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525048.png ; | + | 169. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525048.png ; $0 < \sigma < 0.5$ ; confidence 0.996 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525091.png ; | + | 170. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525091.png ; $z _ { k } \in L$ ; confidence 0.875 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250143.png ; | + | 171. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010015.png ; | + | 172. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010015.png ; $f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$ ; confidence 0.640 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010035.png ; | + | 173. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010035.png ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010055.png ; | + | 174. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010055.png ; $E ^ { \prime } = 0$ ; confidence 0.985 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035320/e0353202.png ; | + | 175. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035320/e0353202.png ; $\tau _ { i + 1 } - \tau _ { i }$ ; confidence 0.970 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536067.png ; | + | 176. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536090.png ; | + | 177. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536090.png ; $\operatorname { Th } ( K _ { 1 } )$ ; confidence 0.733 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110060/e11006015.png ; | + | 178. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110060/e11006015.png ; $\Omega _ { * } ^ { SO }$ ; confidence 0.644 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035470/e03547029.png ; | + | 179. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035470/e03547029.png ; $f ( z _ { 1 } + z _ { 2 } )$ ; confidence 0.999 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; | + | 180. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e110070191.png ; | + | 181. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e110070191.png ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007067.png ; | + | 182. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007067.png ; $y ^ { 2 } = R ( x )$ ; confidence 0.993 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035490/e03549042.png ; | + | 183. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035490/e03549042.png ; $u = - \int _ { z } ^ { \infty } \frac { d z } { w }$ ; confidence 0.983 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035500/e03550031.png ; | + | 184. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035500/e03550031.png ; $T ^ { * } X \backslash 0$ ; confidence 0.997 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035530/e0355309.png ; | + | 185. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035530/e0355309.png ; $\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$ ; confidence 0.732 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e035550163.png ; | + | 186. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e035550163.png ; $b _ { 2 } = 0$ ; confidence 1.000 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e035550128.png ; | + | 187. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e035550128.png ; $\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$ ; confidence 0.949 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e03555010.png ; | + | 188. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e03555010.png ; $X _ { t } = m F$ ; confidence 0.993 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e03555028.png ; | + | 189. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e03555028.png ; $y ^ { 2 } = x ^ { 3 } - g x - g$ ; confidence 0.962 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556014.png ; | + | 190. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556014.png ; $y ^ { \prime } ( 0 ) = 0$ ; confidence 0.990 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008028.png ; | + | 191. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008028.png ; $P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$ ; confidence 0.394 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008048.png ; | + | 192. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008048.png ; $B \circ F$ ; confidence 0.974 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e03566053.png ; | + | 193. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e0356605.png ; | + | 194. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e0356605.png ; $U _ { \mu } ( x ) = \int H ( | x - y | ) d \mu ( y )$ ; confidence 0.999 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e1300407.png ; | + | 195. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e1300407.png ; $U _ { 0 } ( t )$ ; confidence 0.998 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; | + | 196. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$ ; confidence 0.766 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004035.png ; | + | 197. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004035.png ; $( \Omega _ { + } - 1 ) \psi ( t ) = ( \Omega _ { + } - 1 ) g \psi ( t ) =$ ; confidence 0.997 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035720/e0357202.png ; | + | 198. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035720/e0357202.png ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035760/e0357604.png ; | + | 199. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035760/e0357604.png ; $f : W \rightarrow R$ ; confidence 0.920 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579057.png ; | + | 200. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e0358008.png ; | + | 201. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e0358008.png ; $\nu ( n ) = \alpha$ ; confidence 0.430 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581038.png ; | + | 202. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581038.png ; $\Phi \Psi$ ; confidence 0.943 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581047.png ; | + | 203. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581047.png ; $\Psi ( A ) = A$ ; confidence 0.999 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015019.png ; | + | 204. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015019.png ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015070.png ; | + | 205. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015070.png ; $\lambda _ { 1 } = \lambda _ { 2 }$ ; confidence 1.000 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; | + | 206. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607020.png ; | + | 207. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607020.png ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110100/e11010022.png ; | + | 208. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110100/e11010022.png ; $o ( G )$ ; confidence 0.990 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036120/e03612012.png ; | + | 209. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036120/e03612012.png ; $m ( M )$ ; confidence 0.999 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e03623076.png ; | + | 210. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e03623076.png ; $2 d \geq n$ ; confidence 0.758 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230210.png ; | + | 211. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230210.png ; $R ( \delta ) = 1 - H ( \delta )$ ; confidence 1.000 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230124.png ; | + | 212. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230124.png ; $k \geq n - i t$ ; confidence 0.558 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036240/e03624043.png ; | + | 213. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036240/e03624043.png ; $\sigma \approx s$ ; confidence 0.994 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; | + | 214. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640030.png ; | + | 215. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640030.png ; $2 - 2 g - l$ ; confidence 0.741 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640033.png ; | + | 216. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640033.png ; $2 - m - 1$ ; confidence 0.994 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036530/e03653023.png ; | + | 217. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036530/e03653023.png ; $t h$ ; confidence 0.989 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023072.png ; | + | 218. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023072.png ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023094.png ; | + | 219. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023094.png ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; | + | 220. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $\therefore M \rightarrow F$ ; confidence 0.313 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202308.png ; | + | 221. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202308.png ; $M = \overline { U }$ ; confidence 0.999 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; | + | 222. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230111.png ; | + | 223. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230111.png ; $E ( L )$ ; confidence 0.960 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023058.png ; | + | 224. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023058.png ; $E ( L ) = \frac { \partial L } { \partial y } - D ( \frac { \partial L } { \partial y ^ { \prime } } )$ ; confidence 0.989 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023061.png ; | + | 225. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024025.png ; | + | 226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024025.png ; $K ( L )$ ; confidence 0.907 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662025.png ; | + | 227. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662025.png ; $Q _ { n - j } ( z ) \equiv 0$ ; confidence 0.981 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110130/e11013060.png ; | + | 228. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110130/e11013060.png ; $p _ { x } ^ { * } = \lambda \operatorname { exp } ( - \lambda x )$ ; confidence 0.974 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677085.png ; | + | 229. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677085.png ; $A + 2$ ; confidence 0.997 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677073.png ; | + | 230. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677073.png ; $B = f ( A )$ ; confidence 0.999 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677067.png ; | + | 231. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677067.png ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677058.png ; | + | 232. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677051.png ; | + | 233. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677051.png ; $f | _ { A } = \phi$ ; confidence 0.668 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682019.png ; | + | 234. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682019.png ; $B _ { \mu } ^ { 1 } \subset B \subset B _ { \mu } ^ { 2 }$ ; confidence 0.646 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682038.png ; | + | 235. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682038.png ; $\tau \geq \zeta$ ; confidence 0.994 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684025.png ; | + | 236. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684025.png ; $A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$ ; confidence 0.919 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684018.png ; | + | 237. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684018.png ; $K ( B - C _ { N } ) > K ( B - A ) > D$ ; confidence 0.579 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684024.png ; | + | 238. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684024.png ; $C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$ ; confidence 0.974 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036850/e03685016.png ; | + | 239. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036850/e03685016.png ; $\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$ ; confidence 0.606 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026092.png ; | + | 240. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026092.png ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.998 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691052.png ; | + | 241. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691064.png ; | + | 242. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691064.png ; $( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$ ; confidence 0.053 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691017.png ; | + | 243. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691017.png ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006023.png ; | + | 244. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006023.png ; $z \in Z$ ; confidence 0.973 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; | + | 245. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $S = o ( \# A )$ ; confidence 0.908 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036940/e03694044.png ; | + | 246. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036940/e03694044.png ; $p f$ ; confidence 0.602 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696065.png ; | + | 247. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696065.png ; $y _ { j } \delta \theta$ ; confidence 0.866 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960205.png ; | + | 248. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960205.png ; $\nu - 1 / 2 \in Z$ ; confidence 0.954 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960198.png ; | + | 249. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960198.png ; $y ^ { \prime } + \alpha _ { 1 } y = 0$ ; confidence 0.639 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036980/e03698026.png ; | + | 250. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036980/e03698026.png ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; | + | 251. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $n + = n - = n$ ; confidence 0.228 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e037040161.png ; | + | 252. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e037040161.png ; $A = A _ { 0 } ^ { * }$ ; confidence 0.706 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704077.png ; | + | 253. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704077.png ; $\lambda < \alpha$ ; confidence 0.600 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708021.png ; | + | 254. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708021.png ; $r > n$ ; confidence 0.953 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708073.png ; | + | 255. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716049.png ; | + | 256. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716049.png ; $\Delta J =$ ; confidence 0.998 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037170/e03717072.png ; | + | 257. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037170/e03717072.png ; $r < | z | < 1$ ; confidence 0.987 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037200/e037200118.png ; | + | 258. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037200/e037200118.png ; $\gamma \geq 0$ ; confidence 0.994 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200101.png ; | + | 259. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200101.png ; $S h$ ; confidence 0.739 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038060/f03806015.png ; | + | 260. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038060/f03806015.png ; $V$ ; confidence 0.996 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001030.png ; | + | 261. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001030.png ; $R _ { i } = F _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038130/f0381302.png ; | + | 262. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038130/f0381302.png ; $G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$ ; confidence 0.998 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f0382203.png ; | + | 263. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f03822036.png ; | + | 264. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f03822036.png ; $Q \subset P ^ { 4 }$ ; confidence 0.991 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004017.png ; | + | 265. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005019.png ; | + | 266. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005019.png ; $q ( 0 ) \neq 0$ ; confidence 0.997 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005048.png ; | + | 267. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005048.png ; $w ( x ) = | f ( x ) | ^ { 2 }$ ; confidence 1.000 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038380/f03838022.png ; | + | 268. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038380/f03838022.png ; $C _ { 0 }$ ; confidence 0.800 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f1200408.png ; | + | 269. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f1200408.png ; $( + \infty ) - ( + \infty ) = - \infty - ( - \infty ) = - \infty$ ; confidence 0.999 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038390/f038390152.png ; | + | 270. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038390/f038390152.png ; $\alpha ^ { \lambda } = 1$ ; confidence 0.972 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038390/f038390108.png ; | + | 271. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038390/f038390108.png ; $q ( m ) = ( m ^ { p - 1 } - 1 ) / p$ ; confidence 0.963 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847048.png ; | + | 272. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847048.png ; $\tau _ { 0 } = 0$ ; confidence 0.955 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847049.png ; | + | 273. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847049.png ; $\tau _ { k + 1 } = t$ ; confidence 0.410 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009060.png ; | + | 274. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009060.png ; $P ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } )$ ; confidence 0.620 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; | + | 275. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008051.png ; | + | 276. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008051.png ; $P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$ ; confidence 0.505 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008010.png ; | + | 277. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008010.png ; $F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$ ; confidence 0.940 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100140.png ; | + | 278. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100140.png ; $G = T$ ; confidence 0.991 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; | + | 279. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010016.png ; | + | 280. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010016.png ; $u \in C ^ { G }$ ; confidence 0.438 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010077.png ; | + | 281. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010077.png ; $\lambda ^ { p } ( M ^ { 1 } ( G ) )$ ; confidence 0.996 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040190/f04019037.png ; | + | 282. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040190/f04019037.png ; $V ( x _ { 0 } )$ ; confidence 0.998 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021064.png ; | + | 283. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230100.png ; | + | 284. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230100.png ; $x _ { n } = n$ ; confidence 0.849 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230157.png ; | + | 285. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230157.png ; $\Delta ^ { n } f ( x )$ ; confidence 0.976 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230147.png ; | + | 286. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230147.png ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033018.png ; | + | 287. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033018.png ; $f ^ { - 1 } ( f ( x ) ) \cap U$ ; confidence 0.998 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040290/f04029031.png ; | + | 288. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040290/f04029031.png ; $G / G 1$ ; confidence 0.622 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040390/f04039064.png ; | + | 289. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040390/f04039064.png ; $y ^ { i } C _ { i j k } = 0$ ; confidence 0.942 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040420/f04042034.png ; | + | 290. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040420/f04042034.png ; $\Phi ( \Phi ( x ) ) = x$ ; confidence 1.000 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040520/f04052043.png ; | + | 291. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040520/f04052043.png ; $| x - x _ { 0 } | \leq b$ ; confidence 0.990 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058030.png ; | + | 292. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058030.png ; $| X$ ; confidence 0.687 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058044.png ; | + | 293. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058044.png ; $\phi ( p )$ ; confidence 0.999 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058066.png ; | + | 294. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058066.png ; $| A | = \int _ { R } | \alpha | 0$ ; confidence 0.765 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png ; | + | 295. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061036.png ; | + | 296. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061036.png ; $C ^ { b r } ( E ^ { n } )$ ; confidence 0.943 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069050.png ; | + | 297. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069050.png ; $\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$ ; confidence 0.995 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069087.png ; | + | 298. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069087.png ; $\{ \xi _ { f } : f \in H \}$ ; confidence 0.998 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069072.png ; | + | 299. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069072.png ; $\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$ ; confidence 0.962 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png ; | + | 300. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png ; $t \subset v$ ; confidence 0.885 |
Revision as of 11:41, 1 September 2019
List
1. ; $\pi ( \chi )$ ; confidence 0.978
2. ; $C ^ { \infty } ( G )$ ; confidence 0.980
3. ; $L \cup O$ ; confidence 0.130
4. ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
5. ; $m - 2 r$ ; confidence 1.000
6. ; $Z \in X$ ; confidence 0.820
7. ; $m _ { B } ( A ) = 0$ ; confidence 0.968
8. ; $m B$ ; confidence 0.535
9. ; $S ^ { 4 k - 1 }$ ; confidence 0.950
10. ; $H = C ^ { n }$ ; confidence 0.847
11. ; $F \in Hol ( D )$ ; confidence 0.805
12. ; $\zeta ( s ) = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } }$ ; confidence 0.995
13. ; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919
14. ; $\phi : A \rightarrow A$ ; confidence 0.991
15. ; $s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$ ; confidence 0.953
16. ; $R ^ { i } F = H ^ { i } \circ R ^ { * } F$ ; confidence 0.941
17. ; $f t = g t$ ; confidence 0.997
18. ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
19. ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
20. ; $E = N$ ; confidence 0.995
21. ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
22. ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204
23. ; $k [ ( T _ { i j } ) _ { 1 \leq i \leq d } ]$ ; confidence 0.679
24. ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
25. ; $G r$ ; confidence 0.809
26. ; $1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$ ; confidence 0.512
27. ; $1 \leq u \leq 2$ ; confidence 0.976
28. ; $u > 1$ ; confidence 0.987
29. ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
30. ; $\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$ ; confidence 0.786
31. ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
32. ; $Z _ { h }$ ; confidence 0.217
33. ; $\overline { G } = G + \Gamma$ ; confidence 0.752
34. ; $t = t _ { 0 } = x _ { 0 } ( 0 )$ ; confidence 0.983
35. ; $u \leq \theta u$ ; confidence 0.794
36. ; $\operatorname { rank } ( A _ { i } ) = \operatorname { rank } ( B _ { i } )$ ; confidence 0.983
37. ; $A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$ ; confidence 0.523
38. ; $G ( G / F _ { 1 } ) = G _ { 1 }$ ; confidence 0.998
39. ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833
40. ; $G \neq 0$ ; confidence 0.999
41. ; $\{ A \}$ ; confidence 0.999
42. ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
43. ; $x \neq \pm 1$ ; confidence 0.956
44. ; $( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$ ; confidence 1.000
45. ; $( \frac { u } { v } ) ^ { \prime } = \frac { u ^ { \prime } v - u v ^ { \prime } } { v ^ { 2 } }$ ; confidence 0.958
46. ; $( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.996
47. ; $\Delta \rightarrow 0$ ; confidence 0.981
48. ; $x _ { 2 } ( t )$ ; confidence 0.998
49. ; $\dot { x } = f ( t )$ ; confidence 0.623
50. ; $x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$ ; confidence 0.998
51. ; $0 < l < n$ ; confidence 0.998
52. ; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918
53. ; $W _ { 2 } ^ { p }$ ; confidence 0.986
54. ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840
55. ; $R _ { L } = H ( V )$ ; confidence 0.569
56. ; $( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$ ; confidence 0.980
57. ; $n - m$ ; confidence 0.998
58. ; $\partial x / u = \partial t / 1$ ; confidence 0.967
59. ; $\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$ ; confidence 0.933
60. ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117
61. ; $\dot { x } ( t ) = A x ( t - h ) - D x ( t )$ ; confidence 0.986
62. ; $2 \pi \alpha$ ; confidence 0.461
63. ; $z = \phi _ { i }$ ; confidence 0.976
64. ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911
65. ; $\int _ { S } \omega$ ; confidence 0.561
66. ; $\omega \in \Omega ^ { d } [ X ]$ ; confidence 0.948
67. ; $\hat { V }$ ; confidence 0.359
68. ; $d \omega = d \square ^ { * } \omega = 0$ ; confidence 0.954
69. ; $\partial M$ ; confidence 0.831
70. ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362
71. ; $u ( x _ { i } )$ ; confidence 0.997
72. ; $r \in F$ ; confidence 0.671
73. ; $b _ { 0 }$ ; confidence 0.363
74. ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388
75. ; $\frac { \partial u } { \partial t } + u \frac { \partial u } { \partial x } = D \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } }$ ; confidence 0.994
76. ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917
77. ; $\operatorname { dim } X \times Y < \operatorname { dim } X + \operatorname { dim } Y$ ; confidence 0.994
78. ; $\{ fd ( M )$ ; confidence 0.531
79. ; $[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$ ; confidence 0.618
80. ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
81. ; $d ( I ^ { n } ) = n$ ; confidence 0.754
82. ; $s \in Z$ ; confidence 0.983
83. ; $G$ ; confidence 0.797
84. ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
85. ; $y = y _ { 0 } - a n$ ; confidence 0.836
86. ; $a x + b y = 1$ ; confidence 0.602
87. ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
88. ; $\operatorname { li } x / \phi ( d )$ ; confidence 0.594
89. ; $s = - 2 \nu - \delta$ ; confidence 0.945
90. ; $C _ { 0 } ^ { \infty } ( \Omega ) \subset L _ { 2 } ( \Omega )$ ; confidence 0.992
91. ; $H ^ { p } ( d \theta / 2 \pi )$ ; confidence 0.994
92. ; $C ( G )$ ; confidence 1.000
93. ; $0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq$ ; confidence 0.992
94. ; $\sigma > h$ ; confidence 0.998
95. ; $s = 0$ ; confidence 0.992
96. ; $L y = g$ ; confidence 0.990
97. ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866
98. ; $| \{ Z \} _ { n } | \rightarrow \infty$ ; confidence 0.988
99. ; $\sigma _ { i } ^ { z }$ ; confidence 0.702
100. ; $e ( B / A ) f ( B / A ) = n$ ; confidence 0.996
101. ; $f ( B / A ) = 1$ ; confidence 0.999
102. ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
103. ; $R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$ ; confidence 0.981
104. ; $x d y$ ; confidence 0.999
105. ; $\gamma$ ; confidence 0.589
106. ; $c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$ ; confidence 0.068
107. ; $\lambda _ { 3 } = K \sum _ { i j } \frac { \delta _ { i j } ^ { 2 } } { \sigma ^ { 2 } }$ ; confidence 0.991
108. ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906
109. ; $T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$ ; confidence 0.997
110. ; $Z ^ { * }$ ; confidence 0.508
111. ; $| f _ { i } | < 1$ ; confidence 0.997
112. ; $R - F R F ^ { * } = G J G ^ { * }$ ; confidence 0.996
113. ; $\sigma _ { k }$ ; confidence 0.198
114. ; $x \in D _ { B }$ ; confidence 0.620
115. ; $| w - \beta _ { 0 } | = | \zeta _ { 0 } |$ ; confidence 0.997
116. ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854
117. ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488
118. ; $d _ { n } \ll p _ { n } ^ { \theta }$ ; confidence 0.957
119. ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429
120. ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899
121. ; $\zeta ( \sigma + i t ) \neq 0$ ; confidence 0.991
122. ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170
123. ; $\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.076
124. ; $\alpha \sum _ { i \in I } b _ { i } = \sum _ { i \in I } a b _ { i }$ ; confidence 0.661
125. ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
126. ; $A ( \vec { G } )$ ; confidence 0.484
127. ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784
128. ; $\operatorname { lim } _ { x \rightarrow \infty } e ^ { - x } \sum _ { n = 0 } ^ { \infty } \frac { s _ { n } x ^ { n } } { n ! }$ ; confidence 0.659
129. ; $[ A : F ] = [ L : F ] ^ { 2 }$ ; confidence 0.997
130. ; $\sigma > 1 / 2$ ; confidence 0.999
131. ; $\gamma _ { k } < \sigma < 1$ ; confidence 0.998
132. ; $\Delta _ { D } ( z )$ ; confidence 0.999
133. ; $D \backslash K$ ; confidence 0.979
134. ; $x \square ^ { j }$ ; confidence 0.818
135. ; $p _ { 1 } / p _ { 2 }$ ; confidence 0.981
136. ; $y ^ { \prime } ( b ) + v ( b ) y ( b ) = \gamma ( b )$ ; confidence 0.998
137. ; $y ^ { \prime } ( b ) + \psi y ( b ) = \beta$ ; confidence 0.993
138. ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852
139. ; $O \subset A _ { R }$ ; confidence 0.132
140. ; $A _ { 0 } ( G )$ ; confidence 0.996
141. ; $\infty \in G$ ; confidence 0.992
142. ; $\overline { U }$ ; confidence 0.299
143. ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981
144. ; $f ( q ) = 1 / ( \sqrt { 5 } q ^ { 2 } )$ ; confidence 1.000
145. ; $Y ( t ) \in R ^ { m }$ ; confidence 0.934
146. ; $T : L ^ { 1 } \rightarrow X$ ; confidence 0.986
147. ; $\delta ( t )$ ; confidence 1.000
148. ; $S _ { g } ( w _ { 0 } )$ ; confidence 0.921
149. ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
150. ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904
151. ; $T$ ; confidence 0.914
152. ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748
153. ; $74$ ; confidence 0.496
154. ; $V \not \equiv W$ ; confidence 0.489
155. ; $\varphi$ ; confidence 0.858
156. ; $\Sigma - 1$ ; confidence 0.852
157. ; $h ^ { i } ( w ) = g ^ { i } ( w )$ ; confidence 0.992
158. ; $T p ( A _ { y } ) = A$ ; confidence 0.900
159. ; $Y \rightarrow J ^ { 1 } Y$ ; confidence 0.987
160. ; $\Gamma _ { q }$ ; confidence 0.846
161. ; $L ( u ) + \lambda u = 0$ ; confidence 0.993
162. ; $\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$ ; confidence 0.519
163. ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
164. ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452
165. ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
166. ; $K _ { \infty }$ ; confidence 0.984
167. ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738
168. ; $f = u _ { 1 } + i u _ { 2 }$ ; confidence 0.994
169. ; $0 < \sigma < 0.5$ ; confidence 0.996
170. ; $z _ { k } \in L$ ; confidence 0.875
171. ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903
172. ; $f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$ ; confidence 0.640
173. ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071
174. ; $E ^ { \prime } = 0$ ; confidence 0.985
175. ; $\tau _ { i + 1 } - \tau _ { i }$ ; confidence 0.970
176. ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899
177. ; $\operatorname { Th } ( K _ { 1 } )$ ; confidence 0.733
178. ; $\Omega _ { * } ^ { SO }$ ; confidence 0.644
179. ; $f ( z _ { 1 } + z _ { 2 } )$ ; confidence 0.999
180. ; $C x ^ { - 1 }$ ; confidence 0.834
181. ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893
182. ; $y ^ { 2 } = R ( x )$ ; confidence 0.993
183. ; $u = - \int _ { z } ^ { \infty } \frac { d z } { w }$ ; confidence 0.983
184. ; $T ^ { * } X \backslash 0$ ; confidence 0.997
185. ; $\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$ ; confidence 0.732
186. ; $b _ { 2 } = 0$ ; confidence 1.000
187. ; $\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$ ; confidence 0.949
188. ; $X _ { t } = m F$ ; confidence 0.993
189. ; $y ^ { 2 } = x ^ { 3 } - g x - g$ ; confidence 0.962
190. ; $y ^ { \prime } ( 0 ) = 0$ ; confidence 0.990
191. ; $P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$ ; confidence 0.394
192. ; $B \circ F$ ; confidence 0.974
193. ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789
194. ; $U _ { \mu } ( x ) = \int H ( | x - y | ) d \mu ( y )$ ; confidence 0.999
195. ; $U _ { 0 } ( t )$ ; confidence 0.998
196. ; $( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$ ; confidence 0.766
197. ; $( \Omega _ { + } - 1 ) \psi ( t ) = ( \Omega _ { + } - 1 ) g \psi ( t ) =$ ; confidence 0.997
198. ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823
199. ; $f : W \rightarrow R$ ; confidence 0.920
200. ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820
201. ; $\nu ( n ) = \alpha$ ; confidence 0.430
202. ; $\Phi \Psi$ ; confidence 0.943
203. ; $\Psi ( A ) = A$ ; confidence 0.999
204. ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338
205. ; $\lambda _ { 1 } = \lambda _ { 2 }$ ; confidence 1.000
206. ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
207. ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845
208. ; $o ( G )$ ; confidence 0.990
209. ; $m ( M )$ ; confidence 0.999
210. ; $2 d \geq n$ ; confidence 0.758
211. ; $R ( \delta ) = 1 - H ( \delta )$ ; confidence 1.000
212. ; $k \geq n - i t$ ; confidence 0.558
213. ; $\sigma \approx s$ ; confidence 0.994
214. ; $l _ { x }$ ; confidence 0.196
215. ; $2 - 2 g - l$ ; confidence 0.741
216. ; $2 - m - 1$ ; confidence 0.994
217. ; $t h$ ; confidence 0.989
218. ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
219. ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958
220. ; $\therefore M \rightarrow F$ ; confidence 0.313
221. ; $M = \overline { U }$ ; confidence 0.999
222. ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
223. ; $E ( L )$ ; confidence 0.960
224. ; $E ( L ) = \frac { \partial L } { \partial y } - D ( \frac { \partial L } { \partial y ^ { \prime } } )$ ; confidence 0.989
225. ; $L \mapsto E ( L )$ ; confidence 0.892
226. ; $K ( L )$ ; confidence 0.907
227. ; $Q _ { n - j } ( z ) \equiv 0$ ; confidence 0.981
228. ; $p _ { x } ^ { * } = \lambda \operatorname { exp } ( - \lambda x )$ ; confidence 0.974
229. ; $A + 2$ ; confidence 0.997
230. ; $B = f ( A )$ ; confidence 0.999
231. ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866
232. ; $P ^ { \prime } ( C )$ ; confidence 0.802
233. ; $f | _ { A } = \phi$ ; confidence 0.668
234. ; $B _ { \mu } ^ { 1 } \subset B \subset B _ { \mu } ^ { 2 }$ ; confidence 0.646
235. ; $\tau \geq \zeta$ ; confidence 0.994
236. ; $A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$ ; confidence 0.919
237. ; $K ( B - C _ { N } ) > K ( B - A ) > D$ ; confidence 0.579
238. ; $C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$ ; confidence 0.974
239. ; $\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$ ; confidence 0.606
240. ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.998
241. ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
242. ; $( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$ ; confidence 0.053
243. ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301
244. ; $z \in Z$ ; confidence 0.973
245. ; $S = o ( \# A )$ ; confidence 0.908
246. ; $p f$ ; confidence 0.602
247. ; $y _ { j } \delta \theta$ ; confidence 0.866
248. ; $\nu - 1 / 2 \in Z$ ; confidence 0.954
249. ; $y ^ { \prime } + \alpha _ { 1 } y = 0$ ; confidence 0.639
250. ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856
251. ; $n + = n - = n$ ; confidence 0.228
252. ; $A = A _ { 0 } ^ { * }$ ; confidence 0.706
253. ; $\lambda < \alpha$ ; confidence 0.600
254. ; $r > n$ ; confidence 0.953
255. ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
256. ; $\Delta J =$ ; confidence 0.998
257. ; $r < | z | < 1$ ; confidence 0.987
258. ; $\gamma \geq 0$ ; confidence 0.994
259. ; $S h$ ; confidence 0.739
260. ; $V$ ; confidence 0.996
261. ; $R _ { i } = F _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671
262. ; $G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$ ; confidence 0.998
263. ; $K _ { X } ^ { - 1 }$ ; confidence 0.918
264. ; $Q \subset P ^ { 4 }$ ; confidence 0.991
265. ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976
266. ; $q ( 0 ) \neq 0$ ; confidence 0.997
267. ; $w ( x ) = | f ( x ) | ^ { 2 }$ ; confidence 1.000
268. ; $C _ { 0 }$ ; confidence 0.800
269. ; $( + \infty ) - ( + \infty ) = - \infty - ( - \infty ) = - \infty$ ; confidence 0.999
270. ; $\alpha ^ { \lambda } = 1$ ; confidence 0.972
271. ; $q ( m ) = ( m ^ { p - 1 } - 1 ) / p$ ; confidence 0.963
272. ; $\tau _ { 0 } = 0$ ; confidence 0.955
273. ; $\tau _ { k + 1 } = t$ ; confidence 0.410
274. ; $P ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } )$ ; confidence 0.620
275. ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
276. ; $P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$ ; confidence 0.505
277. ; $F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$ ; confidence 0.940
278. ; $G = T$ ; confidence 0.991
279. ; $v \in A _ { p } ( G )$ ; confidence 0.412
280. ; $u \in C ^ { G }$ ; confidence 0.438
281. ; $\lambda ^ { p } ( M ^ { 1 } ( G ) )$ ; confidence 0.996
282. ; $V ( x _ { 0 } )$ ; confidence 0.998
283. ; $\phi ( \mathfrak { A } )$ ; confidence 0.445
284. ; $x _ { n } = n$ ; confidence 0.849
285. ; $\Delta ^ { n } f ( x )$ ; confidence 0.976
286. ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269
287. ; $f ^ { - 1 } ( f ( x ) ) \cap U$ ; confidence 0.998
288. ; $G / G 1$ ; confidence 0.622
289. ; $y ^ { i } C _ { i j k } = 0$ ; confidence 0.942
290. ; $\Phi ( \Phi ( x ) ) = x$ ; confidence 1.000
291. ; $| x - x _ { 0 } | \leq b$ ; confidence 0.990
292. ; $| X$ ; confidence 0.687
293. ; $\phi ( p )$ ; confidence 0.999
294. ; $| A | = \int _ { R } | \alpha | 0$ ; confidence 0.765
295. ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
296. ; $C ^ { b r } ( E ^ { n } )$ ; confidence 0.943
297. ; $\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$ ; confidence 0.995
298. ; $\{ \xi _ { f } : f \in H \}$ ; confidence 0.998
299. ; $\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$ ; confidence 0.962
300. ; $t \subset v$ ; confidence 0.885
Maximilian Janisch/latexlist/latex/5. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/5&oldid=43812