Difference between revisions of "User:Maximilian Janisch/latexlist/latex/1"
(Created page with "Test") |
(AUTOMATIC EDIT (page 1 out of 1): Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.) |
||
| Line 1: | Line 1: | ||
| − | + | == List == | |
| + | 1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png ; $3 + 5$ ; confidence 0.136 | ||
| + | |||
| + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png ; $A , B , C \in C$ ; confidence 0.982 | ||
| + | |||
| + | 3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505 | ||
| + | |||
| + | 4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907 | ||
| + | |||
| + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png ; $R el$ ; confidence 0.544 | ||
| + | |||
| + | 6. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png ; $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ ; confidence 0.988 | ||
| + | |||
| + | 7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png ; $4$ ; confidence 0.531 | ||
| + | |||
| + | 8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png ; $S ^ { * } = S$ ; confidence 0.463 | ||
| + | |||
| + | 9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001016.png ; $B ^ { A } \cong ( A ^ { * } \otimes B )$ ; confidence 0.992 | ||
| + | |||
| + | 10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png ; $B$ ; confidence 0.895 | ||
| + | |||
| + | 11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png ; $C$ ; confidence 0.838 | ||
| + | |||
| + | 12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001048.png ; $( S , g )$ ; confidence 0.978 | ||
| + | |||
| + | 13. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010139.png ; $3$ ; confidence 1.000 | ||
| + | |||
| + | 14. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010117.png ; $D$ ; confidence 0.538 | ||
| + | |||
| + | 15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png ; $5$ ; confidence 0.885 | ||
| + | |||
| + | 16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001056.png ; $F _ { 3 }$ ; confidence 0.996 | ||
| + | |||
| + | 17. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001095.png ; $\operatorname { dim } ( S ) = 4 n + 3$ ; confidence 0.958 | ||
| + | |||
| + | 18. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010140.png ; $\geq 7$ ; confidence 0.562 | ||
| + | |||
| + | 19. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010134.png ; $( 4 n + 3 )$ ; confidence 1.000 | ||
| + | |||
| + | 20. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763 | ||
| + | |||
| + | 21. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761 | ||
| + | |||
| + | 22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010159.png ; $4 n$ ; confidence 0.999 | ||
| + | |||
| + | 23. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916 | ||
| + | |||
| + | 24. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010141.png ; $7$ ; confidence 0.937 | ||
| + | |||
| + | 25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001038.png ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932 | ||
| + | |||
| + | 26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png ; $S ( p )$ ; confidence 0.693 | ||
| + | |||
| + | 27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010148.png ; $T ^ { 2 } \times SO ( 3 )$ ; confidence 0.990 | ||
| + | |||
| + | 28. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001034.png ; $SO ( 3 )$ ; confidence 0.940 | ||
| + | |||
| + | 29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798 | ||
| + | |||
| + | 30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190 | ||
| + | |||
| + | 31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001022.png ; $n \geq 1$ ; confidence 0.967 | ||
| + | |||
| + | 32. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png ; $SU ( 2 )$ ; confidence 0.811 | ||
| + | |||
| + | 33. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010115.png ; $11$ ; confidence 1.000 | ||
| + | |||
| + | 34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010128.png ; $b _ { 2 } \neq b _ { 4 }$ ; confidence 0.995 | ||
| + | |||
| + | 35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164 | ||
| + | |||
| + | 36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311 | ||
| + | |||
| + | 37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001021.png ; $m = 4 n + 3$ ; confidence 0.997 | ||
| + | |||
| + | 38. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182 | ||
| + | |||
| + | 39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010130.png ; $b _ { 2 } \neq b _ { 6 }$ ; confidence 0.994 | ||
| + | |||
| + | 40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694 | ||
| + | |||
| + | 41. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001072.png ; $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ ; confidence 0.998 | ||
| + | |||
| + | 42. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671 | ||
| + | |||
| + | 43. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782 | ||
| + | |||
| + | 44. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143 | ||
| + | |||
| + | 45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001060.png ; $S ^ { 3 } / \Gamma$ ; confidence 0.633 | ||
| + | |||
| + | 46. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208 | ||
| + | |||
| + | 47. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001070.png ; $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$ ; confidence 0.999 | ||
| + | |||
| + | 48. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png ; $C ( S )$ ; confidence 0.946 | ||
| + | |||
| + | 49. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $$m$$ ; confidence 0.499 | ||
| + | |||
| + | 50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001053.png ; $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ ; confidence 1.000 | ||
| + | |||
| + | 51. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326 | ||
| + | |||
| + | 52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001094.png ; $$n + 2$$ ; confidence 1.000 | ||
| + | |||
| + | 53. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010118.png ; $4 n + 3$ ; confidence 1.000 | ||
| + | |||
| + | 54. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010129.png ; $15$ ; confidence 1.000 | ||
| + | |||
| + | 55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png ; $5$ ; confidence 0.574 | ||
| + | |||
| + | 56. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png ; $s ^ { 2 }$ ; confidence 0.942 | ||
| + | |||
| + | 57. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734 | ||
| + | |||
| + | 58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702 | ||
| + | |||
| + | 59. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $$Z = G / U ( 1 ) . K$$ ; confidence 0.948 | ||
| + | |||
| + | 60. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png ; $$1$$ ; confidence 0.742 | ||
| + | |||
| + | 61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010116.png ; $\operatorname { dim } ( O ) = 4$ ; confidence 0.996 | ||
| + | |||
| + | 62. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799 | ||
| + | |||
| + | 63. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200106.png ; $U ( ( m + 1 ) / 2 )$ ; confidence 0.997 | ||
| + | |||
| + | 64. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001079.png ; $F _ { \tau } \subset F _ { 3 } \subset S$ ; confidence 0.996 | ||
| + | |||
| + | 65. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127 | ||
| + | |||
| + | 66. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010106.png ; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / SU ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }$ ; confidence 0.614 | ||
| + | |||
| + | 67. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001032.png ; $g ( \xi ^ { \alpha } , \xi ^ { b } ) = \delta _ { \alpha b }$ ; confidence 0.989 | ||
| + | |||
| + | 68. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447 | ||
| + | |||
| + | 69. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187 | ||
| + | |||
| + | 70. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001091.png ; $z$ ; confidence 1.000 | ||
| + | |||
| + | 71. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541 | ||
| + | |||
| + | 72. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010158.png ; $$T ^ { n }$$ ; confidence 0.616 | ||
| + | |||
| + | 73. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418 | ||
| + | |||
| + | 74. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png ; $Sp ( 0 )$ ; confidence 0.378 | ||
| + | |||
| + | 75. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png ; $s ^ { 3 }$ ; confidence 0.948 | ||
| + | |||
| + | 76. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010138.png ; $D$ ; confidence 0.661 | ||
| + | |||
| + | 77. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $$\xi = I ( \partial _ { r } )$$ ; confidence 0.869 | ||
| + | |||
| + | 78. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010107.png ; $$n \geq 0$$ ; confidence 0.996 | ||
| + | |||
| + | 79. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951 | ||
| + | |||
| + | 80. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920 | ||
| + | |||
| + | 81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200107.png ; $m = 2 i + 1$ ; confidence 0.871 | ||
| + | |||
| + | 82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322 | ||
| + | |||
| + | 83. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001077.png ; $\xi ( \tau )$ ; confidence 0.999 | ||
| + | |||
| + | 84. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png ; $$S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$$ ; confidence 0.916 | ||
| + | |||
| + | 85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200108.png ; $1 > 1$ ; confidence 0.983 | ||
| + | |||
| + | 86. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010120.png ; $b _ { 2 } ( s ) \leq 1$ ; confidence 0.580 | ||
| + | |||
| + | 87. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png ; $0$ ; confidence 0.355 | ||
| + | |||
| + | 88. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001078.png ; $1$ ; confidence 0.998 | ||
| + | |||
| + | 89. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001074.png ; $2$ ; confidence 1.000 | ||
| + | |||
| + | 90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001071.png ; $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ ; confidence 0.974 | ||
| + | |||
| + | 91. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010147.png ; $T ^ { 2 } \times \operatorname { Sp } ( 1 )$ ; confidence 0.987 | ||
| + | |||
| + | 92. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265 | ||
| + | |||
| + | 93. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010110.png ; $k > 7$ ; confidence 0.997 | ||
| + | |||
| + | 94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901 | ||
| + | |||
| + | 95. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906 | ||
| + | |||
| + | 96. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100206.png ; $t$ ; confidence 0.637 | ||
| + | |||
| + | 97. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192 | ||
| + | |||
| + | 98. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100204.png ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382 | ||
| + | |||
| + | 99. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002013.png ; $$\sigma \delta$$ ; confidence 0.999 | ||
| + | |||
| + | 100. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008023.png ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061 | ||
| + | |||
| + | 101. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104 | ||
| + | |||
| + | 102. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200 | ||
| + | |||
| + | 103. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139 | ||
| + | |||
| + | 104. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008024.png ; $M$ ; confidence 0.626 | ||
| + | |||
| + | 105. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100803.png ; $x$ ; confidence 0.475 | ||
| + | |||
| + | 106. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png ; $\pi$ ; confidence 0.772 | ||
| + | |||
| + | 107. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420169.png ; $K$ ; confidence 0.738 | ||
| + | |||
| + | 108. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420153.png ; $K _ { 0 } ( B ) ^ { + }$ ; confidence 0.993 | ||
| + | |||
| + | 109. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042060.png ; $K _ { 1 }$ ; confidence 0.970 | ||
| + | |||
| + | 110. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420164.png ; $C ( S ^ { 2 n } )$ ; confidence 0.540 | ||
| + | |||
| + | 111. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420108.png ; $\tau ( x y ) = \tau ( y x )$ ; confidence 0.993 | ||
| + | |||
| + | 112. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420163.png ; $\theta = 1 - \theta$ ; confidence 0.998 | ||
| + | |||
| + | 113. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420118.png ; $$H$$ ; confidence 0.998 | ||
| + | |||
| + | 114. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042090.png ; $n > 0$ ; confidence 0.998 | ||
| + | |||
| + | 115. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042070.png ; $K _ { 0 } ( \varphi ) = \alpha$ ; confidence 0.993 | ||
| + | |||
| + | 116. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042086.png ; $z \in G$ ; confidence 0.715 | ||
| + | |||
| + | 117. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420112.png ; $f : G \rightarrow R$ ; confidence 0.996 | ||
| + | |||
| + | 118. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png ; $C ^ { * }$ ; confidence 0.866 | ||
| + | |||
| + | 119. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042050.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ ; confidence 0.990 | ||
| + | |||
| + | 120. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420127.png ; $D$ ; confidence 0.683 | ||
| + | |||
| + | 121. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420138.png ; $I \mapsto I$ ; confidence 0.782 | ||
| + | |||
| + | 122. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420149.png ; $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.977 | ||
| + | |||
| + | 123. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420113.png ; $f ( G ^ { + } ) \subseteq R ^ { + }$ ; confidence 1.000 | ||
| + | |||
| + | 124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307 | ||
| + | |||
| + | 125. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042064.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ ; confidence 0.990 | ||
| + | |||
| + | 126. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042053.png ; $K _ { 0 } ( A )$ ; confidence 0.745 | ||
| + | |||
| + | 127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420117.png ; $H ^ { + } = G ^ { + } \cap H$ ; confidence 0.999 | ||
| + | |||
| + | 128. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042063.png ; $\square ^ { * }$ ; confidence 0.982 | ||
| + | |||
| + | 129. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420150.png ; $K _ { 0 } ( \varphi )$ ; confidence 0.924 | ||
| + | |||
| + | 130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042084.png ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943 | ||
| + | |||
| + | 131. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042088.png ; $( G , G ^ { + } )$ ; confidence 1.000 | ||
| + | |||
| + | 132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042079.png ; $25$ ; confidence 0.396 | ||
| + | |||
| + | 133. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420162.png ; $\theta = \theta ^ { \prime }$ ; confidence 0.994 | ||
| + | |||
| + | 134. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420121.png ; $y \leq x$ ; confidence 0.998 | ||
| + | |||
| + | 135. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042066.png ; $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.991 | ||
| + | |||
| + | 136. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042067.png ; $\alpha ( K _ { 0 } ( A ) ^ { + } ) = K _ { 0 } ( B ) ^ { + }$ ; confidence 0.997 | ||
| + | |||
| + | 137. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042055.png ; $K _ { 0 } ( A ) ^ { + }$ ; confidence 0.988 | ||
| + | |||
| + | 138. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842 | ||
| + | |||
| + | 139. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420161.png ; $A _ { \theta } \cong A _ { \theta }$ ; confidence 0.999 | ||
| + | |||
| + | 140. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420110.png ; $f$ ; confidence 1.000 | ||
| + | |||
| + | 141. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042089.png ; $\geq 0$ ; confidence 1.000 | ||
| + | |||
| + | 142. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042078.png ; $4$ ; confidence 0.978 | ||
| + | |||
| + | 143. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420166.png ; $2 n$ ; confidence 1.000 | ||
| + | |||
| + | 144. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042068.png ; $\alpha ( \Sigma ( A ) ) = \Sigma ( B )$ ; confidence 0.988 | ||
| + | |||
| + | 145. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042069.png ; $\varphi : A \rightarrow B$ ; confidence 0.999 | ||
| + | |||
| + | 146. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042072.png ; $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$ ; confidence 0.978 | ||
| + | |||
| + | 147. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042087.png ; $x _ { i } \leq z \leq y _ { j }$ ; confidence 0.967 | ||
| + | |||
| + | 148. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420154.png ; $K _ { 0 }$ ; confidence 0.936 | ||
| + | |||
| + | 149. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420137.png ; $\tau \mapsto K _ { 0 } ( \tau )$ ; confidence 0.994 | ||
| + | |||
| + | 150. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042091.png ; $x \in G$ ; confidence 0.737 | ||
| + | |||
| + | 151. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889 | ||
| + | |||
| + | 152. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420122.png ; $y \in H$ ; confidence 0.503 | ||
| + | |||
| + | 153. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420134.png ; $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$ ; confidence 0.923 | ||
| + | |||
| + | 154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420109.png ; $x , y \in A$ ; confidence 0.906 | ||
| + | |||
| + | 155. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042092.png ; $x > 0$ ; confidence 0.700 | ||
| + | |||
| + | 156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420158.png ; $A _ { \theta }$ ; confidence 0.786 | ||
| + | |||
| + | 157. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042065.png ; $( K _ { 0 } ( B ) , K _ { 0 } ( B ) ^ { + } , \Sigma ( B ) )$ ; confidence 0.997 | ||
| + | |||
| + | 158. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420107.png ; $\tau : A \rightarrow C$ ; confidence 0.987 | ||
| + | |||
| + | 159. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450 | ||
| + | |||
| + | 160. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042075.png ; $\varphi , \psi : A \rightarrow B$ ; confidence 0.980 | ||
| + | |||
| + | 161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042056.png ; $\Sigma ( A )$ ; confidence 0.626 | ||
| + | |||
| + | 162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420119.png ; $x \in H ^ { + }$ ; confidence 0.518 | ||
| + | |||
| + | 163. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420120.png ; $y \in G ^ { + }$ ; confidence 0.943 | ||
| + | |||
| + | 164. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420143.png ; $1$ ; confidence 0.989 | ||
| + | |||
| + | 165. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042085.png ; $x _ { i } \leq y _ { j }$ ; confidence 0.993 | ||
| + | |||
| + | 166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898 | ||
| + | |||
| + | 167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042098.png ; $K _ { 1 } ( A ) = 0$ ; confidence 0.997 | ||
| + | |||
| + | 168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951 | ||
| + | |||
| + | 169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png ; $t$ ; confidence 0.354 | ||
| + | |||
| + | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013059.png ; $i$ ; confidence 0.570 | ||
| + | |||
| + | 171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910 | ||
| + | |||
| + | 172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875 | ||
| + | |||
| + | 173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png ; $( g )$ ; confidence 0.981 | ||
| + | |||
| + | 174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013023.png ; $$= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$$ ; confidence 0.382 | ||
| + | |||
| + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png ; $( 1 )$ ; confidence 0.515 | ||
| + | |||
| + | 176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013067.png ; $C [ t ] = C [ t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.593 | ||
| + | |||
| + | 177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315 | ||
| + | |||
| + | 178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130100.png ; $$A K N S$$ ; confidence 0.971 | ||
| + | |||
| + | 179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430 | ||
| + | |||
| + | 180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013032.png ; $\phi$ ; confidence 0.476 | ||
| + | |||
| + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209 | ||
| + | |||
| + | 182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416 | ||
| + | |||
| + | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013021.png ; $$h$$ ; confidence 0.644 | ||
| + | |||
| + | 184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932 | ||
| + | |||
| + | 185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458 | ||
| + | |||
| + | 186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140 | ||
| + | |||
| + | 187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $C$ ; confidence 0.175 | ||
| + | |||
| + | 188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013066.png ; $5$ ; confidence 0.571 | ||
| + | |||
| + | 189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013055.png ; $L ( \Lambda _ { 0 } )$ ; confidence 0.993 | ||
| + | |||
| + | 190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013049.png ; $k$ ; confidence 0.504 | ||
| + | |||
| + | 191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013022.png ; $\phi ( x , t , z ) =$ ; confidence 0.998 | ||
| + | |||
| + | 192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260 | ||
| + | |||
| + | 193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013027.png ; $\phi = \phi _ { - } \phi _ { + }$ ; confidence 0.996 | ||
| + | |||
| + | 194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301302.png ; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ ; confidence 0.971 | ||
| + | |||
| + | 195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822 | ||
| + | |||
| + | 196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726 | ||
| + | |||
| + | 197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013040.png ; $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { n } Q _ { j } z ^ { n - j }$ ; confidence 0.991 | ||
| + | |||
| + | 198. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png ; $8$ ; confidence 0.857 | ||
| + | |||
| + | 199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013016.png ; $8$ ; confidence 0.804 | ||
| + | |||
| + | 200. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013085.png ; $$L$$ ; confidence 0.550 | ||
| + | |||
| + | 201. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013054.png ; $t _ { n }$ ; confidence 0.933 | ||
| + | |||
| + | 202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981 | ||
| + | |||
| + | 203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013028.png ; $\phi _ { - } ( x , t , z ) = \operatorname { exp } ( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } )$ ; confidence 0.963 | ||
| + | |||
| + | 204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png ; $K P$ ; confidence 0.846 | ||
| + | |||
| + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434 | ||
| + | |||
| + | 206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013029.png ; $\phi _ { + } = \operatorname { exp } ( \sum _ { j = 1 } ^ { \infty } \phi _ { j } ( x , t ) z ^ { j } )$ ; confidence 0.999 | ||
| + | |||
| + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284 | ||
| + | |||
| + | 208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237 | ||
| + | |||
| + | 209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013044.png ; $F _ { j k } =$ ; confidence 0.626 | ||
| + | |||
| + | 210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $$= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$$ ; confidence 0.240 | ||
| + | |||
| + | 211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183 | ||
| + | |||
| + | 212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png ; $i$ ; confidence 0.889 | ||
| + | |||
| + | 213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013024.png ; $g ( z )$ ; confidence 0.996 | ||
| + | |||
| + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013069.png ; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in Z }$ ; confidence 0.585 | ||
| + | |||
| + | 215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png ; $$L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$$ ; confidence 0.711 | ||
| + | |||
| + | 216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869 | ||
| + | |||
| + | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976 | ||
| + | |||
| + | 218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906 | ||
| + | |||
| + | 219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716 | ||
| + | |||
| + | 220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401 | ||
| + | |||
| + | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947 | ||
| + | |||
| + | 222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301305.png ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374 | ||
| + | |||
| + | 223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831 | ||
| + | |||
| + | 224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013096.png ; $P _ { 1 }$ ; confidence 0.674 | ||
| + | |||
| + | 225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013097.png ; $L ( \psi ) = z \psi$ ; confidence 0.998 | ||
| + | |||
| + | 226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352 | ||
| + | |||
| + | 227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301307.png ; $Q$ ; confidence 0.380 | ||
| + | |||
| + | 228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161 | ||
| + | |||
| + | 229. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013095.png ; $12$ ; confidence 0.590 | ||
| + | |||
| + | 230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896 | ||
| + | |||
| + | 231. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $Q$ ; confidence 0.095 | ||
| + | |||
| + | 232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png ; $z \in C$ ; confidence 0.369 | ||
| + | |||
| + | 233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173 | ||
| + | |||
| + | 234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156 | ||
| + | |||
| + | 235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013012.png ; $Q _ { 1 } = P _ { 1 }$ ; confidence 0.999 | ||
| + | |||
| + | 236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947 | ||
| + | |||
| + | 237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474 | ||
| + | |||
| + | 238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013043.png ; $F _ { j k }$ ; confidence 0.974 | ||
| + | |||
| + | 239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947 | ||
| + | |||
| + | 240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247 | ||
| + | |||
| + | 241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013092.png ; $( 2 \times 2 )$ ; confidence 1.000 | ||
| + | |||
| + | 242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462 | ||
| + | |||
| + | 243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137 | ||
| + | |||
| + | 244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013074.png ; $T$ ; confidence 0.973 | ||
| + | |||
| + | 245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431 | ||
| + | |||
| + | 246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022034.png ; $0 \leq S \leq T \in L ( X )$ ; confidence 0.657 | ||
| + | |||
| + | 247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202206.png ; $\varepsilon \in X$ ; confidence 0.430 | ||
| + | |||
| + | 248. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022022.png ; $Y$ ; confidence 0.894 | ||
| + | |||
| + | 249. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259 | ||
| + | |||
| + | 250. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022013.png ; $$T : X \rightarrow Y$$ ; confidence 0.863 | ||
| + | |||
| + | 251. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914 | ||
| + | |||
| + | 252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750 | ||
| + | |||
| + | 253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202209.png ; $x | < e$ ; confidence 0.841 | ||
| + | |||
| + | 254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | < 1$ ; confidence 0.271 | ||
| + | |||
| + | 255. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022039.png ; $S < T$ ; confidence 0.984 | ||
| + | |||
| + | 256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088 | ||
| + | |||
| + | 257. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022025.png ; $Y = L ^ { 1 } ( \mu )$ ; confidence 1.000 | ||
| + | |||
| + | 258. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022033.png ; $5$ ; confidence 0.396 | ||
| + | |||
| + | 259. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814 | ||
| + | |||
| + | 260. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022035.png ; $r ( S ) \leq r ( T )$ ; confidence 0.998 | ||
| + | |||
| + | 261. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490 | ||
| + | |||
| + | 262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022012.png ; $1 \leq p < \infty$ ; confidence 0.999 | ||
| + | |||
| + | 263. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838 | ||
| + | |||
| + | 264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022010.png ; $X = c 0$ ; confidence 0.759 | ||
| + | |||
| + | 265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202208.png ; $| x | | \leq 1$ ; confidence 0.929 | ||
| + | |||
| + | 266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240286.png ; $1 - \alpha$ ; confidence 0.993 | ||
| + | |||
| + | 267. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240135.png ; $A$ ; confidence 0.952 | ||
| + | |||
| + | 268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240204.png ; $74$ ; confidence 0.550 | ||
| + | |||
| + | 269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024051.png ; $3$ ; confidence 0.891 | ||
| + | |||
| + | 270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501 | ||
| + | |||
| + | 271. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500 | ||
| + | |||
| + | 272. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322 | ||
| + | |||
| + | 273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $x$ ; confidence 0.751 | ||
| + | |||
| + | 274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240218.png ; $z = \Gamma y$ ; confidence 0.946 | ||
| + | |||
| + | 275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024048.png ; $s \times p$ ; confidence 0.642 | ||
| + | |||
| + | 276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024059.png ; $( i , j )$ ; confidence 0.935 | ||
| + | |||
| + | 277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240137.png ; $B$ ; confidence 0.651 | ||
| + | |||
| + | 278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240478.png ; $0$ ; confidence 0.969 | ||
| + | |||
| + | 279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240397.png ; $M _ { E }$ ; confidence 0.680 | ||
| + | |||
| + | 280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239 | ||
| + | |||
| + | 281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481 | ||
| + | |||
| + | 282. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240539.png ; $T _ { 1 }$ ; confidence 0.446 | ||
| + | |||
| + | 283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240452.png ; $P$ ; confidence 0.403 | ||
| + | |||
| + | 284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240446.png ; $j = 1 , \ldots , p$ ; confidence 0.616 | ||
| + | |||
| + | 285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240545.png ; $2$ ; confidence 0.985 | ||
| + | |||
| + | 286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $$c$$ ; confidence 0.324 | ||
| + | |||
| + | 287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485 | ||
| + | |||
| + | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240106.png ; $t$ ; confidence 0.895 | ||
| + | |||
| + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240516.png ; $R = V _ { 33 } ^ { - 1 } V _ { 32 }$ ; confidence 0.628 | ||
| + | |||
| + | 290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345 | ||
| + | |||
| + | 291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240431.png ; $a ^ { \prime } \Theta$ ; confidence 0.987 | ||
| + | |||
| + | 292. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424 | ||
| + | |||
| + | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281 | ||
| + | |||
| + | 294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240399.png ; $X _ { 3 }$ ; confidence 0.593 | ||
| + | |||
| + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793 | ||
| + | |||
| + | 296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414 | ||
| + | |||
| + | 297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779 | ||
| + | |||
| + | 298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240444.png ; $N$ ; confidence 0.740 | ||
| + | |||
| + | 299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240371.png ; $Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.548 | ||
| + | |||
| + | 300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240500.png ; $2$ ; confidence 0.672 | ||
| + | |||
| + | 301. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240342.png ; $Y , B , E$ ; confidence 0.984 | ||
| + | |||
| + | 302. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240194.png ; $8$ ; confidence 0.593 | ||
| + | |||
| + | 303. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240509.png ; $E [ Z _ { 32 } , Z _ { 33 } ] = 0$ ; confidence 0.584 | ||
| + | |||
| + | 304. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $2$ ; confidence 0.473 | ||
| + | |||
| + | 305. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458 | ||
| + | |||
| + | 306. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731 | ||
| + | |||
| + | 307. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $$M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$$ ; confidence 0.159 | ||
| + | |||
| + | 308. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240518.png ; $Z _ { 12 }$ ; confidence 0.917 | ||
| + | |||
| + | 309. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024039.png ; $p \times p$ ; confidence 0.711 | ||
| + | |||
| + | 310. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219 | ||
| + | |||
| + | 311. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024067.png ; $e _ { j k }$ ; confidence 0.169 | ||
| + | |||
| + | 312. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917 | ||
| + | |||
| + | 313. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275 | ||
| + | |||
| + | 314. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240110.png ; $x$ ; confidence 0.968 | ||
| + | |||
| + | 315. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240248.png ; $( q , n - r )$ ; confidence 0.777 | ||
| + | |||
| + | 316. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240348.png ; $( r - q ) \times p$ ; confidence 1.000 | ||
| + | |||
| + | 317. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240213.png ; $7$ ; confidence 0.945 | ||
| + | |||
| + | 318. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480 | ||
| + | |||
| + | 319. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240453.png ; $q = 1$ ; confidence 0.790 | ||
| + | |||
| + | 320. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240338.png ; $N ( 0 , \Sigma _ { 1 } )$ ; confidence 0.996 | ||
| + | |||
| + | 321. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240373.png ; $z _ { 1 }$ ; confidence 0.669 | ||
| + | |||
| + | 322. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024025.png ; $y , \beta , e$ ; confidence 0.936 | ||
| + | |||
| + | 323. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240244.png ; $= \operatorname { sin } \gamma q$ ; confidence 0.055 | ||
| + | |||
| + | 324. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492 | ||
| + | |||
| + | 325. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240424.png ; $( 1 \times p )$ ; confidence 1.000 | ||
| + | |||
| + | 326. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240485.png ; $B$ ; confidence 0.738 | ||
| + | |||
| + | 327. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852 | ||
| + | |||
| + | 328. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240236.png ; $n - r$ ; confidence 0.377 | ||
| + | |||
| + | 329. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240142.png ; $m \times 1$ ; confidence 0.995 | ||
| + | |||
| + | 330. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277 | ||
| + | |||
| + | 331. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240254.png ; $6$ ; confidence 0.612 | ||
| + | |||
| + | 332. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240524.png ; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727 | ||
| + | |||
| + | 333. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134 | ||
| + | |||
| + | 334. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240285.png ; $\psi \in L$ ; confidence 0.533 | ||
| + | |||
| + | 335. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240177.png ; $\alpha$ ; confidence 0.905 | ||
| + | |||
| + | 336. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240334.png ; $\Gamma = B X$ ; confidence 0.884 | ||
| + | |||
| + | 337. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240443.png ; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980 | ||
| + | |||
| + | 338. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902 | ||
| + | |||
| + | 339. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240515.png ; $Z _ { 0 } = Z _ { 12 } - Z _ { 13 } R$ ; confidence 0.674 | ||
| + | |||
| + | 340. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795 | ||
| + | |||
| + | 341. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240429.png ; $\Theta$ ; confidence 0.834 | ||
| + | |||
| + | 342. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240261.png ; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961 | ||
| + | |||
| + | 343. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024019.png ; $y$ ; confidence 0.478 | ||
| + | |||
| + | 344. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240396.png ; $M _ { H }$ ; confidence 0.989 | ||
| + | |||
| + | 345. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240408.png ; $y _ { i j k }$ ; confidence 0.873 | ||
| + | |||
| + | 346. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240353.png ; $E ( Z _ { 3 } ) = 0$ ; confidence 0.631 | ||
| + | |||
| + | 347. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240109.png ; $( \alpha , \beta , \gamma ) ^ { \prime } = \beta$ ; confidence 1.000 | ||
| + | |||
| + | 348. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783 | ||
| + | |||
| + | 349. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240493.png ; $( 1 , t _ { j } , \ldots , t _ { j } ^ { k } ) ^ { \prime }$ ; confidence 0.604 | ||
| + | |||
| + | 350. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024046.png ; $m \times s$ ; confidence 0.983 | ||
| + | |||
| + | 351. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251 | ||
| + | |||
| + | 352. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240423.png ; $$q \times 1$$ ; confidence 1.000 | ||
| + | |||
| + | 353. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240216.png ; $\operatorname { dim } ( \Omega ) = r$ ; confidence 0.998 | ||
| + | |||
| + | 354. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857 | ||
| + | |||
| + | 355. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240330.png ; $( p \times p _ { 1 } )$ ; confidence 0.958 | ||
| + | |||
| + | 356. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240362.png ; $22$ ; confidence 0.710 | ||
| + | |||
| + | 357. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864 | ||
| + | |||
| + | 358. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240281.png ; $\| d \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982 | ||
| + | |||
| + | 359. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024015.png ; $n > m$ ; confidence 0.980 | ||
| + | |||
| + | 360. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240209.png ; $S$ ; confidence 0.868 | ||
| + | |||
| + | 361. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240219.png ; $$I$$ ; confidence 0.738 | ||
| + | |||
| + | 362. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240231.png ; $a$ ; confidence 0.607 | ||
| + | |||
| + | 363. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240220.png ; $$n \times n$$ ; confidence 0.980 | ||
| + | |||
| + | 364. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240147.png ; $\mu$ ; confidence 0.780 | ||
| + | |||
| + | 365. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240239.png ; $$MS _ { e }$$ ; confidence 0.884 | ||
| + | |||
| + | 366. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240375.png ; $$( n - r ) F$$ ; confidence 1.000 | ||
| + | |||
| + | 367. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240328.png ; $$H : X _ { 3 } B X _ { 4 } = 0$$ ; confidence 0.914 | ||
| + | |||
| + | 368. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240508.png ; $$E ( Z _ { 13 } ) = 0$$ ; confidence 0.388 | ||
| + | |||
| + | 369. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310159.png ; $\Omega$ ; confidence 0.783 | ||
| + | |||
| + | 370. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010249.png ; $$( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$$ ; confidence 0.467 | ||
| + | |||
| + | 371. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010186.png ; $$A + \delta A$$ ; confidence 0.999 | ||
| + | |||
| + | 372. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010124.png ; $$A A ^ { + } A = A$$ ; confidence 0.999 | ||
| + | |||
| + | 373. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010282.png ; $$A _ { i } \in R ^ { n \times n }$$ ; confidence 0.952 | ||
| + | |||
| + | 374. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001016.png ; $$x + \delta x$$ ; confidence 0.997 | ||
| + | |||
| + | 375. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010117.png ; $$A x = b$$ ; confidence 0.981 | ||
| + | |||
| + | 376. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010138.png ; $$\sigma _ { i } ( A ) - \sigma _ { 1 } ( \delta A ) \leq \sigma _ { i } ( A + \delta A ) \leq \sigma _ { i } ( A ) + \sigma _ { i } ( \delta A )$$ ; confidence 0.987 | ||
| + | |||
| + | 377. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010250.png ; $$A x - \hat { \lambda } x = - \delta A x$$ ; confidence 0.499 | ||
| + | |||
| + | 378. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010217.png ; $$1 / | y ^ { i } _ { x ^ { i } } ^ { * }$$ ; confidence 0.245 | ||
| + | |||
| + | 379. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010278.png ; $$X$$ ; confidence 0.962 | ||
| + | |||
| + | 380. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010144.png ; $$\frac { \| ( A + \delta A ) ^ { + } - A ^ { + } \| } { \| ( A + \delta A ) ^ { + } \| _ { 2 } } \leq \mu \| A ^ { + } \| _ { 2 } \| \delta A _ { 2 }$$ ; confidence 0.551 | ||
| + | |||
| + | 381. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001037.png ; $$\| \delta b \| \leq \epsilon \| b \|$$ ; confidence 0.440 | ||
| + | |||
| + | 382. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020027.png ; $$3$$ ; confidence 0.899 | ||
| + | |||
| + | 383. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020080.png ; $6$ ; confidence 0.907 | ||
| + | |||
| + | 384. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020025.png ; $$D : \mathfrak { D } \rightarrow A$$ ; confidence 0.505 | ||
| + | |||
| + | 385. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002020.png ; $$D _ { 2 }$$ ; confidence 0.967 | ||
| + | |||
| + | 386. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021067.png ; $$( 1 / z ) d z$$ ; confidence 0.991 | ||
| + | |||
| + | 387. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210119.png ; $$d [ ( \omega ) ] = 2 g - 2$$ ; confidence 0.588 | ||
| + | |||
| + | 388. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022081.png ; $$\alpha _ { j k } = \alpha _ { k l }$$ ; confidence 0.439 | ||
| + | |||
| + | 389. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024027.png ; $2$ ; confidence 0.729 | ||
| + | |||
| + | 390. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024055.png ; $$L \subset F$$ ; confidence 0.990 | ||
| + | |||
| + | 391. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024062.png ; $$B i$$ ; confidence 0.539 | ||
| + | |||
| + | 392. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024073.png ; $$\omega P _ { i } P _ { j }$$ ; confidence 0.938 | ||
| + | |||
| + | 393. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040185.png ; $$p | D _ { i }$$ ; confidence 0.587 | ||
| + | |||
| + | 394. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004020.png ; $a$ ; confidence 0.856 | ||
| + | |||
| + | 395. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040170.png ; $$A$$ ; confidence 0.998 | ||
| + | |||
| + | 396. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040106.png ; $$L ] = \lambda$$ ; confidence 0.859 | ||
| + | |||
| + | 397. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040196.png ; $$\varphi _ { L } : A \rightarrow P ^ { 4 }$$ ; confidence 0.936 | ||
| + | |||
| + | 398. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101207.png ; $$\sum _ { n = 0 } ^ { \infty } f ^ { ( n ) } ( \lambda _ { n } ) P _ { n } ( z )$$ ; confidence 0.754 | ||
| + | |||
| + | 399. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012049.png ; $$A _ { 1 } ^ { * }$$ ; confidence 0.975 | ||
| + | |||
| + | 400. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012050.png ; $$z | > 1$$ ; confidence 0.823 | ||
| + | |||
| + | 401. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002022.png ; $$F _ { 0 } = f$$ ; confidence 0.979 | ||
| + | |||
| + | 402. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a1200203.png ; $$A \subset Y$$ ; confidence 0.990 | ||
| + | |||
| + | 403. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $$B _ { j } \in B$$ ; confidence 0.414 | ||
| + | |||
| + | 404. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043023.png ; $$t \rightarrow \infty$$ ; confidence 0.998 | ||
| + | |||
| + | 405. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004067.png ; $$\psi \in \Gamma$$ ; confidence 1.000 | ||
| + | |||
| + | 406. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040149.png ; $$\Lambda _ { S 5 } T$$ ; confidence 0.591 | ||
| + | |||
| + | 407. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $$\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$$ ; confidence 0.117 | ||
| + | |||
| + | 408. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004089.png ; $$D$$ ; confidence 0.984 | ||
| + | |||
| + | 409. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040367.png ; $$\tilde { \Omega }$$ ; confidence 0.505 | ||
| + | |||
| + | 410. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $X \in X$ ; confidence 0.278 | ||
| + | |||
| + | 411. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040442.png ; $$h ^ { - 1 } ( F _ { 0 } )$$ ; confidence 0.995 | ||
| + | |||
| + | 412. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050230.png ; $$A ^ { \# }$$ ; confidence 0.967 | ||
| + | |||
| + | 413. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050246.png ; $$Z _ { G } ( - q ^ { - 1 } ) \neq 0$$ ; confidence 0.985 | ||
| + | |||
| + | 414. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010055.png ; $$C _ { W } ( X )$$ ; confidence 0.985 | ||
| + | |||
| + | 415. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101003.png ; $$V$$ ; confidence 0.987 | ||
| + | |||
| + | 416. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $$M$$ ; confidence 0.455 | ||
| + | |||
| + | 417. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005085.png ; $$0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$$ ; confidence 0.863 | ||
| + | |||
| + | 418. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200608.png ; $$c ( x )$$ ; confidence 0.998 | ||
| + | |||
| + | 419. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $$P _ { V } ^ { \# } ( n )$$ ; confidence 0.472 | ||
| + | |||
| + | 420. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006083.png ; $$\overline { H }$$ ; confidence 0.950 | ||
| + | |||
| + | 421. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070121.png ; $$n \equiv a ( \operatorname { mod } b )$$ ; confidence 0.605 | ||
| + | |||
| + | 422. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007057.png ; $$A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$$ ; confidence 0.911 | ||
| + | |||
| + | 423. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007080.png ; $$\sigma ( n ) > \sigma ( m )$$ ; confidence 0.996 | ||
| + | |||
| + | 424. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007033.png ; $$< 1$$ ; confidence 0.999 | ||
| + | |||
| + | 425. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007083.png ; $$H ( x ) > ( 1 - \varepsilon ) ( \operatorname { log } x ) ^ { 2 }$$ ; confidence 0.997 | ||
| + | |||
| + | 426. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016019.png ; $$x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$$ ; confidence 0.894 | ||
| + | |||
| + | 427. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016079.png ; $$[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$$ ; confidence 0.783 | ||
| + | |||
| + | 428. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016027.png ; $$A = L + D + U$$ ; confidence 0.995 | ||
| + | |||
| + | 429. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a1101706.png ; $$\phi : \Omega \rightarrow \Omega _ { t }$$ ; confidence 0.989 | ||
| + | |||
| + | 430. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008083.png ; $$X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$$ ; confidence 0.910 | ||
| + | |||
| + | 431. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008058.png ; $$X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$$ ; confidence 0.929 | ||
| + | |||
| + | 432. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220101.png ; $$R ( f )$$ ; confidence 1.000 | ||
| + | |||
| + | 433. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220112.png ; $$\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$$ ; confidence 0.794 | ||
| + | |||
| + | 434. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201008.png ; $$y ( 0 ) = x$$ ; confidence 0.978 | ||
| + | |||
| + | 435. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010079.png ; $$( I + \lambda A )$$ ; confidence 0.992 | ||
| + | |||
| + | 436. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055060.png ; $$\partial X ^ { \prime \prime }$$ ; confidence 0.986 | ||
| + | |||
| + | 437. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012069.png ; $$p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$$ ; confidence 0.875 | ||
| + | |||
| + | 438. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012024.png ; $$7$$ ; confidence 0.986 | ||
| + | |||
| + | 439. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012049.png ; $$x ^ { \prime } > x$$ ; confidence 0.689 | ||
| + | |||
| + | 440. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028017.png ; $$l ( D ) \geq \chi ( G ) - 1$$ ; confidence 0.970 | ||
| + | |||
| + | 441. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028064.png ; $$\chi ( G ) < \operatorname { girth } ( G )$$ ; confidence 0.791 | ||
| + | |||
| + | 442. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032019.png ; $$z \rightarrow 0$$ ; confidence 0.986 | ||
| + | |||
| + | 443. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $$m$$ ; confidence 0.259 | ||
| + | |||
| + | 444. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033016.png ; $$N p$$ ; confidence 0.998 | ||
| + | |||
| + | 445. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205 | ||
| + | |||
| + | 446. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a01064020.png ; $$d ( m )$$ ; confidence 0.930 | ||
| + | |||
| + | 447. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a01064015.png ; $$k _ { 1 } = 2$$ ; confidence 0.992 | ||
| + | |||
| + | 448. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070020.png ; $$\beta : S \rightarrow B / L$$ ; confidence 0.984 | ||
| + | |||
| + | 449. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110360/a11036013.png ; $$n > 1$$ ; confidence 0.998 | ||
| + | |||
| + | 450. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071024.png ; $$A = A _ { 1 } \cap \ldots \cap A _ { n }$$ ; confidence 0.254 | ||
| + | |||
| + | 451. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110380/a11038041.png ; $$\approx 3$$ ; confidence 0.590 | ||
| + | |||
| + | 452. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110380/a11038040.png ; $$\sim 2$$ ; confidence 0.512 | ||
| + | |||
| + | 453. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $$\operatorname { ad } X$$ ; confidence 0.415 | ||
| + | |||
| + | 454. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015069.png ; $$\mathfrak { a } / W$$ ; confidence 0.438 | ||
| + | |||
| + | 455. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015019.png ; $$( g )$$ ; confidence 0.376 | ||
| + | |||
| + | 456. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081095.png ; $$\lambda \neq \mu$$ ; confidence 0.997 | ||
| + | |||
| + | 457. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081069.png ; $$U _ { j } ^ { * } ( \xi )$$ ; confidence 0.987 | ||
| + | |||
| + | 458. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $$X \in Ob \odot$$ ; confidence 0.251 | ||
| + | |||
| + | 459. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084029.png ; $$l \mapsto ( . l )$$ ; confidence 0.425 | ||
| + | |||
| + | 460. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040023.png ; $$T ^ { * }$$ ; confidence 0.984 | ||
| + | |||
| + | 461. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041070.png ; $$K _ { X } ^ { v } \otimes L ^ { i }$$ ; confidence 0.368 | ||
| + | |||
| + | 462. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016064.png ; $$\lambda < 1$$ ; confidence 0.995 | ||
| + | |||
| + | 463. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160130.png ; $$W E = R . F . I$$ ; confidence 0.845 | ||
| + | |||
| + | 464. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016079.png ; $$1 / ( 1 - \lambda )$$ ; confidence 0.977 | ||
| + | |||
| + | 465. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095099.png ; $$X = \xi ^ { i }$$ ; confidence 0.662 | ||
| + | |||
| + | 466. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105018.png ; $$f \times ( O _ { X } )$$ ; confidence 0.620 | ||
| + | |||
| + | 467. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017016.png ; $$b ( t ) = F ( t ) + \int _ { 0 } ^ { t } K ( t - s ) b ( s ) d s$$ ; confidence 0.998 | ||
| + | |||
| + | 468. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a0112107.png ; $$\operatorname { Ai } ( x )$$ ; confidence 0.619 | ||
| + | |||
| + | 469. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a011210114.png ; $$w ^ { \prime \prime } ( z ) = z w ( z )$$ ; confidence 0.701 | ||
| + | |||
| + | 470. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018084.png ; $$10 ^ { 16 }$$ ; confidence 1.000 | ||
| + | |||
| + | 471. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130060.png ; $$\gamma m$$ ; confidence 0.719 | ||
| + | |||
| + | 472. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137073.png ; $$\{ U _ { i } \}$$ ; confidence 0.984 | ||
| + | |||
| + | 473. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370171.png ; $$f ( \psi ( z ) )$$ ; confidence 0.994 | ||
| + | |||
| + | 474. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137088.png ; $$\int _ { - \infty } ^ { + \infty } \operatorname { ln } \| \operatorname { exp } ( i t f _ { \alpha } ) \| \frac { d t } { 1 + t ^ { 2 } } < \infty$$ ; confidence 0.982 | ||
| + | |||
| + | 475. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139015.png ; $$\mu _ { f } ( E ) = \int _ { E } f d x$$ ; confidence 0.622 | ||
| + | |||
| + | 476. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a1104901.png ; $$D = d / d t$$ ; confidence 0.954 | ||
| + | |||
| + | 477. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450195.png ; $$C / \Omega$$ ; confidence 0.538 | ||
| + | |||
| + | 478. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a0114501.png ; $$A _ { k } ^ { 2 }$$ ; confidence 0.983 | ||
| + | |||
| + | 479. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146020.png ; $$( 2 n - 2 p )$$ ; confidence 1.000 | ||
| + | |||
| + | 480. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a011460108.png ; $$x \in A ^ { p } ( X ) = A ^ { * } ( X ) \cap H ^ { 2 p } ( X )$$ ; confidence 0.669 | ||
| + | |||
| + | 481. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146029.png ; $$p = n - 1$$ ; confidence 0.999 | ||
| + | |||
| + | 482. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149058.png ; $$D ( x _ { 0 } ) = 0$$ ; confidence 0.998 | ||
| + | |||
| + | 483. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150079.png ; $$x _ { 0 } ^ { 3 } x _ { 1 } + x _ { 1 } ^ { 3 } x _ { 2 } + x _ { 2 } ^ { 3 } x _ { 0 } = 0$$ ; confidence 0.999 | ||
| + | |||
| + | 484. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152034.png ; $$\tau : G \times V \rightarrow V$$ ; confidence 0.995 | ||
| + | |||
| + | 485. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152028.png ; $$G _ { X } = \{ g \in G : g x = x \}$$ ; confidence 0.901 | ||
| + | |||
| + | 486. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152036.png ; $$V ^ { 1 }$$ ; confidence 0.987 | ||
| + | |||
| + | 487. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018015.png ; $$\tau \in V o c$$ ; confidence 0.532 | ||
| + | |||
| + | 488. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600189.png ; $$( K / k )$$ ; confidence 0.875 | ||
| + | |||
| + | 489. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600128.png ; $$f _ { 1 } = \ldots = f _ { m }$$ ; confidence 0.889 | ||
| + | |||
| + | 490. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600249.png ; $$L / K$$ ; confidence 0.986 | ||
| + | |||
| + | 491. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600198.png ; $$N _ { 0 }$$ ; confidence 0.151 | ||
| + | |||
| + | 492. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600163.png ; $$1 \leq h _ { m } \leq h . \phi ( m )$$ ; confidence 0.774 | ||
| + | |||
| + | 493. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162010.png ; $$f ( x ) - P _ { n } ^ { 0 } ( x )$$ ; confidence 0.810 | ||
| + | |||
| + | 494. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164040.png ; $$q ( V )$$ ; confidence 0.977 | ||
| + | |||
| + | 495. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164014.png ; $$| K _ { i } | = | i K _ { V ^ { J } } |$$ ; confidence 0.620 | ||
| + | |||
| + | 496. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640127.png ; $$M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$$ ; confidence 0.369 | ||
| + | |||
| + | 497. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640155.png ; $$p _ { g } \neq 1$$ ; confidence 0.708 | ||
| + | |||
| + | 498. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165079.png ; $$H$$ ; confidence 0.957 | ||
| + | |||
| + | 499. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650288.png ; $$m = \nu ( P )$$ ; confidence 0.995 | ||
| + | |||
| + | 500. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165078.png ; $$H \times H \rightarrow H$$ ; confidence 0.989 | ||
| + | |||
| + | 501. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650412.png ; $$A _ { \alpha } \subseteq A$$ ; confidence 0.993 | ||
| + | |||
| + | 502. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650252.png ; $$\forall x _ { k }$$ ; confidence 0.834 | ||
| + | |||
| + | 503. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650408.png ; $$\Omega _ { p } ^ { * } = \Omega _ { p } \cup \{ F _ { i } ^ { * } : F _ { i } \in \Omega _ { f } \}$$ ; confidence 0.985 | ||
| + | |||
| + | 504. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169071.png ; $$L _ { \Omega }$$ ; confidence 0.997 | ||
| + | |||
| + | 505. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011720/a01172012.png ; $$\operatorname { Red } : X ( K ) \rightarrow X _ { 0 } ( k )$$ ; confidence 0.991 | ||
| + | |||
| + | 506. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a01178066.png ; $$p \in C$$ ; confidence 0.958 | ||
| + | |||
| + | 507. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a01178016.png ; $$b a P$$ ; confidence 0.779 | ||
| + | |||
| + | 508. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820124.png ; $$M \times N$$ ; confidence 0.757 | ||
| + | |||
| + | 509. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197046.png ; $$U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$$ ; confidence 0.179 | ||
| + | |||
| + | 510. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011980/a01198058.png ; $$\{ f ( x ) \overline { \phi } _ { \lambda } ( x ) \}$$ ; confidence 0.564 | ||
| + | |||
| + | 511. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011990/a0119906.png ; $$\pi _ { k } ( x )$$ ; confidence 0.899 | ||
| + | |||
| + | 512. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022025.png ; $$i : A \rightarrow X$$ ; confidence 0.601 | ||
| + | |||
| + | 513. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110540/a11054026.png ; $$O ( n ^ { 2 } \operatorname { log } n )$$ ; confidence 0.568 | ||
| + | |||
| + | 514. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023028.png ; $$f _ { 1 } = ( P _ { n } \ldots P _ { 1 } ) ^ { 1 } f$$ ; confidence 0.568 | ||
| + | |||
| + | 515. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $$\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$$ ; confidence 0.287 | ||
| + | |||
| + | 516. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023032.png ; $$1 \rightarrow \infty$$ ; confidence 0.982 | ||
| + | |||
| + | 517. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012040/a01204016.png ; $$\partial M ^ { n + 1 } = K ^ { n }$$ ; confidence 0.516 | ||
| + | |||
| + | 518. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012040/a01204017.png ; $$X \subset Y$$ ; confidence 0.590 | ||
| + | |||
| + | 519. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a0120907.png ; $$\alpha \neq 0$$ ; confidence 0.947 | ||
| + | |||
| + | 520. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209091.png ; $$N ( R ) \neq 0$$ ; confidence 0.997 | ||
| + | |||
| + | 521. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209097.png ; $$Z ( A ) = A \cap Z ( R )$$ ; confidence 0.998 | ||
| + | |||
| + | 522. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012100/a01210023.png ; $$| \alpha | = \sqrt { \overline { \alpha } \alpha }$$ ; confidence 0.964 | ||
| + | |||
| + | 523. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212040.png ; $$\alpha _ { i } + 1$$ ; confidence 0.659 | ||
| + | |||
| + | 524. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012160/a0121604.png ; $$\phi = \operatorname { am } z$$ ; confidence 0.783 | ||
| + | |||
| + | 525. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058047.png ; $$= v : q$$ ; confidence 0.846 | ||
| + | |||
| + | 526. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023068.png ; $$c _ { q }$$ ; confidence 0.425 | ||
| + | |||
| + | 527. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202303.png ; $$f \in C ( \partial D )$$ ; confidence 0.993 | ||
| + | |||
| + | 528. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012210/a01221035.png ; $$f ( t ) = \psi ( \phi ( t ) )$$ ; confidence 0.999 | ||
| + | |||
| + | 529. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225011.png ; $$R > 0$$ ; confidence 1.000 | ||
| + | |||
| + | 530. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233050.png ; $$x <$$ ; confidence 0.424 | ||
| + | |||
| + | 531. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234035.png ; $$a \in V$$ ; confidence 0.699 | ||
| + | |||
| + | 532. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410135.png ; $$f ( S )$$ ; confidence 0.968 | ||
| + | |||
| + | 533. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241063.png ; $$s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$$ ; confidence 0.271 | ||
| + | |||
| + | 534. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410141.png ; $$R ^ { n } \subset C ^ { k }$$ ; confidence 0.407 | ||
| + | |||
| + | 535. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a01243088.png ; $$f$$ ; confidence 0.816 | ||
| + | |||
| + | 536. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430100.png ; $$I Y \subset O$$ ; confidence 0.739 | ||
| + | |||
| + | 537. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $$X \equiv 0$$ ; confidence 0.220 | ||
| + | |||
| + | 538. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110600/a11060013.png ; $$0.96$$ ; confidence 1.000 | ||
| + | |||
| + | 539. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012550/a01255032.png ; $$\Gamma _ { n } ^ { \alpha } ( H ) _ { \alpha } ^ { 8 }$$ ; confidence 0.595 | ||
| + | |||
| + | 540. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610171.png ; $$h \in \operatorname { Diff } ^ { + } ( M )$$ ; confidence 0.591 | ||
| + | |||
| + | 541. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610104.png ; $$Z = \int _ { A } D A \sqrt { \operatorname { det } ( / \partial _ { A } ^ { * } / \partial _ { A } ) } \operatorname { exp } [ - \| F \| ^ { 2 } ]$$ ; confidence 0.921 | ||
| + | |||
| + | 542. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110630/a11063032.png ; $$\rho _ { 0 n + } = \operatorname { sin } A$$ ; confidence 0.354 | ||
| + | |||
| + | 543. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012800/a01280065.png ; $$\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$$ ; confidence 0.072 | ||
| + | |||
| + | 544. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293027.png ; $$L u \equiv \frac { \partial u } { \partial t } - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = 0$$ ; confidence 0.607 | ||
| + | |||
| + | 545. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294080.png ; $$F _ { b }$$ ; confidence 0.450 | ||
| + | |||
| + | 546. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294081.png ; $$f \in F$$ ; confidence 0.988 | ||
| + | |||
| + | 547. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950197.png ; $$( L _ { 2 } )$$ ; confidence 0.999 | ||
| + | |||
| + | 548. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012960/a01296094.png ; $$n > r$$ ; confidence 0.999 | ||
| + | |||
| + | 549. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970198.png ; $$\hat { W } \square _ { \infty } ^ { \gamma }$$ ; confidence 0.199 | ||
| + | |||
| + | 550. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970176.png ; $$d _ { 2 n - 1 } = d _ { 2 n }$$ ; confidence 0.797 | ||
| + | |||
| + | 551. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970129.png ; $$S _ { 2 } ^ { \gamma }$$ ; confidence 0.562 | ||
| + | |||
| + | 552. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970196.png ; $$m \geq r$$ ; confidence 0.999 | ||
| + | |||
| + | 553. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297077.png ; $$\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$$ ; confidence 0.144 | ||
| + | |||
| + | 554. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970244.png ; $$L ( f )$$ ; confidence 0.998 | ||
| + | |||
| + | 555. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a01298030.png ; $$\phi _ { k } ( t _ { k } ) = 1$$ ; confidence 0.994 | ||
| + | |||
| + | 556. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a01298033.png ; $$X = H$$ ; confidence 0.599 | ||
| + | |||
| + | 557. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300068.png ; $$P _ { 0 } ( z )$$ ; confidence 0.963 | ||
| + | |||
| + | 558. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300057.png ; $$L _ { p } ( E )$$ ; confidence 0.872 | ||
| + | |||
| + | 559. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300016.png ; $$\operatorname { deg } P \leq n$$ ; confidence 0.996 | ||
| + | |||
| + | 560. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a01301081.png ; $$D ^ { 0 } f = f$$ ; confidence 0.998 | ||
| + | |||
| + | 561. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $$\{ x _ { n j } ^ { \prime } \}$$ ; confidence 0.273 | ||
| + | |||
| + | 562. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303027.png ; $$\operatorname { sup } _ { x \in \mathfrak { M } } \| x - A x \|$$ ; confidence 0.679 | ||
| + | |||
| + | 563. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013170/a01317026.png ; $$y _ { t } = t - S _ { \eta _ { t } }$$ ; confidence 0.968 | ||
| + | |||
| + | 564. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180116.png ; $$H _ { k + 1 } ( f ( M ) )$$ ; confidence 0.998 | ||
| + | |||
| + | 565. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180158.png ; $$\| T _ { M } \|$$ ; confidence 0.918 | ||
| + | |||
| + | 566. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132202.png ; $$F ( z ) = z + \alpha _ { 0 } + \frac { \alpha _ { 1 } } { z } + \ldots$$ ; confidence 0.619 | ||
| + | |||
| + | 567. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322017.png ; $$\overline { B } = C F ( \Delta ^ { \prime } )$$ ; confidence 0.999 | ||
| + | |||
| + | 568. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066057.png ; $$1 ^ { 1 } = 1 ^ { 1 } ( N )$$ ; confidence 0.689 | ||
| + | |||
| + | 569. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068093.png ; $$L f \theta$$ ; confidence 0.169 | ||
| + | |||
| + | 570. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680125.png ; $$p / p$$ ; confidence 0.977 | ||
| + | |||
| + | 571. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680195.png ; $$b _ { i } = \alpha _ { i } \alpha _ { 1 }$$ ; confidence 0.437 | ||
| + | |||
| + | 572. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068053.png ; $$r ^ { \prime } < r$$ ; confidence 0.977 | ||
| + | |||
| + | 573. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068076.png ; $$\alpha \geq b$$ ; confidence 0.978 | ||
| + | |||
| + | 574. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680200.png ; $$r$$ ; confidence 0.805 | ||
| + | |||
| + | 575. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680179.png ; $$\phi _ { x y } a \leq b$$ ; confidence 0.847 | ||
| + | |||
| + | 576. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325016.png ; $$\operatorname { Arg } f$$ ; confidence 0.692 | ||
| + | |||
| + | 577. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325046.png ; $$0 \notin f ( \partial D )$$ ; confidence 0.904 | ||
| + | |||
| + | 578. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325015.png ; $$\operatorname { arg } f$$ ; confidence 0.862 | ||
| + | |||
| + | 579. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a11070050.png ; $$\beta ( A )$$ ; confidence 0.999 | ||
| + | |||
| + | 580. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a11070056.png ; $$M ( A ) = V \backslash N ( A )$$ ; confidence 0.983 | ||
| + | |||
| + | 581. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a11070080.png ; $$\Omega ^ { p } [ V ]$$ ; confidence 0.985 | ||
| + | |||
| + | 582. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280141.png ; $$S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$$ ; confidence 0.881 | ||
| + | |||
| + | 583. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013570/a01357020.png ; $$g ( u ) d u$$ ; confidence 0.997 | ||
| + | |||
| + | 584. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013590/a01359029.png ; $$\Phi ^ { ( 3 ) } ( x )$$ ; confidence 0.986 | ||
| + | |||
| + | 585. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a01367016.png ; $$J _ { \nu } ( x ) \sim \sqrt { \frac { 2 } { \pi x } } [ \operatorname { cos } ( x - \frac { \pi \nu } { 2 } - \frac { \pi } { 4 } ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \alpha _ { 2 n } x ^ { - 2 n }$$ ; confidence 0.755 | ||
| + | |||
| + | 586. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a0136709.png ; $$f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$$ ; confidence 0.754 | ||
| + | |||
| + | 587. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110790/a11079027.png ; $$M \subset G$$ ; confidence 0.949 | ||
| + | |||
| + | 588. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029066.png ; $$Y$$ ; confidence 0.441 | ||
| + | |||
| + | 589. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029031.png ; $$P \rightarrow \Sigma$$ ; confidence 0.991 | ||
| + | |||
| + | 590. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013980/a01398016.png ; $$f ( \lambda ) = ( \frac { \sigma ^ { 2 } } { 2 \pi } ) | \phi ( e ^ { i \lambda } ) | ^ { - 2 }$$ ; confidence 0.996 | ||
| + | |||
| + | 591. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406076.png ; $$\mathfrak { A } _ { s _ { 1 } }$$ ; confidence 0.833 | ||
| + | |||
| + | 592. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060256.png ; $$A = S ^ { \prime }$$ ; confidence 0.502 | ||
| + | |||
| + | 593. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406028.png ; $$20$$ ; confidence 0.906 | ||
| + | |||
| + | 594. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060135.png ; $$W _ { N } \rightarrow W _ { n }$$ ; confidence 0.076 | ||
| + | |||
| + | 595. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a01409051.png ; $$\psi ( t _ { i } )$$ ; confidence 0.991 | ||
| + | |||
| + | 596. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090219.png ; $$L ( \Sigma )$$ ; confidence 0.983 | ||
| + | |||
| + | 597. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140121.png ; $$\sigma ( 1 ) = s$$ ; confidence 0.805 | ||
| + | |||
| + | 598. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419058.png ; $$\phi ( t ) \equiv$$ ; confidence 0.467 | ||
| + | |||
| + | 599. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a014190112.png ; $$\dot { x } = A x$$ ; confidence 0.608 | ||
| + | |||
| + | 600. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a0141905.png ; $$x _ { y } + 1 = t$$ ; confidence 0.287 | ||
| + | |||
| + | 601. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419047.png ; $$t _ { + } < + \infty$$ ; confidence 0.793 | ||
| + | |||
| + | 602. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032031.png ; $$p < .5$$ ; confidence 1.000 | ||
| + | |||
| + | 603. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032030.png ; $$Y _ { i } = 2 X _ { i } - 1$$ ; confidence 0.991 | ||
| + | |||
| + | 604. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014230/a0142305.png ; $$\{ A \rangle$$ ; confidence 0.294 | ||
| + | |||
| + | 605. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014300/a0143001.png ; $$\epsilon - \delta$$ ; confidence 0.998 | ||
| + | |||
| + | 606. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431097.png ; $$| x$$ ; confidence 0.207 | ||
| + | |||
| + | 607. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $$e$$ ; confidence 0.314 | ||
| + | |||
| + | 608. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $$A ( \iota X A ( x ) )$$ ; confidence 0.456 | ||
| + | |||
| + | 609. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431027.png ; $$\exists x A$$ ; confidence 0.894 | ||
| + | |||
| + | 610. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110190/b11019019.png ; $$x ^ { * } ( x ^ { * } y ) = x \wedge y$$ ; confidence 0.991 | ||
| + | |||
| + | 611. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110190/b11019030.png ; $$( x ^ { * } y ) ^ { * } z = ( x ^ { * } z ) ^ { * } ( y ^ { * } z )$$ ; confidence 0.974 | ||
| + | |||
| + | 612. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210148.png ; $$\mathfrak { p } \supset b$$ ; confidence 0.356 | ||
| + | |||
| + | 613. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021067.png ; $$( L ( \lambda ) )$$ ; confidence 1.000 | ||
| + | |||
| + | 614. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210104.png ; $$\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$$ ; confidence 0.628 | ||
| + | |||
| + | 615. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $$\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$$ ; confidence 0.489 | ||
| + | |||
| + | 616. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021075.png ; $$\mathfrak { F } _ { \lambda }$$ ; confidence 0.661 | ||
| + | |||
| + | 617. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066023.png ; $$L _ { p } ( R )$$ ; confidence 0.962 | ||
| + | |||
| + | 618. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001099.png ; $$\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$$ ; confidence 0.965 | ||
| + | |||
| + | 619. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001094.png ; $$V ^ { * } - V$$ ; confidence 0.998 | ||
| + | |||
| + | 620. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010103.png ; $$V _ { n } = H _ { n } / \Gamma$$ ; confidence 0.724 | ||
| + | |||
| + | 621. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511064.png ; $$\mu = \delta _ { X }$$ ; confidence 0.951 | ||
| + | |||
| + | 622. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511035.png ; $$U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$$ ; confidence 0.820 | ||
| + | |||
| + | 623. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002056.png ; $$x \in J$$ ; confidence 0.908 | ||
| + | |||
| + | 624. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300303.png ; $$V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$$ ; confidence 0.809 | ||
| + | |||
| + | 625. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100392.png ; $$T _ { K } ( K )$$ ; confidence 0.995 | ||
| + | |||
| + | 626. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100377.png ; $$\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$$ ; confidence 0.421 | ||
| + | |||
| + | 627. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b11010099.png ; $$\| T \| T ^ { - 1 } \| \geq c n$$ ; confidence 0.835 | ||
| + | |||
| + | 628. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004080.png ; $$T : L _ { \infty } \rightarrow L _ { \infty }$$ ; confidence 0.978 | ||
| + | |||
| + | 629. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004018.png ; $$| x _ { y } \| \rightarrow 0$$ ; confidence 0.611 | ||
| + | |||
| + | 630. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110090/b1100902.png ; $$l ^ { \infty } ( N )$$ ; confidence 0.759 | ||
| + | |||
| + | 631. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130207.png ; $$\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$$ ; confidence 0.427 | ||
| + | |||
| + | 632. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130197.png ; $$f ( \zeta ) > 0$$ ; confidence 0.996 | ||
| + | |||
| + | 633. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013099.png ; $$m _ { 1 } \in M _ { 1 }$$ ; confidence 0.998 | ||
| + | |||
| + | 634. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013012.png ; $$M _ { d } ^ { * } = M _ { d }$$ ; confidence 0.900 | ||
| + | |||
| + | 635. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $$v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$$ ; confidence 0.241 | ||
| + | |||
| + | 636. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b1101309.png ; $$E _ { 2 }$$ ; confidence 0.994 | ||
| + | |||
| + | 637. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015210/b01521049.png ; $$\alpha \in S _ { \alpha }$$ ; confidence 0.784 | ||
| + | |||
| + | 638. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015260/b0152609.png ; $$D \cup \Gamma$$ ; confidence 0.999 | ||
| + | |||
| + | 639. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015280/b0152808.png ; $$\lambda _ { 0 } + \ldots + \lambda _ { n } = 1$$ ; confidence 0.986 | ||
| + | |||
| + | 640. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015310/b01531023.png ; $$X _ { s } = X \times s s$$ ; confidence 0.533 | ||
| + | |||
| + | 641. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b01535027.png ; $$\alpha _ { i } \in \Omega$$ ; confidence 0.833 | ||
| + | |||
| + | 642. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350372.png ; $$\{ \xi _ { t } \}$$ ; confidence 0.990 | ||
| + | |||
| + | 643. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350251.png ; $$\{ \xi _ { t } ( s ) \}$$ ; confidence 1.000 | ||
| + | |||
| + | 644. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350300.png ; $$\delta _ { i k } = 0$$ ; confidence 0.900 | ||
| + | |||
| + | 645. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110160/b11016019.png ; $$f ( x ) = a x + b$$ ; confidence 0.931 | ||
| + | |||
| + | 646. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110160/b11016013.png ; $$f ( n ) \equiv 0 ( \operatorname { mod } p )$$ ; confidence 1.000 | ||
| + | |||
| + | 647. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006022.png ; $$\| A \| _ { \infty }$$ ; confidence 0.981 | ||
| + | |||
| + | 648. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006060.png ; $$b _ { i }$$ ; confidence 0.854 | ||
| + | |||
| + | 649. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007015.png ; $$\pi ( m )$$ ; confidence 0.999 | ||
| + | |||
| + | 650. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015380/b0153803.png ; $$A _ { i } \Gamma \cap A _ { j } = \emptyset$$ ; confidence 0.946 | ||
| + | |||
| + | 651. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420 | ||
| + | |||
| + | 652. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539050.png ; $\theta = \theta _ { i }$ ; confidence 0.949 | ||
| + | |||
| + | 653. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539042.png ; $D = \{ d _ { 1 } , d _ { 2 } \}$ ; confidence 0.998 | ||
| + | |||
| + | 654. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539023.png ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550 | ||
| + | |||
| + | 655. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539013.png ; $\delta ( x ) \in D$ ; confidence 0.997 | ||
| + | |||
| + | 656. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539045.png ; $\pi ( \theta _ { 1 } ) = \pi _ { 1 }$ ; confidence 0.999 | ||
| + | |||
| + | 657. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539046.png ; $\pi ( \theta _ { 2 } ) = \pi _ { 2 }$ ; confidence 0.999 | ||
| + | |||
| + | 658. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153901.png ; $( X , B X )$ ; confidence 0.566 | ||
| + | |||
| + | 659. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853 | ||
| + | |||
| + | 660. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885 | ||
| + | |||
| + | 661. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539019.png ; $\rho ( \pi , \delta ) = \int _ { \Theta } \rho ( \theta , \delta ) \pi ( d \theta )$ ; confidence 0.993 | ||
| + | |||
| + | 662. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539022.png ; $\delta ^ { * } = \delta ^ { * } ( x )$ ; confidence 0.998 | ||
| + | |||
| + | 663. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539030.png ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736 | ||
| + | |||
| + | 664. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153903.png ; $( \Theta , B _ { \Theta } )$ ; confidence 0.937 | ||
| + | |||
| + | 665. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { x }$ ; confidence 0.785 | ||
| + | |||
| + | 666. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539028.png ; $\int \int _ { \Theta } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) =$ ; confidence 0.604 | ||
| + | |||
| + | 667. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539043.png ; $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$ ; confidence 0.694 | ||
| + | |||
| + | 668. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539035.png ; $p ( x ) = \int _ { \Theta } p ( x | \theta ) \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.972 | ||
| + | |||
| + | 669. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192 | ||
| + | |||
| + | 670. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539052.png ; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945 | ||
| + | |||
| + | 671. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539053.png ; $\rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) +$ ; confidence 0.977 | ||
| + | |||
| + | 672. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539057.png ; $\rho ( \theta , \delta )$ ; confidence 1.000 | ||
| + | |||
| + | 673. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539047.png ; $\pi _ { 1 } + \pi _ { 2 } = 1$ ; confidence 0.992 | ||
| + | |||
| + | 674. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774 | ||
| + | |||
| + | 675. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539040.png ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361 | ||
| + | |||
| + | 676. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539018.png ; $\delta \rho ( \pi , \delta )$ ; confidence 0.650 | ||
| + | |||
| + | 677. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153907.png ; $( D , B _ { D } )$ ; confidence 0.999 | ||
| + | |||
| + | 678. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539061.png ; $\rho ( \pi , \delta _ { \epsilon } ^ { * } ) \leq \operatorname { inf } _ { \delta } \rho ( \pi , \delta ) + \epsilon$ ; confidence 0.972 | ||
| + | |||
| + | 679. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539015.png ; $\pi = \pi ( d \theta )$ ; confidence 0.979 | ||
| + | |||
| + | 680. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539011.png ; $\delta = \delta ( x )$ ; confidence 0.981 | ||
| + | |||
| + | 681. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539021.png ; $\rho ( \pi , \delta ^ { * } ) = \operatorname { inf } _ { \delta } \int _ { \Theta } \int _ { X } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta )$ ; confidence 0.586 | ||
| + | |||
| + | 682. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539063.png ; $( \epsilon > 0 )$ ; confidence 0.999 | ||
| + | |||
| + | 683. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539054.png ; $+ \pi _ { 2 } p ( x | \theta _ { 2 } ) L ( \theta _ { 2 } , \delta ( x ) ) ] d \mu ( x )$ ; confidence 0.612 | ||
| + | |||
| + | 684. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153905.png ; $\{ P _ { \theta } : \theta \in \Theta \}$ ; confidence 0.633 | ||
| + | |||
| + | 685. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539058.png ; $\rho ( \pi , \delta )$ ; confidence 1.000 | ||
| + | |||
| + | 686. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539044.png ; $i , j = 1,2$ ; confidence 0.881 | ||
| + | |||
| + | 687. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539024.png ; $\pi ( d \theta ) = \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.998 | ||
| + | |||
| + | 688. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539041.png ; $= \{ \theta _ { 1 } , \theta _ { 2 } \}$ ; confidence 1.000 | ||
| + | |||
| + | 689. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539038.png ; $\delta ^ { * } ( x )$ ; confidence 0.978 | ||
| + | |||
| + | 690. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539031.png ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710 | ||
| + | |||
| + | 691. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539060.png ; $\delta _ { \epsilon } ^ { * }$ ; confidence 0.648 | ||
| + | |||
| + | 692. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153908.png ; $L ( \theta , d )$ ; confidence 0.992 | ||
| + | |||
| + | 693. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539051.png ; $L _ { 11 } < L _ { 12 }$ ; confidence 0.994 | ||
| + | |||
| + | 694. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540062.png ; $$s ( z ) = q ( z )$$ ; confidence 1.000 | ||
| + | |||
| + | 695. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540048.png ; $$s ( z )$$ ; confidence 1.000 | ||
| + | |||
| + | 696. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $$\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$$ ; confidence 0.236 | ||
| + | |||
| + | 697. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015420/b01542034.png ; $$x = ( x _ { 1 } + \ldots + x _ { n } ) / n$$ ; confidence 0.514 | ||
| + | |||
| + | 698. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009080.png ; $$| f ( z ) | < 1$$ ; confidence 0.992 | ||
| + | |||
| + | 699. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009092.png ; $$f \in B ( m / n )$$ ; confidence 0.956 | ||
| + | |||
| + | 700. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009082.png ; $$L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$$ ; confidence 0.970 | ||
| + | |||
| + | 701. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015440/b0154406.png ; $$E X _ { 2 j } = \mu _ { 2 }$$ ; confidence 0.517 | ||
| + | |||
| + | 702. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015440/b01544026.png ; $$X _ { 1 }$$ ; confidence 0.637 | ||
| + | |||
| + | 703. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110250/b11025093.png ; $$L ( t )$$ ; confidence 0.967 | ||
| + | |||
| + | 704. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015540/b01554027.png ; $$\phi = \Pi ^ { \prime } \Pi ^ { - 1 }$$ ; confidence 0.997 | ||
| + | |||
| + | 705. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027042.png ; $$P ( s S ) = P ( S )$$ ; confidence 0.219 | ||
| + | |||
| + | 706. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010015.png ; $$k _ { z } = K _ { z } / \| K _ { z } \|$$ ; confidence 0.674 | ||
| + | |||
| + | 707. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556018.png ; $$D \times D \in \Gamma ^ { 2 }$$ ; confidence 0.230 | ||
| + | |||
| + | 708. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014039.png ; $$a ( z )$$ ; confidence 0.948 | ||
| + | |||
| + | 709. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015580/b0155806.png ; $$p _ { i } = \nu ( \alpha _ { i } )$$ ; confidence 0.832 | ||
| + | |||
| + | 710. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150110.png ; $$d : N \cup \{ 0 \} \rightarrow R$$ ; confidence 0.953 | ||
| + | |||
| + | 711. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $$x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$$ ; confidence 0.315 | ||
| + | |||
| + | 712. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b1103309.png ; $$\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$$ ; confidence 0.591 | ||
| + | |||
| + | 713. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033038.png ; $$P ^ { \prime }$$ ; confidence 0.871 | ||
| + | |||
| + | 714. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015630/b01563017.png ; $$p \leq 2$$ ; confidence 1.000 | ||
| + | |||
| + | 715. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015650/b01565010.png ; $$B _ { n } ( x + 1 ) - B _ { n } ( x ) = n x ^ { n - 1 }$$ ; confidence 0.672 | ||
| + | |||
| + | 716. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566078.png ; $$/ N = T$$ ; confidence 0.692 | ||
| + | |||
| + | 717. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566054.png ; $$\alpha = ( k + 1 / 2 )$$ ; confidence 0.643 | ||
| + | |||
| + | 718. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566081.png ; $$1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$$ ; confidence 0.722 | ||
| + | |||
| + | 719. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $$\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$$ ; confidence 0.213 | ||
| + | |||
| + | 720. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015680/b01568021.png ; $$2 \operatorname { exp } \{ - \frac { 1 } { 2 } n \epsilon ^ { 2 } \}$$ ; confidence 0.999 | ||
| + | |||
| + | 721. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037053.png ; $$K ( t ) \equiv 1$$ ; confidence 0.999 | ||
| + | |||
| + | 722. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037052.png ; $$= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$$ ; confidence 0.233 | ||
| + | |||
| + | 723. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037025.png ; $$0 < \epsilon < i ( \theta _ { 0 } )$$ ; confidence 0.998 | ||
| + | |||
| + | 724. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110340/b11034032.png ; $$\omega ( x y ) = \omega ( x ) \omega ( y )$$ ; confidence 0.999 | ||
| + | |||
| + | 725. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015720/b01572032.png ; $$+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$$ ; confidence 0.828 | ||
| + | |||
| + | 726. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016030.png ; $$x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$$ ; confidence 0.895 | ||
| + | |||
| + | 727. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038019.png ; $$w = \pi ( z )$$ ; confidence 0.987 | ||
| + | |||
| + | 728. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038070.png ; $$\Theta f$$ ; confidence 0.864 | ||
| + | |||
| + | 729. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110390/b110390108.png ; $$K > 0$$ ; confidence 0.999 | ||
| + | |||
| + | 730. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110400/b11040029.png ; $$F ^ { 2 } = \beta ^ { 2 } \operatorname { exp } \{ \frac { I \gamma } { \beta } \}$$ ; confidence 0.990 | ||
| + | |||
| + | 731. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110400/b11040017.png ; $$F . C _ { i j k } = I m$$ ; confidence 0.621 | ||
| + | |||
| + | 732. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015870/b01587024.png ; $$( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$$ ; confidence 0.951 | ||
| + | |||
| + | 733. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042025.png ; $$V _ { k } \varphi ( x ) = \varphi ( x - h )$$ ; confidence 0.922 | ||
| + | |||
| + | 734. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042055.png ; $$\mu \in R$$ ; confidence 0.990 | ||
| + | |||
| + | 735. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042087.png ; $$\overline { B } ^ { \nu }$$ ; confidence 0.987 | ||
| + | |||
| + | 736. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042014.png ; $$( Id - \Delta ) ^ { \nu }$$ ; confidence 0.560 | ||
| + | |||
| + | 737. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110440/b1104407.png ; $$\overline { \Xi } \epsilon = 0$$ ; confidence 0.326 | ||
| + | |||
| + | 738. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110490/b1104909.png ; $$P _ { 1 }$$ ; confidence 0.928 | ||
| + | |||
| + | 739. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016050/b0160507.png ; $$E _ { \theta } \{ T \}$$ ; confidence 0.560 | ||
| + | |||
| + | 740. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016050/b01605010.png ; $$b ( \theta ) \equiv 0$$ ; confidence 0.580 | ||
| + | |||
| + | 741. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016160/b01616031.png ; $$\hat { R } ( c )$$ ; confidence 0.613 | ||
| + | |||
| + | 742. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016160/b01616036.png ; $$0 < c < 1$$ ; confidence 0.979 | ||
| + | |||
| + | 743. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615033.png ; $$\operatorname { Re } _ { c _ { N } } = n$$ ; confidence 0.069 | ||
| + | |||
| + | 744. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b01617015.png ; $$F _ { n } ( z _ { 0 } ) = 0$$ ; confidence 0.993 | ||
| + | |||
| + | 745. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161704.png ; $$| w | < r _ { 0 }$$ ; confidence 0.478 | ||
| + | |||
| + | 746. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b01617013.png ; $$F _ { n } ( z )$$ ; confidence 0.855 | ||
| + | |||
| + | 747. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b1105203.png ; $$\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$$ ; confidence 0.545 | ||
| + | |||
| + | 748. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $$x \in G _ { n }$$ ; confidence 0.415 | ||
| + | |||
| + | 749. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016470/b0164707.png ; $$( \tau = \text { const } )$$ ; confidence 0.589 | ||
| + | |||
| + | 750. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056013.png ; $$w _ { 2 } ( F )$$ ; confidence 0.966 | ||
| + | |||
| + | 751. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016540/b0165404.png ; $$B = \{ b _ { i } : i \in I \}$$ ; confidence 0.985 | ||
| + | |||
| + | 752. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057061.png ; $$H _ { m }$$ ; confidence 0.869 | ||
| + | |||
| + | 753. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057039.png ; $$H _ { k } \circ \operatorname { exp } ( X _ { F } ) = \operatorname { exp } ( X _ { F } ) ( H _ { k } )$$ ; confidence 0.992 | ||
| + | |||
| + | 754. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016550/b01655023.png ; $$\mu _ { n } ( t ) = 0$$ ; confidence 0.990 | ||
| + | |||
| + | 755. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016550/b01655040.png ; $$\lambda _ { n } ( t ) = v$$ ; confidence 0.997 | ||
| + | |||
| + | 756. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059067.png ; $$u = q ( x ) \text { on } g$$ ; confidence 0.462 | ||
| + | |||
| + | 757. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661046.png ; $$\vec { u } = A _ { j } ^ { i } u ^ { j }$$ ; confidence 0.648 | ||
| + | |||
| + | 758. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661030.png ; $$R _ { y } ^ { t }$$ ; confidence 0.060 | ||
| + | |||
| + | 759. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017045.png ; $$S _ { T }$$ ; confidence 0.992 | ||
| + | |||
| + | 760. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $$U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$$ ; confidence 0.917 | ||
| + | |||
| + | 761. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110610/b11061011.png ; $$K ^ { * }$$ ; confidence 0.777 | ||
| + | |||
| + | 762. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016650/b0166503.png ; $$2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$$ ; confidence 0.204 | ||
| + | |||
| + | 763. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030013.png ; $$q \in Z ^ { N }$$ ; confidence 0.950 | ||
| + | |||
| + | 764. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $$0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$$ ; confidence 0.714 | ||
| + | |||
| + | 765. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667088.png ; $$A A ^ { T } = ( r - \lambda ) E + \lambda J$$ ; confidence 0.999 | ||
| + | |||
| + | 766. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667071.png ; $$n _ { 1 } = 9$$ ; confidence 0.822 | ||
| + | |||
| + | 767. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064038.png ; $$X _ { 1 } \times X _ { 2 }$$ ; confidence 0.987 | ||
| + | |||
| + | 768. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031032.png ; $$0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$$ ; confidence 0.999 | ||
| + | |||
| + | 769. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031064.png ; $$\tau ^ { n }$$ ; confidence 0.408 | ||
| + | |||
| + | 770. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016730/b01673033.png ; $$r ^ { 3 } / v \ll 1$$ ; confidence 0.747 | ||
| + | |||
| + | 771. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016740/b0167404.png ; $$\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$$ ; confidence 0.419 | ||
| + | |||
| + | 772. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069080.png ; $$M _ { A g }$$ ; confidence 0.870 | ||
| + | |||
| + | 773. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069063.png ; $$P T ( C ) \in G$$ ; confidence 0.971 | ||
| + | |||
| + | 774. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032011.png ; $$\| x + y \| _ { p } = \| u + v \| _ { p }$$ ; confidence 0.572 | ||
| + | |||
| + | 775. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016810/b01681038.png ; $$n ( z ) = n _ { 0 } e ^ { - m g z / k T }$$ ; confidence 0.985 | ||
| + | |||
| + | 776. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016810/b01681021.png ; $$H = \sum _ { i } \frac { p _ { i } ^ { 2 } } { 2 m } + \sum _ { i } U ( r _ { i } )$$ ; confidence 0.992 | ||
| + | |||
| + | 777. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016850/b01685023.png ; $$E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$$ ; confidence 0.900 | ||
| + | |||
| + | 778. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016850/b01685022.png ; $$N = \sum _ { i = 1 } ^ { M } N$$ ; confidence 0.965 | ||
| + | |||
| + | 779. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036013.png ; $$E$$ ; confidence 0.999 | ||
| + | |||
| + | 780. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301906.png ; $$F ( x ) = f ( M x )$$ ; confidence 1.000 | ||
| + | |||
| + | 781. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016900/b0169001.png ; $$d s ^ { 2 } = \frac { d u ^ { 2 } + d v ^ { 2 } } { ( U + V ) ^ { 2 } }$$ ; confidence 0.972 | ||
| + | |||
| + | 782. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169909.png ; $$\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$$ ; confidence 0.820 | ||
| + | |||
| + | 783. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016920/b01692023.png ; $$( x \vee C x ) \wedge y = y$$ ; confidence 0.985 | ||
| + | |||
| + | 784. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016920/b016920121.png ; $$( M )$$ ; confidence 1.000 | ||
| + | |||
| + | 785. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037030.png ; $$h \in \Omega$$ ; confidence 0.914 | ||
| + | |||
| + | 786. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $$\sum \frac { 1 } { 1 }$$ ; confidence 0.251 | ||
| + | |||
| + | 787. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076042.png ; $$\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$$ ; confidence 0.717 | ||
| + | |||
| + | 788. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960150.png ; $$99$$ ; confidence 0.271 | ||
| + | |||
| + | 789. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960167.png ; $$\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$$ ; confidence 0.082 | ||
| + | |||
| + | 790. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960126.png ; $$\omega _ { i } = 1$$ ; confidence 0.972 | ||
| + | |||
| + | 791. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960175.png ; $$M _ { 1 } \cup M _ { 2 }$$ ; confidence 0.994 | ||
| + | |||
| + | 792. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169702.png ; $$x ^ { \sigma } = x$$ ; confidence 0.948 | ||
| + | |||
| + | 793. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697035.png ; $$t _ { f } ( n )$$ ; confidence 0.917 | ||
| + | |||
| + | 794. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697056.png ; $$\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$$ ; confidence 0.504 | ||
| + | |||
| + | 795. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200102.png ; $$\beta \neq - \alpha$$ ; confidence 0.992 | ||
| + | |||
| + | 796. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020088.png ; $$\Delta _ { - } = - \Delta _ { + }$$ ; confidence 0.970 | ||
| + | |||
| + | 797. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020036.png ; $$[ e _ { i } f _ { j } ] = h _ { i }$$ ; confidence 0.684 | ||
| + | |||
| + | 798. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020048.png ; $$\alpha _ { i j } \neq 0$$ ; confidence 0.797 | ||
| + | |||
| + | 799. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020023.png ; $$\alpha _ { i } \in R$$ ; confidence 0.443 | ||
| + | |||
| + | 800. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200163.png ; $$\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$$ ; confidence 0.737 | ||
| + | |||
| + | 801. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020073.png ; $$9 -$$ ; confidence 0.467 | ||
| + | |||
| + | 802. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017010/b01701014.png ; $$\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$$ ; confidence 0.522 | ||
| + | |||
| + | 803. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b01703046.png ; $$\mathfrak { M } _ { n }$$ ; confidence 0.373 | ||
| + | |||
| + | 804. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040052.png ; $$\mathfrak { h } \subset \mathfrak { g }$$ ; confidence 0.959 | ||
| + | |||
| + | 805. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729088.png ; $$A = R ( X )$$ ; confidence 0.988 | ||
| + | |||
| + | 806. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729042.png ; $$\partial M _ { A } \subset X \subset M _ { A }$$ ; confidence 0.891 | ||
| + | |||
| + | 807. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b0172908.png ; $$\Gamma \subset M _ { A }$$ ; confidence 0.920 | ||
| + | |||
| + | 808. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729066.png ; $$| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$$ ; confidence 0.745 | ||
| + | |||
| + | 809. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728011.png ; $$\hat { G } \backslash G$$ ; confidence 0.582 | ||
| + | |||
| + | 810. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $$f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$$ ; confidence 0.451 | ||
| + | |||
| + | 811. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733087.png ; $$N ^ { * } ( D )$$ ; confidence 0.999 | ||
| + | |||
| + | 812. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330215.png ; $$F ^ { \prime } ( w )$$ ; confidence 0.999 | ||
| + | |||
| + | 813. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330250.png ; $$U ^ { N }$$ ; confidence 0.743 | ||
| + | |||
| + | 814. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330260.png ; $$N ^ { * } ( \Omega )$$ ; confidence 0.996 | ||
| + | |||
| + | 815. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330155.png ; $$\Phi ( \theta )$$ ; confidence 1.000 | ||
| + | |||
| + | 816. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330242.png ; $$f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$$ ; confidence 0.445 | ||
| + | |||
| + | 817. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330240.png ; $$B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$$ ; confidence 0.752 | ||
| + | |||
| + | 818. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340100.png ; $$n ^ { \prime } = - n + m - 1$$ ; confidence 0.993 | ||
| + | |||
| + | 819. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734046.png ; $$t _ { 0 } \in \partial S$$ ; confidence 0.816 | ||
| + | |||
| + | 820. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734029.png ; $$C _ { \alpha }$$ ; confidence 0.664 | ||
| + | |||
| + | 821. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017350/b01735065.png ; $$K$$ ; confidence 0.981 | ||
| + | |||
| + | 822. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017350/b01735056.png ; $$K ^ { + }$$ ; confidence 0.992 | ||
| + | |||
| + | 823. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738057.png ; $$L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$$ ; confidence 0.466 | ||
| + | |||
| + | 824. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $$t \in S$$ ; confidence 0.474 | ||
| + | |||
| + | 825. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017400/b01740070.png ; $$k ^ { \prime } = 1$$ ; confidence 0.991 | ||
| + | |||
| + | 826. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110820/b11082017.png ; $$\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$$ ; confidence 0.304 | ||
| + | |||
| + | 827. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747076.png ; $$1 \rightarrow K ( n ) \rightarrow B ( n ) \rightarrow S ( n ) \rightarrow 1$$ ; confidence 0.993 | ||
| + | |||
| + | 828. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747034.png ; $$( i i + 1 )$$ ; confidence 0.886 | ||
| + | |||
| + | 829. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747053.png ; $$\Pi ^ { \prime \prime }$$ ; confidence 0.914 | ||
| + | |||
| + | 830. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747069.png ; $$P _ { 1 / 2 }$$ ; confidence 0.996 | ||
| + | |||
| + | 831. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747067.png ; $$\omega ^ { - 1 }$$ ; confidence 0.909 | ||
| + | |||
| + | 832. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b017470190.png ; $$H ^ { * } ( O ( n ) ) \rightarrow H ^ { * } ( B ( n ) )$$ ; confidence 0.999 | ||
| + | |||
| + | 833. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $$\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$$ ; confidence 0.516 | ||
| + | |||
| + | 834. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420159.png ; $$\lambda _ { W } : V \otimes W \rightarrow W \otimes V$$ ; confidence 0.988 | ||
| + | |||
| + | 835. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420115.png ; $$U _ { q } ( \mathfrak { g } )$$ ; confidence 0.626 | ||
| + | |||
| + | 836. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022030.png ; $$L _ { p } ( T )$$ ; confidence 0.938 | ||
| + | |||
| + | 837. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110840/b11084049.png ; $$X$$ ; confidence 0.601 | ||
| + | |||
| + | 838. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023050.png ; $$G ( u )$$ ; confidence 0.489 | ||
| + | |||
| + | 839. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017530/b0175307.png ; $$P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$$ ; confidence 0.724 | ||
| + | |||
| + | 840. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175508.png ; $$t _ { 1 } + t$$ ; confidence 0.973 | ||
| + | |||
| + | 841. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756018.png ; $$P \{ \xi _ { t } \equiv 0 \} = 1$$ ; confidence 0.670 | ||
| + | |||
| + | 842. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758025.png ; $$\int _ { 0 } ^ { 1 } \frac { 1 - G ( s ) } { F ( s ) - s } d s < \infty$$ ; confidence 0.998 | ||
| + | |||
| + | 843. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $$P _ { C } ^ { 1 }$$ ; confidence 0.433 | ||
| + | |||
| + | 844. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b01762024.png ; $$r ^ { 2 }$$ ; confidence 1.000 | ||
| + | |||
| + | 845. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085036.png ; $$\operatorname { dim } ( V / K ) = 1$$ ; confidence 0.998 | ||
| + | |||
| + | 846. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440103.png ; $$R [ H \times H$$ ; confidence 0.981 | ||
| + | |||
| + | 847. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $$( \oplus _ { b } G _ { E B } b )$$ ; confidence 0.179 | ||
| + | |||
| + | 848. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088033.png ; $$P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$$ ; confidence 0.321 | ||
| + | |||
| + | 849. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089088.png ; $$\alpha ^ { i }$$ ; confidence 0.739 | ||
| + | |||
| + | 850. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089054.png ; $$f ( x ) = x ^ { t } M x$$ ; confidence 0.999 | ||
| + | |||
| + | 851. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $$\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$$ ; confidence 0.250 | ||
| + | |||
| + | 852. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $$B \otimes K ( H )$$ ; confidence 0.796 | ||
| + | |||
| + | 853. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b1302706.png ; $$Q ( H ) = B ( H ) / K ( H )$$ ; confidence 0.959 | ||
| + | |||
| + | 854. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050014.png ; $$M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$$ ; confidence 0.396 | ||
| + | |||
| + | 855. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051029.png ; $$\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0$$ ; confidence 0.985 | ||
| + | |||
| + | 856. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051051.png ; $$x _ { + } = x _ { c } + \lambda d$$ ; confidence 0.719 | ||
| + | |||
| + | 857. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096026.png ; $$\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$$ ; confidence 0.915 | ||
| + | |||
| + | 858. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290121.png ; $$\operatorname { dim } A = 2$$ ; confidence 0.998 | ||
| + | |||
| + | 859. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290203.png ; $$0 \leq i \leq d - 1$$ ; confidence 0.993 | ||
| + | |||
| + | 860. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302903.png ; $$d = \operatorname { dim } A$$ ; confidence 0.989 | ||
| + | |||
| + | 861. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099015.png ; $$P _ { \alpha }$$ ; confidence 0.384 | ||
| + | |||
| + | 862. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099011.png ; $$V _ { Q }$$ ; confidence 0.244 | ||
| + | |||
| + | 863. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300113.png ; $$A$$ ; confidence 0.535 | ||
| + | |||
| + | 864. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300112.png ; $$F _ { m }$$ ; confidence 0.945 | ||
| + | |||
| + | 865. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030089.png ; $$n \geq 2 ^ { 13 }$$ ; confidence 0.999 | ||
| + | |||
| + | 866. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780053.png ; $$n = p$$ ; confidence 0.858 | ||
| + | |||
| + | 867. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780036.png ; $$d \geq n$$ ; confidence 0.956 | ||
| + | |||
| + | 868. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780019.png ; $$2 ^ { 12 }$$ ; confidence 0.999 | ||
| + | |||
| + | 869. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001032.png ; $$\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$$ ; confidence 0.944 | ||
| + | |||
| + | 870. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $$\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$$ ; confidence 0.185 | ||
| + | |||
| + | 871. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047054.png ; $$h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$$ ; confidence 0.332 | ||
| + | |||
| + | 872. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048046.png ; $$D ^ { \perp }$$ ; confidence 0.893 | ||
| + | |||
| + | 873. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110010/c1100106.png ; $$T : A _ { j } \rightarrow A$$ ; confidence 0.526 | ||
| + | |||
| + | 874. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110030/c11003017.png ; $$v = u ^ { 2 } +$$ ; confidence 0.633 | ||
| + | |||
| + | 875. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005025.png ; $$X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$$ ; confidence 0.949 | ||
| + | |||
| + | 876. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005010.png ; $$CW ( 9.63 )$$ ; confidence 0.827 | ||
| + | |||
| + | 877. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014016.png ; $$\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$$ ; confidence 0.747 | ||
| + | |||
| + | 878. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020160/c02016022.png ; $$K _ { X } K _ { X }$$ ; confidence 0.800 | ||
| + | |||
| + | 879. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $$C A$$ ; confidence 0.232 | ||
| + | |||
| + | 880. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023043.png ; $$X \backslash K _ { X }$$ ; confidence 0.934 | ||
| + | |||
| + | 881. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c020280124.png ; $$E ( \lambda )$$ ; confidence 1.000 | ||
| + | |||
| + | 882. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c020280177.png ; $$\underline { C } ( E ) = \operatorname { sup } C ( K )$$ ; confidence 0.963 | ||
| + | |||
| + | 883. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110080/c11008041.png ; $$f$$ ; confidence 0.647 | ||
| + | |||
| + | 884. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110060/c11006048.png ; $$0 \leq j < k$$ ; confidence 0.995 | ||
| + | |||
| + | 885. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004012.png ; $$( f \in H _ { C } ( D ) )$$ ; confidence 0.513 | ||
| + | |||
| + | 886. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004049.png ; $$f \in H _ { c } ( D )$$ ; confidence 0.898 | ||
| + | |||
| + | 887. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004038.png ; $$\rho \in C ^ { 2 } ( \overline { \Omega } )$$ ; confidence 0.996 | ||
| + | |||
| + | 888. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020420/c0204203.png ; $$E \times E$$ ; confidence 0.999 | ||
| + | |||
| + | 889. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540218.png ; $$\nabla ^ { \prime } = \nabla$$ ; confidence 0.998 | ||
| + | |||
| + | 890. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540105.png ; $$s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$$ ; confidence 0.443 | ||
| + | |||
| + | 891. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540177.png ; $$\epsilon ( \sigma ) = 1$$ ; confidence 0.993 | ||
| + | |||
| + | 892. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c02055049.png ; $$1$$ ; confidence 0.897 | ||
| + | |||
| + | 893. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c02055058.png ; $$t \otimes _ { k } K$$ ; confidence 0.618 | ||
| + | |||
| + | 894. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020640/c02064012.png ; $$\mu = \beta \nu$$ ; confidence 0.406 | ||
| + | |||
| + | 895. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020640/c02064013.png ; $$\lambda : V \rightarrow P$$ ; confidence 0.999 | ||
| + | |||
| + | 896. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020650/c0206506.png ; $$1 / \mu = d S / d \sigma$$ ; confidence 0.936 | ||
| + | |||
| + | 897. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300406.png ; $$\psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) }$$ ; confidence 0.998 | ||
| + | |||
| + | 898. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300407.png ; $$\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t$$ ; confidence 0.962 | ||
| + | |||
| + | 899. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740168.png ; $$F ( 1 _ { A } ) = 1 _ { F A }$$ ; confidence 0.901 | ||
| + | |||
| + | 900. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740394.png ; $$( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$$ ; confidence 0.330 | ||
| + | |||
| + | 901. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740146.png ; $$\alpha \rightarrow \dot { b }$$ ; confidence 0.200 | ||
| + | |||
| + | 902. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $$e \in E$$ ; confidence 0.839 | ||
| + | |||
| + | 903. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740324.png ; $$( \alpha _ { e } ) _ { é \in E }$$ ; confidence 0.403 | ||
| + | |||
| + | 904. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740318.png ; $$Z [ X _ { é } : e \in E$$ ; confidence 0.114 | ||
| + | |||
| + | 905. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007011.png ; $$1 \leq i \leq n - 1$$ ; confidence 0.993 | ||
| + | |||
| + | 906. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007055.png ; $$Ab ^ { Z C } \approx Ab ^ { C }$$ ; confidence 0.662 | ||
| + | |||
| + | 907. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020920/c02092013.png ; $$\Omega _ { 0 } \times \{ x _ { 0 }$$ ; confidence 0.971 | ||
| + | |||
| + | 908. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020920/c02092043.png ; $$x = x ^ { 0 }$$ ; confidence 0.989 | ||
| + | |||
| + | 909. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890175.png ; $$F ^ { - } ( \zeta _ { 0 } )$$ ; confidence 0.984 | ||
| + | |||
| + | 910. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890110.png ; $$\psi = \psi ( s )$$ ; confidence 0.998 | ||
| + | |||
| + | 911. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c0209509.png ; $$u ( x _ { 0 } ) = u _ { 0 }$$ ; confidence 0.932 | ||
| + | |||
| + | 912. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c02095032.png ; $$L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$$ ; confidence 0.358 | ||
| + | |||
| + | 913. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020960/c02096032.png ; $$y _ { n + 1 } = y _ { n } + \frac { h } { 2 } ( f _ { n + 1 } + f _ { n } )$$ ; confidence 0.957 | ||
| + | |||
| + | 914. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104082.png ; $$- w$$ ; confidence 0.598 | ||
| + | |||
| + | 915. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104057.png ; $$- u _ { 3 }$$ ; confidence 0.803 | ||
| + | |||
| + | 916. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $$A _ { j } A _ { k l } = A _ { k l } A _ { j }$$ ; confidence 0.372 | ||
| + | |||
| + | 917. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021060/c02106028.png ; $$V ( t ) = - V ( s )$$ ; confidence 1.000 | ||
| + | |||
| + | 918. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005021.png ; $$\Gamma$$ ; confidence 0.974 | ||
| + | |||
| + | 919. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021100/c02110012.png ; $$x \in \operatorname { Dom } A$$ ; confidence 0.300 | ||
| + | |||
| + | 920. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021130/c02113024.png ; $$\partial I ^ { p }$$ ; confidence 0.973 | ||
| + | |||
| + | 921. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021180/c021180110.png ; $$E \| X _ { k } \| ^ { 3 + \alpha } < \infty$$ ; confidence 0.604 | ||
| + | |||
| + | 922. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110130/c11013026.png ; $$f \in C ^ { k }$$ ; confidence 0.918 | ||
| + | |||
| + | 923. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png ; $$( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$$ ; confidence 0.173 | ||
| + | |||
| + | 924. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c1101705.png ; $$D _ { p }$$ ; confidence 0.949 | ||
| + | |||
| + | 925. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c11017044.png ; $$C \rho _ { p } C ^ { \prime }$$ ; confidence 0.884 | ||
| + | |||
| + | 926. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $$\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$$ ; confidence 0.172 | ||
| + | |||
| + | 927. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021480/c02148045.png ; $$b \neq 0$$ ; confidence 1.000 | ||
| + | |||
| + | 928. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150017.png ; $$y ^ { \prime \prime } - y > f ( x )$$ ; confidence 1.000 | ||
| + | |||
| + | 929. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021520/c02152013.png ; $$V ( \Lambda ^ { \prime } ) \otimes V ( \Lambda ^ { \prime \prime } )$$ ; confidence 0.996 | ||
| + | |||
| + | 930. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215505.png ; $$\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$$ ; confidence 0.515 | ||
| + | |||
| + | 931. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157044.png ; $$\chi \pi _ { \alpha }$$ ; confidence 0.268 | ||
| + | |||
| + | 932. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157034.png ; $$\pi _ { 0 }$$ ; confidence 0.537 | ||
| + | |||
| + | 933. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160021.png ; $$A$$ ; confidence 0.992 | ||
| + | |||
| + | 934. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161069.png ; $$\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$$ ; confidence 0.798 | ||
| + | |||
| + | 935. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162068.png ; $$\pi _ { \mathscr { q } } ( F )$$ ; confidence 0.437 | ||
| + | |||
| + | 936. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162091.png ; $$c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$$ ; confidence 0.820 | ||
| + | |||
| + | 937. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620209.png ; $$B G$$ ; confidence 0.998 | ||
| + | |||
| + | 938. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162087.png ; $$\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$$ ; confidence 0.856 | ||
| + | |||
| + | 939. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021650/c02165039.png ; $$E X ^ { 2 n } < \infty$$ ; confidence 0.974 | ||
| + | |||
| + | 940. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021650/c02165011.png ; $$t _ { k } \in R ^ { 1 }$$ ; confidence 0.998 | ||
| + | |||
| + | 941. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021720/c02172031.png ; $$b _ { k } ^ { \prime } = ( - 1 ) ^ { k + 1 } b _ { k }$$ ; confidence 0.930 | ||
| + | |||
| + | 942. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c02176012.png ; $$X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$$ ; confidence 0.670 | ||
| + | |||
| + | 943. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c0217608.png ; $$p ( x ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } \sigma ^ { 2 } } \operatorname { exp } \{ - \frac { 1 } { 2 \sigma ^ { 2 } } ( x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } ) \}$$ ; confidence 0.970 | ||
| + | |||
| + | 944. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070146.png ; $$k ( C ^ { * } )$$ ; confidence 0.992 | ||
| + | |||
| + | 945. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $$g = 0 \Rightarrow c$$ ; confidence 0.793 | ||
| + | |||
| + | 946. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218501.png ; $$\tau = \tau ( E )$$ ; confidence 0.992 | ||
| + | |||
| + | 947. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $$x _ { j } = \operatorname { cos } ( \pi j / N )$$ ; confidence 0.826 | ||
| + | |||
| + | 948. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c02203033.png ; $$C _ { \omega }$$ ; confidence 0.073 | ||
| + | |||
| + | 949. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png ; $$h ^ { * } ( pt )$$ ; confidence 0.903 | ||
| + | |||
| + | 950. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204098.png ; $$\Omega _ { 2 n } ^ { 2 } \rightarrow Z$$ ; confidence 0.476 | ||
| + | |||
| + | 951. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $$\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$$ ; confidence 0.818 | ||
| + | |||
| + | 952. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016016.png ; $$j = 1 : n$$ ; confidence 0.980 | ||
| + | |||
| + | 953. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110210/c11021043.png ; $$T ( 0 ) = 0$$ ; confidence 0.574 | ||
| + | |||
| + | 954. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020072.png ; $$\lambda \in \Lambda$$ ; confidence 0.954 | ||
| + | |||
| + | 955. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $$f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$$ ; confidence 0.422 | ||
| + | |||
| + | 956. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229022.png ; $$+ \frac { 1 } { 2 } \sum _ { 0 < u \leq \sqrt { x / 3 } } ( [ \sqrt { x - 2 u ^ { 2 } } ] - u ) + O ( \sqrt { x } )$$ ; confidence 0.498 | ||
| + | |||
| + | 957. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222907.png ; $$\theta \leq 1 / 2$$ ; confidence 0.991 | ||
| + | |||
| + | 958. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022330/c0223301.png ; $$a ( r )$$ ; confidence 0.924 | ||
| + | |||
| + | 959. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237023.png ; $$N = L . L$$ ; confidence 0.482 | ||
| + | |||
| + | 960. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237063.png ; $$Q / Z$$ ; confidence 0.664 | ||
| + | |||
| + | 961. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022400/c02240053.png ; $$( k \times n )$$ ; confidence 1.000 | ||
| + | |||
| + | 962. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242028.png ; $$\phi ( x ) = [ ( 1 - x ) ( 1 + x ) ] ^ { 1 / 2 }$$ ; confidence 0.999 | ||
| + | |||
| + | 963. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242026.png ; $$\phi ( x ) \equiv 1$$ ; confidence 0.999 | ||
| + | |||
| + | 964. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242019.png ; $$\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$$ ; confidence 0.998 | ||
| + | |||
| + | 965. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022450/c0224501.png ; $$x ( t ) : R \rightarrow R ^ { n }$$ ; confidence 0.947 | ||
| + | |||
| + | 966. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $$20$$ ; confidence 0.225 | ||
| + | |||
| + | 967. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250014.png ; $$j \leq n$$ ; confidence 0.544 | ||
| + | |||
| + | 968. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022530/c02253039.png ; $$[ \gamma ]$$ ; confidence 1.000 | ||
| + | |||
| + | 969. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022570/c0225705.png ; $$x \in D _ { A }$$ ; confidence 0.542 | ||
| + | |||
| + | 970. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022570/c0225702.png ; $$x _ { n } \in D _ { A }$$ ; confidence 0.553 | ||
| + | |||
| + | 971. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660300.png ; $$K ( f )$$ ; confidence 0.998 | ||
| + | |||
| + | 972. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660241.png ; $$C = C ( f )$$ ; confidence 0.996 | ||
| + | |||
| + | 973. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660281.png ; $$f : D \rightarrow \Omega$$ ; confidence 1.000 | ||
| + | |||
| + | 974. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c02266075.png ; $$\mu ( E ) = \mu _ { 1 } ( E ) = 0$$ ; confidence 0.998 | ||
| + | |||
| + | 975. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c02266091.png ; $$\mu _ { 2 } ( C R ) = 0$$ ; confidence 0.984 | ||
| + | |||
| + | 976. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660219.png ; $$F = \{ f ( z ) \}$$ ; confidence 0.999 | ||
| + | |||
| + | 977. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022690/c02269052.png ; $$\Delta = \tilde { A } + \hat { B } - \hat { C }$$ ; confidence 0.152 | ||
| + | |||
| + | 978. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022700/c02270026.png ; $$g : Y \rightarrow Z$$ ; confidence 0.951 | ||
| + | |||
| + | 979. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110290/c11029014.png ; $$Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$$ ; confidence 0.764 | ||
| + | |||
| + | 980. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780429.png ; $$\phi ^ { h } ( pt )$$ ; confidence 0.800 | ||
| + | |||
| + | 981. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780377.png ; $$1 B S G$$ ; confidence 0.389 | ||
| + | |||
| + | 982. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278052.png ; $$N \gg n$$ ; confidence 0.849 | ||
| + | |||
| + | 983. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278060.png ; $$B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$$ ; confidence 0.775 | ||
| + | |||
| + | 984. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780545.png ; $$B P \square ^ { * } ( B P )$$ ; confidence 0.987 | ||
| + | |||
| + | 985. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780129.png ; $$\Omega _ { f r } ^ { i }$$ ; confidence 0.443 | ||
| + | |||
| + | 986. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278058.png ; $$O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$$ ; confidence 0.863 | ||
| + | |||
| + | 987. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780210.png ; $$x _ { i } / ( e ^ { x _ { i } } - 1 )$$ ; confidence 0.947 | ||
| + | |||
| + | 988. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780302.png ; $$( S _ { \omega } ^ { c } ( e ) T ) [ M ] \in Z$$ ; confidence 0.570 | ||
| + | |||
| + | 989. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780356.png ; $$\Omega$$ ; confidence 0.892 | ||
| + | |||
| + | 990. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780445.png ; $$M U ^ { * } ( X )$$ ; confidence 0.986 | ||
| + | |||
| + | 991. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780177.png ; $$( n )$$ ; confidence 0.998 | ||
| + | |||
| + | 992. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780128.png ; $$\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$$ ; confidence 0.922 | ||
| + | |||
| + | 993. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780207.png ; $$e ^ { x _ { i } } - 1$$ ; confidence 0.882 | ||
| + | |||
| + | 994. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $$im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$$ ; confidence 0.230 | ||
| + | |||
| + | 995. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800161.png ; $$\partial N$$ ; confidence 0.677 | ||
| + | |||
| + | 996. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022860/c02286015.png ; $$b _ { i + 1 } \ldots b _ { j }$$ ; confidence 0.553 | ||
| + | |||
| + | 997. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $$l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$$ ; confidence 0.413 | ||
| + | |||
| + | 998. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022920/c02292048.png ; $$V _ { 3 }$$ ; confidence 0.998 | ||
| + | |||
| + | 999. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022920/c02292049.png ; $$\operatorname { lm } c _ { 3 } = 0$$ ; confidence 0.496 | ||
| + | |||
| + | 1000. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c0229306.png ; $$\{ x _ { n } > 0 \}$$ ; confidence 0.980 | ||
| + | |||
| + | 1001. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c02293015.png ; $$u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$$ ; confidence 0.744 | ||
| + | |||
| + | 1002. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022940/c02294010.png ; $$M$$ ; confidence 1.000 | ||
| + | |||
| + | 1003. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050103.png ; $$\operatorname { cd } _ { p } ( X ) \leq \operatorname { cohcd } ( X ) + 1$$ ; confidence 0.970 | ||
| + | |||
| + | 1004. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305060.png ; $$( U ) = n - 1$$ ; confidence 0.999 | ||
| + | |||
| + | 1005. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305085.png ; $$cd _ { l } ( Spec A )$$ ; confidence 0.637 | ||
| + | |||
| + | 1006. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023120/c02312031.png ; $$x g = \lambda x$$ ; confidence 0.984 | ||
| + | |||
| + | 1007. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023140/c023140243.png ; $$u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$$ ; confidence 0.830 | ||
| + | |||
| + | 1008. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c02311056.png ; $$A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$$ ; confidence 0.750 | ||
| + | |||
| + | 1009. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c023110101.png ; $$Z G$$ ; confidence 0.957 | ||
| + | |||
| + | 1010. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315041.png ; $$f : S ^ { m } \rightarrow S ^ { n }$$ ; confidence 0.195 | ||
| + | |||
| + | 1011. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150291.png ; $$\pi _ { n } ( E ) = \pi$$ ; confidence 0.997 | ||
| + | |||
| + | 1012. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315068.png ; $$\square ^ { 1 } P ^ { i } = P$$ ; confidence 0.776 | ||
| + | |||
| + | 1013. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150156.png ; $$i ^ { * } ( \phi ) = 0$$ ; confidence 0.997 | ||
| + | |||
| + | 1014. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150259.png ; $$\beta \circ \beta = 0$$ ; confidence 0.978 | ||
| + | |||
| + | 1015. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150187.png ; $$\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$$ ; confidence 0.262 | ||
| + | |||
| + | 1016. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023180/c0231806.png ; $$\pi ^ { 1 } ( X )$$ ; confidence 0.999 | ||
| + | |||
| + | 1017. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301504.png ; $$C ^ { \infty } ( D ( \Omega ) )$$ ; confidence 0.935 | ||
| + | |||
| + | 1018. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250173.png ; $$\beta _ { 0 }$$ ; confidence 0.851 | ||
| + | |||
| + | 1019. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250187.png ; $$[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$$ ; confidence 0.729 | ||
| + | |||
| + | 1020. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232708.png ; $$\overline { \overline { A } } = \vec { A }$$ ; confidence 0.649 | ||
| + | |||
| + | 1021. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338015.png ; $$\phi \in \Phi$$ ; confidence 0.995 | ||
| + | |||
| + | 1022. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380197.png ; $$F \subset U$$ ; confidence 0.980 | ||
| + | |||
| + | 1023. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338044.png ; $$x 0$$ ; confidence 0.689 | ||
| + | |||
| + | 1024. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380172.png ; $$C ( S ^ { n } )$$ ; confidence 0.498 | ||
| + | |||
| + | 1025. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338039.png ; $$f \in L _ { 1 } ( G )$$ ; confidence 0.969 | ||
| + | |||
| + | 1026. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530133.png ; $$\Pi ^ { N } \tau$$ ; confidence 0.183 | ||
| + | |||
| + | 1027. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023550/c023550235.png ; $$\beta Y \backslash Y$$ ; confidence 0.989 | ||
| + | |||
| + | 1028. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023550/c023550175.png ; $$X = 0$$ ; confidence 0.554 | ||
| + | |||
| + | 1029. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023550/c023550172.png ; $$\overline { f } : \mu X \rightarrow \mu Y$$ ; confidence 0.995 | ||
| + | |||
| + | 1030. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023620/c0236203.png ; $$| \alpha ( z ) |$$ ; confidence 0.916 | ||
| + | |||
| + | 1031. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023890/c02389043.png ; $$\{ d F _ { i } \} _ { 1 } ^ { m }$$ ; confidence 0.930 | ||
| + | |||
| + | 1032. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100277.png ; $$\partial _ { r }$$ ; confidence 0.315 | ||
| + | |||
| + | 1033. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100241.png ; $$f : K \rightarrow K$$ ; confidence 0.997 | ||
| + | |||
| + | 1034. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024110/c02411026.png ; $$d = ( d _ { n } )$$ ; confidence 0.939 | ||
| + | |||
| + | 1035. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412032.png ; $$\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$$ ; confidence 0.764 | ||
| + | |||
| + | 1036. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412084.png ; $$\int _ { - \infty } ^ { \infty } ( P ( x ) / Q ( x ) ) d x$$ ; confidence 0.988 | ||
| + | |||
| + | 1037. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412065.png ; $$J ( s ) = \operatorname { lim } J _ { N } ( s ) = 2 ( 2 \pi ) ^ { s - 1 } \zeta ( 1 - s ) \operatorname { sin } \frac { \pi s } { 2 }$$ ; confidence 0.964 | ||
| + | |||
| + | 1038. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412030.png ; $$f ( z ) = 1 / ( e ^ { z } - 1 )$$ ; confidence 0.999 | ||
| + | |||
| + | 1039. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416048.png ; $$O _ { A } = O _ { D } / J | _ { A }$$ ; confidence 0.748 | ||
| + | |||
| + | 1040. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c1103302.png ; $$DT ( S )$$ ; confidence 0.583 | ||
| + | |||
| + | 1041. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c1103309.png ; $$p _ { i } \in S$$ ; confidence 0.931 | ||
| + | |||
| + | 1042. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024450/c0244507.png ; $$U ( A ) \subset Y$$ ; confidence 0.995 | ||
| + | |||
| + | 1043. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024510/c0245107.png ; $$P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$$ ; confidence 0.724 | ||
| + | |||
| + | 1044. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452065.png ; $$x _ { 0 } \in V ^ { n }$$ ; confidence 0.974 | ||
| + | |||
| + | 1045. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024540/c0245407.png ; $$\dot { \phi } = \omega$$ ; confidence 0.997 | ||
| + | |||
| + | 1046. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024670/c02467021.png ; $$A _ { 3 }$$ ; confidence 0.999 | ||
| + | |||
| + | 1047. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c02473061.png ; $$\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$$ ; confidence 0.913 | ||
| + | |||
| + | 1048. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c024730113.png ; $$P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$$ ; confidence 0.947 | ||
| + | |||
| + | 1049. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180209.png ; $$\varepsilon$$ ; confidence 0.504 | ||
| + | |||
| + | 1050. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180501.png ; $$g \in S ^ { 2 } \varepsilon$$ ; confidence 0.445 | ||
| + | |||
| + | 1051. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180506.png ; $$N = N \times \{ 1 \} \times \{ 0 \}$$ ; confidence 1.000 | ||
| + | |||
| + | 1052. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $$C ^ { \infty } ( \tilde { N } )$$ ; confidence 0.330 | ||
| + | |||
| + | 1053. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180152.png ; $$\gamma$$ ; confidence 0.764 | ||
| + | |||
| + | 1054. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180182.png ; $$\tau _ { 2 } \Theta = - \Theta$$ ; confidence 0.618 | ||
| + | |||
| + | 1055. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c02478054.png ; $$f ^ { \prime } ( z _ { 0 } )$$ ; confidence 0.967 | ||
| + | |||
| + | 1056. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780240.png ; $$0 < \beta \leq 2 \pi$$ ; confidence 0.997 | ||
| + | |||
| + | 1057. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780261.png ; $$( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$$ ; confidence 0.891 | ||
| + | |||
| + | 1058. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780245.png ; $$\operatorname { arg } z = c$$ ; confidence 0.995 | ||
| + | |||
| + | 1059. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024790/c02479065.png ; $$f ( \zeta )$$ ; confidence 0.995 | ||
| + | |||
| + | 1060. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480058.png ; $$D \subset D _ { 1 }$$ ; confidence 0.990 | ||
| + | |||
| + | 1061. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024820/c02482046.png ; $$\leq ( n + 1 ) ( n + 2 ) / 2$$ ; confidence 0.994 | ||
| + | |||
| + | 1062. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850206.png ; $$f ^ { \prime } ( x _ { 1 } ) \equiv 0$$ ; confidence 0.424 | ||
| + | |||
| + | 1063. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c02485065.png ; $$A . B$$ ; confidence 0.944 | ||
| + | |||
| + | 1064. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $$m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$$ ; confidence 0.462 | ||
| + | |||
| + | 1065. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489056.png ; $$\mu ( d )$$ ; confidence 1.000 | ||
| + | |||
| + | 1066. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248905.png ; $$\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$$ ; confidence 0.849 | ||
| + | |||
| + | 1067. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024900/c02490030.png ; $$q = p ^ { r }$$ ; confidence 0.892 | ||
| + | |||
| + | 1068. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024990/c02499018.png ; $$\int _ { - \pi } ^ { \pi } f ( x ) d x = 0$$ ; confidence 0.988 | ||
| + | |||
| + | 1069. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025020/c02502055.png ; $$r \uparrow 1$$ ; confidence 0.659 | ||
| + | |||
| + | 1070. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019046.png ; $$X = R ^ { n }$$ ; confidence 0.975 | ||
| + | |||
| + | 1071. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $$f _ { i } : D ^ { n } \rightarrow M _ { i }$$ ; confidence 0.449 | ||
| + | |||
| + | 1072. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c02513010.png ; $$f _ { 2 } \circ f _ { 1 } ^ { - 1 }$$ ; confidence 0.997 | ||
| + | |||
| + | 1073. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140162.png ; $$X \in V ( B )$$ ; confidence 0.996 | ||
| + | |||
| + | 1074. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140160.png ; $$E = T B$$ ; confidence 0.999 | ||
| + | |||
| + | 1075. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140196.png ; $$X : B \rightarrow T B$$ ; confidence 0.984 | ||
| + | |||
| + | 1076. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025150/c02515011.png ; $$Y \in T _ { y } ( P )$$ ; confidence 0.991 | ||
| + | |||
| + | 1077. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025170/c02517037.png ; $$\omega ^ { k } = d x ^ { k }$$ ; confidence 0.878 | ||
| + | |||
| + | 1078. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518080.png ; $$f _ { x } ^ { - 1 }$$ ; confidence 0.443 | ||
| + | |||
| + | 1079. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $$X _ { X } \in T _ { X } ( M )$$ ; confidence 0.414 | ||
| + | |||
| + | 1080. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518096.png ; $$T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$$ ; confidence 0.402 | ||
| + | |||
| + | 1081. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019044.png ; $$T ( M )$$ ; confidence 0.884 | ||
| + | |||
| + | 1082. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025350/c025350104.png ; $$B \rightarrow H$$ ; confidence 0.991 | ||
| + | |||
| + | 1083. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025350/c025350101.png ; $$E _ { 1 } \rightarrow E _ { 1 }$$ ; confidence 0.970 | ||
| + | |||
| + | 1084. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025420/c025420100.png ; $$\neg \neg \exists x R \supset \exists x R$$ ; confidence 0.760 | ||
| + | |||
| + | 1085. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c0254401.png ; $$\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$$ ; confidence 0.687 | ||
| + | |||
| + | 1086. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544025.png ; $$D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$$ ; confidence 0.835 | ||
| + | |||
| + | 1087. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544057.png ; $$\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$$ ; confidence 0.915 | ||
| + | |||
| + | 1088. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025450/c02545035.png ; $$T ^ { * }$$ ; confidence 0.527 | ||
| + | |||
| + | 1089. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547051.png ; $$\alpha \wedge ( d \alpha ) ^ { n }$$ ; confidence 0.989 | ||
| + | |||
| + | 1090. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547063.png ; $$\alpha = d t + \sum p _ { i } d q _ { i }$$ ; confidence 0.858 | ||
| + | |||
| + | 1091. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547031.png ; $$\alpha \wedge ( d \alpha ) ^ { s } ( x ) \neq 0$$ ; confidence 0.978 | ||
| + | |||
| + | 1092. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020014.png ; $$W ^ { m + 1 }$$ ; confidence 0.972 | ||
| + | |||
| + | 1093. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210117.png ; $$\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$$ ; confidence 0.843 | ||
| + | |||
| + | 1094. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025600/c02560048.png ; $$u ^ { k } = u ^ { k - 1 } - \Delta \lambda _ { k } \phi ^ { \prime } ( u ^ { k - 1 } ) ^ { - 1 } \phi ( u ^ { 0 } )$$ ; confidence 0.687 | ||
| + | |||
| + | 1095. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025600/c02560042.png ; $$\frac { d u } { d \lambda } = - \phi ^ { \prime } ( u ) ^ { - 1 } \phi ( u ^ { 0 } )$$ ; confidence 0.984 | ||
| + | |||
| + | 1096. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025640/c0256402.png ; $$\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$$ ; confidence 0.788 | ||
| + | |||
| + | 1097. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565066.png ; $$D \subset R$$ ; confidence 0.995 | ||
| + | |||
| + | 1098. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $$I \rightarrow \cup _ { i \in l } J _ { i }$$ ; confidence 0.225 | ||
| + | |||
| + | 1099. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025710/c02571015.png ; $$f ^ { - 1 } ( F )$$ ; confidence 0.999 | ||
| + | |||
| + | 1100. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025710/c0257107.png ; $$U = U ( x _ { 0 } )$$ ; confidence 0.991 | ||
| + | |||
| + | 1101. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572034.png ; $$y _ { 0 } = A _ { x }$$ ; confidence 0.344 | ||
| + | |||
| + | 1102. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572035.png ; $$B \circ A$$ ; confidence 0.963 | ||
| + | |||
| + | 1103. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572060.png ; $$x - y \in U$$ ; confidence 0.997 | ||
| + | |||
| + | 1104. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583071.png ; $$i B _ { 0 }$$ ; confidence 0.998 | ||
| + | |||
| + | 1105. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025890/c02589013.png ; $$( T ^ { * } ( t ) = T ( t ) )$$ ; confidence 0.991 | ||
| + | |||
| + | 1106. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025920/c02592019.png ; $$631$$ ; confidence 0.381 | ||
| + | |||
| + | 1107. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597042.png ; $$e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$$ ; confidence 0.182 | ||
| + | |||
| + | 1108. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010134.png ; $$\mathfrak { A } _ { E }$$ ; confidence 0.121 | ||
| + | |||
| + | 1109. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010308.png ; $$v _ { ( E ) } = v$$ ; confidence 0.188 | ||
| + | |||
| + | 1110. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010417.png ; $$\rho < 1$$ ; confidence 0.998 | ||
| + | |||
| + | 1111. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010468.png ; $$P s$$ ; confidence 0.529 | ||
| + | |||
| + | 1112. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010588.png ; $$J ( \alpha )$$ ; confidence 1.000 | ||
| + | |||
| + | 1113. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601042.png ; $$N = N _ { 0 }$$ ; confidence 0.799 | ||
| + | |||
| + | 1114. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010556.png ; $$d y _ { t } = h ( x _ { t } ) d t + d w _ { t } ^ { 0 }$$ ; confidence 0.993 | ||
| + | |||
| + | 1115. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604071.png ; $$A _ { n } x _ { n } = y _ { n }$$ ; confidence 0.869 | ||
| + | |||
| + | 1116. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604027.png ; $$P Q$$ ; confidence 0.981 | ||
| + | |||
| + | 1117. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604025.png ; $$A _ { n } : E _ { n } \rightarrow F _ { n }$$ ; confidence 0.561 | ||
| + | |||
| + | 1118. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026230/c02623020.png ; $$c _ { 1 } = f ^ { \prime } ( 0 ) = 1$$ ; confidence 0.991 | ||
| + | |||
| + | 1119. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026230/c02623013.png ; $$\int _ { - \pi } ^ { \pi } d \mu ( \theta ) = 1$$ ; confidence 0.969 | ||
| + | |||
| + | 1120. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026250/c0262508.png ; $$( f _ { 1 } + f _ { 2 } ) ( x ) = f _ { 1 } ( x ) + f _ { 2 } ( x )$$ ; confidence 0.957 | ||
| + | |||
| + | 1121. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c110400102.png ; $$M ^ { \perp } = \{ x \in G$$ ; confidence 0.985 | ||
| + | |||
| + | 1122. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026390/c026390117.png ; $$r _ { u } \times r _ { v } \neq 0$$ ; confidence 0.643 | ||
| + | |||
| + | 1123. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643058.png ; $$F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$$ ; confidence 0.818 | ||
| + | |||
| + | 1124. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643025.png ; $$F [ f ] = \frac { F [ g ] } { 1 - \sqrt { 2 \pi } F [ K ] }$$ ; confidence 0.997 | ||
| + | |||
| + | 1125. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $$X _ { 1 }$$ ; confidence 0.237 | ||
| + | |||
| + | 1126. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $$\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$$ ; confidence 0.223 | ||
| + | |||
| + | 1127. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646046.png ; $$\{ x _ { k } \}$$ ; confidence 0.963 | ||
| + | |||
| + | 1128. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646028.png ; $$x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$$ ; confidence 0.819 | ||
| + | |||
| + | 1129. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c0264605.png ; $$\alpha _ { i } < b _ { i }$$ ; confidence 0.878 | ||
| + | |||
| + | 1130. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646017.png ; $$i _ { k } = k - n [ k / n ] + 1$$ ; confidence 0.964 | ||
| + | |||
| + | 1131. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c0264808.png ; $$\alpha _ { i } : A _ { i } \rightarrow X$$ ; confidence 0.918 | ||
| + | |||
| + | 1132. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648027.png ; $$\pi _ { i } : S \rightarrow A$$ ; confidence 0.579 | ||
| + | |||
| + | 1133. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $$\prod _ { i \in l } ^ { * } A _ { i }$$ ; confidence 0.474 | ||
| + | |||
| + | 1134. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041079.png ; $$A ^ { * } B$$ ; confidence 0.976 | ||
| + | |||
| + | 1135. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $$C X Y$$ ; confidence 0.226 | ||
| + | |||
| + | 1136. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041077.png ; $$B _ { 1 }$$ ; confidence 0.988 | ||
| + | |||
| + | 1137. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041081.png ; $$\{ X _ { t } : t \in T \}$$ ; confidence 0.835 | ||
| + | |||
| + | 1138. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043040.png ; $$m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$$ ; confidence 0.753 | ||
| + | |||
| + | 1139. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265803.png ; $$\eta _ { Y | X } ^ { 2 } = 1 - E [ \frac { D ( Y | X ) } { D Y } ]$$ ; confidence 0.635 | ||
| + | |||
| + | 1140. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026600/c026600121.png ; $$\operatorname { lm } z ( x ) = 1$$ ; confidence 0.908 | ||
| + | |||
| + | 1141. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110440/c11044082.png ; $$C ( n ) = 0$$ ; confidence 1.000 | ||
| + | |||
| + | 1142. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026830/c02683020.png ; $$\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$$ ; confidence 0.960 | ||
| + | |||
| + | 1143. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026870/c02687095.png ; $$D U$$ ; confidence 0.990 | ||
| + | |||
| + | 1144. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026870/c026870129.png ; $$( \nabla _ { X } U ) _ { p }$$ ; confidence 0.933 | ||
| + | |||
| + | 1145. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026870/c026870106.png ; $$e _ { i } = \partial / \partial x ^ { i } | _ { p }$$ ; confidence 0.599 | ||
| + | |||
| + | 1146. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691013.png ; $$\Gamma ( C ) = V$$ ; confidence 0.882 | ||
| + | |||
| + | 1147. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697049.png ; $$| w | < 1 / 16$$ ; confidence 0.877 | ||
| + | |||
| + | 1148. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025017.png ; $$Y _ { j } = i$$ ; confidence 0.850 | ||
| + | |||
| + | 1149. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698053.png ; $$E _ { 8 }$$ ; confidence 0.860 | ||
| + | |||
| + | 1150. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c02700011.png ; $$\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$$ ; confidence 0.444 | ||
| + | |||
| + | 1151. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c0270004.png ; $$E _ { e } ^ { t X } 1$$ ; confidence 0.078 | ||
| + | |||
| + | 1152. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026044.png ; $$1 \leq n \leq N$$ ; confidence 0.763 | ||
| + | |||
| + | 1153. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026032.png ; $$V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$$ ; confidence 0.626 | ||
| + | |||
| + | 1154. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110490/c1104902.png ; $$\sqrt { 2 }$$ ; confidence 0.191 | ||
| + | |||
| + | 1155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202706.png ; $$t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$$ ; confidence 0.936 | ||
| + | |||
| + | 1156. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202805.png ; $$X *$$ ; confidence 0.383 | ||
| + | |||
| + | 1157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $$F T op$$ ; confidence 0.332 | ||
| + | |||
| + | 1158. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027170/c02717082.png ; $$q = 59$$ ; confidence 0.998 | ||
| + | |||
| + | 1159. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $$7$$ ; confidence 0.254 | ||
| + | |||
| + | 1160. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180172.png ; $$M _ { k } = C _ { k }$$ ; confidence 0.997 | ||
| + | |||
| + | 1161. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180181.png ; $$E _ { x } ( s )$$ ; confidence 0.467 | ||
| + | |||
| + | 1162. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718064.png ; $$H ( K )$$ ; confidence 0.395 | ||
| + | |||
| + | 1163. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721080.png ; $$N = \mu / ( n + 1 )$$ ; confidence 0.992 | ||
| + | |||
| + | 1164. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721040.png ; $$P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$$ ; confidence 0.718 | ||
| + | |||
| + | 1165. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027240/c02724015.png ; $$x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$$ ; confidence 0.887 | ||
| + | |||
| + | 1166. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727013.png ; $$j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$$ ; confidence 0.284 | ||
| + | |||
| + | 1167. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $$\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$$ ; confidence 0.253 | ||
| + | |||
| + | 1168. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030069.png ; $$n = \infty$$ ; confidence 1.000 | ||
| + | |||
| + | 1169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030087.png ; $$T _ { 1 } ( H )$$ ; confidence 0.995 | ||
| + | |||
| + | 1170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030042.png ; $$u : H \rightarrow H ^ { \prime }$$ ; confidence 0.987 | ||
| + | |||
| + | 1171. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $$| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$$ ; confidence 0.447 | ||
| + | |||
| + | 1172. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320130.png ; $$C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$$ ; confidence 0.081 | ||
| + | |||
| + | 1173. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480106.png ; $$\Sigma _ { S }$$ ; confidence 0.760 | ||
| + | |||
| + | 1174. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480102.png ; $$( \sigma ^ { t } f ) ( t ^ { \prime } ) = f ( t + t ^ { \prime } )$$ ; confidence 1.000 | ||
| + | |||
| + | 1175. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110500/c11050032.png ; $$H C ^ { 0 } ( A )$$ ; confidence 0.945 | ||
| + | |||
| + | 1176. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027570/c02757085.png ; $$z$$ ; confidence 0.525 | ||
| + | |||
| + | 1177. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c02760032.png ; $$( u = const )$$ ; confidence 0.538 | ||
| + | |||
| + | 1178. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c0276008.png ; $$- \infty < z < \infty$$ ; confidence 0.577 | ||
| + | |||
| + | 1179. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276205.png ; $$F \in L ^ { * }$$ ; confidence 0.961 | ||
| + | |||
| + | 1180. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $$+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$$ ; confidence 0.187 | ||
| + | |||
| + | 1181. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002056.png ; $$D x$$ ; confidence 0.713 | ||
| + | |||
| + | 1182. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020144.png ; $$\operatorname { gr } D _ { X }$$ ; confidence 0.395 | ||
| + | |||
| + | 1183. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002094.png ; $$f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$$ ; confidence 0.906 | ||
| + | |||
| + | 1184. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $$V _ { V }$$ ; confidence 0.082 | ||
| + | |||
| + | 1185. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $$= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$$ ; confidence 0.711 | ||
| + | |||
| + | 1186. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020174.png ; $$( US )$$ ; confidence 0.980 | ||
| + | |||
| + | 1187. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002050.png ; $$( L )$$ ; confidence 0.982 | ||
| + | |||
| + | 1188. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002046.png ; $$= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$$ ; confidence 0.488 | ||
| + | |||
| + | 1189. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002017.png ; $$0 \leq k < 1$$ ; confidence 0.997 | ||
| + | |||
| + | 1190. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $$2$$ ; confidence 0.110 | ||
| + | |||
| + | 1191. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110020/d11002099.png ; $$f : S \rightarrow C$$ ; confidence 0.674 | ||
| + | |||
| + | 1192. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110040/d1100407.png ; $$S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$$ ; confidence 0.809 | ||
| + | |||
| + | 1193. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025016.png ; $$u _ { n } + 1 - k$$ ; confidence 0.616 | ||
| + | |||
| + | 1194. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302808.png ; $$\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$$ ; confidence 0.804 | ||
| + | |||
| + | 1195. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $$= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$$ ; confidence 0.435 | ||
| + | |||
| + | 1196. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110090/d11009089.png ; $$D \subseteq g H g ^ { - 1 }$$ ; confidence 0.970 | ||
| + | |||
| + | 1197. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062019.png ; $$\alpha \in C \cup \{ \infty \}$$ ; confidence 0.176 | ||
| + | |||
| + | 1198. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070037.png ; $$\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$$ ; confidence 0.952 | ||
| + | |||
| + | 1199. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700139.png ; $$\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$$ ; confidence 0.541 | ||
| + | |||
| + | 1200. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030790/d0307909.png ; $$\lambda ^ { m }$$ ; confidence 0.955 | ||
| + | |||
| + | 1201. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087032.png ; $$\pi ( \chi )$$ ; confidence 0.978 | ||
| + | |||
| + | 1202. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087020.png ; $$C ^ { \infty } ( G )$$ ; confidence 0.980 | ||
| + | |||
| + | 1203. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $$L \cup O$$ ; confidence 0.130 | ||
| + | |||
| + | 1204. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; $$M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$$ ; confidence 0.307 | ||
| + | |||
| + | 1205. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005022.png ; $$m - 2 r$$ ; confidence 1.000 | ||
| + | |||
| + | 1206. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; $$Z \in X$$ ; confidence 0.820 | ||
| + | |||
| + | 1207. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006091.png ; $$m _ { B } ( A ) = 0$$ ; confidence 0.968 | ||
| + | |||
| + | 1208. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006089.png ; $$m B$$ ; confidence 0.535 | ||
| + | |||
| + | 1209. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031010/d03101088.png ; $$S ^ { 4 k - 1 }$$ ; confidence 0.950 | ||
| + | |||
| + | 1210. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008069.png ; $$H = C ^ { n }$$ ; confidence 0.847 | ||
| + | |||
| + | 1211. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; $$F \in Hol ( D )$$ ; confidence 0.805 | ||
| + | |||
| + | 1212. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031100/d0311001.png ; $$\zeta ( s ) = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } }$$ ; confidence 0.995 | ||
| + | |||
| + | 1213. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125086.png ; $$\Omega _ { X / Y } ^ { 1 }$$ ; confidence 0.919 | ||
| + | |||
| + | 1214. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125044.png ; $$\phi : A \rightarrow A$$ ; confidence 0.991 | ||
| + | |||
| + | 1215. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128063.png ; $$s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$$ ; confidence 0.953 | ||
| + | |||
| + | 1216. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280173.png ; $$R ^ { i } F = H ^ { i } \circ R ^ { * } F$$ ; confidence 0.941 | ||
| + | |||
| + | 1217. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128077.png ; $$f t = g t$$ ; confidence 0.997 | ||
| + | |||
| + | 1218. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $$f : X ^ { \cdot } \rightarrow Y$$ ; confidence 0.209 | ||
| + | |||
| + | 1219. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $$\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$$ ; confidence 0.232 | ||
| + | |||
| + | 1220. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380332.png ; $$E = N$$ ; confidence 0.995 | ||
| + | |||
| + | 1221. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; $$\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$$ ; confidence 0.290 | ||
| + | |||
| + | 1222. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380296.png ; $$\sum _ { \sim } D _ { n + 1 } ^ { 0 }$$ ; confidence 0.204 | ||
| + | |||
| + | 1223. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314205.png ; $$k [ ( T _ { i j } ) _ { 1 \leq i \leq d } ]$$ ; confidence 0.679 | ||
| + | |||
| + | 1224. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $$| \hat { b } _ { n } | = 1$$ ; confidence 0.209 | ||
| + | |||
| + | 1225. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031540/d03154015.png ; $$G r$$ ; confidence 0.809 | ||
| + | |||
| + | 1226. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009046.png ; $$1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$$ ; confidence 0.512 | ||
| + | |||
| + | 1227. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009024.png ; $$1 \leq u \leq 2$$ ; confidence 0.976 | ||
| + | |||
| + | 1228. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009051.png ; $$u > 1$$ ; confidence 0.987 | ||
| + | |||
| + | 1229. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168056.png ; $$q _ { 2 } \neq q _ { 1 }$$ ; confidence 0.828 | ||
| + | |||
| + | 1230. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d0316809.png ; $$\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$$ ; confidence 0.786 | ||
| + | |||
| + | 1231. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $$| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$$ ; confidence 0.210 | ||
| + | |||
| + | 1232. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $$Z _ { h }$$ ; confidence 0.217 | ||
| + | |||
| + | 1233. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175013.png ; $$\overline { G } = G + \Gamma$$ ; confidence 0.752 | ||
| + | |||
| + | 1234. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031770/d03177042.png ; $$t = t _ { 0 } = x _ { 0 } ( 0 )$$ ; confidence 0.983 | ||
| + | |||
| + | 1235. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830278.png ; $$u \leq \theta u$$ ; confidence 0.794 | ||
| + | |||
| + | 1236. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830344.png ; $$\operatorname { rank } ( A _ { i } ) = \operatorname { rank } ( B _ { i } )$$ ; confidence 0.983 | ||
| + | |||
| + | 1237. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830290.png ; $$A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$$ ; confidence 0.523 | ||
| + | |||
| + | 1238. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830239.png ; $$G ( G / F _ { 1 } ) = G _ { 1 }$$ ; confidence 0.998 | ||
| + | |||
| + | 1239. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830269.png ; $$\operatorname { ord } ( \theta ) = \sum e$$ ; confidence 0.833 | ||
| + | |||
| + | 1240. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830152.png ; $$G \neq 0$$ ; confidence 0.999 | ||
| + | |||
| + | 1241. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830116.png ; $$\{ A \}$$ ; confidence 0.999 | ||
| + | |||
| + | 1242. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; $$\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$$ ; confidence 0.142 | ||
| + | |||
| + | 1243. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185095.png ; $$x \neq \pm 1$$ ; confidence 0.956 | ||
| + | |||
| + | 1244. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185088.png ; $$( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$$ ; confidence 1.000 | ||
| + | |||
| + | 1245. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d031850109.png ; $$( \frac { u } { v } ) ^ { \prime } = \frac { u ^ { \prime } v - u v ^ { \prime } } { v ^ { 2 } }$$ ; confidence 0.958 | ||
| + | |||
| + | 1246. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185094.png ; $$( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$$ ; confidence 0.996 | ||
| + | |||
| + | 1247. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031890/d03189028.png ; $$\Delta \rightarrow 0$$ ; confidence 0.981 | ||
| + | |||
| + | 1248. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d03191048.png ; $$x _ { 2 } ( t )$$ ; confidence 0.998 | ||
| + | |||
| + | 1249. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d0319107.png ; $$\dot { x } = f ( t )$$ ; confidence 0.623 | ||
| + | |||
| + | 1250. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d03191051.png ; $$x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$$ ; confidence 0.998 | ||
| + | |||
| + | 1251. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031920/d03192079.png ; $$0 < l < n$$ ; confidence 0.998 | ||
| + | |||
| + | 1252. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031930/d031930232.png ; $$= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$$ ; confidence 0.918 | ||
| + | |||
| + | 1253. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195029.png ; $$W _ { 2 } ^ { p }$$ ; confidence 0.986 | ||
| + | |||
| + | 1254. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195033.png ; $$L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$$ ; confidence 0.840 | ||
| + | |||
| + | 1255. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031990/d031990131.png ; $$R _ { L } = H ( V )$$ ; confidence 0.569 | ||
| + | |||
| + | 1256. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201064.png ; $$( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$$ ; confidence 0.980 | ||
| + | |||
| + | 1257. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201093.png ; $$n - m$$ ; confidence 0.998 | ||
| + | |||
| + | 1258. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201062.png ; $$\partial x / u = \partial t / 1$$ ; confidence 0.967 | ||
| + | |||
| + | 1259. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206019.png ; $$\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$$ ; confidence 0.933 | ||
| + | |||
| + | 1260. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206068.png ; $$| x ( t ( t ) ) \| \leq \rho$$ ; confidence 0.117 | ||
| + | |||
| + | 1261. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032100/d032100109.png ; $$\dot { x } ( t ) = A x ( t - h ) - D x ( t )$$ ; confidence 0.986 | ||
| + | |||
| + | 1262. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $$2 \pi \alpha$$ ; confidence 0.461 | ||
| + | |||
| + | 1263. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032110/d03211024.png ; $$z = \phi _ { i }$$ ; confidence 0.976 | ||
| + | |||
| + | 1264. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130352.png ; $$s ^ { \prime } ( \Omega ^ { r } ( X ) )$$ ; confidence 0.911 | ||
| + | |||
| + | 1265. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130227.png ; $$\int _ { S } \omega$$ ; confidence 0.561 | ||
| + | |||
| + | 1266. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130311.png ; $$\omega \in \Omega ^ { d } [ X ]$$ ; confidence 0.948 | ||
| + | |||
| + | 1267. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d032150132.png ; $$\hat { V }$$ ; confidence 0.359 | ||
| + | |||
| + | 1268. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032240/d03224071.png ; $$d \omega = d \square ^ { * } \omega = 0$$ ; confidence 0.954 | ||
| + | |||
| + | 1269. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225022.png ; $$\partial M$$ ; confidence 0.831 | ||
| + | |||
| + | 1270. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232015.png ; $$u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$$ ; confidence 0.362 | ||
| + | |||
| + | 1271. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232034.png ; $$u ( x _ { i } )$$ ; confidence 0.997 | ||
| + | |||
| + | 1272. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233032.png ; $$r \in F$$ ; confidence 0.671 | ||
| + | |||
| + | 1273. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233040.png ; $$b _ { 0 }$$ ; confidence 0.363 | ||
| + | |||
| + | 1274. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233041.png ; $$r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$$ ; confidence 0.388 | ||
| + | |||
| + | 1275. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032360/d03236035.png ; $$\frac { \partial u } { \partial t } + u \frac { \partial u } { \partial x } = D \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } }$$ ; confidence 0.994 | ||
| + | |||
| + | 1276. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450444.png ; $$X _ { 1 } \cup X _ { 2 } = X$$ ; confidence 0.917 | ||
| + | |||
| + | 1277. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450146.png ; $$\operatorname { dim } X \times Y < \operatorname { dim } X + \operatorname { dim } Y$$ ; confidence 0.994 | ||
| + | |||
| + | 1278. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450371.png ; $$\{ fd ( M )$$ ; confidence 0.531 | ||
| + | |||
| + | 1279. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450404.png ; $$[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$$ ; confidence 0.618 | ||
| + | |||
| + | 1280. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $$< \operatorname { Gdim } L < 1 +$$ ; confidence 0.485 | ||
| + | |||
| + | 1281. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032480/d03248013.png ; $$d ( I ^ { n } ) = n$$ ; confidence 0.754 | ||
| + | |||
| + | 1282. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249024.png ; $$s \in Z$$ ; confidence 0.983 | ||
| + | |||
| + | 1283. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249026.png ; $$G$$ ; confidence 0.797 | ||
| + | |||
| + | 1284. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600176.png ; $$w _ { N } ( \alpha ) \geq n$$ ; confidence 0.879 | ||
| + | |||
| + | 1285. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d03261012.png ; $$y = y _ { 0 } - a n$$ ; confidence 0.836 | ||
| + | |||
| + | 1286. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d0326107.png ; $$a x + b y = 1$$ ; confidence 0.602 | ||
| + | |||
| + | 1287. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $$z = r \operatorname { cos } \theta$$ ; confidence 0.866 | ||
| + | |||
| + | 1288. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d032890165.png ; $$\operatorname { li } x / \phi ( d )$$ ; confidence 0.594 | ||
| + | |||
| + | 1289. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d03289066.png ; $$s = - 2 \nu - \delta$$ ; confidence 0.945 | ||
| + | |||
| + | 1290. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201904.png ; $$C _ { 0 } ^ { \infty } ( \Omega ) \subset L _ { 2 } ( \Omega )$$ ; confidence 0.992 | ||
| + | |||
| + | 1291. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018028.png ; $$H ^ { p } ( d \theta / 2 \pi )$$ ; confidence 0.994 | ||
| + | |||
| + | 1292. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018084.png ; $$C ( G )$$ ; confidence 1.000 | ||
| + | |||
| + | 1293. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017013.png ; $$0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq$$ ; confidence 0.992 | ||
| + | |||
| + | 1294. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032920/d03292042.png ; $$\sigma > h$$ ; confidence 0.998 | ||
| + | |||
| + | 1295. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032920/d03292035.png ; $$s = 0$$ ; confidence 0.992 | ||
| + | |||
| + | 1296. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022035.png ; $$L y = g$$ ; confidence 0.990 | ||
| + | |||
| + | 1297. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023041.png ; $$K = \overline { K } \cap L _ { m } ( G )$$ ; confidence 0.866 | ||
| + | |||
| + | 1298. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033110/d03311036.png ; $$| \{ Z \} _ { n } | \rightarrow \infty$$ ; confidence 0.988 | ||
| + | |||
| + | 1299. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033160/d03316011.png ; $$\sigma _ { i } ^ { z }$$ ; confidence 0.702 | ||
| + | |||
| + | 1300. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033180/d03318044.png ; $$e ( B / A ) f ( B / A ) = n$$ ; confidence 0.996 | ||
| + | |||
| + | 1301. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033180/d03318055.png ; $$f ( B / A ) = 1$$ ; confidence 0.999 | ||
| + | |||
| + | 1302. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $$t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$$ ; confidence 0.248 | ||
| + | |||
| + | 1303. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033210/d03321058.png ; $$R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$$ ; confidence 0.981 | ||
| + | |||
| + | 1304. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033280/d03328018.png ; $$x d y$$ ; confidence 0.999 | ||
| + | |||
| + | 1305. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340103.png ; $$\gamma$$ ; confidence 0.589 | ||
| + | |||
| + | 1306. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d03334050.png ; $$c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$$ ; confidence 0.068 | ||
| + | |||
| + | 1307. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340195.png ; $$\lambda _ { 3 } = K \sum _ { i j } \frac { \delta _ { i j } ^ { 2 } } { \sigma ^ { 2 } }$$ ; confidence 0.991 | ||
| + | |||
| + | 1308. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023063.png ; $$R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$$ ; confidence 0.906 | ||
| + | |||
| + | 1309. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230125.png ; $$T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$$ ; confidence 0.997 | ||
| + | |||
| + | 1310. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023076.png ; $$Z ^ { * }$$ ; confidence 0.508 | ||
| + | |||
| + | 1311. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023093.png ; $$| f _ { i } | < 1$$ ; confidence 0.997 | ||
| + | |||
| + | 1312. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023095.png ; $$R - F R F ^ { * } = G J G ^ { * }$$ ; confidence 0.996 | ||
| + | |||
| + | 1313. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; $$\sigma _ { k }$$ ; confidence 0.198 | ||
| + | |||
| + | 1314. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033430/d03343022.png ; $$x \in D _ { B }$$ ; confidence 0.620 | ||
| + | |||
| + | 1315. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346020.png ; $$| w - \beta _ { 0 } | = | \zeta _ { 0 } |$$ ; confidence 0.997 | ||
| + | |||
| + | 1316. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460124.png ; $$| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$$ ; confidence 0.854 | ||
| + | |||
| + | 1317. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346022.png ; $$\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$$ ; confidence 0.488 | ||
| + | |||
| + | 1318. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d033530372.png ; $$d _ { n } \ll p _ { n } ^ { \theta }$$ ; confidence 0.957 | ||
| + | |||
| + | 1319. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353095.png ; $$\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$$ ; confidence 0.429 | ||
| + | |||
| + | 1320. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353048.png ; $$\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$$ ; confidence 0.899 | ||
| + | |||
| + | 1321. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d033530133.png ; $$\zeta ( \sigma + i t ) \neq 0$$ ; confidence 0.991 | ||
| + | |||
| + | 1322. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335708.png ; $$\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$$ ; confidence 0.170 | ||
| + | |||
| + | 1323. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335707.png ; $$\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$$ ; confidence 0.076 | ||
| + | |||
| + | 1324. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335705.png ; $$\alpha \sum _ { i \in I } b _ { i } = \sum _ { i \in I } a b _ { i }$$ ; confidence 0.661 | ||
| + | |||
| + | 1325. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $$\| \hat { f } \| = \| f \| _ { 1 }$$ ; confidence 0.870 | ||
| + | |||
| + | 1326. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $$A ( \vec { G } )$$ ; confidence 0.484 | ||
| + | |||
| + | 1327. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $$\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$$ ; confidence 0.784 | ||
| + | |||
| + | 1328. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033630/d03363020.png ; $$\operatorname { lim } _ { x \rightarrow \infty } e ^ { - x } \sum _ { n = 0 } ^ { \infty } \frac { s _ { n } x ^ { n } } { n ! }$$ ; confidence 0.659 | ||
| + | |||
| + | 1329. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033680/d03368022.png ; $$[ A : F ] = [ L : F ] ^ { 2 }$$ ; confidence 0.997 | ||
| + | |||
| + | 1330. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372075.png ; $$\sigma > 1 / 2$$ ; confidence 0.999 | ||
| + | |||
| + | 1331. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372050.png ; $$\gamma _ { k } < \sigma < 1$$ ; confidence 0.998 | ||
| + | |||
| + | 1332. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379044.png ; $$\Delta _ { D } ( z )$$ ; confidence 0.999 | ||
| + | |||
| + | 1333. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379012.png ; $$D \backslash K$$ ; confidence 0.979 | ||
| + | |||
| + | 1334. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338502.png ; $$x \square ^ { j }$$ ; confidence 0.818 | ||
| + | |||
| + | 1335. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339309.png ; $$p _ { 1 } / p _ { 2 }$$ ; confidence 0.981 | ||
| + | |||
| + | 1336. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d03399055.png ; $$y ^ { \prime } ( b ) + v ( b ) y ( b ) = \gamma ( b )$$ ; confidence 0.998 | ||
| + | |||
| + | 1337. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d03399034.png ; $$y ^ { \prime } ( b ) + \psi y ( b ) = \beta$$ ; confidence 0.993 | ||
| + | |||
| + | 1338. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033980/d03398025.png ; $$\sum _ { m = 1 } ^ { \infty } u _ { m n n }$$ ; confidence 0.852 | ||
| + | |||
| + | 1339. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; $$O \subset A _ { R }$$ ; confidence 0.132 | ||
| + | |||
| + | 1340. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120272.png ; $$A _ { 0 } ( G )$$ ; confidence 0.996 | ||
| + | |||
| + | 1341. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120271.png ; $$\infty \in G$$ ; confidence 0.992 | ||
| + | |||
| + | 1342. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $$\overline { U }$$ ; confidence 0.299 | ||
| + | |||
| + | 1343. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280152.png ; $$A ( D ) ^ { * } \simeq A / B$$ ; confidence 0.981 | ||
| + | |||
| + | 1344. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029018.png ; $$f ( q ) = 1 / ( \sqrt { 5 } q ^ { 2 } )$$ ; confidence 1.000 | ||
| + | |||
| + | 1345. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203009.png ; $$Y ( t ) \in R ^ { m }$$ ; confidence 0.934 | ||
| + | |||
| + | 1346. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203201.png ; $$T : L ^ { 1 } \rightarrow X$$ ; confidence 0.986 | ||
| + | |||
| + | 1347. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034260/d03426025.png ; $$\delta ( t )$$ ; confidence 1.000 | ||
| + | |||
| + | 1348. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034280/d03428088.png ; $$S _ { g } ( w _ { 0 } )$$ ; confidence 0.921 | ||
| + | |||
| + | 1349. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $$A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$$ ; confidence 0.193 | ||
| + | |||
| + | 1350. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012065.png ; $$\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$$ ; confidence 0.904 | ||
| + | |||
| + | 1351. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002045.png ; $$T$$ ; confidence 0.914 | ||
| + | |||
| + | 1352. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $$\Sigma \Omega X \rightarrow X$$ ; confidence 0.748 | ||
| + | |||
| + | 1353. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002023.png ; $$74$$ ; confidence 0.496 | ||
| + | |||
| + | 1354. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020102.png ; $$V \not \equiv W$$ ; confidence 0.489 | ||
| + | |||
| + | 1355. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002010.png ; $$\varphi$$ ; confidence 0.858 | ||
| + | |||
| + | 1356. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511022.png ; $$\Sigma - 1$$ ; confidence 0.852 | ||
| + | |||
| + | 1357. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005039.png ; $$h ^ { i } ( w ) = g ^ { i } ( w )$$ ; confidence 0.992 | ||
| + | |||
| + | 1358. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006018.png ; $$T p ( A _ { y } ) = A$$ ; confidence 0.900 | ||
| + | |||
| + | 1359. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006038.png ; $$Y \rightarrow J ^ { 1 } Y$$ ; confidence 0.987 | ||
| + | |||
| + | 1360. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007012.png ; $$\Gamma _ { q }$$ ; confidence 0.846 | ||
| + | |||
| + | 1361. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035160/e0351605.png ; $$L ( u ) + \lambda u = 0$$ ; confidence 0.993 | ||
| + | |||
| + | 1362. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035160/e03516059.png ; $$\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$$ ; confidence 0.519 | ||
| + | |||
| + | 1363. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $$\| \hat { A } - A \| \leq \delta$$ ; confidence 0.245 | ||
| + | |||
| + | 1364. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517077.png ; $$\overline { U _ { n } \in N A _ { n } ( B ) }$$ ; confidence 0.452 | ||
| + | |||
| + | 1365. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; $$\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$$ ; confidence 0.088 | ||
| + | |||
| + | 1366. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003029.png ; $$K _ { \infty }$$ ; confidence 0.984 | ||
| + | |||
| + | 1367. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003020.png ; $$f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$$ ; confidence 0.738 | ||
| + | |||
| + | 1368. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250110.png ; $$f = u _ { 1 } + i u _ { 2 }$$ ; confidence 0.994 | ||
| + | |||
| + | 1369. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525048.png ; $$0 < \sigma < 0.5$$ ; confidence 0.996 | ||
| + | |||
| + | 1370. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525091.png ; $$z _ { k } \in L$$ ; confidence 0.875 | ||
| + | |||
| + | 1371. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250143.png ; $$\Delta \Delta w _ { 0 } = 0$$ ; confidence 0.903 | ||
| + | |||
| + | 1372. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010015.png ; $$f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$$ ; confidence 0.640 | ||
| + | |||
| + | 1373. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010035.png ; $$f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$$ ; confidence 0.071 | ||
| + | |||
| + | 1374. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010055.png ; $$E ^ { \prime } = 0$$ ; confidence 0.985 | ||
| + | |||
| + | 1375. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035320/e0353202.png ; $$\tau _ { i + 1 } - \tau _ { i }$$ ; confidence 0.970 | ||
| + | |||
| + | 1376. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536067.png ; $$\langle P ^ { ( 2 ) } \rangle$$ ; confidence 0.899 | ||
| + | |||
| + | 1377. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536090.png ; $$\operatorname { Th } ( K _ { 1 } )$$ ; confidence 0.733 | ||
| + | |||
| + | 1378. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110060/e11006015.png ; $$\Omega _ { * } ^ { SO }$$ ; confidence 0.644 | ||
| + | |||
| + | 1379. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035470/e03547029.png ; $$f ( z _ { 1 } + z _ { 2 } )$$ ; confidence 0.999 | ||
| + | |||
| + | 1380. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; $$C x ^ { - 1 }$$ ; confidence 0.834 | ||
| + | |||
| + | 1381. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e110070191.png ; $$f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$$ ; confidence 0.893 | ||
| + | |||
| + | 1382. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007067.png ; $$y ^ { 2 } = R ( x )$$ ; confidence 0.993 | ||
| + | |||
| + | 1383. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035490/e03549042.png ; $$u = - \int _ { z } ^ { \infty } \frac { d z } { w }$$ ; confidence 0.983 | ||
| + | |||
| + | 1384. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035500/e03550031.png ; $$T ^ { * } X \backslash 0$$ ; confidence 0.997 | ||
| + | |||
| + | 1385. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035530/e0355309.png ; $$\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$$ ; confidence 0.732 | ||
| + | |||
| + | 1386. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e035550163.png ; $$b _ { 2 } = 0$$ ; confidence 1.000 | ||
| + | |||
| + | 1387. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e035550128.png ; $$\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$$ ; confidence 0.949 | ||
| + | |||
| + | 1388. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e03555010.png ; $$X _ { t } = m F$$ ; confidence 0.993 | ||
| + | |||
| + | 1389. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e03555028.png ; $$y ^ { 2 } = x ^ { 3 } - g x - g$$ ; confidence 0.962 | ||
| + | |||
| + | 1390. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556014.png ; $$y ^ { \prime } ( 0 ) = 0$$ ; confidence 0.990 | ||
| + | |||
| + | 1391. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008028.png ; $$P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$$ ; confidence 0.394 | ||
| + | |||
| + | 1392. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008048.png ; $$B \circ F$$ ; confidence 0.974 | ||
| + | |||
| + | 1393. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e03566053.png ; $$c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$$ ; confidence 0.789 | ||
| + | |||
| + | 1394. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e0356605.png ; $$U _ { \mu } ( x ) = \int H ( | x - y | ) d \mu ( y )$$ ; confidence 0.999 | ||
| + | |||
| + | 1395. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e1300407.png ; $$U _ { 0 } ( t )$$ ; confidence 0.998 | ||
| + | |||
| + | 1396. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $$( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$$ ; confidence 0.766 | ||
| + | |||
| + | 1397. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004035.png ; $$( \Omega _ { + } - 1 ) \psi ( t ) = ( \Omega _ { + } - 1 ) g \psi ( t ) =$$ ; confidence 0.997 | ||
| + | |||
| + | 1398. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035720/e0357202.png ; $$\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$$ ; confidence 0.823 | ||
| + | |||
| + | 1399. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035760/e0357604.png ; $$f : W \rightarrow R$$ ; confidence 0.920 | ||
| + | |||
| + | 1400. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579057.png ; $$\sum _ { n } ^ { - 1 }$$ ; confidence 0.820 | ||
| + | |||
| + | 1401. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e0358008.png ; $$\nu ( n ) = \alpha$$ ; confidence 0.430 | ||
| + | |||
| + | 1402. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581038.png ; $$\Phi \Psi$$ ; confidence 0.943 | ||
| + | |||
| + | 1403. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581047.png ; $$\Psi ( A ) = A$$ ; confidence 0.999 | ||
| + | |||
| + | 1404. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015019.png ; $$\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$$ ; confidence 0.338 | ||
| + | |||
| + | 1405. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015070.png ; $$\lambda _ { 1 } = \lambda _ { 2 }$$ ; confidence 1.000 | ||
| + | |||
| + | 1406. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; $$P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$$ ; confidence 0.914 | ||
| + | |||
| + | 1407. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607020.png ; $$\tau _ { n } ^ { ( B ) }$$ ; confidence 0.845 | ||
| + | |||
| + | 1408. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110100/e11010022.png ; $$o ( G )$$ ; confidence 0.990 | ||
| + | |||
| + | 1409. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036120/e03612012.png ; $$m ( M )$$ ; confidence 0.999 | ||
| + | |||
| + | 1410. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e03623076.png ; $$2 d \geq n$$ ; confidence 0.758 | ||
| + | |||
| + | 1411. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230210.png ; $$R ( \delta ) = 1 - H ( \delta )$$ ; confidence 1.000 | ||
| + | |||
| + | 1412. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230124.png ; $$k \geq n - i t$$ ; confidence 0.558 | ||
| + | |||
| + | 1413. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036240/e03624043.png ; $$\sigma \approx s$$ ; confidence 0.994 | ||
| + | |||
| + | 1414. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $$l _ { x }$$ ; confidence 0.196 | ||
| + | |||
| + | 1415. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640030.png ; $$2 - 2 g - l$$ ; confidence 0.741 | ||
| + | |||
| + | 1416. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640033.png ; $$2 - m - 1$$ ; confidence 0.994 | ||
| + | |||
| + | 1417. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036530/e03653023.png ; $$t h$$ ; confidence 0.989 | ||
| + | |||
| + | 1418. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023072.png ; $$E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$$ ; confidence 0.682 | ||
| + | |||
| + | 1419. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023094.png ; $$\sigma ^ { k } : M \rightarrow E ^ { k }$$ ; confidence 0.958 | ||
| + | |||
| + | 1420. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $$\therefore M \rightarrow F$$ ; confidence 0.313 | ||
| + | |||
| + | 1421. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202308.png ; $$M = \overline { U }$$ ; confidence 0.999 | ||
| + | |||
| + | 1422. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $$E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$$ ; confidence 0.101 | ||
| + | |||
| + | 1423. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230111.png ; $$E ( L )$$ ; confidence 0.960 | ||
| + | |||
| + | 1424. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023058.png ; $$E ( L ) = \frac { \partial L } { \partial y } - D ( \frac { \partial L } { \partial y ^ { \prime } } )$$ ; confidence 0.989 | ||
| + | |||
| + | 1425. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023061.png ; $$L \mapsto E ( L )$$ ; confidence 0.892 | ||
| + | |||
| + | 1426. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024025.png ; $$K ( L )$$ ; confidence 0.907 | ||
| + | |||
| + | 1427. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662025.png ; $$Q _ { n - j } ( z ) \equiv 0$$ ; confidence 0.981 | ||
| + | |||
| + | 1428. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110130/e11013060.png ; $$p _ { x } ^ { * } = \lambda \operatorname { exp } ( - \lambda x )$$ ; confidence 0.974 | ||
| + | |||
| + | 1429. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677085.png ; $$A + 2$$ ; confidence 0.997 | ||
| + | |||
| + | 1430. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677073.png ; $$B = f ( A )$$ ; confidence 0.999 | ||
| + | |||
| + | 1431. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677067.png ; $$\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$$ ; confidence 0.866 | ||
| + | |||
| + | 1432. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677058.png ; $$P ^ { \prime } ( C )$$ ; confidence 0.802 | ||
| + | |||
| + | 1433. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677051.png ; $$f | _ { A } = \phi$$ ; confidence 0.668 | ||
| + | |||
| + | 1434. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682019.png ; $$B _ { \mu } ^ { 1 } \subset B \subset B _ { \mu } ^ { 2 }$$ ; confidence 0.646 | ||
| + | |||
| + | 1435. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682038.png ; $$\tau \geq \zeta$$ ; confidence 0.994 | ||
| + | |||
| + | 1436. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684025.png ; $$A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$$ ; confidence 0.919 | ||
| + | |||
| + | 1437. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684018.png ; $$K ( B - C _ { N } ) > K ( B - A ) > D$$ ; confidence 0.579 | ||
| + | |||
| + | 1438. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684024.png ; $$C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$$ ; confidence 0.974 | ||
| + | |||
| + | 1439. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036850/e03685016.png ; $$\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$$ ; confidence 0.606 | ||
| + | |||
| + | 1440. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026092.png ; $$( L _ { \mu } ) ^ { p }$$ ; confidence 0.998 | ||
| + | |||
| + | 1441. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691052.png ; $$z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$$ ; confidence 0.857 | ||
| + | |||
| + | 1442. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691064.png ; $$( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$$ ; confidence 0.053 | ||
| + | |||
| + | 1443. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691017.png ; $$a ^ { X } = e ^ { X \operatorname { ln } \alpha }$$ ; confidence 0.301 | ||
| + | |||
| + | 1444. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006023.png ; $$z \in Z$$ ; confidence 0.973 | ||
| + | |||
| + | 1445. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $$S = o ( \# A )$$ ; confidence 0.908 | ||
| + | |||
| + | 1446. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036940/e03694044.png ; $$p f$$ ; confidence 0.602 | ||
| + | |||
| + | 1447. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696065.png ; $$y _ { j } \delta \theta$$ ; confidence 0.866 | ||
| + | |||
| + | 1448. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960205.png ; $$\nu - 1 / 2 \in Z$$ ; confidence 0.954 | ||
| + | |||
| + | 1449. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960198.png ; $$y ^ { \prime } + \alpha _ { 1 } y = 0$$ ; confidence 0.639 | ||
| + | |||
| + | 1450. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036980/e03698026.png ; $$\alpha : G \rightarrow \operatorname { Aut } A$$ ; confidence 0.856 | ||
| + | |||
| + | 1451. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $$n + = n - = n$$ ; confidence 0.228 | ||
| + | |||
| + | 1452. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e037040161.png ; $$A = A _ { 0 } ^ { * }$$ ; confidence 0.706 | ||
| + | |||
| + | 1453. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704077.png ; $$\lambda < \alpha$$ ; confidence 0.600 | ||
| + | |||
| + | 1454. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708021.png ; $$r > n$$ ; confidence 0.953 | ||
| + | |||
| + | 1455. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708073.png ; $$x _ { i } ^ { 2 } = 0$$ ; confidence 0.840 | ||
| + | |||
| + | 1456. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716049.png ; $$\Delta J =$$ ; confidence 0.998 | ||
| + | |||
| + | 1457. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037170/e03717072.png ; $$r < | z | < 1$$ ; confidence 0.987 | ||
| + | |||
| + | 1458. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037200/e037200118.png ; $$\gamma \geq 0$$ ; confidence 0.994 | ||
| + | |||
| + | 1459. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200101.png ; $$S h$$ ; confidence 0.739 | ||
| + | |||
| + | 1460. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038060/f03806015.png ; $$V$$ ; confidence 0.996 | ||
| + | |||
| + | 1461. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001030.png ; $$R _ { i } = F _ { q } [ x ] / ( f _ { i } )$$ ; confidence 0.671 | ||
| + | |||
| + | 1462. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038130/f0381302.png ; $$G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$$ ; confidence 0.998 | ||
| + | |||
| + | 1463. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f0382203.png ; $$K _ { X } ^ { - 1 }$$ ; confidence 0.918 | ||
| + | |||
| + | 1464. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f03822036.png ; $$Q \subset P ^ { 4 }$$ ; confidence 0.991 | ||
| + | |||
| + | 1465. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004017.png ; $$d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$$ ; confidence 0.976 | ||
| + | |||
| + | 1466. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005019.png ; $$q ( 0 ) \neq 0$$ ; confidence 0.997 | ||
| + | |||
| + | 1467. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005048.png ; $$w ( x ) = | f ( x ) | ^ { 2 }$$ ; confidence 1.000 | ||
| + | |||
| + | 1468. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038380/f03838022.png ; $$C _ { 0 }$$ ; confidence 0.800 | ||
| + | |||
| + | 1469. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f1200408.png ; $$( + \infty ) - ( + \infty ) = - \infty - ( - \infty ) = - \infty$$ ; confidence 0.999 | ||
| + | |||
| + | 1470. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038390/f038390152.png ; $$\alpha ^ { \lambda } = 1$$ ; confidence 0.972 | ||
| + | |||
| + | 1471. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038390/f038390108.png ; $$q ( m ) = ( m ^ { p - 1 } - 1 ) / p$$ ; confidence 0.963 | ||
| + | |||
| + | 1472. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847048.png ; $$\tau _ { 0 } = 0$$ ; confidence 0.955 | ||
| + | |||
| + | 1473. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847049.png ; $$\tau _ { k + 1 } = t$$ ; confidence 0.410 | ||
| + | |||
| + | 1474. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009060.png ; $$P ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } )$$ ; confidence 0.620 | ||
| + | |||
| + | 1475. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; $$U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$$ ; confidence 0.947 | ||
| + | |||
| + | 1476. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008051.png ; $$P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$$ ; confidence 0.505 | ||
| + | |||
| + | 1477. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008010.png ; $$F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$$ ; confidence 0.940 | ||
| + | |||
| + | 1478. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100140.png ; $$G = T$$ ; confidence 0.991 | ||
| + | |||
| + | 1479. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; $$v \in A _ { p } ( G )$$ ; confidence 0.412 | ||
| + | |||
| + | 1480. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010016.png ; $$u \in C ^ { G }$$ ; confidence 0.438 | ||
| + | |||
| + | 1481. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010077.png ; $$\lambda ^ { p } ( M ^ { 1 } ( G ) )$$ ; confidence 0.996 | ||
| + | |||
| + | 1482. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040190/f04019037.png ; $$V ( x _ { 0 } )$$ ; confidence 0.998 | ||
| + | |||
| + | 1483. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021064.png ; $$\phi ( \mathfrak { A } )$$ ; confidence 0.445 | ||
| + | |||
| + | 1484. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230100.png ; $$x _ { n } = n$$ ; confidence 0.849 | ||
| + | |||
| + | 1485. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230157.png ; $$\Delta ^ { n } f ( x )$$ ; confidence 0.976 | ||
| + | |||
| + | 1486. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230147.png ; $$\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$$ ; confidence 0.269 | ||
| + | |||
| + | 1487. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033018.png ; $$f ^ { - 1 } ( f ( x ) ) \cap U$$ ; confidence 0.998 | ||
| + | |||
| + | 1488. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040290/f04029031.png ; $$G / G 1$$ ; confidence 0.622 | ||
| + | |||
| + | 1489. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040390/f04039064.png ; $$y ^ { i } C _ { i j k } = 0$$ ; confidence 0.942 | ||
| + | |||
| + | 1490. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040420/f04042034.png ; $$\Phi ( \Phi ( x ) ) = x$$ ; confidence 1.000 | ||
| + | |||
| + | 1491. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040520/f04052043.png ; $$| x - x _ { 0 } | \leq b$$ ; confidence 0.990 | ||
| + | |||
| + | 1492. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058030.png ; $$| X$$ ; confidence 0.687 | ||
| + | |||
| + | 1493. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058044.png ; $$\phi ( p )$$ ; confidence 0.999 | ||
| + | |||
| + | 1494. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058066.png ; $$| A | = \int _ { R } | \alpha | 0$$ ; confidence 0.765 | ||
| + | |||
| + | 1495. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png ; $$\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$$ ; confidence 0.891 | ||
| + | |||
| + | 1496. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061036.png ; $$C ^ { b r } ( E ^ { n } )$$ ; confidence 0.943 | ||
| + | |||
| + | 1497. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069050.png ; $$\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$$ ; confidence 0.995 | ||
| + | |||
| + | 1498. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069087.png ; $$\{ \xi _ { f } : f \in H \}$$ ; confidence 0.998 | ||
| + | |||
| + | 1499. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069072.png ; $$\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$$ ; confidence 0.962 | ||
| + | |||
| + | 1500. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png ; $$t \subset v$$ ; confidence 0.885 | ||
| + | |||
| + | 1501. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820110.png ; $$f _ { i } ( X ) = X _ { i } + \ldots$$ ; confidence 0.733 | ||
| + | |||
| + | 1502. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820173.png ; $$F ( \overline { m } )$$ ; confidence 0.760 | ||
| + | |||
| + | 1503. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408302.png ; $$\omega = \alpha _ { 1 } \ldots \alpha _ { k }$$ ; confidence 0.633 | ||
| + | |||
| + | 1504. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850279.png ; $$V _ { 1 } ^ { * }$$ ; confidence 0.750 | ||
| + | |||
| + | 1505. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850143.png ; $$\{ \lambda \}$$ ; confidence 1.000 | ||
| + | |||
| + | 1506. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850122.png ; $$A \rightarrow w$$ ; confidence 0.934 | ||
| + | |||
| + | 1507. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f04085058.png ; $$\sigma ( \alpha ) = \{ w \}$$ ; confidence 0.997 | ||
| + | |||
| + | 1508. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040960/f04096043.png ; $$I V _ { 2 }$$ ; confidence 0.996 | ||
| + | |||
| + | 1509. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040960/f04096055.png ; $$x ^ { i } \in R$$ ; confidence 0.987 | ||
| + | |||
| + | 1510. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410005.png ; $$J _ { \nu }$$ ; confidence 0.556 | ||
| + | |||
| + | 1511. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $$F \mu$$ ; confidence 0.813 | ||
| + | |||
| + | 1512. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041140/f04114018.png ; $$P ( x ) = \frac { 1 } { \sqrt { 2 \pi } } F ( x )$$ ; confidence 1.000 | ||
| + | |||
| + | 1513. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080162.png ; $$L _ { q } ( X )$$ ; confidence 0.846 | ||
| + | |||
| + | 1514. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080135.png ; $$\Lambda _ { G } = 1$$ ; confidence 0.897 | ||
| + | |||
| + | 1515. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010041.png ; $$( 8 \times 8 )$$ ; confidence 1.000 | ||
| + | |||
| + | 1516. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011010.png ; $$| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$$ ; confidence 0.840 | ||
| + | |||
| + | 1517. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110126.png ; $$F ( z ) = - \frac { 1 } { 2 \pi i } \int \frac { \operatorname { exp } e ^ { \zeta ^ { 2 } } } { \zeta - z } d \zeta$$ ; confidence 0.622 | ||
| + | |||
| + | 1518. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105039.png ; $$f \in L _ { 1 }$$ ; confidence 0.991 | ||
| + | |||
| + | 1519. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f04106025.png ; $$\phi \in C _ { 0 } ^ { \infty } ( \Omega )$$ ; confidence 0.997 | ||
| + | |||
| + | 1520. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060172.png ; $$X ^ { \prime } \subset X$$ ; confidence 0.988 | ||
| + | |||
| + | 1521. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060187.png ; $$K _ { j } \times R ^ { N j }$$ ; confidence 0.562 | ||
| + | |||
| + | 1522. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060205.png ; $$d _ { C } ^ { - 1 } = \operatorname { det } \left\| \begin{array} { c c } { \phi _ { \theta } \theta } & { \phi _ { \theta x } } \\ { \phi _ { y } \theta } & { \phi _ { y x } } \end{array} \right\|$$ ; confidence 0.370 | ||
| + | |||
| + | 1523. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041160/f04116031.png ; $$\alpha = - b$$ ; confidence 0.947 | ||
| + | |||
| + | 1524. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041170/f04117079.png ; $$f * g$$ ; confidence 0.637 | ||
| + | |||
| + | 1525. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041170/f04117026.png ; $$K = D$$ ; confidence 0.998 | ||
| + | |||
| + | 1526. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041170/f04117046.png ; $$F [ \delta ] = 1$$ ; confidence 0.999 | ||
| + | |||
| + | 1527. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041170/f041170108.png ; $$\eta \in \operatorname { ln } t \Gamma ^ { \prime }$$ ; confidence 0.642 | ||
| + | |||
| + | 1528. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125082.png ; $$\xi _ { 1 } \neq \infty$$ ; confidence 0.999 | ||
| + | |||
| + | 1529. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412503.png ; $$z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$$ ; confidence 0.834 | ||
| + | |||
| + | 1530. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f041250105.png ; $$L _ { k } ( z _ { k } )$$ ; confidence 0.991 | ||
| + | |||
| + | 1531. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412506.png ; $$\infty \rightarrow \alpha / c$$ ; confidence 0.864 | ||
| + | |||
| + | 1532. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041210/f0412109.png ; $$A / \eta$$ ; confidence 0.702 | ||
| + | |||
| + | 1533. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041270/f04127048.png ; $$D ( B ) \supset D ( A )$$ ; confidence 0.993 | ||
| + | |||
| + | 1534. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041270/f04127030.png ; $$\alpha < \beta < \gamma$$ ; confidence 0.991 | ||
| + | |||
| + | 1535. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041270/f04127050.png ; $$x \in D ( A )$$ ; confidence 0.906 | ||
| + | |||
| + | 1536. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041310/f04131029.png ; $$\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$$ ; confidence 0.855 | ||
| + | |||
| + | 1537. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041310/f04131016.png ; $$\eta = \frac { ( \alpha ^ { 2 } - \rho ^ { 2 } ) ^ { 1 / 2 } ( \alpha ^ { 2 } - \rho _ { 0 } ^ { 2 } ) ^ { 1 / 2 } } { \alpha }$$ ; confidence 0.628 | ||
| + | |||
| + | 1538. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041320/f04132023.png ; $$v _ { 0 } ^ { k }$$ ; confidence 0.384 | ||
| + | |||
| + | 1539. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120130/f12013083.png ; $$| \Phi ( G )$$ ; confidence 0.956 | ||
| + | |||
| + | 1540. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160161.png ; $$\mathfrak { A } \sim _ { l } \mathfrak { B }$$ ; confidence 0.922 | ||
| + | |||
| + | 1541. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041420/f04142082.png ; $$D ( \lambda ) \neq 0$$ ; confidence 0.997 | ||
| + | |||
| + | 1542. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041420/f041420175.png ; $$| \lambda | < B ^ { - 1 }$$ ; confidence 0.997 | ||
| + | |||
| + | 1543. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015043.png ; $$\beta ( A ) < \infty$$ ; confidence 0.997 | ||
| + | |||
| + | 1544. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015010.png ; $$R ( A )$$ ; confidence 1.000 | ||
| + | |||
| + | 1545. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150156.png ; $$\beta ( A - K ) < \infty$$ ; confidence 0.999 | ||
| + | |||
| + | 1546. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150202.png ; $$n \| < C$$ ; confidence 0.368 | ||
| + | |||
| + | 1547. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015012.png ; $$\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$$ ; confidence 0.981 | ||
| + | |||
| + | 1548. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151086.png ; $$( r \geq 1 )$$ ; confidence 1.000 | ||
| + | |||
| + | 1549. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157048.png ; $$x _ { 1 } ( t ) + x _ { 2 } ( t ) = A ( t ) \operatorname { cos } ( \omega _ { 1 } t + \phi ( t ) )$$ ; confidence 0.965 | ||
| + | |||
| + | 1550. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158014.png ; $$( x M ) ( M ^ { - 1 } y )$$ ; confidence 0.999 | ||
| + | |||
| + | 1551. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041620/f04162020.png ; $$X _ { i } \cap X _ { j } =$$ ; confidence 0.322 | ||
| + | |||
| + | 1552. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019028.png ; $$C _ { G } ( n ) \leq N$$ ; confidence 0.972 | ||
| + | |||
| + | 1553. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $$N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$$ ; confidence 0.269 | ||
| + | |||
| + | 1554. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021089.png ; $$\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$$ ; confidence 0.071 | ||
| + | |||
| + | 1555. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202105.png ; $$| z | < r$$ ; confidence 0.957 | ||
| + | |||
| + | 1556. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021069.png ; $$= \frac { ( n _ { 1 } + l ) ! } { ! ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { 2 } } + \ldots$$ ; confidence 0.665 | ||
| + | |||
| + | 1557. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021085.png ; $$\lambda = \lambda _ { j }$$ ; confidence 0.911 | ||
| + | |||
| + | 1558. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041790/f04179028.png ; $$( n ! ) ^ { - 1 } n _ { D }$$ ; confidence 0.991 | ||
| + | |||
| + | 1559. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018097.png ; $$\| x \| _ { p } = \int _ { 0 } ^ { 1 } | x ( t ) | ^ { p } d t$$ ; confidence 0.742 | ||
| + | |||
| + | 1560. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180102.png ; $$0 < p _ { n } \rightarrow 0$$ ; confidence 0.998 | ||
| + | |||
| + | 1561. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230136.png ; $$J : T M \rightarrow T M$$ ; confidence 0.972 | ||
| + | |||
| + | 1562. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188062.png ; $$V _ { 0 } ( z )$$ ; confidence 0.971 | ||
| + | |||
| + | 1563. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041890/f041890119.png ; $$x \in R \cup \{ \infty \}$$ ; confidence 0.764 | ||
| + | |||
| + | 1564. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041890/f0418904.png ; $$D = \{ z \in C : | z | < 1 \}$$ ; confidence 0.972 | ||
| + | |||
| + | 1565. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041890/f04189063.png ; $$\chi ( \Delta ) = \chi ( \Gamma ) [ \Gamma : \Delta ]$$ ; confidence 0.999 | ||
| + | |||
| + | 1566. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940314.png ; $$L _ { p } ( X )$$ ; confidence 0.970 | ||
| + | |||
| + | 1567. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940175.png ; $$S \subset T$$ ; confidence 0.743 | ||
| + | |||
| + | 1568. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940310.png ; $$A \in \mathfrak { S }$$ ; confidence 0.285 | ||
| + | |||
| + | 1569. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041950/f041950110.png ; $$f \in N ( \Delta )$$ ; confidence 0.997 | ||
| + | |||
| + | 1570. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202409.png ; $$t \mapsto t + T$$ ; confidence 0.520 | ||
| + | |||
| + | 1571. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042030/f04203082.png ; $$T _ { \rightarrow } V ^ { - 1 } T V$$ ; confidence 0.437 | ||
| + | |||
| + | 1572. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f04206038.png ; $$P ( C A )$$ ; confidence 0.999 | ||
| + | |||
| + | 1573. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f04206074.png ; $$f ( - x ) = - f ( x )$$ ; confidence 1.000 | ||
| + | |||
| + | 1574. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f042060121.png ; $$\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$$ ; confidence 0.207 | ||
| + | |||
| + | 1575. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042070/f04207074.png ; $$T _ { N } ( t )$$ ; confidence 0.993 | ||
| + | |||
| + | 1576. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042120/f04212073.png ; $$\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$$ ; confidence 0.777 | ||
| + | |||
| + | 1577. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042150/f04215011.png ; $$\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$$ ; confidence 0.308 | ||
| + | |||
| + | 1578. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221073.png ; $$\tilde { f } : Y \rightarrow X$$ ; confidence 0.494 | ||
| + | |||
| + | 1579. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221056.png ; $$e _ { \lambda } ^ { 1 } \in X$$ ; confidence 0.877 | ||
| + | |||
| + | 1580. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110220/f11022029.png ; $$A ^ { p } \geq ( A ^ { p / 2 } B ^ { p } A ^ { p / 2 } ) ^ { 1 / 2 }$$ ; confidence 0.997 | ||
| + | |||
| + | 1581. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $$LOC$$ ; confidence 0.417 | ||
| + | |||
| + | 1582. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $$X \times F$$ ; confidence 0.480 | ||
| + | |||
| + | 1583. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020138.png ; $$\pi : P \rightarrow G \backslash P$$ ; confidence 0.994 | ||
| + | |||
| + | 1584. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020283.png ; $$S ( M ^ { \prime } ) \subset M ^ { \prime }$$ ; confidence 0.989 | ||
| + | |||
| + | 1585. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020169.png ; $$H \mapsto C _ { A } ^ { \prime }$$ ; confidence 0.465 | ||
| + | |||
| + | 1586. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020155.png ; $$V \oplus \mathfrak { g }$$ ; confidence 0.476 | ||
| + | |||
| + | 1587. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020256.png ; $$C ^ { ( 0 ) }$$ ; confidence 0.988 | ||
| + | |||
| + | 1588. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020187.png ; $$\delta : G ^ { \prime } \rightarrow W$$ ; confidence 0.965 | ||
| + | |||
| + | 1589. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432806.png ; $$\mathfrak { x } \times x$$ ; confidence 0.416 | ||
| + | |||
| + | 1590. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g04328069.png ; $$H _ { i } ( x ^ { \prime } ) > H _ { i } ( x ^ { \prime \prime } )$$ ; confidence 0.924 | ||
| + | |||
| + | 1591. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432804.png ; $$\hat { K } _ { i }$$ ; confidence 0.180 | ||
| + | |||
| + | 1592. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432802.png ; $$x$$ ; confidence 0.485 | ||
| + | |||
| + | 1593. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043290/g0432908.png ; $$\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$$ ; confidence 0.904 | ||
| + | |||
| + | 1594. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005015.png ; $$\nu < \kappa$$ ; confidence 0.992 | ||
| + | |||
| + | 1595. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043330/g04333080.png ; $$\omega = 1 / c ^ { 2 }$$ ; confidence 0.906 | ||
| + | |||
| + | 1596. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043340/g04334048.png ; $$\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$$ ; confidence 0.180 | ||
| + | |||
| + | 1597. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043340/g04334058.png ; $$( \partial w / \partial t ) + ( \partial f / \partial x ) = ( h ^ { 2 } / 2 \tau ) ( \partial ^ { 2 } w / \partial x ^ { 2 } )$$ ; confidence 0.582 | ||
| + | |||
| + | 1598. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043350/g04335040.png ; $$\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$$ ; confidence 0.914 | ||
| + | |||
| + | 1599. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043350/g04335015.png ; $$\beta = \frac { 1 } { \gamma - 1 }$$ ; confidence 0.992 | ||
| + | |||
| + | 1600. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043350/g04335037.png ; $$+ \beta n ( 2 n + 1 ) y _ { n } = 0$$ ; confidence 0.975 | ||
| + | |||
| + | 1601. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003011.png ; $$3 n + 2$$ ; confidence 1.000 | ||
| + | |||
| + | 1602. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200302.png ; $$= \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \mu = 1 } ^ { n + 1 } \beta _ { \mu } f ( \xi _ { \mu } )$$ ; confidence 0.992 | ||
| + | |||
| + | 1603. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $$\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$$ ; confidence 0.221 | ||
| + | |||
| + | 1604. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g04347036.png ; $$0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$$ ; confidence 0.913 | ||
| + | |||
| + | 1605. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434807.png ; $$\alpha _ { 31 } / \alpha _ { 11 }$$ ; confidence 0.405 | ||
| + | |||
| + | 1606. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434801.png ; $$\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$$ ; confidence 0.057 | ||
| + | |||
| + | 1607. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043580/g04358023.png ; $$f _ { \zeta } ( \lambda )$$ ; confidence 0.821 | ||
| + | |||
| + | 1608. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043620/g0436207.png ; $$R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$$ ; confidence 0.876 | ||
| + | |||
| + | 1609. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043640/g04364030.png ; $$K ( y ) = \operatorname { sgn } y . | y | ^ { \alpha }$$ ; confidence 0.655 | ||
| + | |||
| + | 1610. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780250.png ; $$\hbar \square ^ { * } ( M )$$ ; confidence 0.620 | ||
| + | |||
| + | 1611. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780168.png ; $$T _ { \nu }$$ ; confidence 0.336 | ||
| + | |||
| + | 1612. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g04378073.png ; $$i : A \rightarrow X$$ ; confidence 0.995 | ||
| + | |||
| + | 1613. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780134.png ; $$F = p t$$ ; confidence 0.143 | ||
| + | |||
| + | 1614. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780157.png ; $$T \xi$$ ; confidence 0.994 | ||
| + | |||
| + | 1615. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780231.png ; $$\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$$ ; confidence 0.185 | ||
| + | |||
| + | 1616. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810381.png ; $$C = \text { int } \Gamma$$ ; confidence 0.630 | ||
| + | |||
| + | 1617. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g04381012.png ; $$\overline { O } _ { k }$$ ; confidence 0.968 | ||
| + | |||
| + | 1618. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810261.png ; $$\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$$ ; confidence 0.411 | ||
| + | |||
| + | 1619. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810179.png ; $$\alpha f \in D ^ { \prime } ( O )$$ ; confidence 0.895 | ||
| + | |||
| + | 1620. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810238.png ; $$x u = 0$$ ; confidence 0.979 | ||
| + | |||
| + | 1621. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003048.png ; $$I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$$ ; confidence 0.956 | ||
| + | |||
| + | 1622. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003082.png ; $$\Gamma \subset \Omega$$ ; confidence 0.987 | ||
| + | |||
| + | 1623. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003022.png ; $$w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$$ ; confidence 0.798 | ||
| + | |||
| + | 1624. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043930/g0439304.png ; $$m : A ^ { \prime } \rightarrow A$$ ; confidence 0.997 | ||
| + | |||
| + | 1625. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040116.png ; $$v \wedge \wedge \ldots \wedge v _ { m }$$ ; confidence 0.124 | ||
| + | |||
| + | 1626. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340202.png ; $$\xi _ { p } \in ( \nu F ^ { m } ) p$$ ; confidence 0.212 | ||
| + | |||
| + | 1627. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g04434018.png ; $$d f ( X )$$ ; confidence 0.998 | ||
| + | |||
| + | 1628. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340228.png ; $$\xi \in ( \nu F ^ { m } ) _ { p }$$ ; confidence 0.549 | ||
| + | |||
| + | 1629. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350167.png ; $$\alpha ( F ) = 1$$ ; confidence 1.000 | ||
| + | |||
| + | 1630. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $$D \Re \subset M$$ ; confidence 0.255 | ||
| + | |||
| + | 1631. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350116.png ; $$V ( \Re ) > 2 ^ { n } d ( \Lambda )$$ ; confidence 0.792 | ||
| + | |||
| + | 1632. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g04435074.png ; $$d ( \Lambda ) = \Delta ( \mathfrak { M } )$$ ; confidence 0.934 | ||
| + | |||
| + | 1633. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g1300606.png ; $$p _ { n } ( z ) : = \operatorname { det } \{ z I - A \}$$ ; confidence 0.968 | ||
| + | |||
| + | 1634. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $$| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$$ ; confidence 0.103 | ||
| + | |||
| + | 1635. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004074.png ; $$D _ { x _ { k } } = - i \partial _ { x _ { k } }$$ ; confidence 0.982 | ||
| + | |||
| + | 1636. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044400/g04440061.png ; $$z$$ ; confidence 0.578 | ||
| + | |||
| + | 1637. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044400/g04440029.png ; $$\delta \varepsilon$$ ; confidence 0.600 | ||
| + | |||
| + | 1638. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044400/g04440032.png ; $$d E$$ ; confidence 0.607 | ||
| + | |||
| + | 1639. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444106.png ; $$\alpha \equiv f ( x _ { 0 } - ) \leq f ( x _ { 0 } + ) \equiv b$$ ; confidence 0.692 | ||
| + | |||
| + | 1640. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444109.png ; $$A < \alpha < b < B$$ ; confidence 0.686 | ||
| + | |||
| + | 1641. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441010.png ; $$A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$$ ; confidence 0.055 | ||
| + | |||
| + | 1642. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044470/g044470103.png ; $$\psi \circ \phi = \phi ^ { \prime } \circ \psi$$ ; confidence 0.848 | ||
| + | |||
| + | 1643. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044470/g04447072.png ; $$q ^ { \prime } \in A ^ { \prime }$$ ; confidence 0.966 | ||
| + | |||
| + | 1644. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465025.png ; $$a _ { y }$$ ; confidence 0.519 | ||
| + | |||
| + | 1645. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044660/g04466023.png ; $$A _ { 0 } = \mathfrak { A } _ { 0 }$$ ; confidence 0.968 | ||
| + | |||
| + | 1646. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044660/g04466018.png ; $$A = \sum _ { i \geq 0 } A$$ ; confidence 0.975 | ||
| + | |||
| + | 1647. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468042.png ; $$\operatorname { grad } ( f g ) = g \operatorname { grad } f + f \operatorname { grad } g$$ ; confidence 0.981 | ||
| + | |||
| + | 1648. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468049.png ; $$t \circ \in E$$ ; confidence 0.290 | ||
| + | |||
| + | 1649. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044730/g04473023.png ; $$f _ { B } ( x ) = \frac { \lambda ^ { x } } { x ! } e ^ { - \lambda } \{ 1 + \frac { \mu _ { 2 } - \lambda } { \lambda ^ { 2 } } [ \frac { x ^ { [ 2 ] } } { 2 } - \lambda x ^ { [ 1 ] } + \frac { \lambda ^ { 2 } } { 2 } ] +$$ ; confidence 0.569 | ||
| + | |||
| + | 1650. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044770/g04477022.png ; $$[ \Psi / \Phi ] \Phi$$ ; confidence 0.955 | ||
| + | |||
| + | 1651. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044780/g04478033.png ; $$\mu ( \alpha )$$ ; confidence 0.999 | ||
| + | |||
| + | 1652. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044820/g04482057.png ; $$x \in L ( \Gamma )$$ ; confidence 0.995 | ||
| + | |||
| + | 1653. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044840/g04484023.png ; $$B \rightarrow b B$$ ; confidence 0.994 | ||
| + | |||
| + | 1654. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110180/g11018025.png ; $$V _ { T } ^ { \prime } = \mu ( V _ { T } )$$ ; confidence 0.997 | ||
| + | |||
| + | 1655. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044910/g04491070.png ; $$\sum _ { d ( e ) = Q } f _ { e }$$ ; confidence 0.651 | ||
| + | |||
| + | 1656. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045000/g04500031.png ; $$( n \operatorname { ln } n ) / 2$$ ; confidence 0.978 | ||
| + | |||
| + | 1657. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497028.png ; $$E ^ { n } \times R$$ ; confidence 0.937 | ||
| + | |||
| + | 1658. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045040/g0450402.png ; $$f _ { 12 }$$ ; confidence 0.974 | ||
| + | |||
| + | 1659. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090279.png ; $$G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$$ ; confidence 0.272 | ||
| + | |||
| + | 1660. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090122.png ; $$\psi _ { k } ( \xi )$$ ; confidence 0.998 | ||
| + | |||
| + | 1661. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g04509046.png ; $$y ( \alpha ) = 0$$ ; confidence 0.954 | ||
| + | |||
| + | 1662. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g04509054.png ; $$C = [ p ( \xi ) W ( \xi ) ] ^ { - 1 }$$ ; confidence 0.997 | ||
| + | |||
| + | 1663. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090287.png ; $$G _ { A B } ^ { ( n ) } ( E )$$ ; confidence 0.976 | ||
| + | |||
| + | 1664. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007022.png ; $$m \equiv 4$$ ; confidence 0.840 | ||
| + | |||
| + | 1665. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102602.png ; $$B M$$ ; confidence 0.973 | ||
| + | |||
| + | 1666. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045370/g0453708.png ; $$f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$$ ; confidence 0.743 | ||
| + | |||
| + | 1667. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010125.png ; $$M _ { 2 } \times S ^ { N }$$ ; confidence 0.923 | ||
| + | |||
| + | 1668. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010104.png ; $$m \geq 3$$ ; confidence 0.668 | ||
| + | |||
| + | 1669. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001013.png ; $$X ^ { ( r ) } \rightarrow V$$ ; confidence 0.950 | ||
| + | |||
| + | 1670. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009043.png ; $$g _ { i } \in A$$ ; confidence 0.960 | ||
| + | |||
| + | 1671. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009035.png ; $$g \rightarrow g$$ ; confidence 0.987 | ||
| + | |||
| + | 1672. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046080/h04608018.png ; $$| x _ { \mathfrak { j } } | \leq M$$ ; confidence 0.106 | ||
| + | |||
| + | 1673. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h11005031.png ; $$w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$$ ; confidence 0.851 | ||
| + | |||
| + | 1674. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $$\alpha _ { 1 } \ldots \alpha _ { m }$$ ; confidence 0.435 | ||
| + | |||
| + | 1675. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628046.png ; $$\frac { d ^ { 2 } y } { d t ^ { 2 } } + P ( t ) y = 0$$ ; confidence 1.000 | ||
| + | |||
| + | 1676. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628059.png ; $$x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$$ ; confidence 0.898 | ||
| + | |||
| + | 1677. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h046280124.png ; $$X = \| \left. \begin{array} { l l } { U _ { 1 } } & { U _ { 2 } } \\ { V _ { 1 } } & { V _ { 2 } } \end{array} \right. |$$ ; confidence 0.501 | ||
| + | |||
| + | 1678. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h04630075.png ; $$M _ { 0 } \times I$$ ; confidence 0.798 | ||
| + | |||
| + | 1679. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h046300124.png ; $$P _ { n - k }$$ ; confidence 0.990 | ||
| + | |||
| + | 1680. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020104.png ; $$P _ { - } \phi \in B _ { p } ^ { 1 / p }$$ ; confidence 0.963 | ||
| + | |||
| + | 1681. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $$\hat { \phi } ( j ) = \alpha$$ ; confidence 0.791 | ||
| + | |||
| + | 1682. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637024.png ; $$M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$$ ; confidence 0.412 | ||
| + | |||
| + | 1683. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637012.png ; $$\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$$ ; confidence 0.187 | ||
| + | |||
| + | 1684. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046320/h046320114.png ; $$H ^ { p } ( G )$$ ; confidence 0.998 | ||
| + | |||
| + | 1685. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046320/h046320200.png ; $$M _ { \delta } ( \phi ) \rightarrow 0$$ ; confidence 0.996 | ||
| + | |||
| + | 1686. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420330.png ; $$B = B _ { E }$$ ; confidence 0.754 | ||
| + | |||
| + | 1687. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h04642087.png ; $$L _ { \infty } ( \hat { G } )$$ ; confidence 0.973 | ||
| + | |||
| + | 1688. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420200.png ; $$F ( \phi ) \in A ( \hat { G } )$$ ; confidence 0.909 | ||
| + | |||
| + | 1689. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420189.png ; $$f = f _ { 1 } * f _ { 2 }$$ ; confidence 0.989 | ||
| + | |||
| + | 1690. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420157.png ; $$d g = d h d k$$ ; confidence 0.955 | ||
| + | |||
| + | 1691. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046460/h04646046.png ; $$p + q \leq \operatorname { dim } _ { C } M$$ ; confidence 0.688 | ||
| + | |||
| + | 1692. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046470/h046470224.png ; $$d \sigma ( y )$$ ; confidence 0.992 | ||
| + | |||
| + | 1693. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003026.png ; $$\operatorname { dim } M = 2$$ ; confidence 0.993 | ||
| + | |||
| + | 1694. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046600/h0466006.png ; $$\{ x : | x - y | < r \}$$ ; confidence 0.915 | ||
| + | |||
| + | 1695. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047020/h04702011.png ; $$F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$$ ; confidence 0.316 | ||
| + | |||
| + | 1696. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047070/h0470704.png ; $$\alpha _ { i k } = \overline { a _ { k i } }$$ ; confidence 0.235 | ||
| + | |||
| + | 1697. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h04716013.png ; $$H ( z )$$ ; confidence 0.999 | ||
| + | |||
| + | 1698. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471603.png ; $$H ( z ) = \sum _ { i = 1 } ^ { n } \sum _ { j = 1 } ^ { n } a _ { i j } z _ { i } z _ { j }$$ ; confidence 0.374 | ||
| + | |||
| + | 1699. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h0472103.png ; $$C$$ ; confidence 0.952 | ||
| + | |||
| + | 1700. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h04721080.png ; $$X _ { 1 } \cap Y _ { 1 } = \emptyset$$ ; confidence 0.988 | ||
| + | |||
| + | 1701. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h04721043.png ; $$\Sigma _ { n } ^ { 0 }$$ ; confidence 0.998 | ||
| + | |||
| + | 1702. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047270/h04727012.png ; $$\lambda = p ^ { - 1 } + r ^ { - 1 } \leq 1$$ ; confidence 0.999 | ||
| + | |||
| + | 1703. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047380/h047380203.png ; $$\nu \in A$$ ; confidence 0.971 | ||
| + | |||
| + | 1704. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047380/h047380120.png ; $$\sum _ { i } | \alpha _ { i } | ^ { 2 } < \infty$$ ; confidence 0.995 | ||
| + | |||
| + | 1705. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047380/h047380204.png ; $$\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$$ ; confidence 0.895 | ||
| + | |||
| + | 1706. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390181.png ; $$V = V ^ { + } \oplus V ^ { - }$$ ; confidence 0.953 | ||
| + | |||
| + | 1707. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047440/h04744011.png ; $$\lambda _ { 4 n }$$ ; confidence 0.681 | ||
| + | |||
| + | 1708. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047440/h04744030.png ; $$f ( 0 ) = f ( 1 ) = 0$$ ; confidence 1.000 | ||
| + | |||
| + | 1709. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110200/h11020058.png ; $$\Psi ( y _ { n } ) \subseteq \Psi ( y _ { 0 } )$$ ; confidence 0.934 | ||
| + | |||
| + | 1710. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047470/h04747031.png ; $$F ^ { p }$$ ; confidence 0.768 | ||
| + | |||
| + | 1711. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110220/h1102204.png ; $$h : E ^ { m } \rightarrow R$$ ; confidence 0.941 | ||
| + | |||
| + | 1712. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047540/h04754045.png ; $$\Omega \frac { p } { x }$$ ; confidence 0.447 | ||
| + | |||
| + | 1713. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047560/h04756028.png ; $$f ^ { - 1 } \circ f ( z ) = z$$ ; confidence 0.986 | ||
| + | |||
| + | 1714. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047610/h04761062.png ; $$\mathfrak { M } ( M )$$ ; confidence 0.763 | ||
| + | |||
| + | 1715. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024037.png ; $$\mu _ { 1 } < 0 < \lambda _ { 1 }$$ ; confidence 0.999 | ||
| + | |||
| + | 1716. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024025.png ; $$n _ { s } + n _ { u } = n$$ ; confidence 0.172 | ||
| + | |||
| + | 1717. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769040.png ; $$g x = y$$ ; confidence 0.997 | ||
| + | |||
| + | 1718. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690116.png ; $$G = SU ( k )$$ ; confidence 0.645 | ||
| + | |||
| + | 1719. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773077.png ; $$\beta ^ { s - k } z ^ { \prime }$$ ; confidence 0.907 | ||
| + | |||
| + | 1720. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740112.png ; $$R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$$ ; confidence 0.142 | ||
| + | |||
| + | 1721. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774059.png ; $$0 \rightarrow A ^ { \prime } \rightarrow A \rightarrow A ^ { \prime \prime } \rightarrow 0$$ ; confidence 0.930 | ||
| + | |||
| + | 1722. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012026.png ; $$f \phi = 0$$ ; confidence 0.993 | ||
| + | |||
| + | 1723. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120117.png ; $$T ( H ( A ) )$$ ; confidence 0.997 | ||
| + | |||
| + | 1724. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047860/h047860136.png ; $$n = r \neq 0$$ ; confidence 0.966 | ||
| + | |||
| + | 1725. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930317.png ; $$S X \rightarrow S X$$ ; confidence 0.972 | ||
| + | |||
| + | 1726. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930299.png ; $$Z / p$$ ; confidence 0.808 | ||
| + | |||
| + | 1727. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h04793027.png ; $$x = [ u ]$$ ; confidence 0.825 | ||
| + | |||
| + | 1728. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h04794088.png ; $$e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$$ ; confidence 0.793 | ||
| + | |||
| + | 1729. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940245.png ; $$\Delta _ { q }$$ ; confidence 0.971 | ||
| + | |||
| + | 1730. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940319.png ; $$\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$$ ; confidence 0.085 | ||
| + | |||
| + | 1731. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797023.png ; $$\mu ^ { * } : A ^ { * } \rightarrow A ^ { * } \otimes A ^ { * }$$ ; confidence 0.991 | ||
| + | |||
| + | 1732. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110250/h11025012.png ; $$T ^ { \aleph } x \in A$$ ; confidence 0.469 | ||
| + | |||
| + | 1733. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048000/h04800018.png ; $$\Omega \in \Delta ^ { n } S$$ ; confidence 0.506 | ||
| + | |||
| + | 1734. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110300/h1103003.png ; $$\psi ( x ) = \sum x ^ { \prime } \otimes x ^ { \prime \prime }$$ ; confidence 0.991 | ||
| + | |||
| + | 1735. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808011.png ; $$n - 1 \geq p$$ ; confidence 0.999 | ||
| + | |||
| + | 1736. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110330/h11033039.png ; $$n \leq s \leq 2 n - 2$$ ; confidence 0.997 | ||
| + | |||
| + | 1737. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110370/h11037062.png ; $$n \neq 0$$ ; confidence 0.999 | ||
| + | |||
| + | 1738. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481908.png ; $$\nu = 0$$ ; confidence 0.923 | ||
| + | |||
| + | 1739. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048200/h0482005.png ; $$Z = 1$$ ; confidence 0.980 | ||
| + | |||
| + | 1740. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012038.png ; $$| f ( x + y ) - f ( x ) f ( y ) | \leq \varepsilon$$ ; confidence 0.999 | ||
| + | |||
| + | 1741. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013015.png ; $$e ^ { i k x }$$ ; confidence 0.648 | ||
| + | |||
| + | 1742. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048250/h04825025.png ; $$O A M$$ ; confidence 0.981 | ||
| + | |||
| + | 1743. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827072.png ; $$f : \Omega \rightarrow B$$ ; confidence 0.997 | ||
| + | |||
| + | 1744. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048300/h04830032.png ; $$P _ { m } ( \xi + \tau N )$$ ; confidence 0.978 | ||
| + | |||
| + | 1745. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h0483101.png ; $$\frac { \partial w } { \partial t } = A \frac { \partial w } { \partial x }$$ ; confidence 0.980 | ||
| + | |||
| + | 1746. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h04831085.png ; $$\alpha = a ( x )$$ ; confidence 0.757 | ||
| + | |||
| + | 1747. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833042.png ; $$W _ { X } ^ { S }$$ ; confidence 0.678 | ||
| + | |||
| + | 1748. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833033.png ; $$E _ { X } ^ { N }$$ ; confidence 0.539 | ||
| + | |||
| + | 1749. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048390/h04839015.png ; $$U ^ { ( 2 ) }$$ ; confidence 0.956 | ||
| + | |||
| + | 1750. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110400/h11040046.png ; $$\int _ { X } | f ( x ) | ^ { 2 } \operatorname { ln } | f ( x ) | d \mu ( x ) \leq$$ ; confidence 0.990 | ||
| + | |||
| + | 1751. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110400/h11040065.png ; $$H _ { 1 } \otimes I + I \otimes H _ { 2 }$$ ; confidence 0.996 | ||
| + | |||
| + | 1752. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h048420118.png ; $$F _ { j } ( z ) = \sum _ { k = 1 } ^ { N } G _ { j k } ( z )$$ ; confidence 0.944 | ||
| + | |||
| + | 1753. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h0484203.png ; $$F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$$ ; confidence 0.881 | ||
| + | |||
| + | 1754. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048440/h04844022.png ; $$\alpha - \beta$$ ; confidence 1.000 | ||
| + | |||
| + | 1755. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048440/h0484406.png ; $$w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$$ ; confidence 0.892 | ||
| + | |||
| + | 1756. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484501.png ; $$z ( 1 - z ) w ^ { \prime \prime } + [ \gamma - ( \alpha + \beta + 1 ) z ] w ^ { \prime } - \alpha \beta w = 0$$ ; confidence 0.996 | ||
| + | |||
| + | 1757. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048520/h04852064.png ; $$| f | = 1$$ ; confidence 0.989 | ||
| + | |||
| + | 1758. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h12015024.png ; $$\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$$ ; confidence 0.751 | ||
| + | |||
| + | 1759. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110430/h1104304.png ; $$H _ { 1 } ( x ) < H _ { 2 } ( x )$$ ; confidence 0.999 | ||
| + | |||
| + | 1760. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047512/h04751218.png ; $$A = \operatorname { sup } _ { y \in E } A ( y ) < \infty$$ ; confidence 0.997 | ||
| + | |||
| + | 1761. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050030/i05003048.png ; $$I _ { X }$$ ; confidence 0.507 | ||
| + | |||
| + | 1762. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050030/i050030120.png ; $$A \backslash I$$ ; confidence 0.946 | ||
| + | |||
| + | 1763. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110020/i11002022.png ; $$0 = + \infty$$ ; confidence 0.667 | ||
| + | |||
| + | 1764. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110020/i11002068.png ; $$( \lambda \odot \mu ) \odot v = \lambda \odot ( \mu \odot v )$$ ; confidence 0.955 | ||
| + | |||
| + | 1765. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110020/i11002080.png ; $$( A )$$ ; confidence 1.000 | ||
| + | |||
| + | 1766. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110060/i11006080.png ; $$T$$ ; confidence 0.652 | ||
| + | |||
| + | 1767. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110060/i11006083.png ; $$H \equiv L \circ K$$ ; confidence 0.769 | ||
| + | |||
| + | 1768. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230319.png ; $$f \in S _ { y } ^ { \prime }$$ ; confidence 0.307 | ||
| + | |||
| + | 1769. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230164.png ; $$H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$$ ; confidence 0.143 | ||
| + | |||
| + | 1770. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023059.png ; $$1 < m \leq n$$ ; confidence 0.737 | ||
| + | |||
| + | 1771. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230379.png ; $$\| f \| _ { \Lambda _ { p } ^ { r } ( R ^ { n } ) } \leq K$$ ; confidence 0.335 | ||
| + | |||
| + | 1772. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230228.png ; $$D _ { j } ^ { l } f \in L _ { p } ( R ^ { n } )$$ ; confidence 0.948 | ||
| + | |||
| + | 1773. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230312.png ; $$- \infty < r < \infty$$ ; confidence 0.842 | ||
| + | |||
| + | 1774. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050310/i05031036.png ; $$\delta _ { 0 } > 0$$ ; confidence 1.000 | ||
| + | |||
| + | 1775. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050400/i05040021.png ; $$[ t ^ { n } : t ^ { n - 1 } ] = 0$$ ; confidence 0.989 | ||
| + | |||
| + | 1776. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002074.png ; $$+ \frac { n } { p _ { 1 } p _ { 2 } } + \ldots + \frac { n } { p _ { k - 1 } p _ { k } } + - \frac { n } { p _ { 1 } p _ { 2 } p _ { 3 } } - \ldots + ( - 1 ) ^ { k } \frac { n } { p _ { 1 } \ldots p _ { k } }$$ ; confidence 0.552 | ||
| + | |||
| + | 1777. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064012.png ; $$\gamma = \operatorname { ind } _ { g } a$$ ; confidence 0.608 | ||
| + | |||
| + | 1778. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i0506506.png ; $$D = L _ { 1 } / D ( L _ { 0 } )$$ ; confidence 0.998 | ||
| + | |||
| + | 1779. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650145.png ; $$\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$$ ; confidence 0.867 | ||
| + | |||
| + | 1780. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650302.png ; $$D$$ ; confidence 0.996 | ||
| + | |||
| + | 1781. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i05065016.png ; $$B ( M )$$ ; confidence 1.000 | ||
| + | |||
| + | 1782. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650148.png ; $$\therefore M \rightarrow E$$ ; confidence 0.524 | ||
| + | |||
| + | 1783. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650137.png ; $$K ( B / S )$$ ; confidence 0.995 | ||
| + | |||
| + | 1784. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650262.png ; $$K ( T M ^ { g } ) \otimes C \rightarrow C$$ ; confidence 0.882 | ||
| + | |||
| + | 1785. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650350.png ; $$i _ { \alpha } ( D ) \in K ( Y )$$ ; confidence 0.971 | ||
| + | |||
| + | 1786. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650103.png ; $$\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$$ ; confidence 0.500 | ||
| + | |||
| + | 1787. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $$h ( [ a ] )$$ ; confidence 0.265 | ||
| + | |||
| + | 1788. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030142.png ; $$\pi$$ ; confidence 0.507 | ||
| + | |||
| + | 1789. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003026.png ; $$[ T ^ { * } M ]$$ ; confidence 0.990 | ||
| + | |||
| + | 1790. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050720/i05072015.png ; $$\eta : Y \rightarrow B$$ ; confidence 0.984 | ||
| + | |||
| + | 1791. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i050730155.png ; $$\nu _ { S }$$ ; confidence 0.758 | ||
| + | |||
| + | 1792. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i05073063.png ; $$K \subset H$$ ; confidence 0.959 | ||
| + | |||
| + | 1793. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i05073087.png ; $$\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$$ ; confidence 0.903 | ||
| + | |||
| + | 1794. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050770/i05077013.png ; $$\phi _ { \alpha \alpha } = 1 _ { A _ { \alpha } }$$ ; confidence 0.624 | ||
| + | |||
| + | 1795. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050770/i05077064.png ; $$A = \operatorname { lim } _ { \rightarrow } F ( D )$$ ; confidence 0.939 | ||
| + | |||
| + | 1796. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050790/i05079039.png ; $$| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$$ ; confidence 0.160 | ||
| + | |||
| + | 1797. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050850/i05085060.png ; $$A < \operatorname { ln } d X$$ ; confidence 0.106 | ||
| + | |||
| + | 1798. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050850/i05085011.png ; $$1 ^ { \circ }$$ ; confidence 0.592 | ||
| + | |||
| + | 1799. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050910/i05091079.png ; $$Y _ { n k }$$ ; confidence 0.813 | ||
| + | |||
| + | 1800. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095025.png ; $$= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$$ ; confidence 0.781 | ||
| + | |||
| + | 1801. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095033.png ; $$S = \frac { K } { 3 }$$ ; confidence 0.850 | ||
| + | |||
| + | 1802. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050970/i05097047.png ; $$F ( M ^ { k } ) \subset \nabla \square ^ { n }$$ ; confidence 0.382 | ||
| + | |||
| + | 1803. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051000/i05100028.png ; $$- \infty < a < + \infty$$ ; confidence 0.959 | ||
| + | |||
| + | 1804. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051040/i05104010.png ; $$3 a$$ ; confidence 0.497 | ||
| + | |||
| + | 1805. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051130/i05113068.png ; $$\overline { \rho } _ { L }$$ ; confidence 0.896 | ||
| + | |||
| + | 1806. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051150/i051150191.png ; $$p ^ { t } ( . )$$ ; confidence 0.817 | ||
| + | |||
| + | 1807. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051070/i05107042.png ; $$c ( I ) = \frac { 1 } { 2 }$$ ; confidence 0.667 | ||
| + | |||
| + | 1808. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051090/i05109035.png ; $$\Theta$$ ; confidence 0.952 | ||
| + | |||
| + | 1809. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300404.png ; $$\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$$ ; confidence 0.946 | ||
| + | |||
| + | 1810. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051360/i0513609.png ; $$\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$$ ; confidence 0.921 | ||
| + | |||
| + | 1811. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051410/i051410114.png ; $$\alpha ( \lambda ) = \alpha _ { - } ( \lambda ) \alpha _ { + } ( \lambda )$$ ; confidence 0.598 | ||
| + | |||
| + | 1812. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051410/i05141058.png ; $$0 < \alpha < a$$ ; confidence 0.971 | ||
| + | |||
| + | 1813. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051410/i05141060.png ; $$h ( \lambda )$$ ; confidence 1.000 | ||
| + | |||
| + | 1814. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143058.png ; $$| \lambda | < 1 / M ( b - \alpha )$$ ; confidence 0.952 | ||
| + | |||
| + | 1815. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143039.png ; $$\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$$ ; confidence 0.810 | ||
| + | |||
| + | 1816. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143036.png ; $$\{ \alpha _ { i } ( x ) \}$$ ; confidence 0.971 | ||
| + | |||
| + | 1817. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051560/i05156047.png ; $$| t - \tau |$$ ; confidence 0.984 | ||
| + | |||
| + | 1818. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i051620138.png ; $$\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$$ ; confidence 0.954 | ||
| + | |||
| + | 1819. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162045.png ; $$\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$$ ; confidence 0.895 | ||
| + | |||
| + | 1820. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162064.png ; $$\frac { \partial } { \partial z } = \frac { 1 } { 2 } ( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } )$$ ; confidence 0.997 | ||
| + | |||
| + | 1821. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004046.png ; $$\partial D \times D$$ ; confidence 0.998 | ||
| + | |||
| + | 1822. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008014.png ; $$g \in E$$ ; confidence 0.988 | ||
| + | |||
| + | 1823. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008077.png ; $$T f _ { n } \rightarrow 0$$ ; confidence 0.976 | ||
| + | |||
| + | 1824. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177061.png ; $$\psi = \sum \psi _ { i } \partial / \partial x _ { i }$$ ; confidence 0.981 | ||
| + | |||
| + | 1825. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051870/i05187033.png ; $$T _ { W } ^ { 2 k + 1 } ( X )$$ ; confidence 0.984 | ||
| + | |||
| + | 1826. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051880/i05188051.png ; $$\mathfrak { M } \in S _ { 1 }$$ ; confidence 0.842 | ||
| + | |||
| + | 1827. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051930/i051930181.png ; $$Y = C$$ ; confidence 0.871 | ||
| + | |||
| + | 1828. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051930/i051930154.png ; $$\{ f _ { \alpha } : \alpha \in \mathfrak { A } \}$$ ; confidence 0.968 | ||
| + | |||
| + | 1829. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051940/i05194058.png ; $$m \times ( n + 1 )$$ ; confidence 1.000 | ||
| + | |||
| + | 1830. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195031.png ; $$\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$$ ; confidence 0.069 | ||
| + | |||
| + | 1831. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i051950193.png ; $$\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$$ ; confidence 0.981 | ||
| + | |||
| + | 1832. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $$\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$$ ; confidence 0.462 | ||
| + | |||
| + | 1833. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052000/i05200039.png ; $$\Delta ^ { i }$$ ; confidence 0.491 | ||
| + | |||
| + | 1834. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202038.png ; $$B = Y \backslash 0$$ ; confidence 0.999 | ||
| + | |||
| + | 1835. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006014.png ; $$x < \varrho y$$ ; confidence 0.723 | ||
| + | |||
| + | 1836. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052110/i05211013.png ; $$T \subset R ^ { 1 }$$ ; confidence 0.989 | ||
| + | |||
| + | 1837. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052130/i05213037.png ; $$\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$$ ; confidence 0.288 | ||
| + | |||
| + | 1838. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052150/i0521507.png ; $$\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$$ ; confidence 0.397 | ||
| + | |||
| + | 1839. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522303.png ; $$x \leq z \leq y$$ ; confidence 0.995 | ||
| + | |||
| + | 1840. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052260/i05226072.png ; $$Z \in G$$ ; confidence 0.401 | ||
| + | |||
| + | 1841. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052370/i05237019.png ; $$\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$$ ; confidence 0.766 | ||
| + | |||
| + | 1842. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005074.png ; $$| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 }$$ ; confidence 0.554 | ||
| + | |||
| + | 1843. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005080.png ; $$s > - \infty$$ ; confidence 0.985 | ||
| + | |||
| + | 1844. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $$< 2 a$$ ; confidence 0.500 | ||
| + | |||
| + | 1845. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006049.png ; $$y \geq x \geq 0$$ ; confidence 0.999 | ||
| + | |||
| + | 1846. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007010.png ; $$q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$$ ; confidence 0.953 | ||
| + | |||
| + | 1847. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $$y = Arc$$ ; confidence 0.482 | ||
| + | |||
| + | 1848. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241017.png ; $$\operatorname { cos } ^ { - 1 } x$$ ; confidence 1.000 | ||
| + | |||
| + | 1849. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052450/i0524507.png ; $$F [ \phi ( w ) ]$$ ; confidence 0.983 | ||
| + | |||
| + | 1850. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052450/i0524504.png ; $$b = f ( a ) = b _ { 0 }$$ ; confidence 0.455 | ||
| + | |||
| + | 1851. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250047.png ; $$P ^ { N } ( k )$$ ; confidence 0.999 | ||
| + | |||
| + | 1852. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $$L ^ { \prime }$$ ; confidence 0.256 | ||
| + | |||
| + | 1853. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250023.png ; $$O _ { X } ( 1 ) = O ( 1 )$$ ; confidence 0.996 | ||
| + | |||
| + | 1854. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252091.png ; $$f ( x ^ { * } x ) \leq f ( 1 ) r ( x ^ { * } x )$$ ; confidence 0.984 | ||
| + | |||
| + | 1855. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255041.png ; $$\omega ^ { \beta }$$ ; confidence 0.626 | ||
| + | |||
| + | 1856. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052660/i05266017.png ; $$0 \in R ^ { 3 }$$ ; confidence 0.983 | ||
| + | |||
| + | 1857. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008061.png ; $$H = 0$$ ; confidence 0.999 | ||
| + | |||
| + | 1858. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008047.png ; $$m s$$ ; confidence 0.683 | ||
| + | |||
| + | 1859. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080116.png ; $$\gamma = 7 / 4$$ ; confidence 0.659 | ||
| + | |||
| + | 1860. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052730/i05273034.png ; $$p : G \rightarrow G$$ ; confidence 0.995 | ||
| + | |||
| + | 1861. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008028.png ; $$X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$$ ; confidence 0.831 | ||
| + | |||
| + | 1862. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i05280027.png ; $$x = \{ x ^ { \alpha } ( u ^ { s } ) \}$$ ; confidence 0.775 | ||
| + | |||
| + | 1863. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i052800127.png ; $$E ^ { 2 k + 1 }$$ ; confidence 0.996 | ||
| + | |||
| + | 1864. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052860/i052860119.png ; $$( = 2 / \pi )$$ ; confidence 0.994 | ||
| + | |||
| + | 1865. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052940/i05294039.png ; $$F _ { t } : M ^ { n } \rightarrow M ^ { n }$$ ; confidence 0.989 | ||
| + | |||
| + | 1866. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052940/i05294012.png ; $$Y \times t$$ ; confidence 0.546 | ||
| + | |||
| + | 1867. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $$L ^ { \prime } ( T _ { x } M )$$ ; confidence 0.252 | ||
| + | |||
| + | 1868. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053020/i05302031.png ; $$\kappa _ { k } = a _ { n n } ^ { ( k ) }$$ ; confidence 0.556 | ||
| + | |||
| + | 1869. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053020/i05302096.png ; $$\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$$ ; confidence 0.371 | ||
| + | |||
| + | 1870. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053040/i05304033.png ; $$F _ { 0 }$$ ; confidence 0.994 | ||
| + | |||
| + | 1871. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $$k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$$ ; confidence 0.434 | ||
| + | |||
| + | 1872. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090151.png ; $$p < 12000000$$ ; confidence 1.000 | ||
| + | |||
| + | 1873. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090126.png ; $$\lambda _ { p } ( K / k ) = \lambda ( X )$$ ; confidence 0.997 | ||
| + | |||
| + | 1874. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090231.png ; $$( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$$ ; confidence 0.875 | ||
| + | |||
| + | 1875. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090155.png ; $$\overline { Q } _ { p }$$ ; confidence 0.689 | ||
| + | |||
| + | 1876. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009026.png ; $$\mu _ { m }$$ ; confidence 0.969 | ||
| + | |||
| + | 1877. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405048.png ; $$\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$$ ; confidence 0.312 | ||
| + | |||
| + | 1878. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j054050109.png ; $$dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$$ ; confidence 0.565 | ||
| + | |||
| + | 1879. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $$\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$$ ; confidence 0.234 | ||
| + | |||
| + | 1880. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j054050155.png ; $$e _ { 1 } = ( 2 - k ^ { 2 } ) / 3$$ ; confidence 0.995 | ||
| + | |||
| + | 1881. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405060.png ; $$H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$$ ; confidence 0.836 | ||
| + | |||
| + | 1882. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054070/j05407010.png ; $$w _ { 1 } = w _ { 1 } ( z _ { 1 } )$$ ; confidence 0.916 | ||
| + | |||
| + | 1883. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054090/j05409038.png ; $$x = B x + g$$ ; confidence 0.998 | ||
| + | |||
| + | 1884. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png ; $$\operatorname { log } F \leq 100$$ ; confidence 0.843 | ||
| + | |||
| + | 1885. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054200/j05420048.png ; $$f _ { 0 } ( \Delta )$$ ; confidence 0.998 | ||
| + | |||
| + | 1886. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054200/j05420029.png ; $$f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$$ ; confidence 0.051 | ||
| + | |||
| + | 1887. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $$k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$$ ; confidence 0.753 | ||
| + | |||
| + | 1888. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020240.png ; $$B M O$$ ; confidence 0.973 | ||
| + | |||
| + | 1889. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054250/j05425028.png ; $$K ^ { * }$$ ; confidence 0.718 | ||
| + | |||
| + | 1890. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004062.png ; $$\operatorname { cr } ( K )$$ ; confidence 0.995 | ||
| + | |||
| + | 1891. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004079.png ; $$s ( L ) \geq ( E - e ) / 2$$ ; confidence 0.952 | ||
| + | |||
| + | 1892. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040145.png ; $$M ^ { ( 2 ) }$$ ; confidence 0.998 | ||
| + | |||
| + | 1893. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004075.png ; $$( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$$ ; confidence 0.972 | ||
| + | |||
| + | 1894. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png ; $$J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$$ ; confidence 0.072 | ||
| + | |||
| + | 1895. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png ; $$L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$$ ; confidence 0.923 | ||
| + | |||
| + | 1896. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007082.png ; $$\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$$ ; confidence 0.994 | ||
| + | |||
| + | 1897. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055030/k055030100.png ; $$t = [ \xi _ { E } ]$$ ; confidence 0.983 | ||
| + | |||
| + | 1898. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055030/k05503063.png ; $$T ( X )$$ ; confidence 0.996 | ||
| + | |||
| + | 1899. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055040/k05504059.png ; $$x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$$ ; confidence 0.998 | ||
| + | |||
| + | 1900. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510011.png ; $$h = K \eta \leq 1 / 2$$ ; confidence 0.997 | ||
| + | |||
| + | 1901. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $$\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$$ ; confidence 0.320 | ||
| + | |||
| + | 1902. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001035.png ; $$f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$$ ; confidence 0.497 | ||
| + | |||
| + | 1903. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $$A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$$ ; confidence 0.230 | ||
| + | |||
| + | 1904. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001019.png ; $$T ( s )$$ ; confidence 1.000 | ||
| + | |||
| + | 1905. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004019.png ; $$\overline { 9 } _ { 42 }$$ ; confidence 0.683 | ||
| + | |||
| + | 1906. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006031.png ; $$h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$$ ; confidence 0.989 | ||
| + | |||
| + | 1907. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k1200504.png ; $$B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$$ ; confidence 0.961 | ||
| + | |||
| + | 1908. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005074.png ; $$m \geq m _ { 0 }$$ ; confidence 0.997 | ||
| + | |||
| + | 1909. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055180/k05518015.png ; $$z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$$ ; confidence 0.967 | ||
| + | |||
| + | 1910. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110070/k11007019.png ; $$- w _ { 0 } ( \chi )$$ ; confidence 0.944 | ||
| + | |||
| + | 1911. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $$W _ { C }$$ ; confidence 0.473 | ||
| + | |||
| + | 1912. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008015.png ; $$K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$$ ; confidence 0.995 | ||
| + | |||
| + | 1913. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553405.png ; $$K _ { \mu }$$ ; confidence 0.997 | ||
| + | |||
| + | 1914. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055350/k05535065.png ; $$K _ { 0 } ^ { 4 k + 2 }$$ ; confidence 0.990 | ||
| + | |||
| + | 1915. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055440/k05544031.png ; $$\Delta u = - f ( x )$$ ; confidence 0.986 | ||
| + | |||
| + | 1916. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k0554502.png ; $$u | _ { \Sigma } = 0$$ ; confidence 0.837 | ||
| + | |||
| + | 1917. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548037.png ; $$R \phi / 6$$ ; confidence 0.994 | ||
| + | |||
| + | 1918. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554806.png ; $$\mu = m c / \hbar$$ ; confidence 0.999 | ||
| + | |||
| + | 1919. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548036.png ; $$\| g _ { \alpha \beta } \|$$ ; confidence 0.862 | ||
| + | |||
| + | 1920. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548012.png ; $$\partial / \partial x ^ { \alpha } \rightarrow ( \partial / \partial x ^ { \alpha } ) - i e A _ { \alpha } / \hbar$$ ; confidence 0.973 | ||
| + | |||
| + | 1921. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552076.png ; $$\Omega ( \Gamma )$$ ; confidence 1.000 | ||
| + | |||
| + | 1922. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552082.png ; $$\Gamma 20$$ ; confidence 0.310 | ||
| + | |||
| + | 1923. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552062.png ; $$D _ { 1 } / \Gamma$$ ; confidence 0.999 | ||
| + | |||
| + | 1924. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k055520124.png ; $$\frac { 1 } { 2 \pi } \{ \text { hyperbolic area of } \Omega \backslash \Gamma \} \leq 2 ( N - 1 )$$ ; confidence 0.926 | ||
| + | |||
| + | 1925. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580126.png ; $$\hat { M } _ { 0 }$$ ; confidence 0.537 | ||
| + | |||
| + | 1926. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055610/k055610105.png ; $$Q _ { 1 } : A \rightarrow T ^ { \prime } A T$$ ; confidence 0.990 | ||
| + | |||
| + | 1927. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $$| m K _ { V ^ { \prime } } | ^ { J }$$ ; confidence 0.246 | ||
| + | |||
| + | 1928. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055660/k0556604.png ; $$f ( z ) = z + \ldots$$ ; confidence 0.768 | ||
| + | |||
| + | 1929. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k0557001.png ; $$\frac { \partial f } { \partial s } = - A _ { S } f$$ ; confidence 0.702 | ||
| + | |||
| + | 1930. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k05570014.png ; $$I _ { \Gamma } ( x )$$ ; confidence 0.999 | ||
| + | |||
| + | 1931. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k05570017.png ; $$A _ { t } ^ { * }$$ ; confidence 0.985 | ||
| + | |||
| + | 1932. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009012.png ; $$= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$$ ; confidence 0.890 | ||
| + | |||
| + | 1933. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110130/k11013020.png ; $$( \alpha _ { i } ) _ { i \in I }$$ ; confidence 0.480 | ||
| + | |||
| + | 1934. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055800/k05580079.png ; $$( \partial ^ { 2 } / \partial x \partial t ) u = \operatorname { sin } u$$ ; confidence 0.562 | ||
| + | |||
| + | 1935. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055820/k0558203.png ; $$\square ^ { 1 } S _ { 2 } ( i )$$ ; confidence 0.950 | ||
| + | |||
| + | 1936. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840272.png ; $$E ( \Delta ) K \subset D ( A )$$ ; confidence 0.947 | ||
| + | |||
| + | 1937. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840256.png ; $$c ( A ) \subset R \cup \{ \infty \}$$ ; confidence 0.588 | ||
| + | |||
| + | 1938. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840354.png ; $$C = C ^ { * }$$ ; confidence 0.990 | ||
| + | |||
| + | 1939. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k05585032.png ; $$W _ { \alpha } ( P ) \subseteq ( D _ { \alpha } ) ^ { n }$$ ; confidence 0.991 | ||
| + | |||
| + | 1940. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k055850103.png ; $$D _ { \alpha }$$ ; confidence 0.374 | ||
| + | |||
| + | 1941. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k05585059.png ; $$W _ { \alpha } ( B \supset C ) = T \leftrightarrows$$ ; confidence 0.637 | ||
| + | |||
| + | 1942. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591019.png ; $$\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$$ ; confidence 0.479 | ||
| + | |||
| + | 1943. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594036.png ; $$\eta ( \epsilon ) \rightarrow 0$$ ; confidence 0.993 | ||
| + | |||
| + | 1944. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594016.png ; $$\frac { d \xi } { d t } = \epsilon X _ { 0 } ( \xi ) + \epsilon ^ { 2 } P _ { 2 } ( \xi ) + \ldots + \epsilon ^ { m } P _ { m } ( \xi )$$ ; confidence 0.966 | ||
| + | |||
| + | 1945. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594047.png ; $$\xi = \xi _ { 0 } ( \phi )$$ ; confidence 0.999 | ||
| + | |||
| + | 1946. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110190/k11019034.png ; $$\mu _ { n } ( P \| Q ) =$$ ; confidence 0.972 | ||
| + | |||
| + | 1947. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110190/k11019069.png ; $$P = Q$$ ; confidence 0.998 | ||
| + | |||
| + | 1948. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $$E \neq \emptyset$$ ; confidence 0.475 | ||
| + | |||
| + | 1949. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $$E = \emptyset$$ ; confidence 0.977 | ||
| + | |||
| + | 1950. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003036.png ; $$F _ { M } : G \rightarrow C ^ { * }$$ ; confidence 0.933 | ||
| + | |||
| + | 1951. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507045.png ; $$g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$$ ; confidence 0.694 | ||
| + | |||
| + | 1952. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $$\nu _ { 0 } \in C ^ { n }$$ ; confidence 0.245 | ||
| + | |||
| + | 1953. https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010135.png ; $$p : X \rightarrow S$$ ; confidence 0.998 | ||
| + | |||
| + | 1954. https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010160.png ; $$R ^ { k } p \times ( F )$$ ; confidence 0.519 | ||
| + | |||
| + | 1955. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002085.png ; $$x \preceq y$$ ; confidence 0.956 | ||
| + | |||
| + | 1956. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003082.png ; $$M ( E ) = \vec { X }$$ ; confidence 0.493 | ||
| + | |||
| + | 1957. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050123.png ; $$c \rightarrow N$$ ; confidence 0.335 | ||
| + | |||
| + | 1958. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050113.png ; $$\overline { B } \rightarrow \overline { B }$$ ; confidence 0.985 | ||
| + | |||
| + | 1959. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050165.png ; $$a \rightarrow a b d ^ { 6 }$$ ; confidence 0.569 | ||
| + | |||
| + | 1960. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110160/l11016049.png ; $$n ^ { O ( n ) } M ^ { O ( 1 ) }$$ ; confidence 0.921 | ||
| + | |||
| + | 1961. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057110/l0571105.png ; $$\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$$ ; confidence 0.817 | ||
| + | |||
| + | 1962. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057120/l0571208.png ; $$1 \leq p < + \infty$$ ; confidence 0.999 | ||
| + | |||
| + | 1963. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715028.png ; $$3 N + k + m$$ ; confidence 0.919 | ||
| + | |||
| + | 1964. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715026.png ; $$\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$$ ; confidence 0.944 | ||
| + | |||
| + | 1965. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715031.png ; $$\mu$$ ; confidence 0.335 | ||
| + | |||
| + | 1966. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057180/l05718018.png ; $$x g$$ ; confidence 0.734 | ||
| + | |||
| + | 1967. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057200/l0572001.png ; $$T + V = h$$ ; confidence 0.994 | ||
| + | |||
| + | 1968. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110050/l11005048.png ; $$v ( P ) - v ( D )$$ ; confidence 0.999 | ||
| + | |||
| + | 1969. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100603.png ; $$x ^ { ( 0 ) } = 1$$ ; confidence 0.976 | ||
| + | |||
| + | 1970. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700011.png ; $$M N$$ ; confidence 0.867 | ||
| + | |||
| + | 1971. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $$+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$$ ; confidence 0.262 | ||
| + | |||
| + | 1972. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570007.png ; $$( M N ) \in \Lambda$$ ; confidence 0.998 | ||
| + | |||
| + | 1973. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $$\equiv \lambda x y \cdot x$$ ; confidence 0.709 | ||
| + | |||
| + | 1974. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $$( \lambda x M ) \in \Lambda$$ ; confidence 0.756 | ||
| + | |||
| + | 1975. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057430/l05743029.png ; $$k ^ { 2 } ( \tau ) = \lambda$$ ; confidence 0.999 | ||
| + | |||
| + | 1976. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057440/l05744010.png ; $$D = 2 \gamma k T / M$$ ; confidence 0.990 | ||
| + | |||
| + | 1977. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003069.png ; $$T _ { F }$$ ; confidence 0.455 | ||
| + | |||
| + | 1978. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $$T _ { E } : U \rightarrow U$$ ; confidence 0.704 | ||
| + | |||
| + | 1979. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057450/l05745021.png ; $$v \in C ( \overline { G } )$$ ; confidence 0.795 | ||
| + | |||
| + | 1980. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png ; $$\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$$ ; confidence 0.331 | ||
| + | |||
| + | 1981. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l05754082.png ; $$| t | ^ { - 1 }$$ ; confidence 1.000 | ||
| + | |||
| + | 1982. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756010.png ; $$E = \frac { m } { 2 } ( \dot { x } \square _ { 1 } ^ { 2 } + \dot { x } \square _ { 2 } ^ { 2 } + \dot { x } \square _ { 3 } ^ { 2 } ) + \frac { \kappa } { r }$$ ; confidence 0.586 | ||
| + | |||
| + | 1983. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png ; $$\sqrt { 2 }$$ ; confidence 0.155 | ||
| + | |||
| + | 1984. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761045.png ; $$m < n ^ { ( 1 / 3 ) - \delta }$$ ; confidence 0.883 | ||
| + | |||
| + | 1985. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761040.png ; $$U _ { 0 } = 1$$ ; confidence 0.997 | ||
| + | |||
| + | 1986. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057640/l0576408.png ; $$\alpha _ { 1 } + n h _ { 1 }$$ ; confidence 0.738 | ||
| + | |||
| + | 1987. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057720/l05772024.png ; $$E ( \mu _ { n } / n )$$ ; confidence 0.725 | ||
| + | |||
| + | 1988. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057740/l05774010.png ; $$\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$$ ; confidence 0.299 | ||
| + | |||
| + | 1989. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780212.png ; $$31$$ ; confidence 0.915 | ||
| + | |||
| + | 1990. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780113.png ; $$\mu \approx 18.431$$ ; confidence 0.997 | ||
| + | |||
| + | 1991. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l05778086.png ; $$4.60$$ ; confidence 0.967 | ||
| + | |||
| + | 1992. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780230.png ; $$E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$$ ; confidence 0.681 | ||
| + | |||
| + | 1993. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780185.png ; $$\alpha _ { 2 } ( t ) = t$$ ; confidence 0.461 | ||
| + | |||
| + | 1994. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005018.png ; $$f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$$ ; confidence 0.580 | ||
| + | |||
| + | 1995. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057870/l05787021.png ; $$\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$$ ; confidence 0.776 | ||
| + | |||
| + | 1996. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006098.png ; $$H \phi$$ ; confidence 0.878 | ||
| + | |||
| + | 1997. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $$\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$$ ; confidence 0.248 | ||
| + | |||
| + | 1998. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $$\phi \in H$$ ; confidence 0.981 | ||
| + | |||
| + | 1999. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058080/l0580808.png ; $$B \subset X ^ { * }$$ ; confidence 0.699 | ||
| + | |||
| + | 2000. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058140/l05814017.png ; $$v = v ( t )$$ ; confidence 0.987 | ||
| + | |||
| + | 2001. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058140/l0581405.png ; $$s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$$ ; confidence 0.961 | ||
| + | |||
| + | 2002. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058170/l05817023.png ; $$\{ i _ { k } \}$$ ; confidence 0.773 | ||
| + | |||
| + | 2003. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058210/l05821011.png ; $$\zeta = 0$$ ; confidence 0.999 | ||
| + | |||
| + | 2004. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058210/l05821012.png ; $$- \operatorname { log } | \zeta |$$ ; confidence 0.998 | ||
| + | |||
| + | 2005. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058210/l05821045.png ; $$0 < r < \operatorname { tanh } \pi / 4$$ ; confidence 0.998 | ||
| + | |||
| + | 2006. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582408.png ; $$\operatorname { grad } \phi ( \zeta ) \neq 0$$ ; confidence 0.967 | ||
| + | |||
| + | 2007. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836041.png ; $$x \# y = x y + y x - \frac { 2 } { n + 1 } ( \operatorname { Tr } x y ) l$$ ; confidence 0.625 | ||
| + | |||
| + | 2008. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836011.png ; $$( x y ) x = y ( y x )$$ ; confidence 1.000 | ||
| + | |||
| + | 2009. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360172.png ; $$\mathfrak { A } ^ { - }$$ ; confidence 0.906 | ||
| + | |||
| + | 2010. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836089.png ; $$S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$$ ; confidence 0.980 | ||
| + | |||
| + | 2011. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360168.png ; $$x$$ ; confidence 0.899 | ||
| + | |||
| + | 2012. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360142.png ; $$P _ { 8 }$$ ; confidence 0.799 | ||
| + | |||
| + | 2013. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $$g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$$ ; confidence 0.215 | ||
| + | |||
| + | 2014. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058470/l05847082.png ; $$\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$$ ; confidence 0.634 | ||
| + | |||
| + | 2015. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510198.png ; $$0 \leq p \leq n / 2$$ ; confidence 0.998 | ||
| + | |||
| + | 2016. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510173.png ; $$A _ { I l }$$ ; confidence 0.608 | ||
| + | |||
| + | 2017. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058480/l05848075.png ; $$L ( H )$$ ; confidence 0.995 | ||
| + | |||
| + | 2018. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png ; $$Q _ { A }$$ ; confidence 0.136 | ||
| + | |||
| + | 2019. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590134.png ; $$S \cap R ( G ) = ( e )$$ ; confidence 0.872 | ||
| + | |||
| + | 2020. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859076.png ; $$x ( 1 )$$ ; confidence 1.000 | ||
| + | |||
| + | 2021. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861031.png ; $$Z \times T$$ ; confidence 0.994 | ||
| + | |||
| + | 2022. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861083.png ; $$C ^ { n } / \Gamma _ { 1 }$$ ; confidence 0.708 | ||
| + | |||
| + | 2023. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058660/l05866027.png ; $$G \subset N ( F )$$ ; confidence 0.979 | ||
| + | |||
| + | 2024. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868041.png ; $$\pi _ { 1 } ( G ) \cong \Gamma ( G ) / \Gamma _ { 0 }$$ ; confidence 0.992 | ||
| + | |||
| + | 2025. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872090.png ; $$l _ { k } ( A )$$ ; confidence 0.348 | ||
| + | |||
| + | 2026. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014038.png ; $$\epsilon$$ ; confidence 0.882 | ||
| + | |||
| + | 2027. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014014.png ; $$\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$$ ; confidence 0.405 | ||
| + | |||
| + | 2028. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877073.png ; $$\operatorname { lm } A _ { * } = \mathfrak { g }$$ ; confidence 0.711 | ||
| + | |||
| + | 2029. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100122.png ; $$R ^ { n } \times R ^ { n }$$ ; confidence 0.554 | ||
| + | |||
| + | 2030. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $$\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$$ ; confidence 0.191 | ||
| + | |||
| + | 2031. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010023.png ; $$\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$$ ; confidence 0.680 | ||
| + | |||
| + | 2032. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820245.png ; $$\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$$ ; confidence 0.857 | ||
| + | |||
| + | 2033. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820138.png ; $$\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$$ ; confidence 0.845 | ||
| + | |||
| + | 2034. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820374.png ; $$\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$$ ; confidence 0.875 | ||
| + | |||
| + | 2035. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883068.png ; $$- \Delta u + c u$$ ; confidence 0.993 | ||
| + | |||
| + | 2036. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892067.png ; $$Z y \rightarrow \infty$$ ; confidence 0.270 | ||
| + | |||
| + | 2037. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059020/l05902046.png ; $$y = \operatorname { sin } ( 1 / x )$$ ; confidence 1.000 | ||
| + | |||
| + | 2038. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l059110158.png ; $$f _ { h } \in F _ { k }$$ ; confidence 0.549 | ||
| + | |||
| + | 2039. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911037.png ; $$p i n$$ ; confidence 0.132 | ||
| + | |||
| + | 2040. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911071.png ; $$+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$$ ; confidence 0.263 | ||
| + | |||
| + | 2041. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l059110155.png ; $$L _ { h } u _ { k } = f _ { k }$$ ; confidence 0.508 | ||
| + | |||
| + | 2042. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911046.png ; $$\{ \phi _ { i } \} _ { i k }$$ ; confidence 0.712 | ||
| + | |||
| + | 2043. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911087.png ; $$l _ { 2 } u = \phi _ { 2 } ( t )$$ ; confidence 0.851 | ||
| + | |||
| + | 2044. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $$\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$$ ; confidence 0.363 | ||
| + | |||
| + | 2045. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914024.png ; $$\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$$ ; confidence 0.681 | ||
| + | |||
| + | 2046. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591406.png ; $$T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$$ ; confidence 0.821 | ||
| + | |||
| + | 2047. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916065.png ; $$A ^ { ( 0 ) }$$ ; confidence 0.506 | ||
| + | |||
| + | 2048. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $$\dot { u } = A _ { n } u$$ ; confidence 0.195 | ||
| + | |||
| + | 2049. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916072.png ; $$\operatorname { ln } t$$ ; confidence 0.999 | ||
| + | |||
| + | 2050. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160335.png ; $$T _ { \Delta }$$ ; confidence 0.636 | ||
| + | |||
| + | 2051. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png ; $$\lambda \geq \gamma$$ ; confidence 0.474 | ||
| + | |||
| + | 2052. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059170/l05917055.png ; $$\Gamma _ { 0 } ( . )$$ ; confidence 0.995 | ||
| + | |||
| + | 2053. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059170/l059170161.png ; $$H ^ { k }$$ ; confidence 0.998 | ||
| + | |||
| + | 2054. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925090.png ; $$v \in ( 1 - t ) V$$ ; confidence 0.837 | ||
| + | |||
| + | 2055. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059340/l059340144.png ; $$C _ { 0 } ( R )$$ ; confidence 0.976 | ||
| + | |||
| + | 2056. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059340/l059340213.png ; $$A -$$ ; confidence 0.967 | ||
| + | |||
| + | 2057. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935016.png ; $$x ( t ) \equiv 0$$ ; confidence 0.999 | ||
| + | |||
| + | 2058. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935013.png ; $$x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$$ ; confidence 0.867 | ||
| + | |||
| + | 2059. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350101.png ; $$X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$$ ; confidence 0.977 | ||
| + | |||
| + | 2060. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935092.png ; $$Y ( t ) = X ( t ) C$$ ; confidence 0.998 | ||
| + | |||
| + | 2061. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935079.png ; $$W ( t ) \neq 0$$ ; confidence 0.995 | ||
| + | |||
| + | 2062. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $$x ( 0 ) \in R ^ { n }$$ ; confidence 0.473 | ||
| + | |||
| + | 2063. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350126.png ; $$\dot { y } = - A ^ { T } ( t ) y$$ ; confidence 0.993 | ||
| + | |||
| + | 2064. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059410/l05941048.png ; $$Q _ { 3 } ( b )$$ ; confidence 0.962 | ||
| + | |||
| + | 2065. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l05949079.png ; $$x = F ( t ) y$$ ; confidence 0.992 | ||
| + | |||
| + | 2066. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490217.png ; $$\rho ^ { ( j ) }$$ ; confidence 0.828 | ||
| + | |||
| + | 2067. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l05949032.png ; $$\alpha ^ { ( 0 ) }$$ ; confidence 0.892 | ||
| + | |||
| + | 2068. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490155.png ; $$| \epsilon | < \epsilon$$ ; confidence 0.461 | ||
| + | |||
| + | 2069. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490127.png ; $$\frac { d z } { d t } = - A ( t ) ^ { * } Z$$ ; confidence 0.495 | ||
| + | |||
| + | 2070. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059540/l0595404.png ; $$L ( 0 ) = 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2071. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961011.png ; $$\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$$ ; confidence 0.716 | ||
| + | |||
| + | 2072. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059710/l05971012.png ; $$f \in H _ { p } ^ { \alpha }$$ ; confidence 0.996 | ||
| + | |||
| + | 2073. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120208.png ; $$G ( K _ { p ^ { \prime } } )$$ ; confidence 0.801 | ||
| + | |||
| + | 2074. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120133.png ; $$( K _ { p } ) _ { i n s }$$ ; confidence 0.851 | ||
| + | |||
| + | 2075. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012087.png ; $$Z _ { \text { tot } S } = Z$$ ; confidence 0.066 | ||
| + | |||
| + | 2076. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060090/l060090100.png ; $$\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$$ ; confidence 0.399 | ||
| + | |||
| + | 2077. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060160/l06016034.png ; $$\alpha = E X _ { 1 }$$ ; confidence 0.670 | ||
| + | |||
| + | 2078. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019071.png ; $$d ( A )$$ ; confidence 0.998 | ||
| + | |||
| + | 2079. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060220/l0602207.png ; $$\in \Theta$$ ; confidence 0.953 | ||
| + | |||
| + | 2080. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060250/l06025052.png ; $$m = n = 1$$ ; confidence 0.998 | ||
| + | |||
| + | 2081. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060290/l06029012.png ; $$\left. \begin{array} { c c c } { R } & { \stackrel { \pi _ { 2 } \mu } { \rightarrow } } & { B } \\ { \pi _ { 1 } \mu \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { \alpha } } & { C } \end{array} \right.$$ ; confidence 0.590 | ||
| + | |||
| + | 2082. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031040.png ; $$R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$$ ; confidence 0.342 | ||
| + | |||
| + | 2083. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060530/l0605309.png ; $$h _ { U } = \phi _ { U } ^ { - 1 }$$ ; confidence 0.912 | ||
| + | |||
| + | 2084. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015025.png ; $$w \in T V$$ ; confidence 0.524 | ||
| + | |||
| + | 2085. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060600/l06060022.png ; $$\int \frac { d x } { x } = \operatorname { ln } | x | + C$$ ; confidence 0.986 | ||
| + | |||
| + | 2086. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060600/l06060030.png ; $$\pi < \operatorname { arg } z \leq \pi$$ ; confidence 0.972 | ||
| + | |||
| + | 2087. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $$\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$$ ; confidence 0.129 | ||
| + | |||
| + | 2088. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110170/l110170115.png ; $$Q \alpha = Q \beta \gamma$$ ; confidence 0.989 | ||
| + | |||
| + | 2089. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060770/l0607706.png ; $$\operatorname { inv } ( x )$$ ; confidence 0.875 | ||
| + | |||
| + | 2090. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060820/l06082028.png ; $$\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$$ ; confidence 0.659 | ||
| + | |||
| + | 2091. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060830/l06083045.png ; $$b \in Q$$ ; confidence 0.934 | ||
| + | |||
| + | 2092. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060830/l06083024.png ; $$Q _ { i - 1 } / Q _ { i }$$ ; confidence 0.640 | ||
| + | |||
| + | 2093. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016033.png ; $$( S ^ { 1 } )$$ ; confidence 0.472 | ||
| + | |||
| + | 2094. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l1201604.png ; $$z = e ^ { i \theta }$$ ; confidence 0.999 | ||
| + | |||
| + | 2095. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060970/l0609706.png ; $$\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$$ ; confidence 0.905 | ||
| + | |||
| + | 2096. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610509.png ; $$f ^ { \prime } ( x ) = 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2097. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061130/l06113042.png ; $$\| \alpha _ { j } ^ { i } \|$$ ; confidence 0.148 | ||
| + | |||
| + | 2098. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019039.png ; $$x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$$ ; confidence 0.953 | ||
| + | |||
| + | 2099. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019010.png ; $$\lambda _ { j } + \overline { \lambda } _ { k } = 0$$ ; confidence 0.991 | ||
| + | |||
| + | 2100. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l06116099.png ; $$V _ { 0 } \subset E$$ ; confidence 0.979 | ||
| + | |||
| + | 2101. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l061160114.png ; $$x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$$ ; confidence 0.802 | ||
| + | |||
| + | 2102. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061200/l06120026.png ; $$E ( T ) = \int \int _ { T } \frac { d x d y } { | x - y | }$$ ; confidence 0.572 | ||
| + | |||
| + | 2103. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058310/l05831065.png ; $$F _ { n } ( - \infty ) \rightarrow F ( - \infty )$$ ; confidence 0.972 | ||
| + | |||
| + | 2104. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200304.png ; $$f _ { \theta } ( x )$$ ; confidence 0.998 | ||
| + | |||
| + | 2105. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003057.png ; $$\varepsilon ^ { * } ( M A D ) = 1 / 2$$ ; confidence 0.731 | ||
| + | |||
| + | 2106. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062070/m06207013.png ; $$H _ { 2 } \times H _ { 1 }$$ ; confidence 0.537 | ||
| + | |||
| + | 2107. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110020/m11002071.png ; $$f \circ R _ { 1 } = R _ { 2 } \circ f$$ ; confidence 0.984 | ||
| + | |||
| + | 2108. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002013.png ; $$F _ { A } = * D _ { A } \phi$$ ; confidence 0.738 | ||
| + | |||
| + | 2109. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002029.png ; $$A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$$ ; confidence 0.768 | ||
| + | |||
| + | 2110. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png ; $$f ( z ^ { d } ) = f ( z ) - z$$ ; confidence 0.796 | ||
| + | |||
| + | 2111. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062160/m06216027.png ; $$p < q$$ ; confidence 0.966 | ||
| + | |||
| + | 2112. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062160/m062160173.png ; $$E$$ ; confidence 0.975 | ||
| + | |||
| + | 2113. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062160/m062160147.png ; $$\kappa = \mu ^ { * }$$ ; confidence 0.985 | ||
| + | |||
| + | 2114. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009011.png ; $$- i \partial / \partial x _ { j }$$ ; confidence 0.526 | ||
| + | |||
| + | 2115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009064.png ; $$P ^ { * } ( D )$$ ; confidence 0.999 | ||
| + | |||
| + | 2116. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110050/m11005068.png ; $$q ^ { - 1 } = 1 - p ^ { - 1 }$$ ; confidence 1.000 | ||
| + | |||
| + | 2117. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $$\Delta \lambda _ { i } ^ { \alpha }$$ ; confidence 0.329 | ||
| + | |||
| + | 2118. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011020.png ; $$t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$$ ; confidence 0.532 | ||
| + | |||
| + | 2119. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011054.png ; $$\pi _ { 1 } ( M ) \neq Z _ { 2 }$$ ; confidence 0.886 | ||
| + | |||
| + | 2120. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011082.png ; $$\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$$ ; confidence 0.743 | ||
| + | |||
| + | 2121. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062330/m06233049.png ; $$M _ { \psi } ^ { 0 }$$ ; confidence 0.996 | ||
| + | |||
| + | 2122. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062350/m06235096.png ; $$\mu ^ { - 1 }$$ ; confidence 0.999 | ||
| + | |||
| + | 2123. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062360/m06236012.png ; $$T _ { i j }$$ ; confidence 0.337 | ||
| + | |||
| + | 2124. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062390/m0623907.png ; $$P \{ \xi ( 0 ) = j \} = p _ { j }$$ ; confidence 0.551 | ||
| + | |||
| + | 2125. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249026.png ; $$\Lambda \in N ^ { t }$$ ; confidence 0.838 | ||
| + | |||
| + | 2126. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m062490165.png ; $$\Lambda = \{ \omega : x _ { S } \in B \}$$ ; confidence 0.703 | ||
| + | |||
| + | 2127. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249054.png ; $$F _ { \infty } ^ { s }$$ ; confidence 0.520 | ||
| + | |||
| + | 2128. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249090.png ; $$\alpha _ { \epsilon } ( h ) = o ( h )$$ ; confidence 0.989 | ||
| + | |||
| + | 2129. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062540/m06254054.png ; $$| \theta - \frac { p } { n } | \leq \frac { 1 } { \tau q ^ { 2 } }$$ ; confidence 0.999 | ||
| + | |||
| + | 2130. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255040.png ; $$u ( y ) \geq 0$$ ; confidence 0.997 | ||
| + | |||
| + | 2131. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255050.png ; $$0 \leq w \leq v$$ ; confidence 0.958 | ||
| + | |||
| + | 2132. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256075.png ; $$K _ { y } ^ { \alpha }$$ ; confidence 0.924 | ||
| + | |||
| + | 2133. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120128.png ; $$C = Z ( Q )$$ ; confidence 0.941 | ||
| + | |||
| + | 2134. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062570/m06257039.png ; $$\xi _ { k } = + 1$$ ; confidence 0.992 | ||
| + | |||
| + | 2135. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259044.png ; $$V _ { [ r ] }$$ ; confidence 0.977 | ||
| + | |||
| + | 2136. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259032.png ; $$B = 0$$ ; confidence 0.833 | ||
| + | |||
| + | 2137. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259061.png ; $$\alpha = \beta _ { 1 } \vee \ldots \vee \beta _ { r }$$ ; confidence 0.964 | ||
| + | |||
| + | 2138. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062610/m06261017.png ; $$\operatorname { lim } _ { \Delta x \rightarrow 0 } \Delta y = \operatorname { lim } _ { \Delta x \rightarrow 0 } [ f ( x + \Delta x ) - f ( x ) ] = 0$$ ; confidence 0.996 | ||
| + | |||
| + | 2139. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062610/m06261090.png ; $$F ^ { \prime } = f$$ ; confidence 0.997 | ||
| + | |||
| + | 2140. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $$\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$$ ; confidence 0.089 | ||
| + | |||
| + | 2141. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013029.png ; $$= f ( N _ { * } ) + f ^ { \prime } ( N _ { * } ) n + \frac { f ^ { \prime \prime } ( N _ { * } ) } { 2 } n ^ { 2 } + \ldots$$ ; confidence 0.619 | ||
| + | |||
| + | 2142. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620207.png ; $$R _ { + } ^ { l }$$ ; confidence 0.977 | ||
| + | |||
| + | 2143. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262012.png ; $$b \in R ^ { l - 1 }$$ ; confidence 0.980 | ||
| + | |||
| + | 2144. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620198.png ; $$z \square ^ { ( s ) }$$ ; confidence 0.776 | ||
| + | |||
| + | 2145. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620248.png ; $$x > y > z$$ ; confidence 0.999 | ||
| + | |||
| + | 2146. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262048.png ; $$c ( t ) \geq 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2147. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062630/m06263022.png ; $$\int _ { - \infty } ^ { \infty } x d F ( x )$$ ; confidence 1.000 | ||
| + | |||
| + | 2148. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062690/m06269073.png ; $$k \frac { \partial u } { \partial n } + h u | _ { S } = v ( x )$$ ; confidence 0.973 | ||
| + | |||
| + | 2149. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016065.png ; $$\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$$ ; confidence 0.868 | ||
| + | |||
| + | 2150. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063060/m06306029.png ; $$x _ { i + 1 } = x _ { i } - ( \alpha _ { i } \nabla \nabla f ( x _ { j } ) + \beta _ { i } I ) ^ { - 1 } \nabla f ( x _ { i } )$$ ; confidence 0.559 | ||
| + | |||
| + | 2151. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063090/m06309023.png ; $$r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$$ ; confidence 0.822 | ||
| + | |||
| + | 2152. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063100/m06310035.png ; $$\hat { \theta } = X$$ ; confidence 0.545 | ||
| + | |||
| + | 2153. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063080/m06308045.png ; $$f ^ { ( m ) } ( x _ { 0 } ) < 0$$ ; confidence 0.978 | ||
| + | |||
| + | 2154. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063140/m06314076.png ; $$x _ { 3 } = z$$ ; confidence 0.989 | ||
| + | |||
| + | 2155. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063140/m06314012.png ; $$- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$$ ; confidence 0.887 | ||
| + | |||
| + | 2156. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063170/m0631709.png ; $$d \sigma ( t )$$ ; confidence 0.999 | ||
| + | |||
| + | 2157. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240572.png ; $$\Lambda ( f ) \geq 0$$ ; confidence 0.995 | ||
| + | |||
| + | 2158. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240457.png ; $$\mu _ { i } ( X _ { i } ) = 1$$ ; confidence 0.990 | ||
| + | |||
| + | 2159. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240678.png ; $$E = E ^ { \prime }$$ ; confidence 0.996 | ||
| + | |||
| + | 2160. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240428.png ; $$S _ { 1 } \times S _ { 2 }$$ ; confidence 0.981 | ||
| + | |||
| + | 2161. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240221.png ; $$E \in S ( R )$$ ; confidence 0.988 | ||
| + | |||
| + | 2162. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240749.png ; $$\prod x$$ ; confidence 0.487 | ||
| + | |||
| + | 2163. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063350/m0633503.png ; $$\int _ { - 1 } ^ { 1 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } f ( x ) d x \approx \frac { \pi } { N } \sum _ { k = 1 } ^ { N } f ( \operatorname { cos } \frac { 2 k - 1 } { 2 N } \pi )$$ ; confidence 0.978 | ||
| + | |||
| + | 2164. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011038.png ; $$\square _ { q } F _ { p - 1 }$$ ; confidence 0.930 | ||
| + | |||
| + | 2165. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063370/m06337017.png ; $$t = t _ { 0 } > 0$$ ; confidence 0.996 | ||
| + | |||
| + | 2166. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063460/m063460143.png ; $$p \in P \backslash N$$ ; confidence 0.997 | ||
| + | |||
| + | 2167. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063460/m063460237.png ; $$( f ) = D$$ ; confidence 0.999 | ||
| + | |||
| + | 2168. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063460/m06346056.png ; $$D ( z ) \neq 0$$ ; confidence 0.995 | ||
| + | |||
| + | 2169. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063460/m063460176.png ; $$\psi _ { z } \neq 0$$ ; confidence 0.993 | ||
| + | |||
| + | 2170. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063460/m063460182.png ; $$z \in N$$ ; confidence 0.568 | ||
| + | |||
| + | 2171. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063590/m06359074.png ; $$F \mapsto F ( P )$$ ; confidence 0.864 | ||
| + | |||
| + | 2172. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371076.png ; $$\int _ { c } ^ { \infty } f ( x ) d x$$ ; confidence 0.991 | ||
| + | |||
| + | 2173. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $$n _ { 1 } < n _ { 2 } .$$ ; confidence 0.222 | ||
| + | |||
| + | 2174. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013041.png ; $$\beta + \gamma \simeq \alpha . S ( t )$$ ; confidence 0.822 | ||
| + | |||
| + | 2175. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013015.png ; $$E S$$ ; confidence 0.930 | ||
| + | |||
| + | 2176. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063760/m063760111.png ; $$0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$$ ; confidence 0.355 | ||
| + | |||
| + | 2177. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063800/m06380058.png ; $$\partial W _ { 1 } = M$$ ; confidence 0.996 | ||
| + | |||
| + | 2178. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063800/m06380081.png ; $$\sigma ( W )$$ ; confidence 0.989 | ||
| + | |||
| + | 2179. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063800/m06380038.png ; $$\theta _ { n } ( \partial \pi )$$ ; confidence 0.997 | ||
| + | |||
| + | 2180. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063910/m06391025.png ; $$\{ p _ { \theta } ( \omega ) = \frac { d p } { d \mu } ( \omega ) : \theta \in \Theta \}$$ ; confidence 0.987 | ||
| + | |||
| + | 2181. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920117.png ; $$\int \int K d S \leq 2 \pi ( \chi - k )$$ ; confidence 0.858 | ||
| + | |||
| + | 2182. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m06392082.png ; $$n \geq 9$$ ; confidence 0.998 | ||
| + | |||
| + | 2183. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920116.png ; $$\int \int K d S$$ ; confidence 0.865 | ||
| + | |||
| + | 2184. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063980/m06398045.png ; $$\| x _ { k } - x ^ { * } \| \leq C q ^ { k }$$ ; confidence 0.985 | ||
| + | |||
| + | 2185. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399032.png ; $$A = \pi r ^ { 2 }$$ ; confidence 0.999 | ||
| + | |||
| + | 2186. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000100.png ; $$\| u \| _ { H ^ { \prime } } \leq R$$ ; confidence 0.473 | ||
| + | |||
| + | 2187. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m06400065.png ; $$W ( N )$$ ; confidence 0.988 | ||
| + | |||
| + | 2188. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m0640004.png ; $$\epsilon > 0$$ ; confidence 0.971 | ||
| + | |||
| + | 2189. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000127.png ; $$F = W _ { 2 } ^ { - 1 } ( \Omega )$$ ; confidence 0.999 | ||
| + | |||
| + | 2190. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021026.png ; $$\lambda K + t$$ ; confidence 0.994 | ||
| + | |||
| + | 2191. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m064250151.png ; $$\tau \cup A C \cup B C$$ ; confidence 0.892 | ||
| + | |||
| + | 2192. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m064250142.png ; $$d y / d s \geq 0$$ ; confidence 0.997 | ||
| + | |||
| + | 2193. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064180/m064180110.png ; $$\mathfrak { k } _ { n } | _ { 0 } = 0$$ ; confidence 0.128 | ||
| + | |||
| + | 2194. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064190/m064190102.png ; $$u | _ { \Gamma } = \psi$$ ; confidence 0.930 | ||
| + | |||
| + | 2195. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064420/m06442050.png ; $$k = m / 2$$ ; confidence 0.948 | ||
| + | |||
| + | 2196. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m064430169.png ; $$GL _ { 2 } ( R )$$ ; confidence 0.691 | ||
| + | |||
| + | 2197. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m064430225.png ; $$\operatorname { lm } A ( \tau )$$ ; confidence 0.945 | ||
| + | |||
| + | 2198. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m06443090.png ; $$B O$$ ; confidence 0.877 | ||
| + | |||
| + | 2199. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m064430134.png ; $$w = \lambda ( z )$$ ; confidence 0.985 | ||
| + | |||
| + | 2200. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064440/m06444056.png ; $$c = 0$$ ; confidence 0.874 | ||
| + | |||
| + | 2201. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018050.png ; $$J ( F G / I ) = 0$$ ; confidence 0.991 | ||
| + | |||
| + | 2202. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064460/m0644606.png ; $$d ( x + y ) + d ( x y ) = d ( x ) + d ( y )$$ ; confidence 0.999 | ||
| + | |||
| + | 2203. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064540/m0645406.png ; $$m _ { G } = D ( u ) / 2 \pi$$ ; confidence 0.811 | ||
| + | |||
| + | 2204. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064550/m06455029.png ; $$G \rightarrow R _ { + } ^ { * }$$ ; confidence 0.778 | ||
| + | |||
| + | 2205. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064580/m06458025.png ; $$k _ { 1 } + \ldots + k _ { n } = k$$ ; confidence 0.849 | ||
| + | |||
| + | 2206. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590192.png ; $$\alpha p$$ ; confidence 0.503 | ||
| + | |||
| + | 2207. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064660/m06466019.png ; $$C _ { \gamma } = C _ { \gamma _ { 1 } } C _ { \gamma _ { 2 } }$$ ; confidence 0.997 | ||
| + | |||
| + | 2208. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700127.png ; $$t \in P ^ { 1 }$$ ; confidence 0.984 | ||
| + | |||
| + | 2209. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470068.png ; $$\partial V _ { t }$$ ; confidence 0.996 | ||
| + | |||
| + | 2210. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647004.png ; $$\alpha = \gamma ( 0 )$$ ; confidence 0.961 | ||
| + | |||
| + | 2211. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471081.png ; $$f ( z ) = f ( x + i y )$$ ; confidence 1.000 | ||
| + | |||
| + | 2212. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064720/m0647206.png ; $$f _ { E } ^ { \prime } ( \zeta )$$ ; confidence 0.845 | ||
| + | |||
| + | 2213. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483029.png ; $$f ( x ^ { \prime } ) < t$$ ; confidence 1.000 | ||
| + | |||
| + | 2214. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064870/m06487010.png ; $$\xi = x _ { m }$$ ; confidence 0.952 | ||
| + | |||
| + | 2215. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022071.png ; $$T$$ ; confidence 0.520 | ||
| + | |||
| + | 2216. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022026.png ; $$T _ { e } = j - 744$$ ; confidence 0.742 | ||
| + | |||
| + | 2217. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064910/m06491014.png ; $$Y ( K )$$ ; confidence 0.999 | ||
| + | |||
| + | 2218. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023042.png ; $$( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$$ ; confidence 0.971 | ||
| + | |||
| + | 2219. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230103.png ; $$- ( K _ { X } + B )$$ ; confidence 0.752 | ||
| + | |||
| + | 2220. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230127.png ; $$\phi : X ^ { \prime } \rightarrow Y$$ ; confidence 0.951 | ||
| + | |||
| + | 2221. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064990/m06499012.png ; $$f : M \rightarrow R$$ ; confidence 0.936 | ||
| + | |||
| + | 2222. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064990/m06499028.png ; $$\sum _ { j = 0 } ^ { i } ( - 1 ) ^ { j } m _ { i - j } \geq \sum _ { j = 0 } ^ { i } ( - 1 ) ^ { j } b _ { i - j }$$ ; confidence 0.973 | ||
| + | |||
| + | 2223. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064950/m06495010.png ; $$V _ { 1 } = \emptyset$$ ; confidence 0.731 | ||
| + | |||
| + | 2224. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110210/m11021026.png ; $$\alpha = 4 \pi$$ ; confidence 1.000 | ||
| + | |||
| + | 2225. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110210/m11021064.png ; $$f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$$ ; confidence 0.413 | ||
| + | |||
| + | 2226. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m06503013.png ; $$\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$$ ; confidence 0.163 | ||
| + | |||
| + | 2227. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m0650309.png ; $$x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$$ ; confidence 0.056 | ||
| + | |||
| + | 2228. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025047.png ; $$L C ^ { k - 1 }$$ ; confidence 0.734 | ||
| + | |||
| + | 2229. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065140/m065140117.png ; $$p _ { 1 } + \ldots + p _ { m } = p$$ ; confidence 0.769 | ||
| + | |||
| + | 2230. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065140/m06514041.png ; $$S _ { n }$$ ; confidence 0.963 | ||
| + | |||
| + | 2231. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $$\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$$ ; confidence 0.229 | ||
| + | |||
| + | 2232. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065180/m06518046.png ; $$\alpha : A \rightarrow A _ { 1 }$$ ; confidence 0.999 | ||
| + | |||
| + | 2233. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110220/m11022016.png ; $$\lambda ^ { * } \in R ^ { m }$$ ; confidence 0.957 | ||
| + | |||
| + | 2234. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065250/m06525013.png ; $$G _ { 1 } / N$$ ; confidence 0.991 | ||
| + | |||
| + | 2235. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530022.png ; $$\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$$ ; confidence 0.927 | ||
| + | |||
| + | 2236. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025061.png ; $$\int | \rho _ { \varepsilon } ( x ) | d x$$ ; confidence 0.965 | ||
| + | |||
| + | 2237. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m130250103.png ; $$s > n / 2$$ ; confidence 0.999 | ||
| + | |||
| + | 2238. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025065.png ; $$M _ { 3 } ( R ^ { n } ) = \{$$ ; confidence 0.724 | ||
| + | |||
| + | 2239. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544062.png ; $$d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$$ ; confidence 0.489 | ||
| + | |||
| + | 2240. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544031.png ; $$\Phi _ { t } = id$$ ; confidence 0.507 | ||
| + | |||
| + | 2241. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544030.png ; $$E = \{ e \}$$ ; confidence 0.981 | ||
| + | |||
| + | 2242. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065460/m06546014.png ; $$( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$$ ; confidence 0.351 | ||
| + | |||
| + | 2243. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065500/m06550014.png ; $$P ( \mathfrak { m } / \mathfrak { m } ^ { 2 } )$$ ; confidence 0.523 | ||
| + | |||
| + | 2244. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065510/m06551020.png ; $$n _ { \Delta } = 1$$ ; confidence 0.532 | ||
| + | |||
| + | 2245. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026036.png ; $$x \lambda ( y ) = \rho ( x ) y$$ ; confidence 0.966 | ||
| + | |||
| + | 2246. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260171.png ; $$\overline { \alpha } : P \rightarrow X$$ ; confidence 0.421 | ||
| + | |||
| + | 2247. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065560/m06556075.png ; $$\frac { | z | ^ { p } } { ( 1 + | z | ) ^ { 2 p } } \leq | f ( z ) | \leq \frac { | z | ^ { p } } { ( 1 - | z | ) ^ { 2 p } }$$ ; confidence 0.972 | ||
| + | |||
| + | 2248. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065570/m06557014.png ; $$L _ { \cap } \Gamma = 0$$ ; confidence 0.870 | ||
| + | |||
| + | 2249. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180141.png ; $$H _ { n - 2 }$$ ; confidence 0.883 | ||
| + | |||
| + | 2250. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065580/m0655809.png ; $$P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$$ ; confidence 0.795 | ||
| + | |||
| + | 2251. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003066.png ; $$\operatorname { Re } ( \lambda )$$ ; confidence 0.992 | ||
| + | |||
| + | 2252. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $$A _ { i \psi }$$ ; confidence 0.179 | ||
| + | |||
| + | 2253. https://www.encyclopediaofmath.org/legacyimages/n/n110/n110010/n1100102.png ; $$f \in L _ { \infty } ( T )$$ ; confidence 0.971 | ||
| + | |||
| + | 2254. https://www.encyclopediaofmath.org/legacyimages/n/n110/n110010/n11001011.png ; $$L _ { \infty } ( T )$$ ; confidence 0.979 | ||
| + | |||
| + | 2255. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634043.png ; $$\Sigma _ { n - 1 } ( x )$$ ; confidence 0.905 | ||
| + | |||
| + | 2256. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634090.png ; $$x \in V _ { n }$$ ; confidence 0.777 | ||
| + | |||
| + | 2257. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634047.png ; $$X _ { i } \subset \Delta _ { 1 } ^ { i }$$ ; confidence 0.988 | ||
| + | |||
| + | 2258. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066360/n06636034.png ; $$\{ x _ { \alpha } \} _ { \alpha \in \Sigma }$$ ; confidence 0.994 | ||
| + | |||
| + | 2259. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066410/n06641020.png ; $$x \in b M$$ ; confidence 0.705 | ||
| + | |||
| + | 2260. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066410/n06641023.png ; $$\overline { \partial } f = \phi$$ ; confidence 0.995 | ||
| + | |||
| + | 2261. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066440/n06644040.png ; $$\sum _ { n = 0 } ^ { \infty } A ^ { n } f$$ ; confidence 0.994 | ||
| + | |||
| + | 2262. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066480/n06648031.png ; $$\phi _ { \alpha } ( f ) = w _ { \alpha }$$ ; confidence 0.945 | ||
| + | |||
| + | 2263. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066490/n06649018.png ; $$f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$$ ; confidence 0.806 | ||
| + | |||
| + | 2264. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066520/n06652019.png ; $$\epsilon < \epsilon ^ { \prime } < \ldots$$ ; confidence 0.860 | ||
| + | |||
| + | 2265. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066560/n06656013.png ; $$A ( u ) = 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2266. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663069.png ; $$\Delta _ { k } ^ { k } f ^ { ( s ) }$$ ; confidence 0.968 | ||
| + | |||
| + | 2267. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630108.png ; $$M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j }$$ ; confidence 0.662 | ||
| + | |||
| + | 2268. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663062.png ; $$0 < r - s < k$$ ; confidence 0.996 | ||
| + | |||
| + | 2269. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679025.png ; $$D \cap \{ x ^ { 1 } = c \}$$ ; confidence 0.983 | ||
| + | |||
| + | 2270. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684017.png ; $$\{ \psi _ { i } \} _ { 0 } ^ { m }$$ ; confidence 0.581 | ||
| + | |||
| + | 2271. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066890/n06689067.png ; $$v = 1.1 m / sec$$ ; confidence 0.848 | ||
| + | |||
| + | 2272. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066890/n06689035.png ; $$b = 7$$ ; confidence 0.999 | ||
| + | |||
| + | 2273. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690064.png ; $$G \rightarrow A$$ ; confidence 0.998 | ||
| + | |||
| + | 2274. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n13007025.png ; $$m ( B ) = 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2275. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066980/n06698028.png ; $$Q ^ { \prime } \subset Q$$ ; confidence 0.984 | ||
| + | |||
| + | 2276. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708019.png ; $$y ( 0 ) = y ^ { \prime }$$ ; confidence 0.740 | ||
| + | |||
| + | 2277. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708029.png ; $$\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$$ ; confidence 0.711 | ||
| + | |||
| + | 2278. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708018.png ; $$y ^ { * } = \alpha ( g ^ { * } )$$ ; confidence 0.950 | ||
| + | |||
| + | 2279. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711026.png ; $$\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$$ ; confidence 0.538 | ||
| + | |||
| + | 2280. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711048.png ; $$\phi _ { i } / \partial x _ { Y }$$ ; confidence 0.338 | ||
| + | |||
| + | 2281. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150173.png ; $$x + h \in G$$ ; confidence 0.992 | ||
| + | |||
| + | 2282. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150152.png ; $$A : G \rightarrow Y$$ ; confidence 0.991 | ||
| + | |||
| + | 2283. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011031.png ; $$x \in K$$ ; confidence 0.658 | ||
| + | |||
| + | 2284. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011011.png ; $$\xi ( x ) = 1$$ ; confidence 0.999 | ||
| + | |||
| + | 2285. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $$\pi / \rho$$ ; confidence 0.416 | ||
| + | |||
| + | 2286. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728084.png ; $$y ^ { \prime \prime \prime } = \lambda y$$ ; confidence 0.979 | ||
| + | |||
| + | 2287. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067310/n06731043.png ; $$B O$$ ; confidence 0.799 | ||
| + | |||
| + | 2288. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673605.png ; $$\phi ( x ) \geq 0$$ ; confidence 0.999 | ||
| + | |||
| + | 2289. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067400/n06740041.png ; $$U$$ ; confidence 0.698 | ||
| + | |||
| + | 2290. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067430/n06743015.png ; $$\sum _ { k = 1 } ^ { \infty } \| u _ { k } \| = \sum _ { k = 1 } ^ { \infty } 1 / k$$ ; confidence 0.925 | ||
| + | |||
| + | 2291. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520368.png ; $$\phi _ { i } ( 0 ) = 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2292. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520122.png ; $$j \geq q + 1$$ ; confidence 0.999 | ||
| + | |||
| + | 2293. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $$N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$$ ; confidence 0.323 | ||
| + | |||
| + | 2294. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520250.png ; $$d j \neq 0$$ ; confidence 0.877 | ||
| + | |||
| + | 2295. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520303.png ; $$A \simeq K$$ ; confidence 0.550 | ||
| + | |||
| + | 2296. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758032.png ; $$N _ { G } ( H )$$ ; confidence 0.982 | ||
| + | |||
| + | 2297. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761056.png ; $$( d \nu ) ( x _ { i } ) ( T _ { i } )$$ ; confidence 0.993 | ||
| + | |||
| + | 2298. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764043.png ; $$\Omega _ { X }$$ ; confidence 0.976 | ||
| + | |||
| + | 2299. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067760/n06776016.png ; $$N ( A ^ { * } ) = \{ 0 \}$$ ; confidence 0.998 | ||
| + | |||
| + | 2300. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067840/n06784093.png ; $$A \in L _ { \infty } ( H )$$ ; confidence 0.994 | ||
| + | |||
| + | 2301. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850200.png ; $$\operatorname { tr } _ { \sigma } A$$ ; confidence 0.814 | ||
| + | |||
| + | 2302. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850111.png ; $$u \in E ^ { \prime } \otimes - E$$ ; confidence 0.540 | ||
| + | |||
| + | 2303. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850131.png ; $$u = \operatorname { tr } \Gamma ( u )$$ ; confidence 0.766 | ||
| + | |||
| + | 2304. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067860/n067860258.png ; $$V \subset \rho U$$ ; confidence 0.940 | ||
| + | |||
| + | 2305. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n0679002.png ; $$x y = 40$$ ; confidence 1.000 | ||
| + | |||
| + | 2306. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n06790027.png ; $$\alpha + b = b + \alpha$$ ; confidence 0.739 | ||
| + | |||
| + | 2307. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067940/n06794014.png ; $$N > 5$$ ; confidence 0.901 | ||
| + | |||
| + | 2308. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n06796016.png ; $$q 2 = 6$$ ; confidence 0.507 | ||
| + | |||
| + | 2309. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n0679601.png ; $$12$$ ; confidence 0.490 | ||
| + | |||
| + | 2310. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n06796020.png ; $$q 2 = 4$$ ; confidence 0.504 | ||
| + | |||
| + | 2311. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001037.png ; $$\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$$ ; confidence 0.316 | ||
| + | |||
| + | 2312. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001044.png ; $$F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$$ ; confidence 0.936 | ||
| + | |||
| + | 2313. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110030/o11003071.png ; $$I _ { p } ( L )$$ ; confidence 0.985 | ||
| + | |||
| + | 2314. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110030/o11003037.png ; $$K _ { \omega }$$ ; confidence 0.958 | ||
| + | |||
| + | 2315. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003024.png ; $$\overline { P _ { 8 } }$$ ; confidence 0.610 | ||
| + | |||
| + | 2316. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200204.png ; $$\alpha = 1 / 2$$ ; confidence 0.933 | ||
| + | |||
| + | 2317. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110070/o11007085.png ; $$K _ { 10 }$$ ; confidence 0.993 | ||
| + | |||
| + | 2318. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110070/o11007062.png ; $$K$$ ; confidence 0.967 | ||
| + | |||
| + | 2319. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068190/o0681907.png ; $$T ( t ) x$$ ; confidence 0.794 | ||
| + | |||
| + | 2320. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068210/o06821028.png ; $$X = \sum _ { i } X ^ { i } \partial / \partial x ^ { i }$$ ; confidence 0.987 | ||
| + | |||
| + | 2321. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068250/o06825018.png ; $$\operatorname { lim } _ { x \rightarrow x _ { 0 } } + 0$$ ; confidence 0.628 | ||
| + | |||
| + | 2322. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068330/o06833067.png ; $$e ^ { - \lambda s }$$ ; confidence 0.999 | ||
| + | |||
| + | 2323. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068350/o068350148.png ; $$\phi \in D ( A )$$ ; confidence 0.998 | ||
| + | |||
| + | 2324. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005095.png ; $$v \in G$$ ; confidence 0.413 | ||
| + | |||
| + | 2325. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005087.png ; $$v _ { n } \in G$$ ; confidence 0.357 | ||
| + | |||
| + | 2326. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837057.png ; $$x _ { C }$$ ; confidence 0.256 | ||
| + | |||
| + | 2327. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837017.png ; $$( \alpha b ) \sigma = \alpha \sigma b \sigma$$ ; confidence 0.467 | ||
| + | |||
| + | 2328. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060187.png ; $$( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$$ ; confidence 0.449 | ||
| + | |||
| + | 2329. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006047.png ; $$\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$$ ; confidence 0.897 | ||
| + | |||
| + | 2330. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006052.png ; $$\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$$ ; confidence 0.147 | ||
| + | |||
| + | 2331. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068460/o0684606.png ; $$x ( t _ { 1 } ) = x ^ { 1 } \in R ^ { n }$$ ; confidence 0.985 | ||
| + | |||
| + | 2332. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068490/o06849072.png ; $$2 \leq t \leq 3$$ ; confidence 0.999 | ||
| + | |||
| + | 2333. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068500/o06850051.png ; $$\sigma \leq t \leq \theta$$ ; confidence 0.947 | ||
| + | |||
| + | 2334. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $$X = \cup _ { \alpha } X _ { \alpha }$$ ; confidence 0.245 | ||
| + | |||
| + | 2335. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001011.png ; $$G / G _ { X }$$ ; confidence 0.936 | ||
| + | |||
| + | 2336. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o0700104.png ; $$G ( x ) = \{ g ( x ) : g \in G \}$$ ; confidence 0.999 | ||
| + | |||
| + | 2337. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004017.png ; $$\operatorname { lim } \alpha / \beta = 0$$ ; confidence 0.903 | ||
| + | |||
| + | 2338. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006030.png ; $$\beta ( x ) \neq 0$$ ; confidence 0.999 | ||
| + | |||
| + | 2339. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o070070117.png ; $$\{ Z _ { n } \}$$ ; confidence 0.984 | ||
| + | |||
| + | 2340. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o070070118.png ; $$Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$$ ; confidence 0.491 | ||
| + | |||
| + | 2341. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o07007051.png ; $$W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$$ ; confidence 0.738 | ||
| + | |||
| + | 2342. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070150/o07015054.png ; $$\alpha ^ { n } < b ^ { n + 1 }$$ ; confidence 0.291 | ||
| + | |||
| + | 2343. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008026.png ; $$C _ { \psi }$$ ; confidence 0.409 | ||
| + | |||
| + | 2344. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008035.png ; $$C _ { \varphi }$$ ; confidence 0.982 | ||
| + | |||
| + | 2345. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022036.png ; $$E$$ ; confidence 0.845 | ||
| + | |||
| + | 2346. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $$\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$$ ; confidence 0.491 | ||
| + | |||
| + | 2347. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070240/o07024025.png ; $$- \beta V$$ ; confidence 0.966 | ||
| + | |||
| + | 2348. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070240/o07024014.png ; $$6 \pi \eta \alpha$$ ; confidence 0.422 | ||
| + | |||
| + | 2349. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070240/o0702405.png ; $$d W ( t ) / d t = W ^ { \prime } ( t )$$ ; confidence 0.993 | ||
| + | |||
| + | 2350. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070310/o07031053.png ; $$N ( n ) \rightarrow \infty$$ ; confidence 0.992 | ||
| + | |||
| + | 2351. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070310/o070310119.png ; $$A \perp A ^ { T }$$ ; confidence 0.994 | ||
| + | |||
| + | 2352. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070290/o07029017.png ; $$\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$$ ; confidence 0.937 | ||
| + | |||
| + | 2353. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034097.png ; $$y = K _ { n } ( x )$$ ; confidence 0.826 | ||
| + | |||
| + | 2354. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070370/o07037028.png ; $$\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$$ ; confidence 0.076 | ||
| + | |||
| + | 2355. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072210/p07221037.png ; $$F ^ { k }$$ ; confidence 0.862 | ||
| + | |||
| + | 2356. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072300/p0723004.png ; $$F ( H )$$ ; confidence 0.998 | ||
| + | |||
| + | 2357. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072350/p07235016.png ; $$h > 1$$ ; confidence 0.985 | ||
| + | |||
| + | 2358. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237060.png ; $$\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$$ ; confidence 0.887 | ||
| + | |||
| + | 2359. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237025.png ; $$\underline { H } \square _ { f }$$ ; confidence 0.812 | ||
| + | |||
| + | 2360. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p0724304.png ; $$B \operatorname { ccos } ( \omega t + \psi )$$ ; confidence 0.580 | ||
| + | |||
| + | 2361. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p072430105.png ; $$\phi _ { im }$$ ; confidence 0.294 | ||
| + | |||
| + | 2362. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p0724307.png ; $$\epsilon \ll 1$$ ; confidence 0.957 | ||
| + | |||
| + | 2363. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p07243078.png ; $$| V _ { m n } | \ll | E _ { n } ^ { ( 0 ) } - E _ { m } ^ { ( 0 ) } |$$ ; confidence 0.535 | ||
| + | |||
| + | 2364. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120321.png ; $$4 x$$ ; confidence 0.375 | ||
| + | |||
| + | 2365. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120376.png ; $$E _ { i } ( x )$$ ; confidence 0.976 | ||
| + | |||
| + | 2366. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120339.png ; $$\eta ( x ) \in \eta$$ ; confidence 0.999 | ||
| + | |||
| + | 2367. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $$A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$$ ; confidence 0.414 | ||
| + | |||
| + | 2368. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p11012025.png ; $$\lambda < \mu$$ ; confidence 1.000 | ||
| + | |||
| + | 2369. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120432.png ; $$\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$$ ; confidence 0.191 | ||
| + | |||
| + | 2370. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120214.png ; $$D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$$ ; confidence 0.131 | ||
| + | |||
| + | 2371. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120428.png ; $$P _ { n } ( f )$$ ; confidence 0.919 | ||
| + | |||
| + | 2372. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072460/p07246025.png ; $$S \square ^ { * }$$ ; confidence 0.590 | ||
| + | |||
| + | 2373. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072510/p07251086.png ; $$T ^ { * } U$$ ; confidence 0.999 | ||
| + | |||
| + | 2374. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072510/p07251047.png ; $$d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$$ ; confidence 0.905 | ||
| + | |||
| + | 2375. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p072530183.png ; $$I ( G _ { p } )$$ ; confidence 0.801 | ||
| + | |||
| + | 2376. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p07253081.png ; $$d f ^ { j }$$ ; confidence 0.726 | ||
| + | |||
| + | 2377. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101037.png ; $$p _ { i }$$ ; confidence 0.459 | ||
| + | |||
| + | 2378. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p0726706.png ; $$\operatorname { sch } / S$$ ; confidence 0.616 | ||
| + | |||
| + | 2379. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267050.png ; $$f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$$ ; confidence 0.802 | ||
| + | |||
| + | 2380. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072700/p07270029.png ; $$f ( L )$$ ; confidence 0.999 | ||
| + | |||
| + | 2381. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072710/p07271076.png ; $$t ( P )$$ ; confidence 0.999 | ||
| + | |||
| + | 2382. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072710/p072710140.png ; $$\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$$ ; confidence 0.541 | ||
| + | |||
| + | 2383. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201308.png ; $$\theta$$ ; confidence 1.000 | ||
| + | |||
| + | 2384. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013011.png ; $$n > 1$$ ; confidence 0.999 | ||
| + | |||
| + | 2385. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014048.png ; $$E = E$$ ; confidence 0.907 | ||
| + | |||
| + | 2386. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014039.png ; $$E _ { r } = S \cup T$$ ; confidence 0.755 | ||
| + | |||
| + | 2387. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727608.png ; $$f ( x ) \mapsto \hat { f } ( y )$$ ; confidence 0.970 | ||
| + | |||
| + | 2388. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072830/p07283021.png ; $$\epsilon _ { i j } ^ { k }$$ ; confidence 0.400 | ||
| + | |||
| + | 2389. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072830/p072830109.png ; $$\sigma _ { i j } ( t )$$ ; confidence 0.998 | ||
| + | |||
| + | 2390. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850130.png ; $$X \subset M ^ { n }$$ ; confidence 0.432 | ||
| + | |||
| + | 2391. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850146.png ; $$H _ { k } ( M ^ { n } )$$ ; confidence 0.995 | ||
| + | |||
| + | 2392. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850150.png ; $$\Omega _ { X } ( k ) \equiv \Omega ( k )$$ ; confidence 0.406 | ||
| + | |||
| + | 2393. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p0728502.png ; $$_ { k }$$ ; confidence 0.179 | ||
| + | |||
| + | 2394. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072880/p07288011.png ; $$\{ z _ { k } \} \subset \Delta$$ ; confidence 0.994 | ||
| + | |||
| + | 2395. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072930/p072930169.png ; $$t _ { \gamma }$$ ; confidence 0.533 | ||
| + | |||
| + | 2396. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072930/p07293055.png ; $$\sigma _ { 2 n } = 2 \pi ^ { n } / ( n - 1 ) !$$ ; confidence 0.994 | ||
| + | |||
| + | 2397. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072930/p072930108.png ; $$u \in C ^ { 2 } ( D )$$ ; confidence 0.987 | ||
| + | |||
| + | 2398. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072890/p07289041.png ; $$p _ { 01 } p _ { 23 } + p _ { 02 } p _ { 31 } + p _ { 03 } p _ { 12 } = 0$$ ; confidence 0.676 | ||
| + | |||
| + | 2399. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $$x \preceq y \Rightarrow z x t \preceq x y t$$ ; confidence 0.920 | ||
| + | |||
| + | 2400. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072950/p07295010.png ; $$w ( z ) = \int _ { \gamma } ( t - z ) ^ { \mu + n - 1 } u ( t ) d t$$ ; confidence 0.937 | ||
| + | |||
| + | 2401. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072980/p07298015.png ; $$\beta \in L _ { q }$$ ; confidence 0.972 | ||
| + | |||
| + | 2402. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073030/p07303077.png ; $$\mathfrak { g } = C$$ ; confidence 0.510 | ||
| + | |||
| + | 2403. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302077.png ; $$L ( R ) \otimes _ { K } H _ { n } ( R ) = R$$ ; confidence 0.755 | ||
| + | |||
| + | 2404. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073090/p07309030.png ; $$V \cap L$$ ; confidence 0.905 | ||
| + | |||
| + | 2405. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073090/p07309060.png ; $$R \times D$$ ; confidence 0.945 | ||
| + | |||
| + | 2406. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073100/p07310032.png ; $$\mu A = m > 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2407. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073270/p07327037.png ; $$q ^ { ( n ) } = d ^ { n } q / d x ^ { n }$$ ; confidence 0.958 | ||
| + | |||
| + | 2408. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073280/p07328015.png ; $$2 \lambda$$ ; confidence 1.000 | ||
| + | |||
| + | 2409. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073330/p07333012.png ; $$d S _ { n }$$ ; confidence 0.935 | ||
| + | |||
| + | 2410. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073340/p0733402.png ; $$X ( t _ { 2 } ) - X ( t _ { 1 } )$$ ; confidence 0.994 | ||
| + | |||
| + | 2411. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073340/p07334022.png ; $$/ t \rightarrow \lambda$$ ; confidence 0.669 | ||
| + | |||
| + | 2412. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340055.png ; $$M ^ { 0 }$$ ; confidence 0.312 | ||
| + | |||
| + | 2413. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346086.png ; $$P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$$ ; confidence 0.185 | ||
| + | |||
| + | 2414. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346048.png ; $$W = M + U$$ ; confidence 0.972 | ||
| + | |||
| + | 2415. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $$t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$$ ; confidence 0.226 | ||
| + | |||
| + | 2416. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370015.png ; $$f ( n ) \geq 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2417. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $$[ f _ { G } ]$$ ; confidence 0.256 | ||
| + | |||
| + | 2418. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p073700205.png ; $$l _ { n } = \# \{ s \in S : d ( s ) = n \}$$ ; confidence 0.868 | ||
| + | |||
| + | 2419. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p073700202.png ; $$d ( s ) = \operatorname { sup } \{ n : s \in F _ { n } \}$$ ; confidence 0.970 | ||
| + | |||
| + | 2420. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p073700127.png ; $$m / m ^ { 2 }$$ ; confidence 0.612 | ||
| + | |||
| + | 2421. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374027.png ; $$( \xi ) _ { R }$$ ; confidence 0.672 | ||
| + | |||
| + | 2422. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073750/p0737503.png ; $$p _ { i } ( \xi ) \in H ^ { 4 i } ( B )$$ ; confidence 0.998 | ||
| + | |||
| + | 2423. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073750/p073750105.png ; $$e ( \xi \otimes C )$$ ; confidence 0.997 | ||
| + | |||
| + | 2424. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073760/p0737605.png ; $$\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$$ ; confidence 0.090 | ||
| + | |||
| + | 2425. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png ; $$E \subset X = R ^ { \prime }$$ ; confidence 0.250 | ||
| + | |||
| + | 2426. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073840/p0738407.png ; $$A \supset B$$ ; confidence 0.432 | ||
| + | |||
| + | 2427. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738804.png ; $$x _ { 1 } = \ldots = x _ { n } = 0$$ ; confidence 0.697 | ||
| + | |||
| + | 2428. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073930/p07393024.png ; $$A / N _ { f }$$ ; confidence 0.994 | ||
| + | |||
| + | 2429. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073960/p0739603.png ; $$P ( x ) = a _ { 0 } + \alpha _ { 1 } x + \ldots + \alpha _ { n } x ^ { n }$$ ; confidence 0.639 | ||
| + | |||
| + | 2430. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073980/p07398067.png ; $$F \otimes S ^ { m } E$$ ; confidence 0.748 | ||
| + | |||
| + | 2431. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074010/p07401048.png ; $$O _ { 3 } = O _ { 6 } \cap O _ { 7 }$$ ; confidence 0.673 | ||
| + | |||
| + | 2432. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074010/p07401072.png ; $$F _ { 5 } ^ { \mu } = C _ { 4 } \cap F _ { 8 } ^ { \mu }$$ ; confidence 0.951 | ||
| + | |||
| + | 2433. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074070/p0740707.png ; $$\xi : F \rightarrow A$$ ; confidence 0.996 | ||
| + | |||
| + | 2434. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074100/p07410035.png ; $$v _ { i } = \partial f / \partial t ^ { i }$$ ; confidence 0.629 | ||
| + | |||
| + | 2435. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074140/p074140226.png ; $$\phi ^ { + } ( x )$$ ; confidence 0.999 | ||
| + | |||
| + | 2436. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074140/p074140115.png ; $$1 \leq p \leq n / 2$$ ; confidence 0.990 | ||
| + | |||
| + | 2437. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074140/p074140120.png ; $$p > n / 2$$ ; confidence 0.999 | ||
| + | |||
| + | 2438. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074150/p074150271.png ; $$- \infty \leq y < \infty$$ ; confidence 0.999 | ||
| + | |||
| + | 2439. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074150/p07415079.png ; $$\underline { \mathfrak { U } } \square _ { \phi } = - \overline { \mathfrak { U } } _ { \phi }$$ ; confidence 0.680 | ||
| + | |||
| + | 2440. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074150/p074150292.png ; $$f \in C$$ ; confidence 0.990 | ||
| + | |||
| + | 2441. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074160/p07416038.png ; $$\mu _ { 1 } = \mu _ { 2 } = \mu > 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2442. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074160/p07416055.png ; $$\rho = | y |$$ ; confidence 0.958 | ||
| + | |||
| + | 2443. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074530/p07453019.png ; $$\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$$ ; confidence 0.456 | ||
| + | |||
| + | 2444. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471055.png ; $$g _ { 0 } g ^ { \prime } \in G$$ ; confidence 0.189 | ||
| + | |||
| + | 2445. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710106.png ; $$P \rightarrow e$$ ; confidence 0.910 | ||
| + | |||
| + | 2446. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074660/p0746603.png ; $$\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$$ ; confidence 0.746 | ||
| + | |||
| + | 2447. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469036.png ; $$G = G ^ { \prime }$$ ; confidence 1.000 | ||
| + | |||
| + | 2448. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469030.png ; $$\pi G ( x ) = b$$ ; confidence 0.845 | ||
| + | |||
| + | 2449. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472020.png ; $$\Gamma _ { F }$$ ; confidence 0.663 | ||
| + | |||
| + | 2450. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472076.png ; $$\gamma \in G$$ ; confidence 0.994 | ||
| + | |||
| + | 2451. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png ; $$q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$$ ; confidence 0.083 | ||
| + | |||
| + | 2452. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474068.png ; $$q _ { i } R = 0$$ ; confidence 0.743 | ||
| + | |||
| + | 2453. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486040.png ; $$0 \leq s _ { 0 } \leq l$$ ; confidence 0.979 | ||
| + | |||
| + | 2454. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p110230174.png ; $$F _ { p q } \neq F _ { p q } ^ { * }$$ ; confidence 0.479 | ||
| + | |||
| + | 2455. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p11023076.png ; $$x \in R ^ { + }$$ ; confidence 0.795 | ||
| + | |||
| + | 2456. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074970/p074970164.png ; $$E X _ { k } = a$$ ; confidence 0.520 | ||
| + | |||
| + | 2457. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074970/p074970165.png ; $$DX _ { k } = \sigma ^ { 2 }$$ ; confidence 0.511 | ||
| + | |||
| + | 2458. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075050/p07505047.png ; $$( K _ { i } / k )$$ ; confidence 0.490 | ||
| + | |||
| + | 2459. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515035.png ; $$\alpha _ { 0 } \in A$$ ; confidence 0.998 | ||
| + | |||
| + | 2460. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075190/p07519074.png ; $$E _ { i j }$$ ; confidence 0.366 | ||
| + | |||
| + | 2461. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075190/p07519013.png ; $$x ^ { i } = y ^ { i } \lambda$$ ; confidence 0.985 | ||
| + | |||
| + | 2462. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075260/p07526038.png ; $$\pi _ { D } : X \rightarrow F ( D )$$ ; confidence 0.992 | ||
| + | |||
| + | 2463. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $$\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$$ ; confidence 0.786 | ||
| + | |||
| + | 2464. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535038.png ; $$d ( S )$$ ; confidence 0.993 | ||
| + | |||
| + | 2465. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535017.png ; $$q IL$$ ; confidence 0.843 | ||
| + | |||
| + | 2466. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p075350108.png ; $$P _ { n } ( R )$$ ; confidence 0.886 | ||
| + | |||
| + | 2467. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535088.png ; $$P _ { s } ^ { l } ( k )$$ ; confidence 0.866 | ||
| + | |||
| + | 2468. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075360/p0753601.png ; $$X = \operatorname { Proj } ( R )$$ ; confidence 0.994 | ||
| + | |||
| + | 2469. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075360/p07536031.png ; $$\operatorname { Proj } ( R )$$ ; confidence 0.995 | ||
| + | |||
| + | 2470. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540018.png ; $$F \subset G$$ ; confidence 0.978 | ||
| + | |||
| + | 2471. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075450/p07545043.png ; $$U _ { i j } = \operatorname { Spec } ( A _ { i j } )$$ ; confidence 0.973 | ||
| + | |||
| + | 2472. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754802.png ; $$( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$$ ; confidence 0.827 | ||
| + | |||
| + | 2473. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560134.png ; $$( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$$ ; confidence 0.823 | ||
| + | |||
| + | 2474. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560136.png ; $$P Q = P \times Q$$ ; confidence 0.481 | ||
| + | |||
| + | 2475. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075800/p07580013.png ; $$\square ^ { n - 1 } R _ { n }$$ ; confidence 0.937 | ||
| + | |||
| + | 2476. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075650/p07565068.png ; $$X \cap U = \{ x \in U : \phi ( x ) > 0 \}$$ ; confidence 0.906 | ||
| + | |||
| + | 2477. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660207.png ; $$\kappa : \Omega \rightarrow \Omega _ { 1 }$$ ; confidence 0.980 | ||
| + | |||
| + | 2478. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p07566043.png ; $$\partial _ { x } = \partial / \partial x$$ ; confidence 0.368 | ||
| + | |||
| + | 2479. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660284.png ; $$A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$$ ; confidence 0.458 | ||
| + | |||
| + | 2480. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660113.png ; $$| \xi | \leq 1 / 2$$ ; confidence 0.995 | ||
| + | |||
| + | 2481. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075700/p075700100.png ; $$q ^ { 1 }$$ ; confidence 0.419 | ||
| + | |||
| + | 2482. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014049.png ; $$\gamma \in R$$ ; confidence 0.998 | ||
| + | |||
| + | 2483. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075780/p07578019.png ; $$D \rightarrow \overline { D }$$ ; confidence 0.992 | ||
| + | |||
| + | 2484. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075830/p0758301.png ; $$a \vee b$$ ; confidence 0.827 | ||
| + | |||
| + | 2485. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017067.png ; $$I$$ ; confidence 0.923 | ||
| + | |||
| + | 2486. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073540/p07354050.png ; $$P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$$ ; confidence 0.303 | ||
| + | |||
| + | 2487. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076040/q07604075.png ; $$\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$$ ; confidence 0.802 | ||
| + | |||
| + | 2488. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076080/q076080314.png ; $$\mathfrak { F } \subset \mathfrak { P }$$ ; confidence 0.687 | ||
| + | |||
| + | 2489. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076090/q07609018.png ; $$( n = 4 )$$ ; confidence 1.000 | ||
| + | |||
| + | 2490. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619068.png ; $$\alpha = - 1 / 2$$ ; confidence 1.000 | ||
| + | |||
| + | 2491. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076250/q076250144.png ; $$x \in E _ { + } ( s )$$ ; confidence 0.775 | ||
| + | |||
| + | 2492. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310127.png ; $$R ^ { 12 } R ^ { 13 } R ^ { 23 } = R ^ { 23 } R ^ { 13 } R ^ { 12 }$$ ; confidence 0.998 | ||
| + | |||
| + | 2493. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631095.png ; $$\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$$ ; confidence 0.443 | ||
| + | |||
| + | 2494. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310117.png ; $$R ^ { 12 }$$ ; confidence 1.000 | ||
| + | |||
| + | 2495. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631081.png ; $$H _ { i } \in \mathfrak { g }$$ ; confidence 0.955 | ||
| + | |||
| + | 2496. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003027.png ; $$X ( Y . f ) = ( Y X ) . f$$ ; confidence 0.433 | ||
| + | |||
| + | 2497. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632017.png ; $$j _ { X } : F ^ { \prime } \rightarrow F$$ ; confidence 0.809 | ||
| + | |||
| + | 2498. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076500/q07650033.png ; $$3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$$ ; confidence 0.248 | ||
| + | |||
| + | 2499. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005015.png ; $$D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$$ ; confidence 0.975 | ||
| + | |||
| + | 2500. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005052.png ; $$H _ { k + 1 } y ^ { k } = s ^ { k }$$ ; confidence 0.999 | ||
| + | |||
| + | 2501. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076430/q07643044.png ; $$f \in W _ { 2 } ^ { 1 }$$ ; confidence 0.943 | ||
| + | |||
| + | 2502. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076430/q076430127.png ; $$f : R _ { + } ^ { n } \rightarrow R _ { + } ^ { n }$$ ; confidence 0.970 | ||
| + | |||
| + | 2503. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647062.png ; $$S _ { 2 m + 1 } ^ { m }$$ ; confidence 0.627 | ||
| + | |||
| + | 2504. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076530/q07653094.png ; $$\square ^ { 01 } S _ { 3 } ^ { 1 }$$ ; confidence 0.621 | ||
| + | |||
| + | 2505. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076530/q07653051.png ; $$x ^ { 1 } = 0$$ ; confidence 0.991 | ||
| + | |||
| + | 2506. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661044.png ; $$\beta X = S \square x = \omega _ { \kappa } X$$ ; confidence 0.261 | ||
| + | |||
| + | 2507. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661012.png ; $$N _ { A }$$ ; confidence 0.730 | ||
| + | |||
| + | 2508. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076630/q07663014.png ; $$\omega _ { 1 } / \omega _ { 2 }$$ ; confidence 0.996 | ||
| + | |||
| + | 2509. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004038.png ; $$K > 1$$ ; confidence 0.997 | ||
| + | |||
| + | 2510. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $$J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$$ ; confidence 0.794 | ||
| + | |||
| + | 2511. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076670/q07667033.png ; $$R [ x ]$$ ; confidence 0.996 | ||
| + | |||
| + | 2512. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007060.png ; $$R _ { q ^ { 2 } }$$ ; confidence 0.811 | ||
| + | |||
| + | 2513. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076770/q07677043.png ; $$X = x _ { 0 } + V$$ ; confidence 0.644 | ||
| + | |||
| + | 2514. https://www.encyclopediaofmath.org/legacyimages/q/q110/q110030/q11003019.png ; $$\alpha > a ^ { * }$$ ; confidence 0.575 | ||
| + | |||
| + | 2515. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680042.png ; $$\nu _ { 1 } ^ { S }$$ ; confidence 0.641 | ||
| + | |||
| + | 2516. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680082.png ; $$\{ \tau _ { j } ^ { e } \} \in G _ { I }$$ ; confidence 0.146 | ||
| + | |||
| + | 2517. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680048.png ; $$\leq \nu _ { i } ^ { s }$$ ; confidence 0.802 | ||
| + | |||
| + | 2518. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680012.png ; $$T ^ { S }$$ ; confidence 0.805 | ||
| + | |||
| + | 2519. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $$\tau _ { 0 } ^ { e ^ { 3 } }$$ ; confidence 0.252 | ||
| + | |||
| + | 2520. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820110.png ; $$\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$$ ; confidence 0.716 | ||
| + | |||
| + | 2521. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820155.png ; $$\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$$ ; confidence 0.087 | ||
| + | |||
| + | 2522. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820199.png ; $$f ( \xi _ { T } ( t ) )$$ ; confidence 0.925 | ||
| + | |||
| + | 2523. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820220.png ; $$E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$$ ; confidence 0.887 | ||
| + | |||
| + | 2524. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076810/q07681026.png ; $$\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$$ ; confidence 0.819 | ||
| + | |||
| + | 2525. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683079.png ; $$\rho = E m \alpha \tau _ { j } ^ { e }$$ ; confidence 0.537 | ||
| + | |||
| + | 2526. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683071.png ; $$p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$$ ; confidence 0.310 | ||
| + | |||
| + | 2527. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683018.png ; $$Q _ { 0 } ^ { 0 } = Q ^ { 0 }$$ ; confidence 0.971 | ||
| + | |||
| + | 2528. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q076840162.png ; $$P _ { k } ( x )$$ ; confidence 0.998 | ||
| + | |||
| + | 2529. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q07684029.png ; $$P \{ X _ { n } \in \Delta \} \rightarrow 0$$ ; confidence 0.724 | ||
| + | |||
| + | 2530. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q076840293.png ; $$G _ { l }$$ ; confidence 0.639 | ||
| + | |||
| + | 2531. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q07684072.png ; $$w ^ { S } ( u ) = \operatorname { sup } _ { v \leq u } ( X ( u ) - X ( v ) )$$ ; confidence 0.601 | ||
| + | |||
| + | 2532. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076850/q07685043.png ; $$E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$$ ; confidence 0.250 | ||
| + | |||
| + | 2533. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686069.png ; $$f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$$ ; confidence 0.805 | ||
| + | |||
| + | 2534. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110010/r110010322.png ; $$j$$ ; confidence 0.784 | ||
| + | |||
| + | 2535. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110010/r110010167.png ; $$k ( \pi )$$ ; confidence 0.988 | ||
| + | |||
| + | 2536. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110010/r110010273.png ; $$e _ { 3 } = ( \alpha + d ) + ( b + c )$$ ; confidence 0.551 | ||
| + | |||
| + | 2537. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077060/r0770601.png ; $$\Delta u + k ^ { 2 } u = - f$$ ; confidence 0.985 | ||
| + | |||
| + | 2538. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077130/r07713084.png ; $$r _ { 1 } > r _ { 2 }$$ ; confidence 0.966 | ||
| + | |||
| + | 2539. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077130/r077130114.png ; $$\phi < \beta < L < K < J < T < \tau < F$$ ; confidence 0.970 | ||
| + | |||
| + | 2540. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002077.png ; $$T w | K v$$ ; confidence 0.987 | ||
| + | |||
| + | 2541. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077250/r07725048.png ; $$( n - \mu _ { 1 } ) / 2$$ ; confidence 1.000 | ||
| + | |||
| + | 2542. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077260/r07726020.png ; $$\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$$ ; confidence 0.840 | ||
| + | |||
| + | 2543. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077370/r07737019.png ; $$P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$$ ; confidence 0.432 | ||
| + | |||
| + | 2544. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738071.png ; $$P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$$ ; confidence 0.812 | ||
| + | |||
| + | 2545. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738036.png ; $$u _ { 0 } = 1$$ ; confidence 0.716 | ||
| + | |||
| + | 2546. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077510/r0775103.png ; $$T = T ( R )$$ ; confidence 1.000 | ||
| + | |||
| + | 2547. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077590/r07759075.png ; $$R ( x )$$ ; confidence 1.000 | ||
| + | |||
| + | 2548. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763050.png ; $$\delta _ { \phi }$$ ; confidence 0.541 | ||
| + | |||
| + | 2549. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764046.png ; $$D _ { n - 2 }$$ ; confidence 0.996 | ||
| + | |||
| + | 2550. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004063.png ; $$u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$$ ; confidence 0.932 | ||
| + | |||
| + | 2551. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110040/r11004022.png ; $$k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$$ ; confidence 0.807 | ||
| + | |||
| + | 2552. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080020/r080020171.png ; $$P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$$ ; confidence 0.918 | ||
| + | |||
| + | 2553. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080020/r08002019.png ; $$\operatorname { dim } A = n = q - s$$ ; confidence 0.969 | ||
| + | |||
| + | 2554. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080060/r080060177.png ; $$\{ r _ { n } + r _ { n } ^ { \prime } \}$$ ; confidence 0.928 | ||
| + | |||
| + | 2555. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080180/r0801808.png ; $$t _ { k } \in R$$ ; confidence 0.947 | ||
| + | |||
| + | 2556. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019033.png ; $$U$$ ; confidence 0.987 | ||
| + | |||
| + | 2557. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019038.png ; $$\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$$ ; confidence 0.191 | ||
| + | |||
| + | 2558. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080210/r08021055.png ; $$F ( m ) = f _ { m } ( m )$$ ; confidence 0.639 | ||
| + | |||
| + | 2559. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080210/r08021025.png ; $$f ( x ) = x + 1$$ ; confidence 1.000 | ||
| + | |||
| + | 2560. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080610/r08061012.png ; $$E ( Y | x ) = m ( x )$$ ; confidence 0.542 | ||
| + | |||
| + | 2561. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080610/r08061050.png ; $$E ( Y - f ( x ) ) ^ { 2 }$$ ; confidence 0.547 | ||
| + | |||
| + | 2562. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080620/r08062076.png ; $$\beta$$ ; confidence 0.566 | ||
| + | |||
| + | 2563. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080620/r08062044.png ; $$X = \| x _ { i } \|$$ ; confidence 0.794 | ||
| + | |||
| + | 2564. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080640/r08064034.png ; $$y _ { t } = A x _ { t } + \epsilon _ { t }$$ ; confidence 0.979 | ||
| + | |||
| + | 2565. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068010.png ; $$x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$$ ; confidence 0.172 | ||
| + | |||
| + | 2566. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068055.png ; $$x ( t ) \in D ^ { c }$$ ; confidence 0.992 | ||
| + | |||
| + | 2567. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080740/r0807408.png ; $$x _ { n m _ { n } } \rightarrow ( 0 )$$ ; confidence 0.220 | ||
| + | |||
| + | 2568. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085028.png ; $$e \omega ^ { r } f$$ ; confidence 0.300 | ||
| + | |||
| + | 2569. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080930/r08093013.png ; $$\overline { A } z = \overline { u }$$ ; confidence 0.777 | ||
| + | |||
| + | 2570. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080930/r08093022.png ; $$R _ { 0 } \subset F$$ ; confidence 0.991 | ||
| + | |||
| + | 2571. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094028.png ; $$\{ \alpha _ { n } ^ { ( e ) } \}$$ ; confidence 0.972 | ||
| + | |||
| + | 2572. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094048.png ; $$\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$$ ; confidence 0.264 | ||
| + | |||
| + | 2573. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081110/r08111018.png ; $$g 00 = 1 - 2 \phi / c ^ { 2 }$$ ; confidence 0.483 | ||
| + | |||
| + | 2574. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081110/r08111011.png ; $$p \leq \epsilon / 3$$ ; confidence 0.998 | ||
| + | |||
| + | 2575. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r0811301.png ; $$c \approx 3.10 ^ { 10 } cm / se$$ ; confidence 0.741 | ||
| + | |||
| + | 2576. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r08113085.png ; $$c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$$ ; confidence 0.906 | ||
| + | |||
| + | 2577. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081150/r0811504.png ; $$\frac { d ^ { 2 } x } { d \tau ^ { 2 } } - \lambda ( 1 - x ^ { 2 } ) \frac { d x } { d \tau } + x = 0$$ ; confidence 0.998 | ||
| + | |||
| + | 2578. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081160/r08116074.png ; $$t + \tau$$ ; confidence 0.811 | ||
| + | |||
| + | 2579. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081170/r08117020.png ; $$B = B _ { 1 } \cup B _ { 2 }$$ ; confidence 0.997 | ||
| + | |||
| + | 2580. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081250/r08125011.png ; $$H ( t ) = E N$$ ; confidence 0.783 | ||
| + | |||
| + | 2581. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081260/r08126015.png ; $$M _ { \gamma _ { i } } M _ { \gamma _ { j } }$$ ; confidence 0.992 | ||
| + | |||
| + | 2582. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081390/r08139031.png ; $$v _ { 2 } \in V _ { 2 }$$ ; confidence 0.962 | ||
| + | |||
| + | 2583. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081400/r08140012.png ; $$s < s ^ { \prime }$$ ; confidence 0.967 | ||
| + | |||
| + | 2584. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081420/r08142047.png ; $$\phi \in E ^ { \prime }$$ ; confidence 0.998 | ||
| + | |||
| + | 2585. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143084.png ; $$A = A _ { 1 } \times A _ { 2 }$$ ; confidence 0.989 | ||
| + | |||
| + | 2586. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143081.png ; $$e X$$ ; confidence 0.861 | ||
| + | |||
| + | 2587. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r081430150.png ; $$g e = g$$ ; confidence 0.982 | ||
| + | |||
| + | 2588. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143031.png ; $$E / E ^ { \prime }$$ ; confidence 0.807 | ||
| + | |||
| + | 2589. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146090.png ; $$l _ { i } = \lambda _ { i } + n - i$$ ; confidence 0.990 | ||
| + | |||
| + | 2590. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460129.png ; $$V _ { \lambda } ^ { 0 } \subset V _ { \lambda }$$ ; confidence 0.929 | ||
| + | |||
| + | 2591. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146017.png ; $$g \mapsto ( \operatorname { det } g ) ^ { k } R ( g )$$ ; confidence 0.974 | ||
| + | |||
| + | 2592. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081470/r081470221.png ; $$\oplus R ( S _ { n } )$$ ; confidence 0.905 | ||
| + | |||
| + | 2593. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007076.png ; $$\| f \| = 0$$ ; confidence 0.996 | ||
| + | |||
| + | 2594. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $$\{ \phi j ( z ) \}$$ ; confidence 0.543 | ||
| + | |||
| + | 2595. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080102.png ; $$\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$$ ; confidence 0.996 | ||
| + | |||
| + | 2596. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081550/r08155085.png ; $$\psi d z$$ ; confidence 0.981 | ||
| + | |||
| + | 2597. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081560/r081560116.png ; $$R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$$ ; confidence 0.396 | ||
| + | |||
| + | 2598. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081590/r08159047.png ; $$A = \int _ { - \infty } ^ { \infty } \lambda d E _ { \lambda }$$ ; confidence 1.000 | ||
| + | |||
| + | 2599. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160033.png ; $$y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$$ ; confidence 0.881 | ||
| + | |||
| + | 2600. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081770/r08177046.png ; $$x ^ { T } ( t _ { 1 } ) \Phi x ( t _ { 1 } ) + \int _ { t _ { 0 } } ^ { t _ { 1 } } [ x ^ { T } ( t ) M ( t ) x ( t ) + u ^ { T } ( t ) N ( t ) u ( t ) ] d t$$ ; confidence 0.938 | ||
| + | |||
| + | 2601. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009016.png ; $$\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$$ ; confidence 0.982 | ||
| + | |||
| + | 2602. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010034.png ; $$D _ { n }$$ ; confidence 0.956 | ||
| + | |||
| + | 2603. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081980/r08198090.png ; $$\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$$ ; confidence 0.130 | ||
| + | |||
| + | 2604. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081990/r08199034.png ; $$D \cup \gamma$$ ; confidence 0.997 | ||
| + | |||
| + | 2605. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081940/r08194033.png ; $$G ( K ) \rightarrow G ( Q )$$ ; confidence 0.817 | ||
| + | |||
| + | 2606. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082040/r08204012.png ; $$a _ { 0 } ( z ) \neq 0$$ ; confidence 0.937 | ||
| + | |||
| + | 2607. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082040/r08204062.png ; $$b \in \overline { C }$$ ; confidence 0.690 | ||
| + | |||
| + | 2608. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r082050121.png ; $$AH _ { p }$$ ; confidence 0.775 | ||
| + | |||
| + | 2609. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r08205056.png ; $$\partial \overline { R } _ { \nu }$$ ; confidence 0.821 | ||
| + | |||
| + | 2610. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060128.png ; $$2 g - 1$$ ; confidence 0.999 | ||
| + | |||
| + | 2611. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060102.png ; $$f ^ { \mu } | _ { K }$$ ; confidence 0.278 | ||
| + | |||
| + | 2612. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $$R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$$ ; confidence 0.210 | ||
| + | |||
| + | 2613. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082080/r08208036.png ; $$- \infty \leq \lambda < \mu \leq \infty$$ ; confidence 0.998 | ||
| + | |||
| + | 2614. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082110/r0821106.png ; $$d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$$ ; confidence 0.914 | ||
| + | |||
| + | 2615. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213015.png ; $$\partial x ^ { i } / \partial v$$ ; confidence 0.737 | ||
| + | |||
| + | 2616. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082150/r082150142.png ; $$\operatorname { exp } _ { q } X = r$$ ; confidence 0.511 | ||
| + | |||
| + | 2617. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160280.png ; $$\gamma : M ^ { n } \rightarrow M ^ { n }$$ ; confidence 0.911 | ||
| + | |||
| + | 2618. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r08216030.png ; $$n < 7$$ ; confidence 0.999 | ||
| + | |||
| + | 2619. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r08216057.png ; $$N = 0$$ ; confidence 0.990 | ||
| + | |||
| + | 2620. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160299.png ; $$\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$$ ; confidence 0.291 | ||
| + | |||
| + | 2621. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160294.png ; $$\gamma _ { \xi } ( t )$$ ; confidence 0.995 | ||
| + | |||
| + | 2622. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082200/r082200143.png ; $$V ^ { \prime } \subset R ^ { \prime }$$ ; confidence 0.979 | ||
| + | |||
| + | 2623. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082200/r082200111.png ; $$\gamma \geq \gamma _ { k }$$ ; confidence 0.999 | ||
| + | |||
| + | 2624. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082200/r082200148.png ; $$V ^ { \prime } = V ^ { \prime \prime } = R ^ { \prime } \cup R ^ { \prime \prime }$$ ; confidence 0.993 | ||
| + | |||
| + | 2625. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082210/r08221030.png ; $$o = e K$$ ; confidence 0.327 | ||
| + | |||
| + | 2626. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082230/r0822307.png ; $$| x _ { i } | \leq 1$$ ; confidence 0.845 | ||
| + | |||
| + | 2627. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013012.png ; $$P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$$ ; confidence 0.932 | ||
| + | |||
| + | 2628. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013019.png ; $$P _ { \sigma } ^ { 2 } = P _ { \sigma }$$ ; confidence 0.980 | ||
| + | |||
| + | 2629. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r1301406.png ; $$\sigma ( R ) \backslash \lambda$$ ; confidence 0.997 | ||
| + | |||
| + | 2630. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r0822904.png ; $$x + z < y + z$$ ; confidence 0.999 | ||
| + | |||
| + | 2631. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r082290200.png ; $$p _ { \alpha } = e$$ ; confidence 0.518 | ||
| + | |||
| + | 2632. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r082290135.png ; $$U : E \rightarrow M$$ ; confidence 0.994 | ||
| + | |||
| + | 2633. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r08229026.png ; $$y _ { n } \leq x _ { n } \leq z _ { n }$$ ; confidence 0.841 | ||
| + | |||
| + | 2634. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232050.png ; $$\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta$$ ; confidence 0.964 | ||
| + | |||
| + | 2635. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082350/r08235027.png ; $$s : M \rightarrow F ( M )$$ ; confidence 0.983 | ||
| + | |||
| + | 2636. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082430/r08243011.png ; $$\gamma _ { t } ( x + y ) = \sum _ { r = 0 } ^ { t } \gamma _ { r } ( x ) \gamma _ { t - r } ( y )$$ ; confidence 0.991 | ||
| + | |||
| + | 2637. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082430/r0824307.png ; $$I ( A ) = \operatorname { Ker } ( \epsilon )$$ ; confidence 0.898 | ||
| + | |||
| + | 2638. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r08245049.png ; $$( \alpha b ) \alpha = \alpha ( b \alpha )$$ ; confidence 0.731 | ||
| + | |||
| + | 2639. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r0824503.png ; $$( a + b ) \alpha = \alpha \alpha + b \alpha$$ ; confidence 0.463 | ||
| + | |||
| + | 2640. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250032.png ; $$\| u - P _ { n } u \| _ { A } \rightarrow 0$$ ; confidence 0.332 | ||
| + | |||
| + | 2641. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250029.png ; $$u _ { 0 } = A ^ { - 1 } f$$ ; confidence 0.941 | ||
| + | |||
| + | 2642. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002013.png ; $$J ( q ) ^ { T }$$ ; confidence 0.999 | ||
| + | |||
| + | 2643. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256054.png ; $$19$$ ; confidence 1.000 | ||
| + | |||
| + | 2644. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256016.png ; $$1$$ ; confidence 0.430 | ||
| + | |||
| + | 2645. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r0825605.png ; $$V = 5$$ ; confidence 0.985 | ||
| + | |||
| + | 2646. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256041.png ; $$300$$ ; confidence 0.440 | ||
| + | |||
| + | 2647. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082570/r08257030.png ; $$j 2 ^ { - k - l }$$ ; confidence 0.858 | ||
| + | |||
| + | 2648. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082590/r082590243.png ; $$\lambda - \mu$$ ; confidence 1.000 | ||
| + | |||
| + | 2649. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082590/r082590135.png ; $$- 3$$ ; confidence 1.000 | ||
| + | |||
| + | 2650. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110150/r11015028.png ; $$M \dot { y } = f ( y )$$ ; confidence 0.805 | ||
| + | |||
| + | 2651. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016036.png ; $$R ^ { \infty } \rightarrow \ldots \rightarrow R ^ { m } \rightarrow \ldots \rightarrow R ^ { 0 }$$ ; confidence 0.522 | ||
| + | |||
| + | 2652. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $$c ^ { m } ( \Omega )$$ ; confidence 0.773 | ||
| + | |||
| + | 2653. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301601.png ; $$c ^ { \infty } ( \Omega ) ^ { N }$$ ; confidence 0.774 | ||
| + | |||
| + | 2654. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082640/r0826403.png ; $$A _ { k } = U _ { k } ^ { * } A _ { k - 1 } U _ { k }$$ ; confidence 0.993 | ||
| + | |||
| + | 2655. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269033.png ; $$| \chi | < \pi$$ ; confidence 0.998 | ||
| + | |||
| + | 2656. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082790/r08279064.png ; $$\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$$ ; confidence 0.304 | ||
| + | |||
| + | 2657. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300044.png ; $$D _ { n } X _ { 1 }$$ ; confidence 0.828 | ||
| + | |||
| + | 2658. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300037.png ; $$D _ { n } X \subset S ^ { n } \backslash X$$ ; confidence 0.497 | ||
| + | |||
| + | 2659. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300055.png ; $$D _ { n } D _ { n } \theta = \theta$$ ; confidence 0.970 | ||
| + | |||
| + | 2660. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317053.png ; $$m _ { i } = 0$$ ; confidence 0.997 | ||
| + | |||
| + | 2661. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317062.png ; $$\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$$ ; confidence 0.234 | ||
| + | |||
| + | 2662. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002040.png ; $$g _ { t } ( u )$$ ; confidence 0.987 | ||
| + | |||
| + | 2663. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s11004082.png ; $$\phi ( T _ { X } N ) \subset T _ { X } N$$ ; confidence 0.941 | ||
| + | |||
| + | 2664. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s110040107.png ; $$\phi ( D _ { X } ) = D _ { X }$$ ; confidence 0.531 | ||
| + | |||
| + | 2665. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004056.png ; $$\overline { D } = \overline { D } _ { S }$$ ; confidence 0.978 | ||
| + | |||
| + | 2666. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $$X ^ { * } = \Gamma \backslash D ^ { * }$$ ; confidence 0.822 | ||
| + | |||
| + | 2667. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083330/s0833306.png ; $$\phi _ { \mathscr { A } } ( . )$$ ; confidence 0.193 | ||
| + | |||
| + | 2668. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083380/s08338085.png ; $$d \in C$$ ; confidence 0.487 | ||
| + | |||
| + | 2669. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083380/s08338074.png ; $$\Phi ( r - b + c )$$ ; confidence 1.000 | ||
| + | |||
| + | 2670. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300707.png ; $$\phi ( f ( x ) ) = g ( x ) \phi ( x ) + h ( x )$$ ; confidence 0.999 | ||
| + | |||
| + | 2671. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040125.png ; $$\pi \Gamma$$ ; confidence 0.616 | ||
| + | |||
| + | 2672. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040132.png ; $$\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$$ ; confidence 0.882 | ||
| + | |||
| + | 2673. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004027.png ; $$s _ { \lambda } = \sum _ { T } x ^ { T }$$ ; confidence 0.998 | ||
| + | |||
| + | 2674. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004026.png ; $$x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$$ ; confidence 0.977 | ||
| + | |||
| + | 2675. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004016.png ; $$| \lambda | = \Sigma _ { i } \lambda$$ ; confidence 0.682 | ||
| + | |||
| + | 2676. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005011.png ; $$S _ { B B } ( z ) \equiv 0$$ ; confidence 0.476 | ||
| + | |||
| + | 2677. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083460/s08346028.png ; $$\operatorname { Ccm } ( G )$$ ; confidence 0.094 | ||
| + | |||
| + | 2678. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083470/s08347010.png ; $$D ^ { - 1 } \in \pi$$ ; confidence 0.978 | ||
| + | |||
| + | 2679. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085140/s0851406.png ; $$\theta \in \Theta _ { 0 } \subseteq \Theta$$ ; confidence 0.992 | ||
| + | |||
| + | 2680. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525014.png ; $$\sum _ { j = 1 } ^ { n } | b _ { j j } | \leq \rho$$ ; confidence 0.569 | ||
| + | |||
| + | 2681. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $$q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$$ ; confidence 0.450 | ||
| + | |||
| + | 2682. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521047.png ; $$q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$$ ; confidence 0.814 | ||
| + | |||
| + | 2683. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521071.png ; $$\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$$ ; confidence 0.889 | ||
| + | |||
| + | 2684. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085300/s08530020.png ; $$c b = c$$ ; confidence 0.994 | ||
| + | |||
| + | 2685. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533026.png ; $$18$$ ; confidence 0.479 | ||
| + | |||
| + | 2686. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085340/s0853408.png ; $$s _ { \alpha } \geq 1$$ ; confidence 0.984 | ||
| + | |||
| + | 2687. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085360/s0853606.png ; $$\operatorname { dim } K$$ ; confidence 0.982 | ||
| + | |||
| + | 2688. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085360/s085360140.png ; $$B d K$$ ; confidence 0.567 | ||
| + | |||
| + | 2689. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085380/s08538041.png ; $$s _ { i } : X _ { n } \rightarrow X _ { n } + 1$$ ; confidence 0.593 | ||
| + | |||
| + | 2690. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400446.png ; $$X \rightarrow \Delta [ 0 ]$$ ; confidence 0.965 | ||
| + | |||
| + | 2691. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400325.png ; $$\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$$ ; confidence 0.333 | ||
| + | |||
| + | 2692. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s08540076.png ; $$x _ { i } \in \pi$$ ; confidence 0.507 | ||
| + | |||
| + | 2693. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855608.png ; $$| \sigma ^ { n } |$$ ; confidence 0.923 | ||
| + | |||
| + | 2694. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s085580244.png ; $$M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$$ ; confidence 0.440 | ||
| + | |||
| + | 2695. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s085580113.png ; $$K = \nu - \nu$$ ; confidence 0.596 | ||
| + | |||
| + | 2696. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s08558099.png ; $$\psi ( t ) = a * ( t ) g ( t ) +$$ ; confidence 0.645 | ||
| + | |||
| + | 2697. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590585.png ; $$\| x \| = \rho$$ ; confidence 0.826 | ||
| + | |||
| + | 2698. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590370.png ; $$x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$$ ; confidence 0.863 | ||
| + | |||
| + | 2699. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559028.png ; $$L _ { 2 } : z = \phi _ { 2 } ( t )$$ ; confidence 0.995 | ||
| + | |||
| + | 2700. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559026.png ; $$0 < \tau _ { 1 } \leq 1$$ ; confidence 0.993 | ||
| + | |||
| + | 2701. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085620/s085620184.png ; $$f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$$ ; confidence 0.837 | ||
| + | |||
| + | 2702. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036039.png ; $$\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$$ ; confidence 0.676 | ||
| + | |||
| + | 2703. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150139.png ; $$\varphi H G$$ ; confidence 0.652 | ||
| + | |||
| + | 2704. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085790/s08579085.png ; $$\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$$ ; confidence 0.755 | ||
| + | |||
| + | 2705. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085810/s0858103.png ; $$\phi : U \rightarrow \sum _ { i \in I } U _ { l }$$ ; confidence 0.895 | ||
| + | |||
| + | 2706. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085820/s085820238.png ; $$b ( x ) < 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2707. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085830/s08583016.png ; $$| w | = \rho < 1$$ ; confidence 0.874 | ||
| + | |||
| + | 2708. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602026.png ; $$\overline { D ^ { + } } = D ^ { + } \cup \Gamma$$ ; confidence 0.709 | ||
| + | |||
| + | 2709. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018056.png ; $$M = M ^ { \perp \perp }$$ ; confidence 0.970 | ||
| + | |||
| + | 2710. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086160/s0861605.png ; $$J _ { m + n + 1 } ( x ) =$$ ; confidence 0.892 | ||
| + | |||
| + | 2711. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086190/s086190182.png ; $$s \in E ^ { n }$$ ; confidence 0.570 | ||
| + | |||
| + | 2712. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s086330106.png ; $$\| x \| ^ { 2 } = \int _ { \sigma ( A ) } | f _ { \lambda } ( x ) | ^ { 2 } d \rho ( \lambda )$$ ; confidence 0.635 | ||
| + | |||
| + | 2713. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s08633021.png ; $$\sigma _ { d x } ( A )$$ ; confidence 0.138 | ||
| + | |||
| + | 2714. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s08633098.png ; $$A \Phi \subset \Phi$$ ; confidence 0.973 | ||
| + | |||
| + | 2715. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086360/s086360102.png ; $$B ( r ) = \int _ { 0 } ^ { \infty } J _ { 0 } ( \lambda r ) d F ( \lambda )$$ ; confidence 0.998 | ||
| + | |||
| + | 2716. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086380/s0863808.png ; $$s _ { 1 } - t _ { 1 } = s _ { 2 } - t _ { 2 }$$ ; confidence 0.998 | ||
| + | |||
| + | 2717. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086450/s08645013.png ; $$A _ { \delta }$$ ; confidence 0.997 | ||
| + | |||
| + | 2718. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864803.png ; $$E | X ( t ) | ^ { n } \leq C < \infty$$ ; confidence 0.578 | ||
| + | |||
| + | 2719. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086490/s086490118.png ; $$d ^ { \prime }$$ ; confidence 0.445 | ||
| + | |||
| + | 2720. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s08652091.png ; $$| T | _ { p }$$ ; confidence 0.714 | ||
| + | |||
| + | 2721. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s086520138.png ; $$\theta _ { T } = \theta$$ ; confidence 0.989 | ||
| + | |||
| + | 2722. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086550/s0865507.png ; $$B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$$ ; confidence 0.980 | ||
| + | |||
| + | 2723. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086590/s08659060.png ; $$\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$$ ; confidence 0.075 | ||
| + | |||
| + | 2724. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662027.png ; $$\Sigma ( \Sigma ^ { n } X ) \rightarrow \Sigma ^ { n + 1 } X$$ ; confidence 0.992 | ||
| + | |||
| + | 2725. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662031.png ; $$( \pi )$$ ; confidence 1.000 | ||
| + | |||
| + | 2726. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086650/s086650167.png ; $$Z _ { 24 }$$ ; confidence 0.663 | ||
| + | |||
| + | 2727. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086650/s08665020.png ; $$i > 2 n - 1$$ ; confidence 0.989 | ||
| + | |||
| + | 2728. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086700/s08670044.png ; $$e ^ { - k - s | / \mu } / \mu$$ ; confidence 0.763 | ||
| + | |||
| + | 2729. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086720/s086720108.png ; $$V ^ { 3 } = E ^ { 3 }$$ ; confidence 0.992 | ||
| + | |||
| + | 2730. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086720/s086720109.png ; $$K ( d s ) = K$$ ; confidence 0.996 | ||
| + | |||
| + | 2731. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086720/s08672038.png ; $$\pi = n \sqrt { 1 + \sum p ^ { 2 } }$$ ; confidence 0.678 | ||
| + | |||
| + | 2732. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202309.png ; $$O ( r )$$ ; confidence 0.866 | ||
| + | |||
| + | 2733. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110240/s11024022.png ; $$\lambda _ { m } ( t )$$ ; confidence 0.691 | ||
| + | |||
| + | 2734. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677096.png ; $$5 + 7 n$$ ; confidence 0.141 | ||
| + | |||
| + | 2735. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086810/s086810102.png ; $$f \in W _ { 2 } ^ { 3 } ( \Omega )$$ ; confidence 0.999 | ||
| + | |||
| + | 2736. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086810/s08681080.png ; $$( 2 m - 2 )$$ ; confidence 1.000 | ||
| + | |||
| + | 2737. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086810/s086810108.png ; $$W _ { p } ^ { m } ( I ^ { d } )$$ ; confidence 0.958 | ||
| + | |||
| + | 2738. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510139.png ; $$L \subset Z ^ { 0 }$$ ; confidence 0.864 | ||
| + | |||
| + | 2739. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051063.png ; $$\Gamma = \Gamma _ { 1 } + \ldots + \Gamma _ { m }$$ ; confidence 0.966 | ||
| + | |||
| + | 2740. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510126.png ; $$\gamma ( u ) < \infty$$ ; confidence 0.997 | ||
| + | |||
| + | 2741. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940114.png ; $$\operatorname { det } S \neq 0$$ ; confidence 0.896 | ||
| + | |||
| + | 2742. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940100.png ; $$- \infty \leq w \leq + \infty$$ ; confidence 0.301 | ||
| + | |||
| + | 2743. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940134.png ; $$0 \leq \omega \leq \infty$$ ; confidence 0.754 | ||
| + | |||
| + | 2744. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s08694070.png ; $$\| \eta ( \cdot ) \| ^ { 2 } = \int _ { 0 } ^ { \infty } | \eta ( t ) | ^ { 2 } d t$$ ; confidence 0.669 | ||
| + | |||
| + | 2745. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086960/s08696030.png ; $$\| x _ { 0 } \| \leq \delta$$ ; confidence 0.966 | ||
| + | |||
| + | 2746. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086960/s08696076.png ; $$V < 0$$ ; confidence 0.854 | ||
| + | |||
| + | 2747. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086960/s08696095.png ; $$k \leq p \leq n$$ ; confidence 0.985 | ||
| + | |||
| + | 2748. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s0870309.png ; $$f _ { h } \in U _ { k }$$ ; confidence 0.371 | ||
| + | |||
| + | 2749. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s08703096.png ; $$\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$$ ; confidence 0.172 | ||
| + | |||
| + | 2750. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087110/s08711028.png ; $$\delta < \alpha$$ ; confidence 0.956 | ||
| + | |||
| + | 2751. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087130/s08713053.png ; $$m < \infty$$ ; confidence 0.973 | ||
| + | |||
| + | 2752. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087260/s08726044.png ; $$\eta _ { 0 } ( i )$$ ; confidence 0.979 | ||
| + | |||
| + | 2753. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png ; $$V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$$ ; confidence 0.167 | ||
| + | |||
| + | 2754. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087280/s087280193.png ; $$m = E X ( s )$$ ; confidence 0.808 | ||
| + | |||
| + | 2755. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087300/s08730040.png ; $$Q _ { 1 }$$ ; confidence 0.060 | ||
| + | |||
| + | 2756. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087320/s08732031.png ; $$\Pi ^ { * } \in C$$ ; confidence 0.864 | ||
| + | |||
| + | 2757. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087320/s08732041.png ; $$\mathfrak { R } _ { \mu } ( \Pi _ { 0 } ) = \operatorname { inf } _ { \Pi } \Re _ { \mu } ( \Pi )$$ ; confidence 0.658 | ||
| + | |||
| + | 2758. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087330/s08733032.png ; $$H _ { i } ( \omega )$$ ; confidence 0.983 | ||
| + | |||
| + | 2759. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087350/s08735095.png ; $$I _ { n } ( \theta ) = n I ( \theta )$$ ; confidence 0.870 | ||
| + | |||
| + | 2760. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360228.png ; $$P \{ s ^ { 2 } < \frac { \sigma ^ { 2 } x } { n - 1 } \} = G _ { n - 1 } ( x ) = D _ { n - 1 } \int _ { 0 } ^ { x } v ^ { ( n - 3 ) } / 2 e ^ { - v / 2 } d v$$ ; confidence 0.622 | ||
| + | |||
| + | 2761. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360105.png ; $$\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$$ ; confidence 0.827 | ||
| + | |||
| + | 2762. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087400/s087400105.png ; $$\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$$ ; confidence 0.815 | ||
| + | |||
| + | 2763. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110260/s11026022.png ; $$\eta \in R ^ { k }$$ ; confidence 0.999 | ||
| + | |||
| + | 2764. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s08742011.png ; $$H = H _ { V } ( \omega )$$ ; confidence 0.988 | ||
| + | |||
| + | 2765. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $$\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$$ ; confidence 0.216 | ||
| + | |||
| + | 2766. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s08742067.png ; $$\{ f \rangle _ { P } \sim | V |$$ ; confidence 0.071 | ||
| + | |||
| + | 2767. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450224.png ; $$\frac { 1 } { 2 \pi } \sum _ { t = - T + 1 } ^ { T - 1 } e ^ { - i t \lambda } r ^ { * } ( t ) c T ( t )$$ ; confidence 0.607 | ||
| + | |||
| + | 2768. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450112.png ; $$\xi = \sum b _ { j } x ( t _ { j } )$$ ; confidence 0.942 | ||
| + | |||
| + | 2769. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450113.png ; $$\sum b _ { j } \phi _ { l } ( t _ { j } ) = 0$$ ; confidence 0.990 | ||
| + | |||
| + | 2770. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450208.png ; $$I _ { T } ( \lambda ) = \frac { 1 } { 2 \pi T } | \int _ { 0 } ^ { T } e ^ { - i t \lambda } x ( t ) d t |$$ ; confidence 0.646 | ||
| + | |||
| + | 2771. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450221.png ; $$a T \rightarrow \infty$$ ; confidence 0.506 | ||
| + | |||
| + | 2772. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450204.png ; $$\theta _ { T } ^ { * }$$ ; confidence 0.481 | ||
| + | |||
| + | 2773. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087460/s08746026.png ; $$\{ \epsilon _ { t } \}$$ ; confidence 0.993 | ||
| + | |||
| + | 2774. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024033.png ; $$h ^ { S * } ( . ) \approx \overline { E } \times ( . )$$ ; confidence 0.489 | ||
| + | |||
| + | 2775. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087550/s08755019.png ; $$\alpha < p b$$ ; confidence 0.578 | ||
| + | |||
| + | 2776. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087550/s08755022.png ; $$\alpha \leq p b$$ ; confidence 0.784 | ||
| + | |||
| + | 2777. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764034.png ; $$g \neq 0$$ ; confidence 1.000 | ||
| + | |||
| + | 2778. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764060.png ; $$I = \{ f \in O ( X ) : f ( x ) = 0 \}$$ ; confidence 0.993 | ||
| + | |||
| + | 2779. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764057.png ; $$I \subset O ( X )$$ ; confidence 0.970 | ||
| + | |||
| + | 2780. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764086.png ; $$n ( O _ { x } ) = 0$$ ; confidence 0.322 | ||
| + | |||
| + | 2781. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087690/s0876903.png ; $$f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$$ ; confidence 0.345 | ||
| + | |||
| + | 2782. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087710/s08771037.png ; $$\omega ( R )$$ ; confidence 0.999 | ||
| + | |||
| + | 2783. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028060.png ; $$\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$$ ; confidence 0.947 | ||
| + | |||
| + | 2784. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087790/s08779013.png ; $$RP ^ { \infty }$$ ; confidence 0.165 | ||
| + | |||
| + | 2785. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777049.png ; $$V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$$ ; confidence 0.259 | ||
| + | |||
| + | 2786. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778069.png ; $$x [ M ^ { n } ] = \alpha ( x )$$ ; confidence 0.933 | ||
| + | |||
| + | 2787. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778021.png ; $$w ^ { \prime }$$ ; confidence 0.380 | ||
| + | |||
| + | 2788. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780026.png ; $$x + C$$ ; confidence 0.988 | ||
| + | |||
| + | 2789. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087800/s08780044.png ; $$| u ( x _ { 1 } ) - u ( x _ { 2 } ) | \leq C | x _ { 1 } - x _ { 2 }$$ ; confidence 0.995 | ||
| + | |||
| + | 2790. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $$h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$$ ; confidence 0.183 | ||
| + | |||
| + | 2791. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s08782077.png ; $$| \frac { 1 } { 1 - H \lambda _ { i } } | < 1$$ ; confidence 0.997 | ||
| + | |||
| + | 2792. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s087820210.png ; $$y _ { n + 1 } = y _ { n } + \int _ { 0 } ^ { H / 2 } e ^ { A \tau } d \tau \times$$ ; confidence 0.976 | ||
| + | |||
| + | 2793. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s08782061.png ; $$\alpha _ { 1 } = - 3$$ ; confidence 0.753 | ||
| + | |||
| + | 2794. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s087820182.png ; $$\| y \| = \operatorname { max } _ { i } | y _ { i } |$$ ; confidence 0.800 | ||
| + | |||
| + | 2795. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013024.png ; $$H \mapsto \alpha ( H )$$ ; confidence 0.996 | ||
| + | |||
| + | 2796. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013055.png ; $$K . ( H X ) = ( K H ) X$$ ; confidence 0.766 | ||
| + | |||
| + | 2797. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026061.png ; $$\partial _ { s }$$ ; confidence 0.939 | ||
| + | |||
| + | 2798. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110290/s11029032.png ; $$t / \lambda ^ { 2 } \rightarrow + \infty$$ ; confidence 0.986 | ||
| + | |||
| + | 2799. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s09017045.png ; $$E$$ ; confidence 0.923 | ||
| + | |||
| + | 2800. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s09017090.png ; $$B \in \mathfrak { B } _ { 0 }$$ ; confidence 0.992 | ||
| + | |||
| + | 2801. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s0901702.png ; $$\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$$ ; confidence 0.500 | ||
| + | |||
| + | 2802. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090180/s0901802.png ; $$\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$$ ; confidence 0.740 | ||
| + | |||
| + | 2803. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090190/s090190160.png ; $$X ( t _ { 1 } ) = x$$ ; confidence 0.980 | ||
| + | |||
| + | 2804. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090190/s09019043.png ; $$t = Z$$ ; confidence 0.971 | ||
| + | |||
| + | 2805. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090220/s09022010.png ; $$x ( \phi )$$ ; confidence 0.999 | ||
| + | |||
| + | 2806. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090230/s09023035.png ; $$\overline { w }$$ ; confidence 0.553 | ||
| + | |||
| + | 2807. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090260/s09026037.png ; $$d x = A ( t ) x d t + B ( t ) d w ( t )$$ ; confidence 0.986 | ||
| + | |||
| + | 2808. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090260/s09026014.png ; $$d X ( t ) = a ( t ) Z ( t ) d t + d Y ( t )$$ ; confidence 0.505 | ||
| + | |||
| + | 2809. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090270/s0902702.png ; $$\alpha < t < b$$ ; confidence 0.786 | ||
| + | |||
| + | 2810. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045062.png ; $$\zeta ^ { \phi } \in C ^ { d }$$ ; confidence 0.837 | ||
| + | |||
| + | 2811. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045037.png ; $$W ^ { ( n ) } ( s )$$ ; confidence 0.986 | ||
| + | |||
| + | 2812. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090590/s0905905.png ; $$J ( y ) \leq J ( y )$$ ; confidence 0.683 | ||
| + | |||
| + | 2813. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s1202804.png ; $$\overline { f } : X \rightarrow Y$$ ; confidence 0.998 | ||
| + | |||
| + | 2814. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028015.png ; $$\overline { E } * ( X )$$ ; confidence 0.554 | ||
| + | |||
| + | 2815. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067035.png ; $$j _ { X } ^ { k } ( u )$$ ; confidence 0.362 | ||
| + | |||
| + | 2816. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090710/s09071014.png ; $$f = 1$$ ; confidence 1.000 | ||
| + | |||
| + | 2817. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090720/s09072010.png ; $$a \neq a _ { 0 }$$ ; confidence 0.773 | ||
| + | |||
| + | 2818. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076059.png ; $$p ( \alpha )$$ ; confidence 0.904 | ||
| + | |||
| + | 2819. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076071.png ; $$l [ f ] = 0$$ ; confidence 0.979 | ||
| + | |||
| + | 2820. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076026.png ; $$L _ { 0 } ^ { * } = L _ { 1 }$$ ; confidence 0.957 | ||
| + | |||
| + | 2821. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090770/s090770137.png ; $$\lambda _ { 1 } < \lambda _ { 2 } < \ldots$$ ; confidence 0.830 | ||
| + | |||
| + | 2822. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090780/s09078074.png ; $$\Phi ^ { \prime \prime } ( + 0 ) = - h$$ ; confidence 0.997 | ||
| + | |||
| + | 2823. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062062.png ; $$m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } ( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } ) d \rho _ { 0 } ( t )$$ ; confidence 0.926 | ||
| + | |||
| + | 2824. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090820/s0908209.png ; $$X ^ { * }$$ ; confidence 0.447 | ||
| + | |||
| + | 2825. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090830/s0908308.png ; $$m : B \rightarrow A$$ ; confidence 0.962 | ||
| + | |||
| + | 2826. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090900/s09090088.png ; $$\xi = \infty \in \partial D$$ ; confidence 0.998 | ||
| + | |||
| + | 2827. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090900/s09090090.png ; $$V = V ( \infty ) = \{ x \in R ^ { n } : | x | > R \}$$ ; confidence 0.624 | ||
| + | |||
| + | 2828. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091010/s09101020.png ; $$c = \operatorname { const } \neq 0$$ ; confidence 0.470 | ||
| + | |||
| + | 2829. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091070/s09107089.png ; $$P _ { \theta } ( A | B )$$ ; confidence 0.963 | ||
| + | |||
| + | 2830. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108054.png ; $$\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$$ ; confidence 0.795 | ||
| + | |||
| + | 2831. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091100/s0911009.png ; $$\lambda _ { n } = 1 / ( n + 1 ) ^ { s }$$ ; confidence 0.931 | ||
| + | |||
| + | 2832. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114035.png ; $$s _ { n } \rightarrow s$$ ; confidence 0.696 | ||
| + | |||
| + | 2833. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114030.png ; $$\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$$ ; confidence 0.542 | ||
| + | |||
| + | 2834. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091200/s09120056.png ; $$\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$$ ; confidence 0.425 | ||
| + | |||
| + | 2835. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032058.png ; $$S ( L )$$ ; confidence 0.980 | ||
| + | |||
| + | 2836. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091390/s09139063.png ; $$x _ { 1 } ^ { 2 } = 0$$ ; confidence 0.997 | ||
| + | |||
| + | 2837. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091390/s0913909.png ; $$\frac { x ^ { 2 } } { p } - \frac { y ^ { 2 } } { q } = 2 z$$ ; confidence 0.932 | ||
| + | |||
| + | 2838. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091570/s09157097.png ; $$T ^ { * } Y \backslash 0$$ ; confidence 0.994 | ||
| + | |||
| + | 2839. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091580/s09158080.png ; $$\Phi ( f ( w ) ) = \sigma ( \Phi ( w ) )$$ ; confidence 0.999 | ||
| + | |||
| + | 2840. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s09167062.png ; $$S ( B _ { n } ^ { m } )$$ ; confidence 0.719 | ||
| + | |||
| + | 2841. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091730/s09173026.png ; $$H ^ { n - k } \cap S ^ { k }$$ ; confidence 0.502 | ||
| + | |||
| + | 2842. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340135.png ; $$\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$$ ; confidence 0.404 | ||
| + | |||
| + | 2843. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s09191051.png ; $$\sim \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$$ ; confidence 0.975 | ||
| + | |||
| + | 2844. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s091910121.png ; $$T _ { i } = C A ^ { i } B ^ { i } B$$ ; confidence 0.233 | ||
| + | |||
| + | 2845. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110330/s11033016.png ; $$- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$$ ; confidence 0.902 | ||
| + | |||
| + | 2846. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091960/s0919603.png ; $$R = \{ \pi ( i ) : \square i \in I \}$$ ; confidence 0.950 | ||
| + | |||
| + | 2847. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091960/s09196011.png ; $$\{ \pi ( i ) : \square i \in I _ { 0 } \}$$ ; confidence 0.752 | ||
| + | |||
| + | 2848. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064057.png ; $$L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$$ ; confidence 0.831 | ||
| + | |||
| + | 2849. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002014.png ; $$T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$$ ; confidence 0.699 | ||
| + | |||
| + | 2850. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922406.png ; $$k = R / m$$ ; confidence 0.483 | ||
| + | |||
| + | 2851. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092250/t09225012.png ; $$g ^ { ( i ) }$$ ; confidence 0.484 | ||
| + | |||
| + | 2852. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004015.png ; $$( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$$ ; confidence 0.385 | ||
| + | |||
| + | 2853. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004014.png ; $$\tau x ^ { n }$$ ; confidence 0.790 | ||
| + | |||
| + | 2854. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005033.png ; $$D _ { A } ^ { 2 } = 0$$ ; confidence 0.998 | ||
| + | |||
| + | 2855. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005053.png ; $$\sigma ^ { \prime } ( A )$$ ; confidence 0.999 | ||
| + | |||
| + | 2856. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003042.png ; $$\psi = \Psi ^ { \prime }$$ ; confidence 0.559 | ||
| + | |||
| + | 2857. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t09247071.png ; $$E _ { 1 } E _ { 2 } E _ { 3 }$$ ; confidence 0.997 | ||
| + | |||
| + | 2858. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470182.png ; $$e _ { v } \leq \mathfrak { e } _ { v } + 1$$ ; confidence 0.197 | ||
| + | |||
| + | 2859. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470133.png ; $$R _ { T ^ { \prime \prime } }$$ ; confidence 0.675 | ||
| + | |||
| + | 2860. https://www.encyclopediaofmath.org/legacyimages/t/t110/t110020/t11002078.png ; $$M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$$ ; confidence 0.076 | ||
| + | |||
| + | 2861. https://www.encyclopediaofmath.org/legacyimages/t/t110/t110020/t11002049.png ; $$e ^ { \prime }$$ ; confidence 0.559 | ||
| + | |||
| + | 2862. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092530/t09253011.png ; $$( \pi | \tau _ { 1 } | \tau _ { 2 } )$$ ; confidence 0.977 | ||
| + | |||
| + | 2863. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t09260017.png ; $$\theta ( z + \tau ) = \operatorname { exp } ( - 2 \pi i k z ) . \theta ( z )$$ ; confidence 0.660 | ||
| + | |||
| + | 2864. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t09260081.png ; $$\delta = 2$$ ; confidence 0.999 | ||
| + | |||
| + | 2865. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t09260032.png ; $$\operatorname { lm } A = \| \operatorname { lm } \alpha _ { \mu \nu } |$$ ; confidence 0.510 | ||
| + | |||
| + | 2866. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t092600123.png ; $$B = I _ { p }$$ ; confidence 0.852 | ||
| + | |||
| + | 2867. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005046.png ; $$d f _ { x } : R ^ { n } \rightarrow R ^ { p }$$ ; confidence 0.932 | ||
| + | |||
| + | 2868. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009023.png ; $$f ^ { - 1 } ( S )$$ ; confidence 0.998 | ||
| + | |||
| + | 2869. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265044.png ; $$c < 2$$ ; confidence 0.987 | ||
| + | |||
| + | 2870. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265019.png ; $$u x + v x ^ { 2 } + w x ^ { 3 } + t x ^ { 4 }$$ ; confidence 0.989 | ||
| + | |||
| + | 2871. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265033.png ; $$\{ \partial f \rangle$$ ; confidence 0.295 | ||
| + | |||
| + | 2872. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265012.png ; $$x ^ { 3 } + x y ^ { 2 }$$ ; confidence 1.000 | ||
| + | |||
| + | 2873. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060116.png ; $$E ^ { Q } ( N )$$ ; confidence 0.962 | ||
| + | |||
| + | 2874. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006058.png ; $$N \geq Z$$ ; confidence 0.919 | ||
| + | |||
| + | 2875. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092720/t09272013.png ; $$\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$$ ; confidence 0.489 | ||
| + | |||
| + | 2876. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092730/t09273032.png ; $$M = M _ { 1 } \# M _ { 2 }$$ ; confidence 0.954 | ||
| + | |||
| + | 2877. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008015.png ; $$O _ { S } ^ { * }$$ ; confidence 0.936 | ||
| + | |||
| + | 2878. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008049.png ; $$( 5 \times 10 ^ { 6 } r ) ^ { 3 }$$ ; confidence 0.525 | ||
| + | |||
| + | 2879. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092800/t09280017.png ; $$X _ { ( \tau _ { 1 } + \ldots + \tau _ { j - 1 } + 1 ) } = \ldots = X _ { ( \tau _ { 1 } + \ldots + \tau _ { j } ) }$$ ; confidence 0.575 | ||
| + | |||
| + | 2880. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092810/t092810186.png ; $$B s$$ ; confidence 0.576 | ||
| + | |||
| + | 2881. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092810/t092810205.png ; $$\beta ( M )$$ ; confidence 0.995 | ||
| + | |||
| + | 2882. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301005.png ; $$\square _ { H } T$$ ; confidence 0.979 | ||
| + | |||
| + | 2883. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014052.png ; $$( Q )$$ ; confidence 0.999 | ||
| + | |||
| + | 2884. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $$q R$$ ; confidence 0.245 | ||
| + | |||
| + | 2885. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140169.png ; $$q _ { A }$$ ; confidence 0.118 | ||
| + | |||
| + | 2886. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013055.png ; $$M = M \Lambda ^ { t }$$ ; confidence 0.505 | ||
| + | |||
| + | 2887. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015070.png ; $$C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$$ ; confidence 0.440 | ||
| + | |||
| + | 2888. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $$K ( L ^ { 2 } ( S ) )$$ ; confidence 0.779 | ||
| + | |||
| + | 2889. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $$( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$$ ; confidence 0.710 | ||
| + | |||
| + | 2890. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201505.png ; $$\eta \in A \mapsto \xi \eta \in A$$ ; confidence 0.962 | ||
| + | |||
| + | 2891. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092980/t09298063.png ; $$f \in S ( R ^ { n } )$$ ; confidence 0.981 | ||
| + | |||
| + | 2892. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150622.png ; $$( f _ { i } : B _ { i } \rightarrow B ) _ { i \in l }$$ ; confidence 0.575 | ||
| + | |||
| + | 2893. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150169.png ; $$F \in \gamma$$ ; confidence 0.994 | ||
| + | |||
| + | 2894. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150743.png ; $$\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$$ ; confidence 0.342 | ||
| + | |||
| + | 2895. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150395.png ; $$A \wedge B$$ ; confidence 0.923 | ||
| + | |||
| + | 2896. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150306.png ; $$= C$$ ; confidence 0.931 | ||
| + | |||
| + | 2897. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150450.png ; $$\operatorname { sin } 0$$ ; confidence 0.092 | ||
| + | |||
| + | 2898. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150393.png ; $$\{ p _ { i } ^ { - 1 } U _ { i } : U _ { i } \in \mu _ { i \square } \text { and } i \in I \}$$ ; confidence 0.601 | ||
| + | |||
| + | 2899. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150728.png ; $$A ^ { * } = A \cup \{ \infty _ { A } \}$$ ; confidence 0.980 | ||
| + | |||
| + | 2900. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316047.png ; $$p _ { 1 } \otimes \sim p _ { 2 }$$ ; confidence 0.782 | ||
| + | |||
| + | 2901. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316053.png ; $$\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$$ ; confidence 0.229 | ||
| + | |||
| + | 2902. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093180/t093180434.png ; $$D ( R ^ { n + k } )$$ ; confidence 0.995 | ||
| + | |||
| + | 2903. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t09323048.png ; $$H \rightarrow TOP$$ ; confidence 0.688 | ||
| + | |||
| + | 2904. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t093230103.png ; $$\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$$ ; confidence 0.066 | ||
| + | |||
| + | 2905. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t09323071.png ; $$X \rightarrow P L / O$$ ; confidence 0.928 | ||
| + | |||
| + | 2906. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326056.png ; $$d \Phi$$ ; confidence 0.791 | ||
| + | |||
| + | 2907. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326078.png ; $$d = 6$$ ; confidence 0.998 | ||
| + | |||
| + | 2908. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326038.png ; $$( X ) \in M$$ ; confidence 0.998 | ||
| + | |||
| + | 2909. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333059.png ; $$r _ { 2 } \in R$$ ; confidence 0.862 | ||
| + | |||
| + | 2910. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093340/t0933407.png ; $$S _ { j } ^ { k } = \Gamma _ { i j } ^ { k } - \Gamma _ { j i } ^ { k }$$ ; confidence 0.505 | ||
| + | |||
| + | 2911. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093570/t0935701.png ; $$x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$$ ; confidence 0.391 | ||
| + | |||
| + | 2912. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367085.png ; $$r < | w | < 1$$ ; confidence 0.982 | ||
| + | |||
| + | 2913. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367092.png ; $$d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$$ ; confidence 0.470 | ||
| + | |||
| + | 2914. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367039.png ; $$\operatorname { lim } _ { \epsilon \rightarrow 0 } d ( E _ { \epsilon } ) = d ( E )$$ ; confidence 0.993 | ||
| + | |||
| + | 2915. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093710/t0937107.png ; $$x = f ( \alpha )$$ ; confidence 0.993 | ||
| + | |||
| + | 2916. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377057.png ; $$\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$$ ; confidence 0.104 | ||
| + | |||
| + | 2917. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377067.png ; $$\mathfrak { A } f$$ ; confidence 0.742 | ||
| + | |||
| + | 2918. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377043.png ; $$R ^ { 0 } f$$ ; confidence 0.999 | ||
| + | |||
| + | 2919. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377039.png ; $$g = R ^ { \alpha } f$$ ; confidence 0.864 | ||
| + | |||
| + | 2920. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386023.png ; $$P ( S )$$ ; confidence 0.765 | ||
| + | |||
| + | 2921. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093890/t09389045.png ; $$o ( N ) / N \rightarrow 0$$ ; confidence 0.792 | ||
| + | |||
| + | 2922. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900196.png ; $$T _ { 23 } n ( \operatorname { cos } \pi \omega )$$ ; confidence 0.946 | ||
| + | |||
| + | 2923. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t09390073.png ; $$g _ { n } ( \Omega )$$ ; confidence 0.875 | ||
| + | |||
| + | 2924. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900115.png ; $$l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$$ ; confidence 0.308 | ||
| + | |||
| + | 2925. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900146.png ; $$Q _ { n } W ^ { k } = P _ { n } c ( W ^ { k } + \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$$ ; confidence 0.976 | ||
| + | |||
| + | 2926. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900154.png ; $$g _ { k } = ( 1 + y _ { k } ) / 2$$ ; confidence 0.953 | ||
| + | |||
| + | 2927. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939808.png ; $$V = f ^ { - 1 } ( X )$$ ; confidence 1.000 | ||
| + | |||
| + | 2928. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399044.png ; $$Q _ { 1 } \cup \square \ldots \cup Q _ { m }$$ ; confidence 0.878 | ||
| + | |||
| + | 2929. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094000/t09400030.png ; $$f ( x ) = g ( y )$$ ; confidence 1.000 | ||
| + | |||
| + | 2930. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021052.png ; $$2 / ( 3 N / 2 )$$ ; confidence 0.990 | ||
| + | |||
| + | 2931. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094240/t09424015.png ; $$\frac { a _ { 0 } } { 4 } x ^ { 2 } - \sum _ { k = 1 } ^ { \infty } \frac { a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x } { k ^ { 2 } }$$ ; confidence 0.667 | ||
| + | |||
| + | 2932. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t094300134.png ; $$\operatorname { Fix } ( T ) \subset \mathfrak { R }$$ ; confidence 0.710 | ||
| + | |||
| + | 2933. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t09430077.png ; $$\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$$ ; confidence 0.204 | ||
| + | |||
| + | 2934. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094420/t09442025.png ; $$\overline { U } / \partial \overline { U }$$ ; confidence 0.976 | ||
| + | |||
| + | 2935. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094440/t09444040.png ; $$u _ { m } = u ( M _ { m } )$$ ; confidence 0.360 | ||
| + | |||
| + | 2936. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200142.png ; $$m > - 1$$ ; confidence 0.998 | ||
| + | |||
| + | 2937. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200179.png ; $$\operatorname { Re } G _ { 1 } ( r ) \geq B$$ ; confidence 0.984 | ||
| + | |||
| + | 2938. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094530/t094530109.png ; $$\sum ( k _ { i } - 1 )$$ ; confidence 0.930 | ||
| + | |||
| + | 2939. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094540/t09454051.png ; $$\{ \omega _ { n } ^ { + } ( V ) \}$$ ; confidence 0.949 | ||
| + | |||
| + | 2940. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094600/t09460022.png ; $$f _ { 0 } \neq 0$$ ; confidence 0.997 | ||
| + | |||
| + | 2941. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094600/t0946003.png ; $$\alpha \geq A _ { 0 }$$ ; confidence 0.904 | ||
| + | |||
| + | 2942. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094650/t09465038.png ; $$\forall v \phi$$ ; confidence 0.989 | ||
| + | |||
| + | 2943. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094650/t09465066.png ; $$\in M$$ ; confidence 0.717 | ||
| + | |||
| + | 2944. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094650/t09465036.png ; $$( \phi \& \psi )$$ ; confidence 0.997 | ||
| + | |||
| + | 2945. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094660/t09466060.png ; $$\{ f ( z ) \}$$ ; confidence 1.000 | ||
| + | |||
| + | 2946. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094660/t09466020.png ; $$\phi ( z ) = \frac { 1 - z ^ { 2 } } { z } f ( z ) \in C$$ ; confidence 0.993 | ||
| + | |||
| + | 2947. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095070/u09507044.png ; $$T ( X ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } X = 1 } \\ { 0 } & { \text { if } X \geq 2 } \end{array} \right.$$ ; confidence 0.976 | ||
| + | |||
| + | 2948. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952109.png ; $$f _ { \alpha } ( x ) \geq - c$$ ; confidence 0.977 | ||
| + | |||
| + | 2949. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095230/u09523081.png ; $$\{ d f _ { n } / d x \}$$ ; confidence 0.954 | ||
| + | |||
| + | 2950. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529039.png ; $$t \rightarrow t + w z$$ ; confidence 0.466 | ||
| + | |||
| + | 2951. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529022.png ; $$w = \operatorname { sin }$$ ; confidence 0.905 | ||
| + | |||
| + | 2952. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540011.png ; $$( g - 1 ) ^ { n } = 0$$ ; confidence 0.996 | ||
| + | |||
| + | 2953. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541013.png ; $$U _ { n } ( K )$$ ; confidence 0.987 | ||
| + | |||
| + | 2954. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541052.png ; $$g ^ { p } = e$$ ; confidence 0.978 | ||
| + | |||
| + | 2955. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095440/u09544022.png ; $$O ( \epsilon _ { N } )$$ ; confidence 0.478 | ||
| + | |||
| + | 2956. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095440/u09544020.png ; $$U ( \epsilon )$$ ; confidence 0.998 | ||
| + | |||
| + | 2957. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095620/u09562096.png ; $$\sum _ { k = 1 } ^ { \infty } | \alpha _ { k } | ^ { 2 } = \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } | f ( e ^ { i t } ) | ^ { 2 } d t \leq 1$$ ; confidence 0.986 | ||
| + | |||
| + | 2958. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095630/u09563071.png ; $$U : B \rightarrow A$$ ; confidence 0.544 | ||
| + | |||
| + | 2959. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095680/u09568015.png ; $$( n \geq 0 )$$ ; confidence 1.000 | ||
| + | |||
| + | 2960. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582023.png ; $$v ( x ) \geq f ( x )$$ ; confidence 0.996 | ||
| + | |||
| + | 2961. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020116.png ; $$f ( z ) \in K$$ ; confidence 0.998 | ||
| + | |||
| + | 2962. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020108.png ; $$\lambda \leq 0.5$$ ; confidence 0.968 | ||
| + | |||
| + | 2963. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020147.png ; $$( f ) \subseteq V ( f )$$ ; confidence 0.998 | ||
| + | |||
| + | 2964. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v0960408.png ; $$s ( r )$$ ; confidence 0.997 | ||
| + | |||
| + | 2965. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110020/v11002046.png ; $$x \in Y ( u )$$ ; confidence 0.570 | ||
| + | |||
| + | 2966. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963509.png ; $$( a + b ) + c = a + ( b + c )$$ ; confidence 0.946 | ||
| + | |||
| + | 2967. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635084.png ; $$a \perp b$$ ; confidence 0.521 | ||
| + | |||
| + | 2968. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635060.png ; $$\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$$ ; confidence 0.378 | ||
| + | |||
| + | 2969. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638081.png ; $$u ^ { * } ( \pi )$$ ; confidence 0.996 | ||
| + | |||
| + | 2970. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380113.png ; $$\pi ^ { \prime } \oplus \theta ^ { \prime }$$ ; confidence 0.992 | ||
| + | |||
| + | 2971. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638042.png ; $$G ^ { k } ( V ) \times V$$ ; confidence 0.950 | ||
| + | |||
| + | 2972. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380128.png ; $$w : \xi \oplus \zeta \rightarrow \pi$$ ; confidence 0.996 | ||
| + | |||
| + | 2973. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638089.png ; $$\pi : B \rightarrow G ^ { k } ( V )$$ ; confidence 0.258 | ||
| + | |||
| + | 2974. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638020.png ; $$X ^ { \prime } \cap \pi ^ { - 1 } ( b )$$ ; confidence 0.999 | ||
| + | |||
| + | 2975. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096450/v09645016.png ; $$+ \frac { 1 } { N ! } \int _ { t _ { 0 } } ^ { t } ( t - \tau ) ^ { N _ { r } ( N + 1 ) } ( \tau ) d \tau$$ ; confidence 0.696 | ||
| + | |||
| + | 2976. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006019.png ; $$j \in ( 1 / 2 ) Z$$ ; confidence 0.983 | ||
| + | |||
| + | 2977. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050114.png ; $$1 _ { n } ( w ) = 0$$ ; confidence 0.957 | ||
| + | |||
| + | 2978. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v1200207.png ; $$f ^ { * } : H ^ { * } ( Y ) \rightarrow H ^ { * } ( X )$$ ; confidence 0.997 | ||
| + | |||
| + | 2979. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020197.png ; $$H ^ { n } ( S ^ { n } )$$ ; confidence 0.629 | ||
| + | |||
| + | 2980. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $$\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$$ ; confidence 0.259 | ||
| + | |||
| + | 2981. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $$F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$$ ; confidence 0.783 | ||
| + | |||
| + | 2982. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020188.png ; $$t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$$ ; confidence 0.119 | ||
| + | |||
| + | 2983. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002064.png ; $$d _ { k } = rd _ { Y } M _ { k }$$ ; confidence 0.623 | ||
| + | |||
| + | 2984. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966506.png ; $$n \geq 12$$ ; confidence 0.886 | ||
| + | |||
| + | 2985. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096670/v09667018.png ; $$P ^ { 2 r - k }$$ ; confidence 0.936 | ||
| + | |||
| + | 2986. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096740/v0967406.png ; $$v _ { \nu } ( t _ { 0 } ) = 0$$ ; confidence 0.996 | ||
| + | |||
| + | 2987. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096770/v0967704.png ; $$F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$$ ; confidence 0.909 | ||
| + | |||
| + | 2988. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007046.png ; $$q e ^ { ( - i \theta ) }$$ ; confidence 0.903 | ||
| + | |||
| + | 2989. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v1300709.png ; $$\vec { V }$$ ; confidence 0.987 | ||
| + | |||
| + | 2990. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096870/v09687032.png ; $$\tau _ { j } < 0$$ ; confidence 0.887 | ||
| + | |||
| + | 2991. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011059.png ; $$2 i$$ ; confidence 0.747 | ||
| + | |||
| + | 2992. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011069.png ; $$\theta = 2 \pi$$ ; confidence 0.999 | ||
| + | |||
| + | 2993. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011064.png ; $$U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$$ ; confidence 0.768 | ||
| + | |||
| + | 2994. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $$\Pi I _ { \lambda }$$ ; confidence 0.300 | ||
| + | |||
| + | 2995. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690074.png ; $$\phi ( U T U ^ { - 1 } ) = \phi ( T )$$ ; confidence 0.999 | ||
| + | |||
| + | 2996. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900232.png ; $$III _ { 0 }$$ ; confidence 0.560 | ||
| + | |||
| + | 2997. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900125.png ; $$P \sim P _ { 1 }$$ ; confidence 0.999 | ||
| + | |||
| + | 2998. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900122.png ; $$Q = U U ^ { * }$$ ; confidence 0.977 | ||
| + | |||
| + | 2999. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900124.png ; $$P _ { 1 } \in A$$ ; confidence 0.996 | ||
| + | |||
| + | 3000. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703012.png ; $$\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$$ ; confidence 0.832 | ||
| + | |||
| + | 3001. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703029.png ; $$U = \cup _ { i } \operatorname { Im } f$$ ; confidence 0.671 | ||
| + | |||
| + | 3002. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097040/w0970409.png ; $$\int _ { 0 } ^ { \pi / 2 } \operatorname { sin } ^ { 2 m + 1 } x d x$$ ; confidence 0.964 | ||
| + | |||
| + | 3003. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097060/w09706017.png ; $$2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$$ ; confidence 0.976 | ||
| + | |||
| + | 3004. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097090/w0970903.png ; $$F ( x )$$ ; confidence 1.000 | ||
| + | |||
| + | 3005. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971508.png ; $$\lambda = 2 \pi / | k |$$ ; confidence 0.980 | ||
| + | |||
| + | 3006. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097290/w09729017.png ; $$A _ { n } ( x _ { 0 } )$$ ; confidence 0.499 | ||
| + | |||
| + | 3007. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097310/w09731010.png ; $$\partial ^ { 2 } u / \partial x ^ { 2 } + \partial ^ { 2 } u / \partial y ^ { 2 } + k ^ { 2 } u = 0$$ ; confidence 0.997 | ||
| + | |||
| + | 3008. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973508.png ; $$A = N \oplus s$$ ; confidence 0.521 | ||
| + | |||
| + | 3009. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973509.png ; $$A = N \oplus S _ { 1 }$$ ; confidence 0.438 | ||
| + | |||
| + | 3010. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745039.png ; $$j = g ^ { 3 } / g ^ { 2 }$$ ; confidence 0.799 | ||
| + | |||
| + | 3011. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745010.png ; $$= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$$ ; confidence 0.426 | ||
| + | |||
| + | 3012. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747012.png ; $$x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$$ ; confidence 0.980 | ||
| + | |||
| + | 3013. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004043.png ; $$K = - ( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \} ^ { 2 }$$ ; confidence 0.571 | ||
| + | |||
| + | 3014. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w09751010.png ; $$m _ { k } = \dot { k }$$ ; confidence 0.352 | ||
| + | |||
| + | 3015. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w097510202.png ; $$q \in T _ { n } ( k )$$ ; confidence 0.977 | ||
| + | |||
| + | 3016. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005030.png ; $$D = \langle x ^ { 2 } \} \subset R [ x ]$$ ; confidence 0.413 | ||
| + | |||
| + | 3017. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005029.png ; $$D = R [ x ] / D$$ ; confidence 0.968 | ||
| + | |||
| + | 3018. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097600/w09760044.png ; $$H ^ { i } ( X )$$ ; confidence 0.995 | ||
| + | |||
| + | 3019. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097600/w0976009.png ; $$H ^ { 2 n } ( X )$$ ; confidence 0.999 | ||
| + | |||
| + | 3020. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007023.png ; $$\beta$$ ; confidence 0.911 | ||
| + | |||
| + | 3021. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $$\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$$ ; confidence 0.315 | ||
| + | |||
| + | 3022. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670169.png ; $$\operatorname { gr } ( A _ { 1 } ( K ) )$$ ; confidence 0.860 | ||
| + | |||
| + | 3023. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670151.png ; $$A _ { k + 1 } ( C )$$ ; confidence 0.634 | ||
| + | |||
| + | 3024. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670153.png ; $$\oplus V _ { k } ( M ) / V _ { k - 1 } ( M )$$ ; confidence 0.970 | ||
| + | |||
| + | 3025. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007015.png ; $$q$$ ; confidence 0.899 | ||
| + | |||
| + | 3026. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070106.png ; $$C ^ { \prime } = 1$$ ; confidence 0.999 | ||
| + | |||
| + | 3027. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008025.png ; $$W ( f \times g ) = W ( f ) . W ( g )$$ ; confidence 0.906 | ||
| + | |||
| + | 3028. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $$Z _ { \zeta } ( T )$$ ; confidence 0.463 | ||
| + | |||
| + | 3029. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771067.png ; $$N _ { G } ( T ) / Z _ { G } ( T )$$ ; confidence 0.990 | ||
| + | |||
| + | 3030. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w0977109.png ; $$N _ { G } ( T )$$ ; confidence 0.970 | ||
| + | |||
| + | 3031. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097720/w0977202.png ; $$f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$$ ; confidence 0.966 | ||
| + | |||
| + | 3032. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090131.png ; $$\Delta ( \lambda ) ^ { \mu }$$ ; confidence 1.000 | ||
| + | |||
| + | 3033. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090399.png ; $$L ( \mu )$$ ; confidence 0.993 | ||
| + | |||
| + | 3034. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $$\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$$ ; confidence 0.487 | ||
| + | |||
| + | 3035. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011033.png ; $$S ( R ^ { n } ) \times S ( R ^ { n } )$$ ; confidence 0.944 | ||
| + | |||
| + | 3036. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011024.png ; $$\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$$ ; confidence 0.058 | ||
| + | |||
| + | 3037. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $$\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$$ ; confidence 0.712 | ||
| + | |||
| + | 3038. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011079.png ; $$A ^ { * } \sigma A = \sigma$$ ; confidence 0.887 | ||
| + | |||
| + | 3039. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110210.png ; $$G = G ^ { \sigma }$$ ; confidence 0.956 | ||
| + | |||
| + | 3040. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110192.png ; $$X \in \Phi$$ ; confidence 0.895 | ||
| + | |||
| + | 3041. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110269.png ; $$g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$$ ; confidence 0.357 | ||
| + | |||
| + | 3042. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097790/w09779041.png ; $$\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$$ ; confidence 0.354 | ||
| + | |||
| + | 3043. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014036.png ; $$S \square T$$ ; confidence 0.898 | ||
| + | |||
| + | 3044. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080142.png ; $$T _ { n }$$ ; confidence 0.602 | ||
| + | |||
| + | 3045. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008076.png ; $$N = 2$$ ; confidence 0.996 | ||
| + | |||
| + | 3046. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080127.png ; $$S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$$ ; confidence 0.942 | ||
| + | |||
| + | 3047. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080124.png ; $$T _ { 1 } \sim \Lambda$$ ; confidence 0.998 | ||
| + | |||
| + | 3048. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $$\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$$ ; confidence 0.238 | ||
| + | |||
| + | 3049. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017064.png ; $$l \equiv 2 ( \operatorname { mod } 3 )$$ ; confidence 0.997 | ||
| + | |||
| + | 3050. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w0979106.png ; $$B ( \lambda )$$ ; confidence 1.000 | ||
| + | |||
| + | 3051. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w09791036.png ; $$L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$$ ; confidence 0.885 | ||
| + | |||
| + | 3052. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009059.png ; $$\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$$ ; confidence 0.591 | ||
| + | |||
| + | 3053. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009053.png ; $$\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$$ ; confidence 0.909 | ||
| + | |||
| + | 3054. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009083.png ; $$( g ) = g ^ { \prime }$$ ; confidence 1.000 | ||
| + | |||
| + | 3055. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018046.png ; $$t _ { 1 } \in D ^ { - }$$ ; confidence 0.997 | ||
| + | |||
| + | 3056. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110070/w11007022.png ; $$\| x \| _ { 1 }$$ ; confidence 0.650 | ||
| + | |||
| + | 3057. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019047.png ; $$P = - i \hbar \nabla _ { x }$$ ; confidence 0.929 | ||
| + | |||
| + | 3058. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $$T _ { W \alpha } = T$$ ; confidence 0.134 | ||
| + | |||
| + | 3059. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $$\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$$ ; confidence 0.515 | ||
| + | |||
| + | 3060. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021059.png ; $$B _ { m } = R$$ ; confidence 0.993 | ||
| + | |||
| + | 3061. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804013.png ; $$p ( n + 1 ) / 2$$ ; confidence 0.997 | ||
| + | |||
| + | 3062. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110120/w11012047.png ; $$( D ) \leq c \text { length } ( C )$$ ; confidence 0.985 | ||
| + | |||
| + | 3063. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098160/w09816057.png ; $$Y \times X$$ ; confidence 0.869 | ||
| + | |||
| + | 3064. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $$\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$$ ; confidence 0.228 | ||
| + | |||
| + | 3065. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001022.png ; $$\sigma \in \operatorname { Aut } ( R )$$ ; confidence 0.958 | ||
| + | |||
| + | 3066. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002033.png ; $$D ( R )$$ ; confidence 0.960 | ||
| + | |||
| + | 3067. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001021.png ; $$J ( \phi )$$ ; confidence 0.976 | ||
| + | |||
| + | 3068. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001038.png ; $$\| \phi _ { q } \| _ { q } = 1$$ ; confidence 0.797 | ||
| + | |||
| + | 3069. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $$H _ { 1 } \subset L _ { N }$$ ; confidence 0.459 | ||
| + | |||
| + | 3070. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001011.png ; $$g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$$ ; confidence 0.828 | ||
| + | |||
| + | 3071. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001017.png ; $$R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$$ ; confidence 0.996 | ||
| + | |||
| + | 3072. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $$R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$$ ; confidence 0.794 | ||
| + | |||
| + | 3073. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $$R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$$ ; confidence 0.786 | ||
| + | |||
| + | 3074. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099030/y09903095.png ; $$\sigma ( M ^ { 4 } )$$ ; confidence 1.000 | ||
| + | |||
| + | 3075. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099030/y099030101.png ; $$\pi _ { 1 } : P _ { 1 } \rightarrow S ^ { 4 }$$ ; confidence 0.998 | ||
| + | |||
| + | 3076. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099070/y09907014.png ; $$t _ { \lambda } ^ { \prime }$$ ; confidence 0.881 | ||
| + | |||
| + | 3077. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100102.png ; $$\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$$ ; confidence 0.569 | ||
| + | |||
| + | 3078. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010033.png ; $$\forall y ( \neg y \in x )$$ ; confidence 0.930 | ||
| + | |||
| + | 3079. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005046.png ; $$I = ( f )$$ ; confidence 0.997 | ||
| + | |||
| + | 3080. https://www.encyclopediaofmath.org/legacyimages/z/z110/z110010/z11001018.png ; $$( f g f h )$$ ; confidence 0.723 | ||
| + | |||
| + | 3081. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002043.png ; $$1.609$$ ; confidence 0.997 | ||
| + | |||
| + | 3082. https://www.encyclopediaofmath.org/legacyimages/z/z099/z099250/z09925023.png ; $$001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$$ ; confidence 0.156 | ||
| + | |||
| + | 3083. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301303.png ; $$x _ { 2 } = r \operatorname { sin } \theta$$ ; confidence 0.977 | ||
Revision as of 11:37, 1 September 2019
List
1.
; $3 + 5$ ; confidence 0.136
2.
; $A , B , C \in C$ ; confidence 0.982
3.
; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505
4.
; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
5.
; $R el$ ; confidence 0.544
6.
; $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ ; confidence 0.988
7.
; $4$ ; confidence 0.531
8.
; $S ^ { * } = S$ ; confidence 0.463
9.
; $B ^ { A } \cong ( A ^ { * } \otimes B )$ ; confidence 0.992
10.
; $B$ ; confidence 0.895
11.
; $C$ ; confidence 0.838
12.
; $( S , g )$ ; confidence 0.978
13.
; $3$ ; confidence 1.000
14.
; $D$ ; confidence 0.538
15.
; $5$ ; confidence 0.885
16.
; $F _ { 3 }$ ; confidence 0.996
17.
; $\operatorname { dim } ( S ) = 4 n + 3$ ; confidence 0.958
18.
; $\geq 7$ ; confidence 0.562
19.
; $( 4 n + 3 )$ ; confidence 1.000
20.
; $Z = S \nmid F _ { \tau }$ ; confidence 0.763
21.
; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761
22.
; $4 n$ ; confidence 0.999
23.
; $m > 3$ ; confidence 0.916
24.
; $7$ ; confidence 0.937
25.
; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932
26.
; $S ( p )$ ; confidence 0.693
27.
; $T ^ { 2 } \times SO ( 3 )$ ; confidence 0.990
28.
; $SO ( 3 )$ ; confidence 0.940
29.
; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798
30.
; $\dot { i } \leq n$ ; confidence 0.190
31.
; $n \geq 1$ ; confidence 0.967
32.
; $SU ( 2 )$ ; confidence 0.811
33.
; $11$ ; confidence 1.000
34.
; $b _ { 2 } \neq b _ { 4 }$ ; confidence 0.995
35.
; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
36.
; $0$ ; confidence 0.311
37.
; $m = 4 n + 3$ ; confidence 0.997
38.
; $\hat { v } ^ { ( S ) }$ ; confidence 0.182
39.
; $b _ { 2 } \neq b _ { 6 }$ ; confidence 0.994
40.
; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694
41.
; $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ ; confidence 0.998
42.
; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671
43.
; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
44.
; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
45.
; $S ^ { 3 } / \Gamma$ ; confidence 0.633
46.
; $k$ ; confidence 0.208
47.
; $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$ ; confidence 0.999
48.
; $C ( S )$ ; confidence 0.946
49.
; $$m$$ ; confidence 0.499
50.
; $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ ; confidence 1.000
51.
; $_ { \nabla } ( G / K )$ ; confidence 0.326
52.
; $$n + 2$$ ; confidence 1.000
53.
; $4 n + 3$ ; confidence 1.000
54.
; $15$ ; confidence 1.000
55.
; $5$ ; confidence 0.574
56.
; $s ^ { 2 }$ ; confidence 0.942
57.
; $\alpha = 1,2,3$ ; confidence 0.734
58.
; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702
59.
; $$Z = G / U ( 1 ) . K$$ ; confidence 0.948
60.
; $$1$$ ; confidence 0.742
61.
; $\operatorname { dim } ( O ) = 4$ ; confidence 0.996
62.
; $\operatorname { im } ( S ) = 7$ ; confidence 0.799
63.
; $U ( ( m + 1 ) / 2 )$ ; confidence 0.997
64.
; $F _ { \tau } \subset F _ { 3 } \subset S$ ; confidence 0.996
65.
; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
66.
; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / SU ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }$ ; confidence 0.614
67.
; $g ( \xi ^ { \alpha } , \xi ^ { b } ) = \delta _ { \alpha b }$ ; confidence 0.989
68.
; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
69.
; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
70.
; $z$ ; confidence 1.000
71.
; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541
72.
; $$T ^ { n }$$ ; confidence 0.616
73.
; $( C ( S ) , \overline { g } )$ ; confidence 0.418
74.
; $Sp ( 0 )$ ; confidence 0.378
75.
; $s ^ { 3 }$ ; confidence 0.948
76.
; $D$ ; confidence 0.661
77.
; $$\xi = I ( \partial _ { r } )$$ ; confidence 0.869
78.
; $$n \geq 0$$ ; confidence 0.996
79.
; $\Gamma \subset SU ( 2 )$ ; confidence 0.951
80.
; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920
81.
; $m = 2 i + 1$ ; confidence 0.871
82.
; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
83.
; $\xi ( \tau )$ ; confidence 0.999
84.
; $$S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$$ ; confidence 0.916
85.
; $1 > 1$ ; confidence 0.983
86.
; $b _ { 2 } ( s ) \leq 1$ ; confidence 0.580
87.
; $0$ ; confidence 0.355
88.
; $1$ ; confidence 0.998
89.
; $2$ ; confidence 1.000
90.
; $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ ; confidence 0.974
91.
; $T ^ { 2 } \times \operatorname { Sp } ( 1 )$ ; confidence 0.987
92.
; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
93.
; $k > 7$ ; confidence 0.997
94.
; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901
95.
; $SO ( 4 n + 3 )$ ; confidence 0.906
96.
; $t$ ; confidence 0.637
97.
; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
98.
; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382
99.
; $$\sigma \delta$$ ; confidence 0.999
100.
; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061
101.
; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104
102.
; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200
103.
; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139
104.
; $M$ ; confidence 0.626
105.
; $x$ ; confidence 0.475
106.
; $\pi$ ; confidence 0.772
107.
; $K$ ; confidence 0.738
108.
; $K _ { 0 } ( B ) ^ { + }$ ; confidence 0.993
109.
; $K _ { 1 }$ ; confidence 0.970
110.
; $C ( S ^ { 2 n } )$ ; confidence 0.540
111.
; $\tau ( x y ) = \tau ( y x )$ ; confidence 0.993
112.
; $\theta = 1 - \theta$ ; confidence 0.998
113.
; $$H$$ ; confidence 0.998
114.
; $n > 0$ ; confidence 0.998
115.
; $K _ { 0 } ( \varphi ) = \alpha$ ; confidence 0.993
116.
; $z \in G$ ; confidence 0.715
117.
; $f : G \rightarrow R$ ; confidence 0.996
118.
; $C ^ { * }$ ; confidence 0.866
119.
; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ ; confidence 0.990
120.
; $D$ ; confidence 0.683
121.
; $I \mapsto I$ ; confidence 0.782
122.
; $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.977
123.
; $f ( G ^ { + } ) \subseteq R ^ { + }$ ; confidence 1.000
124.
; $h$ ; confidence 0.307
125.
; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ ; confidence 0.990
126.
; $K _ { 0 } ( A )$ ; confidence 0.745
127.
; $H ^ { + } = G ^ { + } \cap H$ ; confidence 0.999
128.
; $\square ^ { * }$ ; confidence 0.982
129.
; $K _ { 0 } ( \varphi )$ ; confidence 0.924
130.
; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943
131.
; $( G , G ^ { + } )$ ; confidence 1.000
132.
; $25$ ; confidence 0.396
133.
; $\theta = \theta ^ { \prime }$ ; confidence 0.994
134.
; $y \leq x$ ; confidence 0.998
135.
; $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.991
136.
; $\alpha ( K _ { 0 } ( A ) ^ { + } ) = K _ { 0 } ( B ) ^ { + }$ ; confidence 0.997
137.
; $K _ { 0 } ( A ) ^ { + }$ ; confidence 0.988
138.
; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842
139.
; $A _ { \theta } \cong A _ { \theta }$ ; confidence 0.999
140.
; $f$ ; confidence 1.000
141.
; $\geq 0$ ; confidence 1.000
142.
; $4$ ; confidence 0.978
143.
; $2 n$ ; confidence 1.000
144.
; $\alpha ( \Sigma ( A ) ) = \Sigma ( B )$ ; confidence 0.988
145.
; $\varphi : A \rightarrow B$ ; confidence 0.999
146.
; $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$ ; confidence 0.978
147.
; $x _ { i } \leq z \leq y _ { j }$ ; confidence 0.967
148.
; $K _ { 0 }$ ; confidence 0.936
149.
; $\tau \mapsto K _ { 0 } ( \tau )$ ; confidence 0.994
150.
; $x \in G$ ; confidence 0.737
151.
; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889
152.
; $y \in H$ ; confidence 0.503
153.
; $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$ ; confidence 0.923
154.
; $x , y \in A$ ; confidence 0.906
155.
; $x > 0$ ; confidence 0.700
156.
; $A _ { \theta }$ ; confidence 0.786
157.
; $( K _ { 0 } ( B ) , K _ { 0 } ( B ) ^ { + } , \Sigma ( B ) )$ ; confidence 0.997
158.
; $\tau : A \rightarrow C$ ; confidence 0.987
159.
; $i$ ; confidence 0.450
160.
; $\varphi , \psi : A \rightarrow B$ ; confidence 0.980
161.
; $\Sigma ( A )$ ; confidence 0.626
162.
; $x \in H ^ { + }$ ; confidence 0.518
163.
; $y \in G ^ { + }$ ; confidence 0.943
164.
; $1$ ; confidence 0.989
165.
; $x _ { i } \leq y _ { j }$ ; confidence 0.993
166.
; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898
167.
; $K _ { 1 } ( A ) = 0$ ; confidence 0.997
168.
; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951
169.
; $t$ ; confidence 0.354
170.
; $i$ ; confidence 0.570
171.
; $SL _ { 2 } ( C )$ ; confidence 0.910
172.
; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
173.
; $( g )$ ; confidence 0.981
174.
; $$= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$$ ; confidence 0.382
175.
; $( 1 )$ ; confidence 0.515
176.
; $C [ t ] = C [ t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.593
177.
; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
178.
; $$A K N S$$ ; confidence 0.971
179.
; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
180.
; $\phi$ ; confidence 0.476
181.
; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
182.
; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
183.
; $$h$$ ; confidence 0.644
184.
; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932
185.
; $t = ( t _ { x } )$ ; confidence 0.458
186.
; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
187.
; $C$ ; confidence 0.175
188.
; $5$ ; confidence 0.571
189.
; $L ( \Lambda _ { 0 } )$ ; confidence 0.993
190.
; $k$ ; confidence 0.504
191.
; $\phi ( x , t , z ) =$ ; confidence 0.998
192.
; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
193.
; $\phi = \phi _ { - } \phi _ { + }$ ; confidence 0.996
194.
; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ ; confidence 0.971
195.
; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
196.
; $( \tau _ { l } )$ ; confidence 0.726
197.
; $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { n } Q _ { j } z ^ { n - j }$ ; confidence 0.991
198.
; $8$ ; confidence 0.857
199.
; $8$ ; confidence 0.804
200.
; $$L$$ ; confidence 0.550
201.
; $t _ { n }$ ; confidence 0.933
202.
; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981
203.
; $\phi _ { - } ( x , t , z ) = \operatorname { exp } ( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } )$ ; confidence 0.963
204.
; $K P$ ; confidence 0.846
205.
; $\pi$ ; confidence 0.434
206.
; $\phi _ { + } = \operatorname { exp } ( \sum _ { j = 1 } ^ { \infty } \phi _ { j } ( x , t ) z ^ { j } )$ ; confidence 0.999
207.
; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
208.
; $0.00$ ; confidence 0.237
209.
; $F _ { j k } =$ ; confidence 0.626
210.
; $$= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$$ ; confidence 0.240
211.
; $N$ ; confidence 0.183
212.
; $i$ ; confidence 0.889
213.
; $g ( z )$ ; confidence 0.996
214.
; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in Z }$ ; confidence 0.585
215.
; $$L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$$ ; confidence 0.711
216.
; $P ^ { ( l ) }$ ; confidence 0.869
217.
; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976
218.
; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906
219.
; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716
220.
; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
221.
; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
222.
; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374
223.
; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
224.
; $P _ { 1 }$ ; confidence 0.674
225.
; $L ( \psi ) = z \psi$ ; confidence 0.998
226.
; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352
227.
; $Q$ ; confidence 0.380
228.
; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
229.
; $12$ ; confidence 0.590
230.
; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
231.
; $Q$ ; confidence 0.095
232.
; $z \in C$ ; confidence 0.369
233.
; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
234.
; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
235.
; $Q _ { 1 } = P _ { 1 }$ ; confidence 0.999
236.
; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
237.
; $i$ ; confidence 0.474
238.
; $F _ { j k }$ ; confidence 0.974
239.
; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
240.
; $s l _ { 2 }$ ; confidence 0.247
241.
; $( 2 \times 2 )$ ; confidence 1.000
242.
; $P$ ; confidence 0.462
243.
; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
244.
; $T$ ; confidence 0.973
245.
; $L ^ { Y } ( X , Y )$ ; confidence 0.431
246.
; $0 \leq S \leq T \in L ( X )$ ; confidence 0.657
247.
; $\varepsilon \in X$ ; confidence 0.430
248.
; $Y$ ; confidence 0.894
249.
; $r _ { ess } ( T )$ ; confidence 0.259
250.
; $$T : X \rightarrow Y$$ ; confidence 0.863
251.
; $X = 1 ^ { p }$ ; confidence 0.914
252.
; $T$ ; confidence 0.750
253.
; $x | < e$ ; confidence 0.841
254.
; $| e | | < 1$ ; confidence 0.271
255.
; $S < T$ ; confidence 0.984
256.
; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
257.
; $Y = L ^ { 1 } ( \mu )$ ; confidence 1.000
258.
; $5$ ; confidence 0.396
259.
; $S , T \in L ( X )$ ; confidence 0.814
260.
; $r ( S ) \leq r ( T )$ ; confidence 0.998
261.
; $\sigma _ { ess } ( T )$ ; confidence 0.490
262.
; $1 \leq p < \infty$ ; confidence 0.999
263.
; $0 \leq S \leq T$ ; confidence 0.838
264.
; $X = c 0$ ; confidence 0.759
265.
; $| x | | \leq 1$ ; confidence 0.929
266.
; $1 - \alpha$ ; confidence 0.993
267.
; $A$ ; confidence 0.952
268.
; $74$ ; confidence 0.550
269.
; $3$ ; confidence 0.891
270.
; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
271.
; $Z = X \Gamma + F$ ; confidence 0.500
272.
; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
273.
; $x$ ; confidence 0.751
274.
; $z = \Gamma y$ ; confidence 0.946
275.
; $s \times p$ ; confidence 0.642
276.
; $( i , j )$ ; confidence 0.935
277.
; $B$ ; confidence 0.651
278.
; $0$ ; confidence 0.969
279.
; $M _ { E }$ ; confidence 0.680
280.
; $( n$ ; confidence 0.239
281.
; $Z _ { 13 }$ ; confidence 0.481
282.
; $T _ { 1 }$ ; confidence 0.446
283.
; $P$ ; confidence 0.403
284.
; $j = 1 , \ldots , p$ ; confidence 0.616
285.
; $2$ ; confidence 0.985
286.
; $$c$$ ; confidence 0.324
287.
; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
288.
; $t$ ; confidence 0.895
289.
; $R = V _ { 33 } ^ { - 1 } V _ { 32 }$ ; confidence 0.628
290.
; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345
291.
; $a ^ { \prime } \Theta$ ; confidence 0.987
292.
; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424
293.
; $\sqrt { 3 }$ ; confidence 0.281
294.
; $X _ { 3 }$ ; confidence 0.593
295.
; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793
296.
; $X \beta$ ; confidence 0.414
297.
; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779
298.
; $N$ ; confidence 0.740
299.
; $Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.548
300.
; $2$ ; confidence 0.672
301.
; $Y , B , E$ ; confidence 0.984
302.
; $8$ ; confidence 0.593
303.
; $E [ Z _ { 32 } , Z _ { 33 } ] = 0$ ; confidence 0.584
304.
; $2$ ; confidence 0.473
305.
; $1$ ; confidence 0.458
306.
; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731
307.
; $$M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$$ ; confidence 0.159
308.
; $Z _ { 12 }$ ; confidence 0.917
309.
; $p \times p$ ; confidence 0.711
310.
; $H ^ { \prime }$ ; confidence 0.219
311.
; $e _ { j k }$ ; confidence 0.169
312.
; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917
313.
; $a ^ { \prime } \Theta$ ; confidence 0.275
314.
; $x$ ; confidence 0.968
315.
; $( q , n - r )$ ; confidence 0.777
316.
; $( r - q ) \times p$ ; confidence 1.000
317.
; $7$ ; confidence 0.945
318.
; $i = 1 , \ldots , m$ ; confidence 0.480
319.
; $q = 1$ ; confidence 0.790
320.
; $N ( 0 , \Sigma _ { 1 } )$ ; confidence 0.996
321.
; $z _ { 1 }$ ; confidence 0.669
322.
; $y , \beta , e$ ; confidence 0.936
323.
; $= \operatorname { sin } \gamma q$ ; confidence 0.055
324.
; $c ^ { \prime } \beta = \eta$ ; confidence 0.492
325.
; $( 1 \times p )$ ; confidence 1.000
326.
; $B$ ; confidence 0.738
327.
; $\hat { \eta } \omega$ ; confidence 0.852
328.
; $n - r$ ; confidence 0.377
329.
; $m \times 1$ ; confidence 0.995
330.
; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
331.
; $6$ ; confidence 0.612
332.
; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727
333.
; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
334.
; $\psi \in L$ ; confidence 0.533
335.
; $\alpha$ ; confidence 0.905
336.
; $\Gamma = B X$ ; confidence 0.884
337.
; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980
338.
; $\hat { \eta } \Omega$ ; confidence 0.902
339.
; $Z _ { 0 } = Z _ { 12 } - Z _ { 13 } R$ ; confidence 0.674
340.
; $f ( Z _ { 1 } )$ ; confidence 0.795
341.
; $\Theta$ ; confidence 0.834
342.
; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961
343.
; $y$ ; confidence 0.478
344.
; $M _ { H }$ ; confidence 0.989
345.
; $y _ { i j k }$ ; confidence 0.873
346.
; $E ( Z _ { 3 } ) = 0$ ; confidence 0.631
347.
; $( \alpha , \beta , \gamma ) ^ { \prime } = \beta$ ; confidence 1.000
348.
; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783
349.
; $( 1 , t _ { j } , \ldots , t _ { j } ^ { k } ) ^ { \prime }$ ; confidence 0.604
350.
; $m \times s$ ; confidence 0.983
351.
; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
352.
; $$q \times 1$$ ; confidence 1.000
353.
; $\operatorname { dim } ( \Omega ) = r$ ; confidence 0.998
354.
; $E ( Z _ { 2 } )$ ; confidence 0.857
355.
; $( p \times p _ { 1 } )$ ; confidence 0.958
356.
; $22$ ; confidence 0.710
357.
; $\sigma ^ { 2 }$ ; confidence 0.864
358.
; $\| d \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982
359.
; $n > m$ ; confidence 0.980
360.
; $S$ ; confidence 0.868
361.
; $$I$$ ; confidence 0.738
362.
; $a$ ; confidence 0.607
363.
; $$n \times n$$ ; confidence 0.980
364.
; $\mu$ ; confidence 0.780
365.
; $$MS _ { e }$$ ; confidence 0.884
366.
; $$( n - r ) F$$ ; confidence 1.000
367.
; $$H : X _ { 3 } B X _ { 4 } = 0$$ ; confidence 0.914
368.
; $$E ( Z _ { 13 } ) = 0$$ ; confidence 0.388
369.
; $\Omega$ ; confidence 0.783
370.
; $$( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$$ ; confidence 0.467
371.
; $$A + \delta A$$ ; confidence 0.999
372.
; $$A A ^ { + } A = A$$ ; confidence 0.999
373.
; $$A _ { i } \in R ^ { n \times n }$$ ; confidence 0.952
374.
; $$x + \delta x$$ ; confidence 0.997
375.
; $$A x = b$$ ; confidence 0.981
376.
; $$\sigma _ { i } ( A ) - \sigma _ { 1 } ( \delta A ) \leq \sigma _ { i } ( A + \delta A ) \leq \sigma _ { i } ( A ) + \sigma _ { i } ( \delta A )$$ ; confidence 0.987
377.
; $$A x - \hat { \lambda } x = - \delta A x$$ ; confidence 0.499
378.
; $$1 / | y ^ { i } _ { x ^ { i } } ^ { * }$$ ; confidence 0.245
379.
; $$X$$ ; confidence 0.962
380.
; $$\frac { \| ( A + \delta A ) ^ { + } - A ^ { + } \| } { \| ( A + \delta A ) ^ { + } \| _ { 2 } } \leq \mu \| A ^ { + } \| _ { 2 } \| \delta A _ { 2 }$$ ; confidence 0.551
381.
; $$\| \delta b \| \leq \epsilon \| b \|$$ ; confidence 0.440
382.
; $$3$$ ; confidence 0.899
383.
; $6$ ; confidence 0.907
384.
; $$D : \mathfrak { D } \rightarrow A$$ ; confidence 0.505
385.
; $$D _ { 2 }$$ ; confidence 0.967
386.
; $$( 1 / z ) d z$$ ; confidence 0.991
387.
; $$d [ ( \omega ) ] = 2 g - 2$$ ; confidence 0.588
388.
; $$\alpha _ { j k } = \alpha _ { k l }$$ ; confidence 0.439
389.
; $2$ ; confidence 0.729
390.
; $$L \subset F$$ ; confidence 0.990
391.
; $$B i$$ ; confidence 0.539
392.
; $$\omega P _ { i } P _ { j }$$ ; confidence 0.938
393.
; $$p | D _ { i }$$ ; confidence 0.587
394.
; $a$ ; confidence 0.856
395.
; $$A$$ ; confidence 0.998
396.
; $$L ] = \lambda$$ ; confidence 0.859
397.
; $$\varphi _ { L } : A \rightarrow P ^ { 4 }$$ ; confidence 0.936
398.
; $$\sum _ { n = 0 } ^ { \infty } f ^ { ( n ) } ( \lambda _ { n } ) P _ { n } ( z )$$ ; confidence 0.754
399.
; $$A _ { 1 } ^ { * }$$ ; confidence 0.975
400.
; $$z | > 1$$ ; confidence 0.823
401.
; $$F _ { 0 } = f$$ ; confidence 0.979
402.
; $$A \subset Y$$ ; confidence 0.990
403.
; $$B _ { j } \in B$$ ; confidence 0.414
404.
; $$t \rightarrow \infty$$ ; confidence 0.998
405.
; $$\psi \in \Gamma$$ ; confidence 1.000
406.
; $$\Lambda _ { S 5 } T$$ ; confidence 0.591
407.
; $$\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$$ ; confidence 0.117
408.
; $$D$$ ; confidence 0.984
409.
; $$\tilde { \Omega }$$ ; confidence 0.505
410.
; $X \in X$ ; confidence 0.278
411.
; $$h ^ { - 1 } ( F _ { 0 } )$$ ; confidence 0.995
412.
; $$A ^ { \# }$$ ; confidence 0.967
413.
; $$Z _ { G } ( - q ^ { - 1 } ) \neq 0$$ ; confidence 0.985
414.
; $$C _ { W } ( X )$$ ; confidence 0.985
415.
; $$V$$ ; confidence 0.987
416.
; $$M$$ ; confidence 0.455
417.
; $$0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$$ ; confidence 0.863
418.
; $$c ( x )$$ ; confidence 0.998
419.
; $$P _ { V } ^ { \# } ( n )$$ ; confidence 0.472
420.
; $$\overline { H }$$ ; confidence 0.950
421.
; $$n \equiv a ( \operatorname { mod } b )$$ ; confidence 0.605
422.
; $$A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$$ ; confidence 0.911
423.
; $$\sigma ( n ) > \sigma ( m )$$ ; confidence 0.996
424.
; $$< 1$$ ; confidence 0.999
425.
; $$H ( x ) > ( 1 - \varepsilon ) ( \operatorname { log } x ) ^ { 2 }$$ ; confidence 0.997
426.
; $$x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$$ ; confidence 0.894
427.
; $$[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$$ ; confidence 0.783
428.
; $$A = L + D + U$$ ; confidence 0.995
429.
; $$\phi : \Omega \rightarrow \Omega _ { t }$$ ; confidence 0.989
430.
; $$X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$$ ; confidence 0.910
431.
; $$X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$$ ; confidence 0.929
432.
; $$R ( f )$$ ; confidence 1.000
433.
; $$\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$$ ; confidence 0.794
434.
; $$y ( 0 ) = x$$ ; confidence 0.978
435.
; $$( I + \lambda A )$$ ; confidence 0.992
436.
; $$\partial X ^ { \prime \prime }$$ ; confidence 0.986
437.
; $$p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$$ ; confidence 0.875
438.
; $$7$$ ; confidence 0.986
439.
; $$x ^ { \prime } > x$$ ; confidence 0.689
440.
; $$l ( D ) \geq \chi ( G ) - 1$$ ; confidence 0.970
441.
; $$\chi ( G ) < \operatorname { girth } ( G )$$ ; confidence 0.791
442.
; $$z \rightarrow 0$$ ; confidence 0.986
443.
; $$m$$ ; confidence 0.259
444.
; $$N p$$ ; confidence 0.998
445.
; $H _ { \hat { j } }$ ; confidence 0.205
446.
; $$d ( m )$$ ; confidence 0.930
447.
; $$k _ { 1 } = 2$$ ; confidence 0.992
448.
; $$\beta : S \rightarrow B / L$$ ; confidence 0.984
449.
; $$n > 1$$ ; confidence 0.998
450.
; $$A = A _ { 1 } \cap \ldots \cap A _ { n }$$ ; confidence 0.254
451.
; $$\approx 3$$ ; confidence 0.590
452.
; $$\sim 2$$ ; confidence 0.512
453.
; $$\operatorname { ad } X$$ ; confidence 0.415
454.
; $$\mathfrak { a } / W$$ ; confidence 0.438
455.
; $$( g )$$ ; confidence 0.376
456.
; $$\lambda \neq \mu$$ ; confidence 0.997
457.
; $$U _ { j } ^ { * } ( \xi )$$ ; confidence 0.987
458.
; $$X \in Ob \odot$$ ; confidence 0.251
459.
; $$l \mapsto ( . l )$$ ; confidence 0.425
460.
; $$T ^ { * }$$ ; confidence 0.984
461.
; $$K _ { X } ^ { v } \otimes L ^ { i }$$ ; confidence 0.368
462.
; $$\lambda < 1$$ ; confidence 0.995
463.
; $$W E = R . F . I$$ ; confidence 0.845
464.
; $$1 / ( 1 - \lambda )$$ ; confidence 0.977
465.
; $$X = \xi ^ { i }$$ ; confidence 0.662
466.
; $$f \times ( O _ { X } )$$ ; confidence 0.620
467.
; $$b ( t ) = F ( t ) + \int _ { 0 } ^ { t } K ( t - s ) b ( s ) d s$$ ; confidence 0.998
468.
; $$\operatorname { Ai } ( x )$$ ; confidence 0.619
469.
; $$w ^ { \prime \prime } ( z ) = z w ( z )$$ ; confidence 0.701
470.
; $$10 ^ { 16 }$$ ; confidence 1.000
471.
; $$\gamma m$$ ; confidence 0.719
472.
; $$\{ U _ { i } \}$$ ; confidence 0.984
473.
; $$f ( \psi ( z ) )$$ ; confidence 0.994
474.
; $$\int _ { - \infty } ^ { + \infty } \operatorname { ln } \| \operatorname { exp } ( i t f _ { \alpha } ) \| \frac { d t } { 1 + t ^ { 2 } } < \infty$$ ; confidence 0.982
475.
; $$\mu _ { f } ( E ) = \int _ { E } f d x$$ ; confidence 0.622
476.
; $$D = d / d t$$ ; confidence 0.954
477.
; $$C / \Omega$$ ; confidence 0.538
478.
; $$A _ { k } ^ { 2 }$$ ; confidence 0.983
479.
; $$( 2 n - 2 p )$$ ; confidence 1.000
480.
; $$x \in A ^ { p } ( X ) = A ^ { * } ( X ) \cap H ^ { 2 p } ( X )$$ ; confidence 0.669
481.
; $$p = n - 1$$ ; confidence 0.999
482.
; $$D ( x _ { 0 } ) = 0$$ ; confidence 0.998
483.
; $$x _ { 0 } ^ { 3 } x _ { 1 } + x _ { 1 } ^ { 3 } x _ { 2 } + x _ { 2 } ^ { 3 } x _ { 0 } = 0$$ ; confidence 0.999
484.
; $$\tau : G \times V \rightarrow V$$ ; confidence 0.995
485.
; $$G _ { X } = \{ g \in G : g x = x \}$$ ; confidence 0.901
486.
; $$V ^ { 1 }$$ ; confidence 0.987
487.
; $$\tau \in V o c$$ ; confidence 0.532
488.
; $$( K / k )$$ ; confidence 0.875
489.
; $$f _ { 1 } = \ldots = f _ { m }$$ ; confidence 0.889
490.
; $$L / K$$ ; confidence 0.986
491.
; $$N _ { 0 }$$ ; confidence 0.151
492.
; $$1 \leq h _ { m } \leq h . \phi ( m )$$ ; confidence 0.774
493.
; $$f ( x ) - P _ { n } ^ { 0 } ( x )$$ ; confidence 0.810
494.
; $$q ( V )$$ ; confidence 0.977
495.
; $$| K _ { i } | = | i K _ { V ^ { J } } |$$ ; confidence 0.620
496.
; $$M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$$ ; confidence 0.369
497.
; $$p _ { g } \neq 1$$ ; confidence 0.708
498.
; $$H$$ ; confidence 0.957
499.
; $$m = \nu ( P )$$ ; confidence 0.995
500.
; $$H \times H \rightarrow H$$ ; confidence 0.989
501.
; $$A _ { \alpha } \subseteq A$$ ; confidence 0.993
502.
; $$\forall x _ { k }$$ ; confidence 0.834
503.
; $$\Omega _ { p } ^ { * } = \Omega _ { p } \cup \{ F _ { i } ^ { * } : F _ { i } \in \Omega _ { f } \}$$ ; confidence 0.985
504.
; $$L _ { \Omega }$$ ; confidence 0.997
505.
; $$\operatorname { Red } : X ( K ) \rightarrow X _ { 0 } ( k )$$ ; confidence 0.991
506.
; $$p \in C$$ ; confidence 0.958
507.
; $$b a P$$ ; confidence 0.779
508.
; $$M \times N$$ ; confidence 0.757
509.
; $$U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$$ ; confidence 0.179
510.
; $$\{ f ( x ) \overline { \phi } _ { \lambda } ( x ) \}$$ ; confidence 0.564
511.
; $$\pi _ { k } ( x )$$ ; confidence 0.899
512.
; $$i : A \rightarrow X$$ ; confidence 0.601
513.
; $$O ( n ^ { 2 } \operatorname { log } n )$$ ; confidence 0.568
514.
; $$f _ { 1 } = ( P _ { n } \ldots P _ { 1 } ) ^ { 1 } f$$ ; confidence 0.568
515.
; $$\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$$ ; confidence 0.287
516.
; $$1 \rightarrow \infty$$ ; confidence 0.982
517.
; $$\partial M ^ { n + 1 } = K ^ { n }$$ ; confidence 0.516
518.
; $$X \subset Y$$ ; confidence 0.590
519.
; $$\alpha \neq 0$$ ; confidence 0.947
520.
; $$N ( R ) \neq 0$$ ; confidence 0.997
521.
; $$Z ( A ) = A \cap Z ( R )$$ ; confidence 0.998
522.
; $$| \alpha | = \sqrt { \overline { \alpha } \alpha }$$ ; confidence 0.964
523.
; $$\alpha _ { i } + 1$$ ; confidence 0.659
524.
; $$\phi = \operatorname { am } z$$ ; confidence 0.783
525.
; $$= v : q$$ ; confidence 0.846
526.
; $$c _ { q }$$ ; confidence 0.425
527.
; $$f \in C ( \partial D )$$ ; confidence 0.993
528.
; $$f ( t ) = \psi ( \phi ( t ) )$$ ; confidence 0.999
529.
; $$R > 0$$ ; confidence 1.000
530.
; $$x <$$ ; confidence 0.424
531.
; $$a \in V$$ ; confidence 0.699
532.
; $$f ( S )$$ ; confidence 0.968
533.
; $$s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$$ ; confidence 0.271
534.
; $$R ^ { n } \subset C ^ { k }$$ ; confidence 0.407
535.
; $$f$$ ; confidence 0.816
536.
; $$I Y \subset O$$ ; confidence 0.739
537.
; $$X \equiv 0$$ ; confidence 0.220
538.
; $$0.96$$ ; confidence 1.000
539.
; $$\Gamma _ { n } ^ { \alpha } ( H ) _ { \alpha } ^ { 8 }$$ ; confidence 0.595
540.
; $$h \in \operatorname { Diff } ^ { + } ( M )$$ ; confidence 0.591
541.
; $$Z = \int _ { A } D A \sqrt { \operatorname { det } ( / \partial _ { A } ^ { * } / \partial _ { A } ) } \operatorname { exp } [ - \| F \| ^ { 2 } ]$$ ; confidence 0.921
542.
; $$\rho _ { 0 n + } = \operatorname { sin } A$$ ; confidence 0.354
543.
; $$\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$$ ; confidence 0.072
544.
; $$L u \equiv \frac { \partial u } { \partial t } - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = 0$$ ; confidence 0.607
545.
; $$F _ { b }$$ ; confidence 0.450
546.
; $$f \in F$$ ; confidence 0.988
547.
; $$( L _ { 2 } )$$ ; confidence 0.999
548.
; $$n > r$$ ; confidence 0.999
549.
; $$\hat { W } \square _ { \infty } ^ { \gamma }$$ ; confidence 0.199
550.
; $$d _ { 2 n - 1 } = d _ { 2 n }$$ ; confidence 0.797
551.
; $$S _ { 2 } ^ { \gamma }$$ ; confidence 0.562
552.
; $$m \geq r$$ ; confidence 0.999
553.
; $$\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$$ ; confidence 0.144
554.
; $$L ( f )$$ ; confidence 0.998
555.
; $$\phi _ { k } ( t _ { k } ) = 1$$ ; confidence 0.994
556.
; $$X = H$$ ; confidence 0.599
557.
; $$P _ { 0 } ( z )$$ ; confidence 0.963
558.
; $$L _ { p } ( E )$$ ; confidence 0.872
559.
; $$\operatorname { deg } P \leq n$$ ; confidence 0.996
560.
; $$D ^ { 0 } f = f$$ ; confidence 0.998
561.
; $$\{ x _ { n j } ^ { \prime } \}$$ ; confidence 0.273
562.
; $$\operatorname { sup } _ { x \in \mathfrak { M } } \| x - A x \|$$ ; confidence 0.679
563.
; $$y _ { t } = t - S _ { \eta _ { t } }$$ ; confidence 0.968
564.
; $$H _ { k + 1 } ( f ( M ) )$$ ; confidence 0.998
565.
; $$\| T _ { M } \|$$ ; confidence 0.918
566.
; $$F ( z ) = z + \alpha _ { 0 } + \frac { \alpha _ { 1 } } { z } + \ldots$$ ; confidence 0.619
567.
; $$\overline { B } = C F ( \Delta ^ { \prime } )$$ ; confidence 0.999
568.
; $$1 ^ { 1 } = 1 ^ { 1 } ( N )$$ ; confidence 0.689
569.
; $$L f \theta$$ ; confidence 0.169
570.
; $$p / p$$ ; confidence 0.977
571.
; $$b _ { i } = \alpha _ { i } \alpha _ { 1 }$$ ; confidence 0.437
572.
; $$r ^ { \prime } < r$$ ; confidence 0.977
573.
; $$\alpha \geq b$$ ; confidence 0.978
574.
; $$r$$ ; confidence 0.805
575.
; $$\phi _ { x y } a \leq b$$ ; confidence 0.847
576.
; $$\operatorname { Arg } f$$ ; confidence 0.692
577.
; $$0 \notin f ( \partial D )$$ ; confidence 0.904
578.
; $$\operatorname { arg } f$$ ; confidence 0.862
579.
; $$\beta ( A )$$ ; confidence 0.999
580.
; $$M ( A ) = V \backslash N ( A )$$ ; confidence 0.983
581.
; $$\Omega ^ { p } [ V ]$$ ; confidence 0.985
582.
; $$S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$$ ; confidence 0.881
583.
; $$g ( u ) d u$$ ; confidence 0.997
584.
; $$\Phi ^ { ( 3 ) } ( x )$$ ; confidence 0.986
585.
; $$J _ { \nu } ( x ) \sim \sqrt { \frac { 2 } { \pi x } } [ \operatorname { cos } ( x - \frac { \pi \nu } { 2 } - \frac { \pi } { 4 } ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \alpha _ { 2 n } x ^ { - 2 n }$$ ; confidence 0.755
586.
; $$f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$$ ; confidence 0.754
587.
; $$M \subset G$$ ; confidence 0.949
588.
; $$Y$$ ; confidence 0.441
589.
; $$P \rightarrow \Sigma$$ ; confidence 0.991
590.
; $$f ( \lambda ) = ( \frac { \sigma ^ { 2 } } { 2 \pi } ) | \phi ( e ^ { i \lambda } ) | ^ { - 2 }$$ ; confidence 0.996
591.
; $$\mathfrak { A } _ { s _ { 1 } }$$ ; confidence 0.833
592.
; $$A = S ^ { \prime }$$ ; confidence 0.502
593.
; $$20$$ ; confidence 0.906
594.
; $$W _ { N } \rightarrow W _ { n }$$ ; confidence 0.076
595.
; $$\psi ( t _ { i } )$$ ; confidence 0.991
596.
; $$L ( \Sigma )$$ ; confidence 0.983
597.
; $$\sigma ( 1 ) = s$$ ; confidence 0.805
598.
; $$\phi ( t ) \equiv$$ ; confidence 0.467
599.
; $$\dot { x } = A x$$ ; confidence 0.608
600.
; $$x _ { y } + 1 = t$$ ; confidence 0.287
601.
; $$t _ { + } < + \infty$$ ; confidence 0.793
602.
; $$p < .5$$ ; confidence 1.000
603.
; $$Y _ { i } = 2 X _ { i } - 1$$ ; confidence 0.991
604.
; $$\{ A \rangle$$ ; confidence 0.294
605.
; $$\epsilon - \delta$$ ; confidence 0.998
606.
; $$| x$$ ; confidence 0.207
607.
; $$e$$ ; confidence 0.314
608.
; $$A ( \iota X A ( x ) )$$ ; confidence 0.456
609.
; $$\exists x A$$ ; confidence 0.894
610.
; $$x ^ { * } ( x ^ { * } y ) = x \wedge y$$ ; confidence 0.991
611.
; $$( x ^ { * } y ) ^ { * } z = ( x ^ { * } z ) ^ { * } ( y ^ { * } z )$$ ; confidence 0.974
612.
; $$\mathfrak { p } \supset b$$ ; confidence 0.356
613.
; $$( L ( \lambda ) )$$ ; confidence 1.000
614.
; $$\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$$ ; confidence 0.628
615.
; $$\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$$ ; confidence 0.489
616.
; $$\mathfrak { F } _ { \lambda }$$ ; confidence 0.661
617.
; $$L _ { p } ( R )$$ ; confidence 0.962
618.
; $$\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$$ ; confidence 0.965
619.
; $$V ^ { * } - V$$ ; confidence 0.998
620.
; $$V _ { n } = H _ { n } / \Gamma$$ ; confidence 0.724
621.
; $$\mu = \delta _ { X }$$ ; confidence 0.951
622.
; $$U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$$ ; confidence 0.820
623.
; $$x \in J$$ ; confidence 0.908
624.
; $$V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$$ ; confidence 0.809
625.
; $$T _ { K } ( K )$$ ; confidence 0.995
626.
; $$\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$$ ; confidence 0.421
627.
; $$\| T \| T ^ { - 1 } \| \geq c n$$ ; confidence 0.835
628.
; $$T : L _ { \infty } \rightarrow L _ { \infty }$$ ; confidence 0.978
629.
; $$| x _ { y } \| \rightarrow 0$$ ; confidence 0.611
630.
; $$l ^ { \infty } ( N )$$ ; confidence 0.759
631.
; $$\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$$ ; confidence 0.427
632.
; $$f ( \zeta ) > 0$$ ; confidence 0.996
633.
; $$m _ { 1 } \in M _ { 1 }$$ ; confidence 0.998
634.
; $$M _ { d } ^ { * } = M _ { d }$$ ; confidence 0.900
635.
; $$v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$$ ; confidence 0.241
636.
; $$E _ { 2 }$$ ; confidence 0.994
637.
; $$\alpha \in S _ { \alpha }$$ ; confidence 0.784
638.
; $$D \cup \Gamma$$ ; confidence 0.999
639.
; $$\lambda _ { 0 } + \ldots + \lambda _ { n } = 1$$ ; confidence 0.986
640.
; $$X _ { s } = X \times s s$$ ; confidence 0.533
641.
; $$\alpha _ { i } \in \Omega$$ ; confidence 0.833
642.
; $$\{ \xi _ { t } \}$$ ; confidence 0.990
643.
; $$\{ \xi _ { t } ( s ) \}$$ ; confidence 1.000
644.
; $$\delta _ { i k } = 0$$ ; confidence 0.900
645.
; $$f ( x ) = a x + b$$ ; confidence 0.931
646.
; $$f ( n ) \equiv 0 ( \operatorname { mod } p )$$ ; confidence 1.000
647.
; $$\| A \| _ { \infty }$$ ; confidence 0.981
648.
; $$b _ { i }$$ ; confidence 0.854
649.
; $$\pi ( m )$$ ; confidence 0.999
650.
; $$A _ { i } \Gamma \cap A _ { j } = \emptyset$$ ; confidence 0.946
651.
; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420
652.
; $\theta = \theta _ { i }$ ; confidence 0.949
653.
; $D = \{ d _ { 1 } , d _ { 2 } \}$ ; confidence 0.998
654.
; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550
655.
; $\delta ( x ) \in D$ ; confidence 0.997
656.
; $\pi ( \theta _ { 1 } ) = \pi _ { 1 }$ ; confidence 0.999
657.
; $\pi ( \theta _ { 2 } ) = \pi _ { 2 }$ ; confidence 0.999
658.
; $( X , B X )$ ; confidence 0.566
659.
; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853
660.
; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885
661.
; $\rho ( \pi , \delta ) = \int _ { \Theta } \rho ( \theta , \delta ) \pi ( d \theta )$ ; confidence 0.993
662.
; $\delta ^ { * } = \delta ^ { * } ( x )$ ; confidence 0.998
663.
; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736
664.
; $( \Theta , B _ { \Theta } )$ ; confidence 0.937
665.
; $d ^ { x }$ ; confidence 0.785
666.
; $\int \int _ { \Theta } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) =$ ; confidence 0.604
667.
; $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$ ; confidence 0.694
668.
; $p ( x ) = \int _ { \Theta } p ( x | \theta ) \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.972
669.
; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192
670.
; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945
671.
; $\rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) +$ ; confidence 0.977
672.
; $\rho ( \theta , \delta )$ ; confidence 1.000
673.
; $\pi _ { 1 } + \pi _ { 2 } = 1$ ; confidence 0.992
674.
; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774
675.
; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361
676.
; $\delta \rho ( \pi , \delta )$ ; confidence 0.650
677.
; $( D , B _ { D } )$ ; confidence 0.999
678.
; $\rho ( \pi , \delta _ { \epsilon } ^ { * } ) \leq \operatorname { inf } _ { \delta } \rho ( \pi , \delta ) + \epsilon$ ; confidence 0.972
679.
; $\pi = \pi ( d \theta )$ ; confidence 0.979
680.
; $\delta = \delta ( x )$ ; confidence 0.981
681.
; $\rho ( \pi , \delta ^ { * } ) = \operatorname { inf } _ { \delta } \int _ { \Theta } \int _ { X } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta )$ ; confidence 0.586
682.
; $( \epsilon > 0 )$ ; confidence 0.999
683.
; $+ \pi _ { 2 } p ( x | \theta _ { 2 } ) L ( \theta _ { 2 } , \delta ( x ) ) ] d \mu ( x )$ ; confidence 0.612
684.
; $\{ P _ { \theta } : \theta \in \Theta \}$ ; confidence 0.633
685.
; $\rho ( \pi , \delta )$ ; confidence 1.000
686.
; $i , j = 1,2$ ; confidence 0.881
687.
; $\pi ( d \theta ) = \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.998
688.
; $= \{ \theta _ { 1 } , \theta _ { 2 } \}$ ; confidence 1.000
689.
; $\delta ^ { * } ( x )$ ; confidence 0.978
690.
; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710
691.
; $\delta _ { \epsilon } ^ { * }$ ; confidence 0.648
692.
; $L ( \theta , d )$ ; confidence 0.992
693.
; $L _ { 11 } < L _ { 12 }$ ; confidence 0.994
694.
; $$s ( z ) = q ( z )$$ ; confidence 1.000
695.
; $$s ( z )$$ ; confidence 1.000
696.
; $$\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$$ ; confidence 0.236
697.
; $$x = ( x _ { 1 } + \ldots + x _ { n } ) / n$$ ; confidence 0.514
698.
; $$| f ( z ) | < 1$$ ; confidence 0.992
699.
; $$f \in B ( m / n )$$ ; confidence 0.956
700.
; $$L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$$ ; confidence 0.970
701.
; $$E X _ { 2 j } = \mu _ { 2 }$$ ; confidence 0.517
702.
; $$X _ { 1 }$$ ; confidence 0.637
703.
; $$L ( t )$$ ; confidence 0.967
704.
; $$\phi = \Pi ^ { \prime } \Pi ^ { - 1 }$$ ; confidence 0.997
705.
; $$P ( s S ) = P ( S )$$ ; confidence 0.219
706.
; $$k _ { z } = K _ { z } / \| K _ { z } \|$$ ; confidence 0.674
707.
; $$D \times D \in \Gamma ^ { 2 }$$ ; confidence 0.230
708.
; $$a ( z )$$ ; confidence 0.948
709.
; $$p _ { i } = \nu ( \alpha _ { i } )$$ ; confidence 0.832
710.
; $$d : N \cup \{ 0 \} \rightarrow R$$ ; confidence 0.953
711.
; $$x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$$ ; confidence 0.315
712.
; $$\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$$ ; confidence 0.591
713.
; $$P ^ { \prime }$$ ; confidence 0.871
714.
; $$p \leq 2$$ ; confidence 1.000
715.
; $$B _ { n } ( x + 1 ) - B _ { n } ( x ) = n x ^ { n - 1 }$$ ; confidence 0.672
716.
; $$/ N = T$$ ; confidence 0.692
717.
; $$\alpha = ( k + 1 / 2 )$$ ; confidence 0.643
718.
; $$1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$$ ; confidence 0.722
719.
; $$\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$$ ; confidence 0.213
720.
; $$2 \operatorname { exp } \{ - \frac { 1 } { 2 } n \epsilon ^ { 2 } \}$$ ; confidence 0.999
721.
; $$K ( t ) \equiv 1$$ ; confidence 0.999
722.
; $$= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$$ ; confidence 0.233
723.
; $$0 < \epsilon < i ( \theta _ { 0 } )$$ ; confidence 0.998
724.
; $$\omega ( x y ) = \omega ( x ) \omega ( y )$$ ; confidence 0.999
725.
; $$+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$$ ; confidence 0.828
726.
; $$x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$$ ; confidence 0.895
727.
; $$w = \pi ( z )$$ ; confidence 0.987
728.
; $$\Theta f$$ ; confidence 0.864
729.
; $$K > 0$$ ; confidence 0.999
730.
; $$F ^ { 2 } = \beta ^ { 2 } \operatorname { exp } \{ \frac { I \gamma } { \beta } \}$$ ; confidence 0.990
731.
; $$F . C _ { i j k } = I m$$ ; confidence 0.621
732.
; $$( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$$ ; confidence 0.951
733.
; $$V _ { k } \varphi ( x ) = \varphi ( x - h )$$ ; confidence 0.922
734.
; $$\mu \in R$$ ; confidence 0.990
735.
; $$\overline { B } ^ { \nu }$$ ; confidence 0.987
736.
; $$( Id - \Delta ) ^ { \nu }$$ ; confidence 0.560
737.
; $$\overline { \Xi } \epsilon = 0$$ ; confidence 0.326
738.
; $$P _ { 1 }$$ ; confidence 0.928
739.
; $$E _ { \theta } \{ T \}$$ ; confidence 0.560
740.
; $$b ( \theta ) \equiv 0$$ ; confidence 0.580
741.
; $$\hat { R } ( c )$$ ; confidence 0.613
742.
; $$0 < c < 1$$ ; confidence 0.979
743.
; $$\operatorname { Re } _ { c _ { N } } = n$$ ; confidence 0.069
744.
; $$F _ { n } ( z _ { 0 } ) = 0$$ ; confidence 0.993
745.
; $$| w | < r _ { 0 }$$ ; confidence 0.478
746.
; $$F _ { n } ( z )$$ ; confidence 0.855
747.
; $$\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$$ ; confidence 0.545
748.
; $$x \in G _ { n }$$ ; confidence 0.415
749.
; $$( \tau = \text { const } )$$ ; confidence 0.589
750.
; $$w _ { 2 } ( F )$$ ; confidence 0.966
751.
; $$B = \{ b _ { i } : i \in I \}$$ ; confidence 0.985
752.
; $$H _ { m }$$ ; confidence 0.869
753.
; $$H _ { k } \circ \operatorname { exp } ( X _ { F } ) = \operatorname { exp } ( X _ { F } ) ( H _ { k } )$$ ; confidence 0.992
754.
; $$\mu _ { n } ( t ) = 0$$ ; confidence 0.990
755.
; $$\lambda _ { n } ( t ) = v$$ ; confidence 0.997
756.
; $$u = q ( x ) \text { on } g$$ ; confidence 0.462
757.
; $$\vec { u } = A _ { j } ^ { i } u ^ { j }$$ ; confidence 0.648
758.
; $$R _ { y } ^ { t }$$ ; confidence 0.060
759.
; $$S _ { T }$$ ; confidence 0.992
760.
; $$U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$$ ; confidence 0.917
761.
; $$K ^ { * }$$ ; confidence 0.777
762.
; $$2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$$ ; confidence 0.204
763.
; $$q \in Z ^ { N }$$ ; confidence 0.950
764.
; $$0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$$ ; confidence 0.714
765.
; $$A A ^ { T } = ( r - \lambda ) E + \lambda J$$ ; confidence 0.999
766.
; $$n _ { 1 } = 9$$ ; confidence 0.822
767.
; $$X _ { 1 } \times X _ { 2 }$$ ; confidence 0.987
768.
; $$0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$$ ; confidence 0.999
769.
; $$\tau ^ { n }$$ ; confidence 0.408
770.
; $$r ^ { 3 } / v \ll 1$$ ; confidence 0.747
771.
; $$\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$$ ; confidence 0.419
772.
; $$M _ { A g }$$ ; confidence 0.870
773.
; $$P T ( C ) \in G$$ ; confidence 0.971
774.
; $$\| x + y \| _ { p } = \| u + v \| _ { p }$$ ; confidence 0.572
775.
; $$n ( z ) = n _ { 0 } e ^ { - m g z / k T }$$ ; confidence 0.985
776.
; $$H = \sum _ { i } \frac { p _ { i } ^ { 2 } } { 2 m } + \sum _ { i } U ( r _ { i } )$$ ; confidence 0.992
777.
; $$E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$$ ; confidence 0.900
778.
; $$N = \sum _ { i = 1 } ^ { M } N$$ ; confidence 0.965
779.
; $$E$$ ; confidence 0.999
780.
; $$F ( x ) = f ( M x )$$ ; confidence 1.000
781.
; $$d s ^ { 2 } = \frac { d u ^ { 2 } + d v ^ { 2 } } { ( U + V ) ^ { 2 } }$$ ; confidence 0.972
782.
; $$\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$$ ; confidence 0.820
783.
; $$( x \vee C x ) \wedge y = y$$ ; confidence 0.985
784.
; $$( M )$$ ; confidence 1.000
785.
; $$h \in \Omega$$ ; confidence 0.914
786.
; $$\sum \frac { 1 } { 1 }$$ ; confidence 0.251
787.
; $$\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$$ ; confidence 0.717
788.
; $$99$$ ; confidence 0.271
789.
; $$\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$$ ; confidence 0.082
790.
; $$\omega _ { i } = 1$$ ; confidence 0.972
791.
; $$M _ { 1 } \cup M _ { 2 }$$ ; confidence 0.994
792.
; $$x ^ { \sigma } = x$$ ; confidence 0.948
793.
; $$t _ { f } ( n )$$ ; confidence 0.917
794.
; $$\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$$ ; confidence 0.504
795.
; $$\beta \neq - \alpha$$ ; confidence 0.992
796.
; $$\Delta _ { - } = - \Delta _ { + }$$ ; confidence 0.970
797.
; $$[ e _ { i } f _ { j } ] = h _ { i }$$ ; confidence 0.684
798.
; $$\alpha _ { i j } \neq 0$$ ; confidence 0.797
799.
; $$\alpha _ { i } \in R$$ ; confidence 0.443
800.
; $$\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$$ ; confidence 0.737
801.
; $$9 -$$ ; confidence 0.467
802.
; $$\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$$ ; confidence 0.522
803.
; $$\mathfrak { M } _ { n }$$ ; confidence 0.373
804.
; $$\mathfrak { h } \subset \mathfrak { g }$$ ; confidence 0.959
805.
; $$A = R ( X )$$ ; confidence 0.988
806.
; $$\partial M _ { A } \subset X \subset M _ { A }$$ ; confidence 0.891
807.
; $$\Gamma \subset M _ { A }$$ ; confidence 0.920
808.
; $$| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$$ ; confidence 0.745
809.
; $$\hat { G } \backslash G$$ ; confidence 0.582
810.
; $$f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$$ ; confidence 0.451
811.
; $$N ^ { * } ( D )$$ ; confidence 0.999
812.
; $$F ^ { \prime } ( w )$$ ; confidence 0.999
813.
; $$U ^ { N }$$ ; confidence 0.743
814.
; $$N ^ { * } ( \Omega )$$ ; confidence 0.996
815.
; $$\Phi ( \theta )$$ ; confidence 1.000
816.
; $$f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$$ ; confidence 0.445
817.
; $$B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$$ ; confidence 0.752
818.
; $$n ^ { \prime } = - n + m - 1$$ ; confidence 0.993
819.
; $$t _ { 0 } \in \partial S$$ ; confidence 0.816
820.
; $$C _ { \alpha }$$ ; confidence 0.664
821.
; $$K$$ ; confidence 0.981
822.
; $$K ^ { + }$$ ; confidence 0.992
823.
; $$L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$$ ; confidence 0.466
824.
; $$t \in S$$ ; confidence 0.474
825.
; $$k ^ { \prime } = 1$$ ; confidence 0.991
826.
; $$\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$$ ; confidence 0.304
827.
; $$1 \rightarrow K ( n ) \rightarrow B ( n ) \rightarrow S ( n ) \rightarrow 1$$ ; confidence 0.993
828.
; $$( i i + 1 )$$ ; confidence 0.886
829.
; $$\Pi ^ { \prime \prime }$$ ; confidence 0.914
830.
; $$P _ { 1 / 2 }$$ ; confidence 0.996
831.
; $$\omega ^ { - 1 }$$ ; confidence 0.909
832.
; $$H ^ { * } ( O ( n ) ) \rightarrow H ^ { * } ( B ( n ) )$$ ; confidence 0.999
833.
; $$\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$$ ; confidence 0.516
834.
; $$\lambda _ { W } : V \otimes W \rightarrow W \otimes V$$ ; confidence 0.988
835.
; $$U _ { q } ( \mathfrak { g } )$$ ; confidence 0.626
836.
; $$L _ { p } ( T )$$ ; confidence 0.938
837.
; $$X$$ ; confidence 0.601
838.
; $$G ( u )$$ ; confidence 0.489
839.
; $$P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$$ ; confidence 0.724
840.
; $$t _ { 1 } + t$$ ; confidence 0.973
841.
; $$P \{ \xi _ { t } \equiv 0 \} = 1$$ ; confidence 0.670
842.
; $$\int _ { 0 } ^ { 1 } \frac { 1 - G ( s ) } { F ( s ) - s } d s < \infty$$ ; confidence 0.998
843.
; $$P _ { C } ^ { 1 }$$ ; confidence 0.433
844.
; $$r ^ { 2 }$$ ; confidence 1.000
845.
; $$\operatorname { dim } ( V / K ) = 1$$ ; confidence 0.998
846.
; $$R [ H \times H$$ ; confidence 0.981
847.
; $$( \oplus _ { b } G _ { E B } b )$$ ; confidence 0.179
848.
; $$P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$$ ; confidence 0.321
849.
; $$\alpha ^ { i }$$ ; confidence 0.739
850.
; $$f ( x ) = x ^ { t } M x$$ ; confidence 0.999
851.
; $$\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$$ ; confidence 0.250
852.
; $$B \otimes K ( H )$$ ; confidence 0.796
853.
; $$Q ( H ) = B ( H ) / K ( H )$$ ; confidence 0.959
854.
; $$M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$$ ; confidence 0.396
855.
; $$\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0$$ ; confidence 0.985
856.
; $$x _ { + } = x _ { c } + \lambda d$$ ; confidence 0.719
857.
; $$\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$$ ; confidence 0.915
858.
; $$\operatorname { dim } A = 2$$ ; confidence 0.998
859.
; $$0 \leq i \leq d - 1$$ ; confidence 0.993
860.
; $$d = \operatorname { dim } A$$ ; confidence 0.989
861.
; $$P _ { \alpha }$$ ; confidence 0.384
862.
; $$V _ { Q }$$ ; confidence 0.244
863.
; $$A$$ ; confidence 0.535
864.
; $$F _ { m }$$ ; confidence 0.945
865.
; $$n \geq 2 ^ { 13 }$$ ; confidence 0.999
866.
; $$n = p$$ ; confidence 0.858
867.
; $$d \geq n$$ ; confidence 0.956
868.
; $$2 ^ { 12 }$$ ; confidence 0.999
869.
; $$\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$$ ; confidence 0.944
870.
; $$\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$$ ; confidence 0.185
871.
; $$h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$$ ; confidence 0.332
872.
; $$D ^ { \perp }$$ ; confidence 0.893
873.
; $$T : A _ { j } \rightarrow A$$ ; confidence 0.526
874.
; $$v = u ^ { 2 } +$$ ; confidence 0.633
875.
; $$X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$$ ; confidence 0.949
876.
; $$CW ( 9.63 )$$ ; confidence 0.827
877.
; $$\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$$ ; confidence 0.747
878.
; $$K _ { X } K _ { X }$$ ; confidence 0.800
879.
; $$C A$$ ; confidence 0.232
880.
; $$X \backslash K _ { X }$$ ; confidence 0.934
881.
; $$E ( \lambda )$$ ; confidence 1.000
882.
; $$\underline { C } ( E ) = \operatorname { sup } C ( K )$$ ; confidence 0.963
883.
; $$f$$ ; confidence 0.647
884.
; $$0 \leq j < k$$ ; confidence 0.995
885.
; $$( f \in H _ { C } ( D ) )$$ ; confidence 0.513
886.
; $$f \in H _ { c } ( D )$$ ; confidence 0.898
887.
; $$\rho \in C ^ { 2 } ( \overline { \Omega } )$$ ; confidence 0.996
888.
; $$E \times E$$ ; confidence 0.999
889.
; $$\nabla ^ { \prime } = \nabla$$ ; confidence 0.998
890.
; $$s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$$ ; confidence 0.443
891.
; $$\epsilon ( \sigma ) = 1$$ ; confidence 0.993
892.
; $$1$$ ; confidence 0.897
893.
; $$t \otimes _ { k } K$$ ; confidence 0.618
894.
; $$\mu = \beta \nu$$ ; confidence 0.406
895.
; $$\lambda : V \rightarrow P$$ ; confidence 0.999
896.
; $$1 / \mu = d S / d \sigma$$ ; confidence 0.936
897.
; $$\psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) }$$ ; confidence 0.998
898.
; $$\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t$$ ; confidence 0.962
899.
; $$F ( 1 _ { A } ) = 1 _ { F A }$$ ; confidence 0.901
900.
; $$( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$$ ; confidence 0.330
901.
; $$\alpha \rightarrow \dot { b }$$ ; confidence 0.200
902.
; $$e \in E$$ ; confidence 0.839
903.
; $$( \alpha _ { e } ) _ { é \in E }$$ ; confidence 0.403
904.
; $$Z [ X _ { é } : e \in E$$ ; confidence 0.114
905.
; $$1 \leq i \leq n - 1$$ ; confidence 0.993
906.
; $$Ab ^ { Z C } \approx Ab ^ { C }$$ ; confidence 0.662
907.
; $$\Omega _ { 0 } \times \{ x _ { 0 }$$ ; confidence 0.971
908.
; $$x = x ^ { 0 }$$ ; confidence 0.989
909.
; $$F ^ { - } ( \zeta _ { 0 } )$$ ; confidence 0.984
910.
; $$\psi = \psi ( s )$$ ; confidence 0.998
911.
; $$u ( x _ { 0 } ) = u _ { 0 }$$ ; confidence 0.932
912.
; $$L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$$ ; confidence 0.358
913.
; $$y _ { n + 1 } = y _ { n } + \frac { h } { 2 } ( f _ { n + 1 } + f _ { n } )$$ ; confidence 0.957
914.
; $$- w$$ ; confidence 0.598
915.
; $$- u _ { 3 }$$ ; confidence 0.803
916.
; $$A _ { j } A _ { k l } = A _ { k l } A _ { j }$$ ; confidence 0.372
917.
; $$V ( t ) = - V ( s )$$ ; confidence 1.000
918.
; $$\Gamma$$ ; confidence 0.974
919.
; $$x \in \operatorname { Dom } A$$ ; confidence 0.300
920.
; $$\partial I ^ { p }$$ ; confidence 0.973
921.
; $$E \| X _ { k } \| ^ { 3 + \alpha } < \infty$$ ; confidence 0.604
922.
; $$f \in C ^ { k }$$ ; confidence 0.918
923.
; $$( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$$ ; confidence 0.173
924.
; $$D _ { p }$$ ; confidence 0.949
925.
; $$C \rho _ { p } C ^ { \prime }$$ ; confidence 0.884
926.
; $$\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$$ ; confidence 0.172
927.
; $$b \neq 0$$ ; confidence 1.000
928.
; $$y ^ { \prime \prime } - y > f ( x )$$ ; confidence 1.000
929.
; $$V ( \Lambda ^ { \prime } ) \otimes V ( \Lambda ^ { \prime \prime } )$$ ; confidence 0.996
930.
; $$\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$$ ; confidence 0.515
931.
; $$\chi \pi _ { \alpha }$$ ; confidence 0.268
932.
; $$\pi _ { 0 }$$ ; confidence 0.537
933.
; $$A$$ ; confidence 0.992
934.
; $$\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$$ ; confidence 0.798
935.
; $$\pi _ { \mathscr { q } } ( F )$$ ; confidence 0.437
936.
; $$c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$$ ; confidence 0.820
937.
; $$B G$$ ; confidence 0.998
938.
; $$\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$$ ; confidence 0.856
939.
; $$E X ^ { 2 n } < \infty$$ ; confidence 0.974
940.
; $$t _ { k } \in R ^ { 1 }$$ ; confidence 0.998
941.
; $$b _ { k } ^ { \prime } = ( - 1 ) ^ { k + 1 } b _ { k }$$ ; confidence 0.930
942.
; $$X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$$ ; confidence 0.670
943.
; $$p ( x ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } \sigma ^ { 2 } } \operatorname { exp } \{ - \frac { 1 } { 2 \sigma ^ { 2 } } ( x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } ) \}$$ ; confidence 0.970
944.
; $$k ( C ^ { * } )$$ ; confidence 0.992
945.
; $$g = 0 \Rightarrow c$$ ; confidence 0.793
946.
; $$\tau = \tau ( E )$$ ; confidence 0.992
947.
; $$x _ { j } = \operatorname { cos } ( \pi j / N )$$ ; confidence 0.826
948.
; $$C _ { \omega }$$ ; confidence 0.073
949.
; $$h ^ { * } ( pt )$$ ; confidence 0.903
950.
; $$\Omega _ { 2 n } ^ { 2 } \rightarrow Z$$ ; confidence 0.476
951.
; $$\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$$ ; confidence 0.818
952.
; $$j = 1 : n$$ ; confidence 0.980
953.
; $$T ( 0 ) = 0$$ ; confidence 0.574
954.
; $$\lambda \in \Lambda$$ ; confidence 0.954
955.
; $$f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$$ ; confidence 0.422
956.
; $$+ \frac { 1 } { 2 } \sum _ { 0 < u \leq \sqrt { x / 3 } } ( [ \sqrt { x - 2 u ^ { 2 } } ] - u ) + O ( \sqrt { x } )$$ ; confidence 0.498
957.
; $$\theta \leq 1 / 2$$ ; confidence 0.991
958.
; $$a ( r )$$ ; confidence 0.924
959.
; $$N = L . L$$ ; confidence 0.482
960.
; $$Q / Z$$ ; confidence 0.664
961.
; $$( k \times n )$$ ; confidence 1.000
962.
; $$\phi ( x ) = [ ( 1 - x ) ( 1 + x ) ] ^ { 1 / 2 }$$ ; confidence 0.999
963.
; $$\phi ( x ) \equiv 1$$ ; confidence 0.999
964.
; $$\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$$ ; confidence 0.998
965.
; $$x ( t ) : R \rightarrow R ^ { n }$$ ; confidence 0.947
966.
; $$20$$ ; confidence 0.225
967.
; $$j \leq n$$ ; confidence 0.544
968.
; $$[ \gamma ]$$ ; confidence 1.000
969.
; $$x \in D _ { A }$$ ; confidence 0.542
970.
; $$x _ { n } \in D _ { A }$$ ; confidence 0.553
971.
; $$K ( f )$$ ; confidence 0.998
972.
; $$C = C ( f )$$ ; confidence 0.996
973.
; $$f : D \rightarrow \Omega$$ ; confidence 1.000
974.
; $$\mu ( E ) = \mu _ { 1 } ( E ) = 0$$ ; confidence 0.998
975.
; $$\mu _ { 2 } ( C R ) = 0$$ ; confidence 0.984
976.
; $$F = \{ f ( z ) \}$$ ; confidence 0.999
977.
; $$\Delta = \tilde { A } + \hat { B } - \hat { C }$$ ; confidence 0.152
978.
; $$g : Y \rightarrow Z$$ ; confidence 0.951
979.
; $$Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$$ ; confidence 0.764
980.
; $$\phi ^ { h } ( pt )$$ ; confidence 0.800
981.
; $$1 B S G$$ ; confidence 0.389
982.
; $$N \gg n$$ ; confidence 0.849
983.
; $$B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$$ ; confidence 0.775
984.
; $$B P \square ^ { * } ( B P )$$ ; confidence 0.987
985.
; $$\Omega _ { f r } ^ { i }$$ ; confidence 0.443
986.
; $$O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$$ ; confidence 0.863
987.
; $$x _ { i } / ( e ^ { x _ { i } } - 1 )$$ ; confidence 0.947
988.
; $$( S _ { \omega } ^ { c } ( e ) T ) [ M ] \in Z$$ ; confidence 0.570
989.
; $$\Omega$$ ; confidence 0.892
990.
; $$M U ^ { * } ( X )$$ ; confidence 0.986
991.
; $$( n )$$ ; confidence 0.998
992.
; $$\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$$ ; confidence 0.922
993.
; $$e ^ { x _ { i } } - 1$$ ; confidence 0.882
994.
; $$im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$$ ; confidence 0.230
995.
; $$\partial N$$ ; confidence 0.677
996.
; $$b _ { i + 1 } \ldots b _ { j }$$ ; confidence 0.553
997.
; $$l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$$ ; confidence 0.413
998.
; $$V _ { 3 }$$ ; confidence 0.998
999.
; $$\operatorname { lm } c _ { 3 } = 0$$ ; confidence 0.496
1000.
; $$\{ x _ { n } > 0 \}$$ ; confidence 0.980
1001.
; $$u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$$ ; confidence 0.744
1002.
; $$M$$ ; confidence 1.000
1003.
; $$\operatorname { cd } _ { p } ( X ) \leq \operatorname { cohcd } ( X ) + 1$$ ; confidence 0.970
1004.
; $$( U ) = n - 1$$ ; confidence 0.999
1005.
; $$cd _ { l } ( Spec A )$$ ; confidence 0.637
1006.
; $$x g = \lambda x$$ ; confidence 0.984
1007.
; $$u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$$ ; confidence 0.830
1008.
; $$A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$$ ; confidence 0.750
1009.
; $$Z G$$ ; confidence 0.957
1010.
; $$f : S ^ { m } \rightarrow S ^ { n }$$ ; confidence 0.195
1011.
; $$\pi _ { n } ( E ) = \pi$$ ; confidence 0.997
1012.
; $$\square ^ { 1 } P ^ { i } = P$$ ; confidence 0.776
1013.
; $$i ^ { * } ( \phi ) = 0$$ ; confidence 0.997
1014.
; $$\beta \circ \beta = 0$$ ; confidence 0.978
1015.
; $$\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$$ ; confidence 0.262
1016.
; $$\pi ^ { 1 } ( X )$$ ; confidence 0.999
1017.
; $$C ^ { \infty } ( D ( \Omega ) )$$ ; confidence 0.935
1018.
; $$\beta _ { 0 }$$ ; confidence 0.851
1019.
; $$[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$$ ; confidence 0.729
1020.
; $$\overline { \overline { A } } = \vec { A }$$ ; confidence 0.649
1021.
; $$\phi \in \Phi$$ ; confidence 0.995
1022.
; $$F \subset U$$ ; confidence 0.980
1023.
; $$x 0$$ ; confidence 0.689
1024.
; $$C ( S ^ { n } )$$ ; confidence 0.498
1025.
; $$f \in L _ { 1 } ( G )$$ ; confidence 0.969
1026.
; $$\Pi ^ { N } \tau$$ ; confidence 0.183
1027.
; $$\beta Y \backslash Y$$ ; confidence 0.989
1028.
; $$X = 0$$ ; confidence 0.554
1029.
; $$\overline { f } : \mu X \rightarrow \mu Y$$ ; confidence 0.995
1030.
; $$| \alpha ( z ) |$$ ; confidence 0.916
1031.
; $$\{ d F _ { i } \} _ { 1 } ^ { m }$$ ; confidence 0.930
1032.
; $$\partial _ { r }$$ ; confidence 0.315
1033.
; $$f : K \rightarrow K$$ ; confidence 0.997
1034.
; $$d = ( d _ { n } )$$ ; confidence 0.939
1035.
; $$\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$$ ; confidence 0.764
1036.
; $$\int _ { - \infty } ^ { \infty } ( P ( x ) / Q ( x ) ) d x$$ ; confidence 0.988
1037.
; $$J ( s ) = \operatorname { lim } J _ { N } ( s ) = 2 ( 2 \pi ) ^ { s - 1 } \zeta ( 1 - s ) \operatorname { sin } \frac { \pi s } { 2 }$$ ; confidence 0.964
1038.
; $$f ( z ) = 1 / ( e ^ { z } - 1 )$$ ; confidence 0.999
1039.
; $$O _ { A } = O _ { D } / J | _ { A }$$ ; confidence 0.748
1040.
; $$DT ( S )$$ ; confidence 0.583
1041.
; $$p _ { i } \in S$$ ; confidence 0.931
1042.
; $$U ( A ) \subset Y$$ ; confidence 0.995
1043.
; $$P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$$ ; confidence 0.724
1044.
; $$x _ { 0 } \in V ^ { n }$$ ; confidence 0.974
1045.
; $$\dot { \phi } = \omega$$ ; confidence 0.997
1046.
; $$A _ { 3 }$$ ; confidence 0.999
1047.
; $$\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$$ ; confidence 0.913
1048.
; $$P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$$ ; confidence 0.947
1049.
; $$\varepsilon$$ ; confidence 0.504
1050.
; $$g \in S ^ { 2 } \varepsilon$$ ; confidence 0.445
1051.
; $$N = N \times \{ 1 \} \times \{ 0 \}$$ ; confidence 1.000
1052.
; $$C ^ { \infty } ( \tilde { N } )$$ ; confidence 0.330
1053.
; $$\gamma$$ ; confidence 0.764
1054.
; $$\tau _ { 2 } \Theta = - \Theta$$ ; confidence 0.618
1055.
; $$f ^ { \prime } ( z _ { 0 } )$$ ; confidence 0.967
1056.
; $$0 < \beta \leq 2 \pi$$ ; confidence 0.997
1057.
; $$( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$$ ; confidence 0.891
1058.
; $$\operatorname { arg } z = c$$ ; confidence 0.995
1059.
; $$f ( \zeta )$$ ; confidence 0.995
1060.
; $$D \subset D _ { 1 }$$ ; confidence 0.990
1061.
; $$\leq ( n + 1 ) ( n + 2 ) / 2$$ ; confidence 0.994
1062.
; $$f ^ { \prime } ( x _ { 1 } ) \equiv 0$$ ; confidence 0.424
1063.
; $$A . B$$ ; confidence 0.944
1064.
; $$m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$$ ; confidence 0.462
1065.
; $$\mu ( d )$$ ; confidence 1.000
1066.
; $$\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$$ ; confidence 0.849
1067.
; $$q = p ^ { r }$$ ; confidence 0.892
1068.
; $$\int _ { - \pi } ^ { \pi } f ( x ) d x = 0$$ ; confidence 0.988
1069.
; $$r \uparrow 1$$ ; confidence 0.659
1070.
; $$X = R ^ { n }$$ ; confidence 0.975
1071.
; $$f _ { i } : D ^ { n } \rightarrow M _ { i }$$ ; confidence 0.449
1072.
; $$f _ { 2 } \circ f _ { 1 } ^ { - 1 }$$ ; confidence 0.997
1073.
; $$X \in V ( B )$$ ; confidence 0.996
1074.
; $$E = T B$$ ; confidence 0.999
1075.
; $$X : B \rightarrow T B$$ ; confidence 0.984
1076.
; $$Y \in T _ { y } ( P )$$ ; confidence 0.991
1077.
; $$\omega ^ { k } = d x ^ { k }$$ ; confidence 0.878
1078.
; $$f _ { x } ^ { - 1 }$$ ; confidence 0.443
1079.
; $$X _ { X } \in T _ { X } ( M )$$ ; confidence 0.414
1080.
; $$T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$$ ; confidence 0.402
1081.
; $$T ( M )$$ ; confidence 0.884
1082.
; $$B \rightarrow H$$ ; confidence 0.991
1083.
; $$E _ { 1 } \rightarrow E _ { 1 }$$ ; confidence 0.970
1084.
; $$\neg \neg \exists x R \supset \exists x R$$ ; confidence 0.760
1085.
; $$\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$$ ; confidence 0.687
1086.
; $$D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$$ ; confidence 0.835
1087.
; $$\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$$ ; confidence 0.915
1088.
; $$T ^ { * }$$ ; confidence 0.527
1089.
; $$\alpha \wedge ( d \alpha ) ^ { n }$$ ; confidence 0.989
1090.
; $$\alpha = d t + \sum p _ { i } d q _ { i }$$ ; confidence 0.858
1091.
; $$\alpha \wedge ( d \alpha ) ^ { s } ( x ) \neq 0$$ ; confidence 0.978
1092.
; $$W ^ { m + 1 }$$ ; confidence 0.972
1093.
; $$\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$$ ; confidence 0.843
1094.
; $$u ^ { k } = u ^ { k - 1 } - \Delta \lambda _ { k } \phi ^ { \prime } ( u ^ { k - 1 } ) ^ { - 1 } \phi ( u ^ { 0 } )$$ ; confidence 0.687
1095.
; $$\frac { d u } { d \lambda } = - \phi ^ { \prime } ( u ) ^ { - 1 } \phi ( u ^ { 0 } )$$ ; confidence 0.984
1096.
; $$\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$$ ; confidence 0.788
1097.
; $$D \subset R$$ ; confidence 0.995
1098.
; $$I \rightarrow \cup _ { i \in l } J _ { i }$$ ; confidence 0.225
1099.
; $$f ^ { - 1 } ( F )$$ ; confidence 0.999
1100.
; $$U = U ( x _ { 0 } )$$ ; confidence 0.991
1101.
; $$y _ { 0 } = A _ { x }$$ ; confidence 0.344
1102.
; $$B \circ A$$ ; confidence 0.963
1103.
; $$x - y \in U$$ ; confidence 0.997
1104.
; $$i B _ { 0 }$$ ; confidence 0.998
1105.
; $$( T ^ { * } ( t ) = T ( t ) )$$ ; confidence 0.991
1106.
; $$631$$ ; confidence 0.381
1107.
; $$e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$$ ; confidence 0.182
1108.
; $$\mathfrak { A } _ { E }$$ ; confidence 0.121
1109.
; $$v _ { ( E ) } = v$$ ; confidence 0.188
1110.
; $$\rho < 1$$ ; confidence 0.998
1111.
; $$P s$$ ; confidence 0.529
1112.
; $$J ( \alpha )$$ ; confidence 1.000
1113.
; $$N = N _ { 0 }$$ ; confidence 0.799
1114.
; $$d y _ { t } = h ( x _ { t } ) d t + d w _ { t } ^ { 0 }$$ ; confidence 0.993
1115.
; $$A _ { n } x _ { n } = y _ { n }$$ ; confidence 0.869
1116.
; $$P Q$$ ; confidence 0.981
1117.
; $$A _ { n } : E _ { n } \rightarrow F _ { n }$$ ; confidence 0.561
1118.
; $$c _ { 1 } = f ^ { \prime } ( 0 ) = 1$$ ; confidence 0.991
1119.
; $$\int _ { - \pi } ^ { \pi } d \mu ( \theta ) = 1$$ ; confidence 0.969
1120.
; $$( f _ { 1 } + f _ { 2 } ) ( x ) = f _ { 1 } ( x ) + f _ { 2 } ( x )$$ ; confidence 0.957
1121.
; $$M ^ { \perp } = \{ x \in G$$ ; confidence 0.985
1122.
; $$r _ { u } \times r _ { v } \neq 0$$ ; confidence 0.643
1123.
; $$F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$$ ; confidence 0.818
1124.
; $$F [ f ] = \frac { F [ g ] } { 1 - \sqrt { 2 \pi } F [ K ] }$$ ; confidence 0.997
1125.
; $$X _ { 1 }$$ ; confidence 0.237
1126.
; $$\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$$ ; confidence 0.223
1127.
; $$\{ x _ { k } \}$$ ; confidence 0.963
1128.
; $$x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$$ ; confidence 0.819
1129.
; $$\alpha _ { i } < b _ { i }$$ ; confidence 0.878
1130.
; $$i _ { k } = k - n [ k / n ] + 1$$ ; confidence 0.964
1131.
; $$\alpha _ { i } : A _ { i } \rightarrow X$$ ; confidence 0.918
1132.
; $$\pi _ { i } : S \rightarrow A$$ ; confidence 0.579
1133.
; $$\prod _ { i \in l } ^ { * } A _ { i }$$ ; confidence 0.474
1134.
; $$A ^ { * } B$$ ; confidence 0.976
1135.
; $$C X Y$$ ; confidence 0.226
1136.
; $$B _ { 1 }$$ ; confidence 0.988
1137.
; $$\{ X _ { t } : t \in T \}$$ ; confidence 0.835
1138.
; $$m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$$ ; confidence 0.753
1139.
; $$\eta _ { Y | X } ^ { 2 } = 1 - E [ \frac { D ( Y | X ) } { D Y } ]$$ ; confidence 0.635
1140.
; $$\operatorname { lm } z ( x ) = 1$$ ; confidence 0.908
1141.
; $$C ( n ) = 0$$ ; confidence 1.000
1142.
; $$\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$$ ; confidence 0.960
1143.
; $$D U$$ ; confidence 0.990
1144.
; $$( \nabla _ { X } U ) _ { p }$$ ; confidence 0.933
1145.
; $$e _ { i } = \partial / \partial x ^ { i } | _ { p }$$ ; confidence 0.599
1146.
; $$\Gamma ( C ) = V$$ ; confidence 0.882
1147.
; $$| w | < 1 / 16$$ ; confidence 0.877
1148.
; $$Y _ { j } = i$$ ; confidence 0.850
1149.
; $$E _ { 8 }$$ ; confidence 0.860
1150.
; $$\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$$ ; confidence 0.444
1151.
; $$E _ { e } ^ { t X } 1$$ ; confidence 0.078
1152.
; $$1 \leq n \leq N$$ ; confidence 0.763
1153.
; $$V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$$ ; confidence 0.626
1154.
; $$\sqrt { 2 }$$ ; confidence 0.191
1155.
; $$t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$$ ; confidence 0.936
1156.
; $$X *$$ ; confidence 0.383
1157.
; $$F T op$$ ; confidence 0.332
1158.
; $$q = 59$$ ; confidence 0.998
1159.
; $$7$$ ; confidence 0.254
1160.
; $$M _ { k } = C _ { k }$$ ; confidence 0.997
1161.
; $$E _ { x } ( s )$$ ; confidence 0.467
1162.
; $$H ( K )$$ ; confidence 0.395
1163.
; $$N = \mu / ( n + 1 )$$ ; confidence 0.992
1164.
; $$P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$$ ; confidence 0.718
1165.
; $$x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$$ ; confidence 0.887
1166.
; $$j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$$ ; confidence 0.284
1167.
; $$\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$$ ; confidence 0.253
1168.
; $$n = \infty$$ ; confidence 1.000
1169.
; $$T _ { 1 } ( H )$$ ; confidence 0.995
1170.
; $$u : H \rightarrow H ^ { \prime }$$ ; confidence 0.987
1171.
; $$| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$$ ; confidence 0.447
1172.
; $$C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$$ ; confidence 0.081
1173.
; $$\Sigma _ { S }$$ ; confidence 0.760
1174.
; $$( \sigma ^ { t } f ) ( t ^ { \prime } ) = f ( t + t ^ { \prime } )$$ ; confidence 1.000
1175.
; $$H C ^ { 0 } ( A )$$ ; confidence 0.945
1176.
; $$z$$ ; confidence 0.525
1177.
; $$( u = const )$$ ; confidence 0.538
1178.
; $$- \infty < z < \infty$$ ; confidence 0.577
1179.
; $$F \in L ^ { * }$$ ; confidence 0.961
1180.
; $$+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$$ ; confidence 0.187
1181.
; $$D x$$ ; confidence 0.713
1182.
; $$\operatorname { gr } D _ { X }$$ ; confidence 0.395
1183.
; $$f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$$ ; confidence 0.906
1184.
; $$V _ { V }$$ ; confidence 0.082
1185.
; $$= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$$ ; confidence 0.711
1186.
; $$( US )$$ ; confidence 0.980
1187.
; $$( L )$$ ; confidence 0.982
1188.
; $$= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$$ ; confidence 0.488
1189.
; $$0 \leq k < 1$$ ; confidence 0.997
1190.
; $$2$$ ; confidence 0.110
1191.
; $$f : S \rightarrow C$$ ; confidence 0.674
1192.
; $$S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$$ ; confidence 0.809
1193.
; $$u _ { n } + 1 - k$$ ; confidence 0.616
1194.
; $$\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$$ ; confidence 0.804
1195.
; $$= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$$ ; confidence 0.435
1196.
; $$D \subseteq g H g ^ { - 1 }$$ ; confidence 0.970
1197.
; $$\alpha \in C \cup \{ \infty \}$$ ; confidence 0.176
1198.
; $$\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$$ ; confidence 0.952
1199.
; $$\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$$ ; confidence 0.541
1200.
; $$\lambda ^ { m }$$ ; confidence 0.955
1201.
; $$\pi ( \chi )$$ ; confidence 0.978
1202.
; $$C ^ { \infty } ( G )$$ ; confidence 0.980
1203.
; $$L \cup O$$ ; confidence 0.130
1204.
; $$M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$$ ; confidence 0.307
1205.
; $$m - 2 r$$ ; confidence 1.000
1206.
; $$Z \in X$$ ; confidence 0.820
1207.
; $$m _ { B } ( A ) = 0$$ ; confidence 0.968
1208.
; $$m B$$ ; confidence 0.535
1209.
; $$S ^ { 4 k - 1 }$$ ; confidence 0.950
1210.
; $$H = C ^ { n }$$ ; confidence 0.847
1211.
; $$F \in Hol ( D )$$ ; confidence 0.805
1212.
; $$\zeta ( s ) = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } }$$ ; confidence 0.995
1213.
; $$\Omega _ { X / Y } ^ { 1 }$$ ; confidence 0.919
1214.
; $$\phi : A \rightarrow A$$ ; confidence 0.991
1215.
; $$s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$$ ; confidence 0.953
1216.
; $$R ^ { i } F = H ^ { i } \circ R ^ { * } F$$ ; confidence 0.941
1217.
; $$f t = g t$$ ; confidence 0.997
1218.
; $$f : X ^ { \cdot } \rightarrow Y$$ ; confidence 0.209
1219.
; $$\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$$ ; confidence 0.232
1220.
; $$E = N$$ ; confidence 0.995
1221.
; $$\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$$ ; confidence 0.290
1222.
; $$\sum _ { \sim } D _ { n + 1 } ^ { 0 }$$ ; confidence 0.204
1223.
; $$k [ ( T _ { i j } ) _ { 1 \leq i \leq d } ]$$ ; confidence 0.679
1224.
; $$| \hat { b } _ { n } | = 1$$ ; confidence 0.209
1225.
; $$G r$$ ; confidence 0.809
1226.
; $$1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$$ ; confidence 0.512
1227.
; $$1 \leq u \leq 2$$ ; confidence 0.976
1228.
; $$u > 1$$ ; confidence 0.987
1229.
; $$q _ { 2 } \neq q _ { 1 }$$ ; confidence 0.828
1230.
; $$\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$$ ; confidence 0.786
1231.
; $$| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$$ ; confidence 0.210
1232.
; $$Z _ { h }$$ ; confidence 0.217
1233.
; $$\overline { G } = G + \Gamma$$ ; confidence 0.752
1234.
; $$t = t _ { 0 } = x _ { 0 } ( 0 )$$ ; confidence 0.983
1235.
; $$u \leq \theta u$$ ; confidence 0.794
1236.
; $$\operatorname { rank } ( A _ { i } ) = \operatorname { rank } ( B _ { i } )$$ ; confidence 0.983
1237.
; $$A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$$ ; confidence 0.523
1238.
; $$G ( G / F _ { 1 } ) = G _ { 1 }$$ ; confidence 0.998
1239.
; $$\operatorname { ord } ( \theta ) = \sum e$$ ; confidence 0.833
1240.
; $$G \neq 0$$ ; confidence 0.999
1241.
; $$\{ A \}$$ ; confidence 0.999
1242.
; $$\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$$ ; confidence 0.142
1243.
; $$x \neq \pm 1$$ ; confidence 0.956
1244.
; $$( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$$ ; confidence 1.000
1245.
; $$( \frac { u } { v } ) ^ { \prime } = \frac { u ^ { \prime } v - u v ^ { \prime } } { v ^ { 2 } }$$ ; confidence 0.958
1246.
; $$( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$$ ; confidence 0.996
1247.
; $$\Delta \rightarrow 0$$ ; confidence 0.981
1248.
; $$x _ { 2 } ( t )$$ ; confidence 0.998
1249.
; $$\dot { x } = f ( t )$$ ; confidence 0.623
1250.
; $$x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$$ ; confidence 0.998
1251.
; $$0 < l < n$$ ; confidence 0.998
1252.
; $$= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$$ ; confidence 0.918
1253.
; $$W _ { 2 } ^ { p }$$ ; confidence 0.986
1254.
; $$L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$$ ; confidence 0.840
1255.
; $$R _ { L } = H ( V )$$ ; confidence 0.569
1256.
; $$( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$$ ; confidence 0.980
1257.
; $$n - m$$ ; confidence 0.998
1258.
; $$\partial x / u = \partial t / 1$$ ; confidence 0.967
1259.
; $$\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$$ ; confidence 0.933
1260.
; $$| x ( t ( t ) ) \| \leq \rho$$ ; confidence 0.117
1261.
; $$\dot { x } ( t ) = A x ( t - h ) - D x ( t )$$ ; confidence 0.986
1262.
; $$2 \pi \alpha$$ ; confidence 0.461
1263.
; $$z = \phi _ { i }$$ ; confidence 0.976
1264.
; $$s ^ { \prime } ( \Omega ^ { r } ( X ) )$$ ; confidence 0.911
1265.
; $$\int _ { S } \omega$$ ; confidence 0.561
1266.
; $$\omega \in \Omega ^ { d } [ X ]$$ ; confidence 0.948
1267.
; $$\hat { V }$$ ; confidence 0.359
1268.
; $$d \omega = d \square ^ { * } \omega = 0$$ ; confidence 0.954
1269.
; $$\partial M$$ ; confidence 0.831
1270.
; $$u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$$ ; confidence 0.362
1271.
; $$u ( x _ { i } )$$ ; confidence 0.997
1272.
; $$r \in F$$ ; confidence 0.671
1273.
; $$b _ { 0 }$$ ; confidence 0.363
1274.
; $$r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$$ ; confidence 0.388
1275.
; $$\frac { \partial u } { \partial t } + u \frac { \partial u } { \partial x } = D \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } }$$ ; confidence 0.994
1276.
; $$X _ { 1 } \cup X _ { 2 } = X$$ ; confidence 0.917
1277.
; $$\operatorname { dim } X \times Y < \operatorname { dim } X + \operatorname { dim } Y$$ ; confidence 0.994
1278.
; $$\{ fd ( M )$$ ; confidence 0.531
1279.
; $$[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$$ ; confidence 0.618
1280.
; $$< \operatorname { Gdim } L < 1 +$$ ; confidence 0.485
1281.
; $$d ( I ^ { n } ) = n$$ ; confidence 0.754
1282.
; $$s \in Z$$ ; confidence 0.983
1283.
; $$G$$ ; confidence 0.797
1284.
; $$w _ { N } ( \alpha ) \geq n$$ ; confidence 0.879
1285.
; $$y = y _ { 0 } - a n$$ ; confidence 0.836
1286.
; $$a x + b y = 1$$ ; confidence 0.602
1287.
; $$z = r \operatorname { cos } \theta$$ ; confidence 0.866
1288.
; $$\operatorname { li } x / \phi ( d )$$ ; confidence 0.594
1289.
; $$s = - 2 \nu - \delta$$ ; confidence 0.945
1290.
; $$C _ { 0 } ^ { \infty } ( \Omega ) \subset L _ { 2 } ( \Omega )$$ ; confidence 0.992
1291.
; $$H ^ { p } ( d \theta / 2 \pi )$$ ; confidence 0.994
1292.
; $$C ( G )$$ ; confidence 1.000
1293.
; $$0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq$$ ; confidence 0.992
1294.
; $$\sigma > h$$ ; confidence 0.998
1295.
; $$s = 0$$ ; confidence 0.992
1296.
; $$L y = g$$ ; confidence 0.990
1297.
; $$K = \overline { K } \cap L _ { m } ( G )$$ ; confidence 0.866
1298.
; $$| \{ Z \} _ { n } | \rightarrow \infty$$ ; confidence 0.988
1299.
; $$\sigma _ { i } ^ { z }$$ ; confidence 0.702
1300.
; $$e ( B / A ) f ( B / A ) = n$$ ; confidence 0.996
1301.
; $$f ( B / A ) = 1$$ ; confidence 0.999
1302.
; $$t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$$ ; confidence 0.248
1303.
; $$R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$$ ; confidence 0.981
1304.
; $$x d y$$ ; confidence 0.999
1305.
; $$\gamma$$ ; confidence 0.589
1306.
; $$c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$$ ; confidence 0.068
1307.
; $$\lambda _ { 3 } = K \sum _ { i j } \frac { \delta _ { i j } ^ { 2 } } { \sigma ^ { 2 } }$$ ; confidence 0.991
1308.
; $$R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$$ ; confidence 0.906
1309.
; $$T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$$ ; confidence 0.997
1310.
; $$Z ^ { * }$$ ; confidence 0.508
1311.
; $$| f _ { i } | < 1$$ ; confidence 0.997
1312.
; $$R - F R F ^ { * } = G J G ^ { * }$$ ; confidence 0.996
1313.
; $$\sigma _ { k }$$ ; confidence 0.198
1314.
; $$x \in D _ { B }$$ ; confidence 0.620
1315.
; $$| w - \beta _ { 0 } | = | \zeta _ { 0 } |$$ ; confidence 0.997
1316.
; $$| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$$ ; confidence 0.854
1317.
; $$\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$$ ; confidence 0.488
1318.
; $$d _ { n } \ll p _ { n } ^ { \theta }$$ ; confidence 0.957
1319.
; $$\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$$ ; confidence 0.429
1320.
; $$\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$$ ; confidence 0.899
1321.
; $$\zeta ( \sigma + i t ) \neq 0$$ ; confidence 0.991
1322.
; $$\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$$ ; confidence 0.170
1323.
; $$\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$$ ; confidence 0.076
1324.
; $$\alpha \sum _ { i \in I } b _ { i } = \sum _ { i \in I } a b _ { i }$$ ; confidence 0.661
1325.
; $$\| \hat { f } \| = \| f \| _ { 1 }$$ ; confidence 0.870
1326.
; $$A ( \vec { G } )$$ ; confidence 0.484
1327.
; $$\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$$ ; confidence 0.784
1328.
; $$\operatorname { lim } _ { x \rightarrow \infty } e ^ { - x } \sum _ { n = 0 } ^ { \infty } \frac { s _ { n } x ^ { n } } { n ! }$$ ; confidence 0.659
1329.
; $$[ A : F ] = [ L : F ] ^ { 2 }$$ ; confidence 0.997
1330.
; $$\sigma > 1 / 2$$ ; confidence 0.999
1331.
; $$\gamma _ { k } < \sigma < 1$$ ; confidence 0.998
1332.
; $$\Delta _ { D } ( z )$$ ; confidence 0.999
1333.
; $$D \backslash K$$ ; confidence 0.979
1334.
; $$x \square ^ { j }$$ ; confidence 0.818
1335.
; $$p _ { 1 } / p _ { 2 }$$ ; confidence 0.981
1336.
; $$y ^ { \prime } ( b ) + v ( b ) y ( b ) = \gamma ( b )$$ ; confidence 0.998
1337.
; $$y ^ { \prime } ( b ) + \psi y ( b ) = \beta$$ ; confidence 0.993
1338.
; $$\sum _ { m = 1 } ^ { \infty } u _ { m n n }$$ ; confidence 0.852
1339.
; $$O \subset A _ { R }$$ ; confidence 0.132
1340.
; $$A _ { 0 } ( G )$$ ; confidence 0.996
1341.
; $$\infty \in G$$ ; confidence 0.992
1342.
; $$\overline { U }$$ ; confidence 0.299
1343.
; $$A ( D ) ^ { * } \simeq A / B$$ ; confidence 0.981
1344.
; $$f ( q ) = 1 / ( \sqrt { 5 } q ^ { 2 } )$$ ; confidence 1.000
1345.
; $$Y ( t ) \in R ^ { m }$$ ; confidence 0.934
1346.
; $$T : L ^ { 1 } \rightarrow X$$ ; confidence 0.986
1347.
; $$\delta ( t )$$ ; confidence 1.000
1348.
; $$S _ { g } ( w _ { 0 } )$$ ; confidence 0.921
1349.
; $$A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$$ ; confidence 0.193
1350.
; $$\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$$ ; confidence 0.904
1351.
; $$T$$ ; confidence 0.914
1352.
; $$\Sigma \Omega X \rightarrow X$$ ; confidence 0.748
1353.
; $$74$$ ; confidence 0.496
1354.
; $$V \not \equiv W$$ ; confidence 0.489
1355.
; $$\varphi$$ ; confidence 0.858
1356.
; $$\Sigma - 1$$ ; confidence 0.852
1357.
; $$h ^ { i } ( w ) = g ^ { i } ( w )$$ ; confidence 0.992
1358.
; $$T p ( A _ { y } ) = A$$ ; confidence 0.900
1359.
; $$Y \rightarrow J ^ { 1 } Y$$ ; confidence 0.987
1360.
; $$\Gamma _ { q }$$ ; confidence 0.846
1361.
; $$L ( u ) + \lambda u = 0$$ ; confidence 0.993
1362.
; $$\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$$ ; confidence 0.519
1363.
; $$\| \hat { A } - A \| \leq \delta$$ ; confidence 0.245
1364.
; $$\overline { U _ { n } \in N A _ { n } ( B ) }$$ ; confidence 0.452
1365.
; $$\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$$ ; confidence 0.088
1366.
; $$K _ { \infty }$$ ; confidence 0.984
1367.
; $$f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$$ ; confidence 0.738
1368.
; $$f = u _ { 1 } + i u _ { 2 }$$ ; confidence 0.994
1369.
; $$0 < \sigma < 0.5$$ ; confidence 0.996
1370.
; $$z _ { k } \in L$$ ; confidence 0.875
1371.
; $$\Delta \Delta w _ { 0 } = 0$$ ; confidence 0.903
1372.
; $$f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$$ ; confidence 0.640
1373.
; $$f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$$ ; confidence 0.071
1374.
; $$E ^ { \prime } = 0$$ ; confidence 0.985
1375.
; $$\tau _ { i + 1 } - \tau _ { i }$$ ; confidence 0.970
1376.
; $$\langle P ^ { ( 2 ) } \rangle$$ ; confidence 0.899
1377.
; $$\operatorname { Th } ( K _ { 1 } )$$ ; confidence 0.733
1378.
; $$\Omega _ { * } ^ { SO }$$ ; confidence 0.644
1379.
; $$f ( z _ { 1 } + z _ { 2 } )$$ ; confidence 0.999
1380.
; $$C x ^ { - 1 }$$ ; confidence 0.834
1381.
; $$f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$$ ; confidence 0.893
1382.
; $$y ^ { 2 } = R ( x )$$ ; confidence 0.993
1383.
; $$u = - \int _ { z } ^ { \infty } \frac { d z } { w }$$ ; confidence 0.983
1384.
; $$T ^ { * } X \backslash 0$$ ; confidence 0.997
1385.
; $$\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$$ ; confidence 0.732
1386.
; $$b _ { 2 } = 0$$ ; confidence 1.000
1387.
; $$\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$$ ; confidence 0.949
1388.
; $$X _ { t } = m F$$ ; confidence 0.993
1389.
; $$y ^ { 2 } = x ^ { 3 } - g x - g$$ ; confidence 0.962
1390.
; $$y ^ { \prime } ( 0 ) = 0$$ ; confidence 0.990
1391.
; $$P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$$ ; confidence 0.394
1392.
; $$B \circ F$$ ; confidence 0.974
1393.
; $$c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$$ ; confidence 0.789
1394.
; $$U _ { \mu } ( x ) = \int H ( | x - y | ) d \mu ( y )$$ ; confidence 0.999
1395.
; $$U _ { 0 } ( t )$$ ; confidence 0.998
1396.
; $$( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$$ ; confidence 0.766
1397.
; $$( \Omega _ { + } - 1 ) \psi ( t ) = ( \Omega _ { + } - 1 ) g \psi ( t ) =$$ ; confidence 0.997
1398.
; $$\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$$ ; confidence 0.823
1399.
; $$f : W \rightarrow R$$ ; confidence 0.920
1400.
; $$\sum _ { n } ^ { - 1 }$$ ; confidence 0.820
1401.
; $$\nu ( n ) = \alpha$$ ; confidence 0.430
1402.
; $$\Phi \Psi$$ ; confidence 0.943
1403.
; $$\Psi ( A ) = A$$ ; confidence 0.999
1404.
; $$\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$$ ; confidence 0.338
1405.
; $$\lambda _ { 1 } = \lambda _ { 2 }$$ ; confidence 1.000
1406.
; $$P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$$ ; confidence 0.914
1407.
; $$\tau _ { n } ^ { ( B ) }$$ ; confidence 0.845
1408.
; $$o ( G )$$ ; confidence 0.990
1409.
; $$m ( M )$$ ; confidence 0.999
1410.
; $$2 d \geq n$$ ; confidence 0.758
1411.
; $$R ( \delta ) = 1 - H ( \delta )$$ ; confidence 1.000
1412.
; $$k \geq n - i t$$ ; confidence 0.558
1413.
; $$\sigma \approx s$$ ; confidence 0.994
1414.
; $$l _ { x }$$ ; confidence 0.196
1415.
; $$2 - 2 g - l$$ ; confidence 0.741
1416.
; $$2 - m - 1$$ ; confidence 0.994
1417.
; $$t h$$ ; confidence 0.989
1418.
; $$E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$$ ; confidence 0.682
1419.
; $$\sigma ^ { k } : M \rightarrow E ^ { k }$$ ; confidence 0.958
1420.
; $$\therefore M \rightarrow F$$ ; confidence 0.313
1421.
; $$M = \overline { U }$$ ; confidence 0.999
1422.
; $$E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$$ ; confidence 0.101
1423.
; $$E ( L )$$ ; confidence 0.960
1424.
; $$E ( L ) = \frac { \partial L } { \partial y } - D ( \frac { \partial L } { \partial y ^ { \prime } } )$$ ; confidence 0.989
1425.
; $$L \mapsto E ( L )$$ ; confidence 0.892
1426.
; $$K ( L )$$ ; confidence 0.907
1427.
; $$Q _ { n - j } ( z ) \equiv 0$$ ; confidence 0.981
1428.
; $$p _ { x } ^ { * } = \lambda \operatorname { exp } ( - \lambda x )$$ ; confidence 0.974
1429.
; $$A + 2$$ ; confidence 0.997
1430.
; $$B = f ( A )$$ ; confidence 0.999
1431.
; $$\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$$ ; confidence 0.866
1432.
; $$P ^ { \prime } ( C )$$ ; confidence 0.802
1433.
; $$f | _ { A } = \phi$$ ; confidence 0.668
1434.
; $$B _ { \mu } ^ { 1 } \subset B \subset B _ { \mu } ^ { 2 }$$ ; confidence 0.646
1435.
; $$\tau \geq \zeta$$ ; confidence 0.994
1436.
; $$A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$$ ; confidence 0.919
1437.
; $$K ( B - C _ { N } ) > K ( B - A ) > D$$ ; confidence 0.579
1438.
; $$C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$$ ; confidence 0.974
1439.
; $$\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$$ ; confidence 0.606
1440.
; $$( L _ { \mu } ) ^ { p }$$ ; confidence 0.998
1441.
; $$z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$$ ; confidence 0.857
1442.
; $$( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$$ ; confidence 0.053
1443.
; $$a ^ { X } = e ^ { X \operatorname { ln } \alpha }$$ ; confidence 0.301
1444.
; $$z \in Z$$ ; confidence 0.973
1445.
; $$S = o ( \# A )$$ ; confidence 0.908
1446.
; $$p f$$ ; confidence 0.602
1447.
; $$y _ { j } \delta \theta$$ ; confidence 0.866
1448.
; $$\nu - 1 / 2 \in Z$$ ; confidence 0.954
1449.
; $$y ^ { \prime } + \alpha _ { 1 } y = 0$$ ; confidence 0.639
1450.
; $$\alpha : G \rightarrow \operatorname { Aut } A$$ ; confidence 0.856
1451.
; $$n + = n - = n$$ ; confidence 0.228
1452.
; $$A = A _ { 0 } ^ { * }$$ ; confidence 0.706
1453.
; $$\lambda < \alpha$$ ; confidence 0.600
1454.
; $$r > n$$ ; confidence 0.953
1455.
; $$x _ { i } ^ { 2 } = 0$$ ; confidence 0.840
1456.
; $$\Delta J =$$ ; confidence 0.998
1457.
; $$r < | z | < 1$$ ; confidence 0.987
1458.
; $$\gamma \geq 0$$ ; confidence 0.994
1459.
; $$S h$$ ; confidence 0.739
1460.
; $$V$$ ; confidence 0.996
1461.
; $$R _ { i } = F _ { q } [ x ] / ( f _ { i } )$$ ; confidence 0.671
1462.
; $$G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$$ ; confidence 0.998
1463.
; $$K _ { X } ^ { - 1 }$$ ; confidence 0.918
1464.
; $$Q \subset P ^ { 4 }$$ ; confidence 0.991
1465.
; $$d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$$ ; confidence 0.976
1466.
; $$q ( 0 ) \neq 0$$ ; confidence 0.997
1467.
; $$w ( x ) = | f ( x ) | ^ { 2 }$$ ; confidence 1.000
1468.
; $$C _ { 0 }$$ ; confidence 0.800
1469.
; $$( + \infty ) - ( + \infty ) = - \infty - ( - \infty ) = - \infty$$ ; confidence 0.999
1470.
; $$\alpha ^ { \lambda } = 1$$ ; confidence 0.972
1471.
; $$q ( m ) = ( m ^ { p - 1 } - 1 ) / p$$ ; confidence 0.963
1472.
; $$\tau _ { 0 } = 0$$ ; confidence 0.955
1473.
; $$\tau _ { k + 1 } = t$$ ; confidence 0.410
1474.
; $$P ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } )$$ ; confidence 0.620
1475.
; $$U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$$ ; confidence 0.947
1476.
; $$P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$$ ; confidence 0.505
1477.
; $$F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$$ ; confidence 0.940
1478.
; $$G = T$$ ; confidence 0.991
1479.
; $$v \in A _ { p } ( G )$$ ; confidence 0.412
1480.
; $$u \in C ^ { G }$$ ; confidence 0.438
1481.
; $$\lambda ^ { p } ( M ^ { 1 } ( G ) )$$ ; confidence 0.996
1482.
; $$V ( x _ { 0 } )$$ ; confidence 0.998
1483.
; $$\phi ( \mathfrak { A } )$$ ; confidence 0.445
1484.
; $$x _ { n } = n$$ ; confidence 0.849
1485.
; $$\Delta ^ { n } f ( x )$$ ; confidence 0.976
1486.
; $$\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$$ ; confidence 0.269
1487.
; $$f ^ { - 1 } ( f ( x ) ) \cap U$$ ; confidence 0.998
1488.
; $$G / G 1$$ ; confidence 0.622
1489.
; $$y ^ { i } C _ { i j k } = 0$$ ; confidence 0.942
1490.
; $$\Phi ( \Phi ( x ) ) = x$$ ; confidence 1.000
1491.
; $$| x - x _ { 0 } | \leq b$$ ; confidence 0.990
1492.
; $$| X$$ ; confidence 0.687
1493.
; $$\phi ( p )$$ ; confidence 0.999
1494.
; $$| A | = \int _ { R } | \alpha | 0$$ ; confidence 0.765
1495.
; $$\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$$ ; confidence 0.891
1496.
; $$C ^ { b r } ( E ^ { n } )$$ ; confidence 0.943
1497.
; $$\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$$ ; confidence 0.995
1498.
; $$\{ \xi _ { f } : f \in H \}$$ ; confidence 0.998
1499.
; $$\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$$ ; confidence 0.962
1500.
; $$t \subset v$$ ; confidence 0.885
1501.
; $$f _ { i } ( X ) = X _ { i } + \ldots$$ ; confidence 0.733
1502.
; $$F ( \overline { m } )$$ ; confidence 0.760
1503.
; $$\omega = \alpha _ { 1 } \ldots \alpha _ { k }$$ ; confidence 0.633
1504.
; $$V _ { 1 } ^ { * }$$ ; confidence 0.750
1505.
; $$\{ \lambda \}$$ ; confidence 1.000
1506.
; $$A \rightarrow w$$ ; confidence 0.934
1507.
; $$\sigma ( \alpha ) = \{ w \}$$ ; confidence 0.997
1508.
; $$I V _ { 2 }$$ ; confidence 0.996
1509.
; $$x ^ { i } \in R$$ ; confidence 0.987
1510.
; $$J _ { \nu }$$ ; confidence 0.556
1511.
; $$F \mu$$ ; confidence 0.813
1512.
; $$P ( x ) = \frac { 1 } { \sqrt { 2 \pi } } F ( x )$$ ; confidence 1.000
1513.
; $$L _ { q } ( X )$$ ; confidence 0.846
1514.
; $$\Lambda _ { G } = 1$$ ; confidence 0.897
1515.
; $$( 8 \times 8 )$$ ; confidence 1.000
1516.
; $$| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$$ ; confidence 0.840
1517.
; $$F ( z ) = - \frac { 1 } { 2 \pi i } \int \frac { \operatorname { exp } e ^ { \zeta ^ { 2 } } } { \zeta - z } d \zeta$$ ; confidence 0.622
1518.
; $$f \in L _ { 1 }$$ ; confidence 0.991
1519.
; $$\phi \in C _ { 0 } ^ { \infty } ( \Omega )$$ ; confidence 0.997
1520.
; $$X ^ { \prime } \subset X$$ ; confidence 0.988
1521.
; $$K _ { j } \times R ^ { N j }$$ ; confidence 0.562
1522.
; $$d _ { C } ^ { - 1 } = \operatorname { det } \left\| \begin{array} { c c } { \phi _ { \theta } \theta } & { \phi _ { \theta x } } \\ { \phi _ { y } \theta } & { \phi _ { y x } } \end{array} \right\|$$ ; confidence 0.370
1523.
; $$\alpha = - b$$ ; confidence 0.947
1524.
; $$f * g$$ ; confidence 0.637
1525.
; $$K = D$$ ; confidence 0.998
1526.
; $$F [ \delta ] = 1$$ ; confidence 0.999
1527.
; $$\eta \in \operatorname { ln } t \Gamma ^ { \prime }$$ ; confidence 0.642
1528.
; $$\xi _ { 1 } \neq \infty$$ ; confidence 0.999
1529.
; $$z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$$ ; confidence 0.834
1530.
; $$L _ { k } ( z _ { k } )$$ ; confidence 0.991
1531.
; $$\infty \rightarrow \alpha / c$$ ; confidence 0.864
1532.
; $$A / \eta$$ ; confidence 0.702
1533.
; $$D ( B ) \supset D ( A )$$ ; confidence 0.993
1534.
; $$\alpha < \beta < \gamma$$ ; confidence 0.991
1535.
; $$x \in D ( A )$$ ; confidence 0.906
1536.
; $$\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$$ ; confidence 0.855
1537.
; $$\eta = \frac { ( \alpha ^ { 2 } - \rho ^ { 2 } ) ^ { 1 / 2 } ( \alpha ^ { 2 } - \rho _ { 0 } ^ { 2 } ) ^ { 1 / 2 } } { \alpha }$$ ; confidence 0.628
1538.
; $$v _ { 0 } ^ { k }$$ ; confidence 0.384
1539.
; $$| \Phi ( G )$$ ; confidence 0.956
1540.
; $$\mathfrak { A } \sim _ { l } \mathfrak { B }$$ ; confidence 0.922
1541.
; $$D ( \lambda ) \neq 0$$ ; confidence 0.997
1542.
; $$| \lambda | < B ^ { - 1 }$$ ; confidence 0.997
1543.
; $$\beta ( A ) < \infty$$ ; confidence 0.997
1544.
; $$R ( A )$$ ; confidence 1.000
1545.
; $$\beta ( A - K ) < \infty$$ ; confidence 0.999
1546.
; $$n \| < C$$ ; confidence 0.368
1547.
; $$\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$$ ; confidence 0.981
1548.
; $$( r \geq 1 )$$ ; confidence 1.000
1549.
; $$x _ { 1 } ( t ) + x _ { 2 } ( t ) = A ( t ) \operatorname { cos } ( \omega _ { 1 } t + \phi ( t ) )$$ ; confidence 0.965
1550.
; $$( x M ) ( M ^ { - 1 } y )$$ ; confidence 0.999
1551.
; $$X _ { i } \cap X _ { j } =$$ ; confidence 0.322
1552.
; $$C _ { G } ( n ) \leq N$$ ; confidence 0.972
1553.
; $$N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$$ ; confidence 0.269
1554.
; $$\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$$ ; confidence 0.071
1555.
; $$| z | < r$$ ; confidence 0.957
1556.
; $$= \frac { ( n _ { 1 } + l ) ! } { ! ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { 2 } } + \ldots$$ ; confidence 0.665
1557.
; $$\lambda = \lambda _ { j }$$ ; confidence 0.911
1558.
; $$( n ! ) ^ { - 1 } n _ { D }$$ ; confidence 0.991
1559.
; $$\| x \| _ { p } = \int _ { 0 } ^ { 1 } | x ( t ) | ^ { p } d t$$ ; confidence 0.742
1560.
; $$0 < p _ { n } \rightarrow 0$$ ; confidence 0.998
1561.
; $$J : T M \rightarrow T M$$ ; confidence 0.972
1562.
; $$V _ { 0 } ( z )$$ ; confidence 0.971
1563.
; $$x \in R \cup \{ \infty \}$$ ; confidence 0.764
1564.
; $$D = \{ z \in C : | z | < 1 \}$$ ; confidence 0.972
1565.
; $$\chi ( \Delta ) = \chi ( \Gamma ) [ \Gamma : \Delta ]$$ ; confidence 0.999
1566.
; $$L _ { p } ( X )$$ ; confidence 0.970
1567.
; $$S \subset T$$ ; confidence 0.743
1568.
; $$A \in \mathfrak { S }$$ ; confidence 0.285
1569.
; $$f \in N ( \Delta )$$ ; confidence 0.997
1570.
; $$t \mapsto t + T$$ ; confidence 0.520
1571.
; $$T _ { \rightarrow } V ^ { - 1 } T V$$ ; confidence 0.437
1572.
; $$P ( C A )$$ ; confidence 0.999
1573.
; $$f ( - x ) = - f ( x )$$ ; confidence 1.000
1574.
; $$\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$$ ; confidence 0.207
1575.
; $$T _ { N } ( t )$$ ; confidence 0.993
1576.
; $$\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$$ ; confidence 0.777
1577.
; $$\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$$ ; confidence 0.308
1578.
; $$\tilde { f } : Y \rightarrow X$$ ; confidence 0.494
1579.
; $$e _ { \lambda } ^ { 1 } \in X$$ ; confidence 0.877
1580.
; $$A ^ { p } \geq ( A ^ { p / 2 } B ^ { p } A ^ { p / 2 } ) ^ { 1 / 2 }$$ ; confidence 0.997
1581.
; $$LOC$$ ; confidence 0.417
1582.
; $$X \times F$$ ; confidence 0.480
1583.
; $$\pi : P \rightarrow G \backslash P$$ ; confidence 0.994
1584.
; $$S ( M ^ { \prime } ) \subset M ^ { \prime }$$ ; confidence 0.989
1585.
; $$H \mapsto C _ { A } ^ { \prime }$$ ; confidence 0.465
1586.
; $$V \oplus \mathfrak { g }$$ ; confidence 0.476
1587.
; $$C ^ { ( 0 ) }$$ ; confidence 0.988
1588.
; $$\delta : G ^ { \prime } \rightarrow W$$ ; confidence 0.965
1589.
; $$\mathfrak { x } \times x$$ ; confidence 0.416
1590.
; $$H _ { i } ( x ^ { \prime } ) > H _ { i } ( x ^ { \prime \prime } )$$ ; confidence 0.924
1591.
; $$\hat { K } _ { i }$$ ; confidence 0.180
1592.
; $$x$$ ; confidence 0.485
1593.
; $$\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$$ ; confidence 0.904
1594.
; $$\nu < \kappa$$ ; confidence 0.992
1595.
; $$\omega = 1 / c ^ { 2 }$$ ; confidence 0.906
1596.
; $$\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$$ ; confidence 0.180
1597.
; $$( \partial w / \partial t ) + ( \partial f / \partial x ) = ( h ^ { 2 } / 2 \tau ) ( \partial ^ { 2 } w / \partial x ^ { 2 } )$$ ; confidence 0.582
1598.
; $$\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$$ ; confidence 0.914
1599.
; $$\beta = \frac { 1 } { \gamma - 1 }$$ ; confidence 0.992
1600.
; $$+ \beta n ( 2 n + 1 ) y _ { n } = 0$$ ; confidence 0.975
1601.
; $$3 n + 2$$ ; confidence 1.000
1602.
; $$= \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \mu = 1 } ^ { n + 1 } \beta _ { \mu } f ( \xi _ { \mu } )$$ ; confidence 0.992
1603.
; $$\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$$ ; confidence 0.221
1604.
; $$0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$$ ; confidence 0.913
1605.
; $$\alpha _ { 31 } / \alpha _ { 11 }$$ ; confidence 0.405
1606.
; $$\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$$ ; confidence 0.057
1607.
; $$f _ { \zeta } ( \lambda )$$ ; confidence 0.821
1608.
; $$R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$$ ; confidence 0.876
1609.
; $$K ( y ) = \operatorname { sgn } y . | y | ^ { \alpha }$$ ; confidence 0.655
1610.
; $$\hbar \square ^ { * } ( M )$$ ; confidence 0.620
1611.
; $$T _ { \nu }$$ ; confidence 0.336
1612.
; $$i : A \rightarrow X$$ ; confidence 0.995
1613.
; $$F = p t$$ ; confidence 0.143
1614.
; $$T \xi$$ ; confidence 0.994
1615.
; $$\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$$ ; confidence 0.185
1616.
; $$C = \text { int } \Gamma$$ ; confidence 0.630
1617.
; $$\overline { O } _ { k }$$ ; confidence 0.968
1618.
; $$\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$$ ; confidence 0.411
1619.
; $$\alpha f \in D ^ { \prime } ( O )$$ ; confidence 0.895
1620.
; $$x u = 0$$ ; confidence 0.979
1621.
; $$I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$$ ; confidence 0.956
1622.
; $$\Gamma \subset \Omega$$ ; confidence 0.987
1623.
; $$w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$$ ; confidence 0.798
1624.
; $$m : A ^ { \prime } \rightarrow A$$ ; confidence 0.997
1625.
; $$v \wedge \wedge \ldots \wedge v _ { m }$$ ; confidence 0.124
1626.
; $$\xi _ { p } \in ( \nu F ^ { m } ) p$$ ; confidence 0.212
1627.
; $$d f ( X )$$ ; confidence 0.998
1628.
; $$\xi \in ( \nu F ^ { m } ) _ { p }$$ ; confidence 0.549
1629.
; $$\alpha ( F ) = 1$$ ; confidence 1.000
1630.
; $$D \Re \subset M$$ ; confidence 0.255
1631.
; $$V ( \Re ) > 2 ^ { n } d ( \Lambda )$$ ; confidence 0.792
1632.
; $$d ( \Lambda ) = \Delta ( \mathfrak { M } )$$ ; confidence 0.934
1633.
; $$p _ { n } ( z ) : = \operatorname { det } \{ z I - A \}$$ ; confidence 0.968
1634.
; $$| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$$ ; confidence 0.103
1635.
; $$D _ { x _ { k } } = - i \partial _ { x _ { k } }$$ ; confidence 0.982
1636.
; $$z$$ ; confidence 0.578
1637.
; $$\delta \varepsilon$$ ; confidence 0.600
1638.
; $$d E$$ ; confidence 0.607
1639.
; $$\alpha \equiv f ( x _ { 0 } - ) \leq f ( x _ { 0 } + ) \equiv b$$ ; confidence 0.692
1640.
; $$A < \alpha < b < B$$ ; confidence 0.686
1641.
; $$A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$$ ; confidence 0.055
1642.
; $$\psi \circ \phi = \phi ^ { \prime } \circ \psi$$ ; confidence 0.848
1643.
; $$q ^ { \prime } \in A ^ { \prime }$$ ; confidence 0.966
1644.
; $$a _ { y }$$ ; confidence 0.519
1645.
; $$A _ { 0 } = \mathfrak { A } _ { 0 }$$ ; confidence 0.968
1646.
; $$A = \sum _ { i \geq 0 } A$$ ; confidence 0.975
1647.
; $$\operatorname { grad } ( f g ) = g \operatorname { grad } f + f \operatorname { grad } g$$ ; confidence 0.981
1648.
; $$t \circ \in E$$ ; confidence 0.290
1649.
; $$f _ { B } ( x ) = \frac { \lambda ^ { x } } { x ! } e ^ { - \lambda } \{ 1 + \frac { \mu _ { 2 } - \lambda } { \lambda ^ { 2 } } [ \frac { x ^ { [ 2 ] } } { 2 } - \lambda x ^ { [ 1 ] } + \frac { \lambda ^ { 2 } } { 2 } ] +$$ ; confidence 0.569
1650.
; $$[ \Psi / \Phi ] \Phi$$ ; confidence 0.955
1651.
; $$\mu ( \alpha )$$ ; confidence 0.999
1652.
; $$x \in L ( \Gamma )$$ ; confidence 0.995
1653.
; $$B \rightarrow b B$$ ; confidence 0.994
1654.
; $$V _ { T } ^ { \prime } = \mu ( V _ { T } )$$ ; confidence 0.997
1655.
; $$\sum _ { d ( e ) = Q } f _ { e }$$ ; confidence 0.651
1656.
; $$( n \operatorname { ln } n ) / 2$$ ; confidence 0.978
1657.
; $$E ^ { n } \times R$$ ; confidence 0.937
1658.
; $$f _ { 12 }$$ ; confidence 0.974
1659.
; $$G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$$ ; confidence 0.272
1660.
; $$\psi _ { k } ( \xi )$$ ; confidence 0.998
1661.
; $$y ( \alpha ) = 0$$ ; confidence 0.954
1662.
; $$C = [ p ( \xi ) W ( \xi ) ] ^ { - 1 }$$ ; confidence 0.997
1663.
; $$G _ { A B } ^ { ( n ) } ( E )$$ ; confidence 0.976
1664.
; $$m \equiv 4$$ ; confidence 0.840
1665.
; $$B M$$ ; confidence 0.973
1666.
; $$f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$$ ; confidence 0.743
1667.
; $$M _ { 2 } \times S ^ { N }$$ ; confidence 0.923
1668.
; $$m \geq 3$$ ; confidence 0.668
1669.
; $$X ^ { ( r ) } \rightarrow V$$ ; confidence 0.950
1670.
; $$g _ { i } \in A$$ ; confidence 0.960
1671.
; $$g \rightarrow g$$ ; confidence 0.987
1672.
; $$| x _ { \mathfrak { j } } | \leq M$$ ; confidence 0.106
1673.
; $$w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$$ ; confidence 0.851
1674.
; $$\alpha _ { 1 } \ldots \alpha _ { m }$$ ; confidence 0.435
1675.
; $$\frac { d ^ { 2 } y } { d t ^ { 2 } } + P ( t ) y = 0$$ ; confidence 1.000
1676.
; $$x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$$ ; confidence 0.898
1677.
; $$X = \| \left. \begin{array} { l l } { U _ { 1 } } & { U _ { 2 } } \\ { V _ { 1 } } & { V _ { 2 } } \end{array} \right. |$$ ; confidence 0.501
1678.
; $$M _ { 0 } \times I$$ ; confidence 0.798
1679.
; $$P _ { n - k }$$ ; confidence 0.990
1680.
; $$P _ { - } \phi \in B _ { p } ^ { 1 / p }$$ ; confidence 0.963
1681.
; $$\hat { \phi } ( j ) = \alpha$$ ; confidence 0.791
1682.
; $$M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$$ ; confidence 0.412
1683.
; $$\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$$ ; confidence 0.187
1684.
; $$H ^ { p } ( G )$$ ; confidence 0.998
1685.
; $$M _ { \delta } ( \phi ) \rightarrow 0$$ ; confidence 0.996
1686.
; $$B = B _ { E }$$ ; confidence 0.754
1687.
; $$L _ { \infty } ( \hat { G } )$$ ; confidence 0.973
1688.
; $$F ( \phi ) \in A ( \hat { G } )$$ ; confidence 0.909
1689.
; $$f = f _ { 1 } * f _ { 2 }$$ ; confidence 0.989
1690.
; $$d g = d h d k$$ ; confidence 0.955
1691.
; $$p + q \leq \operatorname { dim } _ { C } M$$ ; confidence 0.688
1692.
; $$d \sigma ( y )$$ ; confidence 0.992
1693.
; $$\operatorname { dim } M = 2$$ ; confidence 0.993
1694.
; $$\{ x : | x - y | < r \}$$ ; confidence 0.915
1695.
; $$F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$$ ; confidence 0.316
1696.
; $$\alpha _ { i k } = \overline { a _ { k i } }$$ ; confidence 0.235
1697.
; $$H ( z )$$ ; confidence 0.999
1698.
; $$H ( z ) = \sum _ { i = 1 } ^ { n } \sum _ { j = 1 } ^ { n } a _ { i j } z _ { i } z _ { j }$$ ; confidence 0.374
1699.
; $$C$$ ; confidence 0.952
1700.
; $$X _ { 1 } \cap Y _ { 1 } = \emptyset$$ ; confidence 0.988
1701.
; $$\Sigma _ { n } ^ { 0 }$$ ; confidence 0.998
1702.
; $$\lambda = p ^ { - 1 } + r ^ { - 1 } \leq 1$$ ; confidence 0.999
1703.
; $$\nu \in A$$ ; confidence 0.971
1704.
; $$\sum _ { i } | \alpha _ { i } | ^ { 2 } < \infty$$ ; confidence 0.995
1705.
; $$\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$$ ; confidence 0.895
1706.
; $$V = V ^ { + } \oplus V ^ { - }$$ ; confidence 0.953
1707.
; $$\lambda _ { 4 n }$$ ; confidence 0.681
1708.
; $$f ( 0 ) = f ( 1 ) = 0$$ ; confidence 1.000
1709.
; $$\Psi ( y _ { n } ) \subseteq \Psi ( y _ { 0 } )$$ ; confidence 0.934
1710.
; $$F ^ { p }$$ ; confidence 0.768
1711.
; $$h : E ^ { m } \rightarrow R$$ ; confidence 0.941
1712.
; $$\Omega \frac { p } { x }$$ ; confidence 0.447
1713.
; $$f ^ { - 1 } \circ f ( z ) = z$$ ; confidence 0.986
1714.
; $$\mathfrak { M } ( M )$$ ; confidence 0.763
1715.
; $$\mu _ { 1 } < 0 < \lambda _ { 1 }$$ ; confidence 0.999
1716.
; $$n _ { s } + n _ { u } = n$$ ; confidence 0.172
1717.
; $$g x = y$$ ; confidence 0.997
1718.
; $$G = SU ( k )$$ ; confidence 0.645
1719.
; $$\beta ^ { s - k } z ^ { \prime }$$ ; confidence 0.907
1720.
; $$R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$$ ; confidence 0.142
1721.
; $$0 \rightarrow A ^ { \prime } \rightarrow A \rightarrow A ^ { \prime \prime } \rightarrow 0$$ ; confidence 0.930
1722.
; $$f \phi = 0$$ ; confidence 0.993
1723.
; $$T ( H ( A ) )$$ ; confidence 0.997
1724.
; $$n = r \neq 0$$ ; confidence 0.966
1725.
; $$S X \rightarrow S X$$ ; confidence 0.972
1726.
; $$Z / p$$ ; confidence 0.808
1727.
; $$x = [ u ]$$ ; confidence 0.825
1728.
; $$e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$$ ; confidence 0.793
1729.
; $$\Delta _ { q }$$ ; confidence 0.971
1730.
; $$\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$$ ; confidence 0.085
1731.
; $$\mu ^ { * } : A ^ { * } \rightarrow A ^ { * } \otimes A ^ { * }$$ ; confidence 0.991
1732.
; $$T ^ { \aleph } x \in A$$ ; confidence 0.469
1733.
; $$\Omega \in \Delta ^ { n } S$$ ; confidence 0.506
1734.
; $$\psi ( x ) = \sum x ^ { \prime } \otimes x ^ { \prime \prime }$$ ; confidence 0.991
1735.
; $$n - 1 \geq p$$ ; confidence 0.999
1736.
; $$n \leq s \leq 2 n - 2$$ ; confidence 0.997
1737.
; $$n \neq 0$$ ; confidence 0.999
1738.
; $$\nu = 0$$ ; confidence 0.923
1739.
; $$Z = 1$$ ; confidence 0.980
1740.
; $$| f ( x + y ) - f ( x ) f ( y ) | \leq \varepsilon$$ ; confidence 0.999
1741.
; $$e ^ { i k x }$$ ; confidence 0.648
1742.
; $$O A M$$ ; confidence 0.981
1743.
; $$f : \Omega \rightarrow B$$ ; confidence 0.997
1744.
; $$P _ { m } ( \xi + \tau N )$$ ; confidence 0.978
1745.
; $$\frac { \partial w } { \partial t } = A \frac { \partial w } { \partial x }$$ ; confidence 0.980
1746.
; $$\alpha = a ( x )$$ ; confidence 0.757
1747.
; $$W _ { X } ^ { S }$$ ; confidence 0.678
1748.
; $$E _ { X } ^ { N }$$ ; confidence 0.539
1749.
; $$U ^ { ( 2 ) }$$ ; confidence 0.956
1750.
; $$\int _ { X } | f ( x ) | ^ { 2 } \operatorname { ln } | f ( x ) | d \mu ( x ) \leq$$ ; confidence 0.990
1751.
; $$H _ { 1 } \otimes I + I \otimes H _ { 2 }$$ ; confidence 0.996
1752.
; $$F _ { j } ( z ) = \sum _ { k = 1 } ^ { N } G _ { j k } ( z )$$ ; confidence 0.944
1753.
; $$F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$$ ; confidence 0.881
1754.
; $$\alpha - \beta$$ ; confidence 1.000
1755.
; $$w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$$ ; confidence 0.892
1756.
; $$z ( 1 - z ) w ^ { \prime \prime } + [ \gamma - ( \alpha + \beta + 1 ) z ] w ^ { \prime } - \alpha \beta w = 0$$ ; confidence 0.996
1757.
; $$| f | = 1$$ ; confidence 0.989
1758.
; $$\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$$ ; confidence 0.751
1759.
; $$H _ { 1 } ( x ) < H _ { 2 } ( x )$$ ; confidence 0.999
1760.
; $$A = \operatorname { sup } _ { y \in E } A ( y ) < \infty$$ ; confidence 0.997
1761.
; $$I _ { X }$$ ; confidence 0.507
1762.
; $$A \backslash I$$ ; confidence 0.946
1763.
; $$0 = + \infty$$ ; confidence 0.667
1764.
; $$( \lambda \odot \mu ) \odot v = \lambda \odot ( \mu \odot v )$$ ; confidence 0.955
1765.
; $$( A )$$ ; confidence 1.000
1766.
; $$T$$ ; confidence 0.652
1767.
; $$H \equiv L \circ K$$ ; confidence 0.769
1768.
; $$f \in S _ { y } ^ { \prime }$$ ; confidence 0.307
1769.
; $$H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$$ ; confidence 0.143
1770.
; $$1 < m \leq n$$ ; confidence 0.737
1771.
; $$\| f \| _ { \Lambda _ { p } ^ { r } ( R ^ { n } ) } \leq K$$ ; confidence 0.335
1772.
; $$D _ { j } ^ { l } f \in L _ { p } ( R ^ { n } )$$ ; confidence 0.948
1773.
; $$- \infty < r < \infty$$ ; confidence 0.842
1774.
; $$\delta _ { 0 } > 0$$ ; confidence 1.000
1775.
; $$[ t ^ { n } : t ^ { n - 1 } ] = 0$$ ; confidence 0.989
1776.
; $$+ \frac { n } { p _ { 1 } p _ { 2 } } + \ldots + \frac { n } { p _ { k - 1 } p _ { k } } + - \frac { n } { p _ { 1 } p _ { 2 } p _ { 3 } } - \ldots + ( - 1 ) ^ { k } \frac { n } { p _ { 1 } \ldots p _ { k } }$$ ; confidence 0.552
1777.
; $$\gamma = \operatorname { ind } _ { g } a$$ ; confidence 0.608
1778.
; $$D = L _ { 1 } / D ( L _ { 0 } )$$ ; confidence 0.998
1779.
; $$\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$$ ; confidence 0.867
1780.
; $$D$$ ; confidence 0.996
1781.
; $$B ( M )$$ ; confidence 1.000
1782.
; $$\therefore M \rightarrow E$$ ; confidence 0.524
1783.
; $$K ( B / S )$$ ; confidence 0.995
1784.
; $$K ( T M ^ { g } ) \otimes C \rightarrow C$$ ; confidence 0.882
1785.
; $$i _ { \alpha } ( D ) \in K ( Y )$$ ; confidence 0.971
1786.
; $$\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$$ ; confidence 0.500
1787.
; $$h ( [ a ] )$$ ; confidence 0.265
1788.
; $$\pi$$ ; confidence 0.507
1789.
; $$[ T ^ { * } M ]$$ ; confidence 0.990
1790.
; $$\eta : Y \rightarrow B$$ ; confidence 0.984
1791.
; $$\nu _ { S }$$ ; confidence 0.758
1792.
; $$K \subset H$$ ; confidence 0.959
1793.
; $$\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$$ ; confidence 0.903
1794.
; $$\phi _ { \alpha \alpha } = 1 _ { A _ { \alpha } }$$ ; confidence 0.624
1795.
; $$A = \operatorname { lim } _ { \rightarrow } F ( D )$$ ; confidence 0.939
1796.
; $$| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$$ ; confidence 0.160
1797.
; $$A < \operatorname { ln } d X$$ ; confidence 0.106
1798.
; $$1 ^ { \circ }$$ ; confidence 0.592
1799.
; $$Y _ { n k }$$ ; confidence 0.813
1800.
; $$= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$$ ; confidence 0.781
1801.
; $$S = \frac { K } { 3 }$$ ; confidence 0.850
1802.
; $$F ( M ^ { k } ) \subset \nabla \square ^ { n }$$ ; confidence 0.382
1803.
; $$- \infty < a < + \infty$$ ; confidence 0.959
1804.
; $$3 a$$ ; confidence 0.497
1805.
; $$\overline { \rho } _ { L }$$ ; confidence 0.896
1806.
; $$p ^ { t } ( . )$$ ; confidence 0.817
1807.
; $$c ( I ) = \frac { 1 } { 2 }$$ ; confidence 0.667
1808.
; $$\Theta$$ ; confidence 0.952
1809.
; $$\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$$ ; confidence 0.946
1810.
; $$\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$$ ; confidence 0.921
1811.
; $$\alpha ( \lambda ) = \alpha _ { - } ( \lambda ) \alpha _ { + } ( \lambda )$$ ; confidence 0.598
1812.
; $$0 < \alpha < a$$ ; confidence 0.971
1813.
; $$h ( \lambda )$$ ; confidence 1.000
1814.
; $$| \lambda | < 1 / M ( b - \alpha )$$ ; confidence 0.952
1815.
; $$\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$$ ; confidence 0.810
1816.
; $$\{ \alpha _ { i } ( x ) \}$$ ; confidence 0.971
1817.
; $$| t - \tau |$$ ; confidence 0.984
1818.
; $$\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$$ ; confidence 0.954
1819.
; $$\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$$ ; confidence 0.895
1820.
; $$\frac { \partial } { \partial z } = \frac { 1 } { 2 } ( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } )$$ ; confidence 0.997
1821.
; $$\partial D \times D$$ ; confidence 0.998
1822.
; $$g \in E$$ ; confidence 0.988
1823.
; $$T f _ { n } \rightarrow 0$$ ; confidence 0.976
1824.
; $$\psi = \sum \psi _ { i } \partial / \partial x _ { i }$$ ; confidence 0.981
1825.
; $$T _ { W } ^ { 2 k + 1 } ( X )$$ ; confidence 0.984
1826.
; $$\mathfrak { M } \in S _ { 1 }$$ ; confidence 0.842
1827.
; $$Y = C$$ ; confidence 0.871
1828.
; $$\{ f _ { \alpha } : \alpha \in \mathfrak { A } \}$$ ; confidence 0.968
1829.
; $$m \times ( n + 1 )$$ ; confidence 1.000
1830.
; $$\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$$ ; confidence 0.069
1831.
; $$\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$$ ; confidence 0.981
1832.
; $$\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$$ ; confidence 0.462
1833.
; $$\Delta ^ { i }$$ ; confidence 0.491
1834.
; $$B = Y \backslash 0$$ ; confidence 0.999
1835.
; $$x < \varrho y$$ ; confidence 0.723
1836.
; $$T \subset R ^ { 1 }$$ ; confidence 0.989
1837.
; $$\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$$ ; confidence 0.288
1838.
; $$\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$$ ; confidence 0.397
1839.
; $$x \leq z \leq y$$ ; confidence 0.995
1840.
; $$Z \in G$$ ; confidence 0.401
1841.
; $$\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$$ ; confidence 0.766
1842.
; $$| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 }$$ ; confidence 0.554
1843.
; $$s > - \infty$$ ; confidence 0.985
1844.
; $$< 2 a$$ ; confidence 0.500
1845.
; $$y \geq x \geq 0$$ ; confidence 0.999
1846.
; $$q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$$ ; confidence 0.953
1847.
; $$y = Arc$$ ; confidence 0.482
1848.
; $$\operatorname { cos } ^ { - 1 } x$$ ; confidence 1.000
1849.
; $$F [ \phi ( w ) ]$$ ; confidence 0.983
1850.
; $$b = f ( a ) = b _ { 0 }$$ ; confidence 0.455
1851.
; $$P ^ { N } ( k )$$ ; confidence 0.999
1852.
; $$L ^ { \prime }$$ ; confidence 0.256
1853.
; $$O _ { X } ( 1 ) = O ( 1 )$$ ; confidence 0.996
1854.
; $$f ( x ^ { * } x ) \leq f ( 1 ) r ( x ^ { * } x )$$ ; confidence 0.984
1855.
; $$\omega ^ { \beta }$$ ; confidence 0.626
1856.
; $$0 \in R ^ { 3 }$$ ; confidence 0.983
1857.
; $$H = 0$$ ; confidence 0.999
1858.
; $$m s$$ ; confidence 0.683
1859.
; $$\gamma = 7 / 4$$ ; confidence 0.659
1860.
; $$p : G \rightarrow G$$ ; confidence 0.995
1861.
; $$X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$$ ; confidence 0.831
1862.
; $$x = \{ x ^ { \alpha } ( u ^ { s } ) \}$$ ; confidence 0.775
1863.
; $$E ^ { 2 k + 1 }$$ ; confidence 0.996
1864.
; $$( = 2 / \pi )$$ ; confidence 0.994
1865.
; $$F _ { t } : M ^ { n } \rightarrow M ^ { n }$$ ; confidence 0.989
1866.
; $$Y \times t$$ ; confidence 0.546
1867.
; $$L ^ { \prime } ( T _ { x } M )$$ ; confidence 0.252
1868.
; $$\kappa _ { k } = a _ { n n } ^ { ( k ) }$$ ; confidence 0.556
1869.
; $$\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$$ ; confidence 0.371
1870.
; $$F _ { 0 }$$ ; confidence 0.994
1871.
; $$k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$$ ; confidence 0.434
1872.
; $$p < 12000000$$ ; confidence 1.000
1873.
; $$\lambda _ { p } ( K / k ) = \lambda ( X )$$ ; confidence 0.997
1874.
; $$( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$$ ; confidence 0.875
1875.
; $$\overline { Q } _ { p }$$ ; confidence 0.689
1876.
; $$\mu _ { m }$$ ; confidence 0.969
1877.
; $$\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$$ ; confidence 0.312
1878.
; $$dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$$ ; confidence 0.565
1879.
; $$\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$$ ; confidence 0.234
1880.
; $$e _ { 1 } = ( 2 - k ^ { 2 } ) / 3$$ ; confidence 0.995
1881.
; $$H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$$ ; confidence 0.836
1882.
; $$w _ { 1 } = w _ { 1 } ( z _ { 1 } )$$ ; confidence 0.916
1883.
; $$x = B x + g$$ ; confidence 0.998
1884.
; $$\operatorname { log } F \leq 100$$ ; confidence 0.843
1885.
; $$f _ { 0 } ( \Delta )$$ ; confidence 0.998
1886.
; $$f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$$ ; confidence 0.051
1887.
; $$k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$$ ; confidence 0.753
1888.
; $$B M O$$ ; confidence 0.973
1889.
; $$K ^ { * }$$ ; confidence 0.718
1890.
; $$\operatorname { cr } ( K )$$ ; confidence 0.995
1891.
; $$s ( L ) \geq ( E - e ) / 2$$ ; confidence 0.952
1892.
; $$M ^ { ( 2 ) }$$ ; confidence 0.998
1893.
; $$( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$$ ; confidence 0.972
1894.
; $$J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$$ ; confidence 0.072
1895.
; $$L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$$ ; confidence 0.923
1896.
; $$\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$$ ; confidence 0.994
1897.
; $$t = [ \xi _ { E } ]$$ ; confidence 0.983
1898.
; $$T ( X )$$ ; confidence 0.996
1899.
; $$x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$$ ; confidence 0.998
1900.
; $$h = K \eta \leq 1 / 2$$ ; confidence 0.997
1901.
; $$\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$$ ; confidence 0.320
1902.
; $$f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$$ ; confidence 0.497
1903.
; $$A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$$ ; confidence 0.230
1904.
; $$T ( s )$$ ; confidence 1.000
1905.
; $$\overline { 9 } _ { 42 }$$ ; confidence 0.683
1906.
; $$h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$$ ; confidence 0.989
1907.
; $$B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$$ ; confidence 0.961
1908.
; $$m \geq m _ { 0 }$$ ; confidence 0.997
1909.
; $$z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$$ ; confidence 0.967
1910.
; $$- w _ { 0 } ( \chi )$$ ; confidence 0.944
1911.
; $$W _ { C }$$ ; confidence 0.473
1912.
; $$K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$$ ; confidence 0.995
1913.
; $$K _ { \mu }$$ ; confidence 0.997
1914.
; $$K _ { 0 } ^ { 4 k + 2 }$$ ; confidence 0.990
1915.
; $$\Delta u = - f ( x )$$ ; confidence 0.986
1916.
; $$u | _ { \Sigma } = 0$$ ; confidence 0.837
1917.
; $$R \phi / 6$$ ; confidence 0.994
1918.
; $$\mu = m c / \hbar$$ ; confidence 0.999
1919.
; $$\| g _ { \alpha \beta } \|$$ ; confidence 0.862
1920.
; $$\partial / \partial x ^ { \alpha } \rightarrow ( \partial / \partial x ^ { \alpha } ) - i e A _ { \alpha } / \hbar$$ ; confidence 0.973
1921.
; $$\Omega ( \Gamma )$$ ; confidence 1.000
1922.
; $$\Gamma 20$$ ; confidence 0.310
1923.
; $$D _ { 1 } / \Gamma$$ ; confidence 0.999
1924.
; $$\frac { 1 } { 2 \pi } \{ \text { hyperbolic area of } \Omega \backslash \Gamma \} \leq 2 ( N - 1 )$$ ; confidence 0.926
1925.
; $$\hat { M } _ { 0 }$$ ; confidence 0.537
1926.
; $$Q _ { 1 } : A \rightarrow T ^ { \prime } A T$$ ; confidence 0.990
1927.
; $$| m K _ { V ^ { \prime } } | ^ { J }$$ ; confidence 0.246
1928.
; $$f ( z ) = z + \ldots$$ ; confidence 0.768
1929.
; $$\frac { \partial f } { \partial s } = - A _ { S } f$$ ; confidence 0.702
1930.
; $$I _ { \Gamma } ( x )$$ ; confidence 0.999
1931.
; $$A _ { t } ^ { * }$$ ; confidence 0.985
1932.
; $$= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$$ ; confidence 0.890
1933.
; $$( \alpha _ { i } ) _ { i \in I }$$ ; confidence 0.480
1934.
; $$( \partial ^ { 2 } / \partial x \partial t ) u = \operatorname { sin } u$$ ; confidence 0.562
1935.
; $$\square ^ { 1 } S _ { 2 } ( i )$$ ; confidence 0.950
1936.
; $$E ( \Delta ) K \subset D ( A )$$ ; confidence 0.947
1937.
; $$c ( A ) \subset R \cup \{ \infty \}$$ ; confidence 0.588
1938.
; $$C = C ^ { * }$$ ; confidence 0.990
1939.
; $$W _ { \alpha } ( P ) \subseteq ( D _ { \alpha } ) ^ { n }$$ ; confidence 0.991
1940.
; $$D _ { \alpha }$$ ; confidence 0.374
1941.
; $$W _ { \alpha } ( B \supset C ) = T \leftrightarrows$$ ; confidence 0.637
1942.
; $$\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$$ ; confidence 0.479
1943.
; $$\eta ( \epsilon ) \rightarrow 0$$ ; confidence 0.993
1944.
; $$\frac { d \xi } { d t } = \epsilon X _ { 0 } ( \xi ) + \epsilon ^ { 2 } P _ { 2 } ( \xi ) + \ldots + \epsilon ^ { m } P _ { m } ( \xi )$$ ; confidence 0.966
1945.
; $$\xi = \xi _ { 0 } ( \phi )$$ ; confidence 0.999
1946.
; $$\mu _ { n } ( P \| Q ) =$$ ; confidence 0.972
1947.
; $$P = Q$$ ; confidence 0.998
1948.
; $$E \neq \emptyset$$ ; confidence 0.475
1949.
; $$E = \emptyset$$ ; confidence 0.977
1950.
; $$F _ { M } : G \rightarrow C ^ { * }$$ ; confidence 0.933
1951.
; $$g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$$ ; confidence 0.694
1952.
; $$\nu _ { 0 } \in C ^ { n }$$ ; confidence 0.245
1953.
; $$p : X \rightarrow S$$ ; confidence 0.998
1954.
; $$R ^ { k } p \times ( F )$$ ; confidence 0.519
1955.
; $$x \preceq y$$ ; confidence 0.956
1956.
; $$M ( E ) = \vec { X }$$ ; confidence 0.493
1957.
; $$c \rightarrow N$$ ; confidence 0.335
1958.
; $$\overline { B } \rightarrow \overline { B }$$ ; confidence 0.985
1959.
; $$a \rightarrow a b d ^ { 6 }$$ ; confidence 0.569
1960.
; $$n ^ { O ( n ) } M ^ { O ( 1 ) }$$ ; confidence 0.921
1961.
; $$\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$$ ; confidence 0.817
1962.
; $$1 \leq p < + \infty$$ ; confidence 0.999
1963.
; $$3 N + k + m$$ ; confidence 0.919
1964.
; $$\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$$ ; confidence 0.944
1965.
; $$\mu$$ ; confidence 0.335
1966.
; $$x g$$ ; confidence 0.734
1967.
; $$T + V = h$$ ; confidence 0.994
1968.
; $$v ( P ) - v ( D )$$ ; confidence 0.999
1969.
; $$x ^ { ( 0 ) } = 1$$ ; confidence 0.976
1970.
; $$M N$$ ; confidence 0.867
1971.
; $$+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$$ ; confidence 0.262
1972.
; $$( M N ) \in \Lambda$$ ; confidence 0.998
1973.
; $$\equiv \lambda x y \cdot x$$ ; confidence 0.709
1974.
; $$( \lambda x M ) \in \Lambda$$ ; confidence 0.756
1975.
; $$k ^ { 2 } ( \tau ) = \lambda$$ ; confidence 0.999
1976.
; $$D = 2 \gamma k T / M$$ ; confidence 0.990
1977.
; $$T _ { F }$$ ; confidence 0.455
1978.
; $$T _ { E } : U \rightarrow U$$ ; confidence 0.704
1979.
; $$v \in C ( \overline { G } )$$ ; confidence 0.795
1980.
; $$\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$$ ; confidence 0.331
1981.
; $$| t | ^ { - 1 }$$ ; confidence 1.000
1982.
; $$E = \frac { m } { 2 } ( \dot { x } \square _ { 1 } ^ { 2 } + \dot { x } \square _ { 2 } ^ { 2 } + \dot { x } \square _ { 3 } ^ { 2 } ) + \frac { \kappa } { r }$$ ; confidence 0.586
1983.
; $$\sqrt { 2 }$$ ; confidence 0.155
1984.
; $$m < n ^ { ( 1 / 3 ) - \delta }$$ ; confidence 0.883
1985.
; $$U _ { 0 } = 1$$ ; confidence 0.997
1986.
; $$\alpha _ { 1 } + n h _ { 1 }$$ ; confidence 0.738
1987.
; $$E ( \mu _ { n } / n )$$ ; confidence 0.725
1988.
; $$\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$$ ; confidence 0.299
1989.
; $$31$$ ; confidence 0.915
1990.
; $$\mu \approx 18.431$$ ; confidence 0.997
1991.
; $$4.60$$ ; confidence 0.967
1992.
; $$E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$$ ; confidence 0.681
1993.
; $$\alpha _ { 2 } ( t ) = t$$ ; confidence 0.461
1994.
; $$f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$$ ; confidence 0.580
1995.
; $$\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$$ ; confidence 0.776
1996.
; $$H \phi$$ ; confidence 0.878
1997.
; $$\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$$ ; confidence 0.248
1998.
; $$\phi \in H$$ ; confidence 0.981
1999.
; $$B \subset X ^ { * }$$ ; confidence 0.699
2000.
; $$v = v ( t )$$ ; confidence 0.987
2001.
; $$s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$$ ; confidence 0.961
2002.
; $$\{ i _ { k } \}$$ ; confidence 0.773
2003.
; $$\zeta = 0$$ ; confidence 0.999
2004.
; $$- \operatorname { log } | \zeta |$$ ; confidence 0.998
2005.
; $$0 < r < \operatorname { tanh } \pi / 4$$ ; confidence 0.998
2006.
; $$\operatorname { grad } \phi ( \zeta ) \neq 0$$ ; confidence 0.967
2007.
; $$x \# y = x y + y x - \frac { 2 } { n + 1 } ( \operatorname { Tr } x y ) l$$ ; confidence 0.625
2008.
; $$( x y ) x = y ( y x )$$ ; confidence 1.000
2009.
; $$\mathfrak { A } ^ { - }$$ ; confidence 0.906
2010.
; $$S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$$ ; confidence 0.980
2011.
; $$x$$ ; confidence 0.899
2012.
; $$P _ { 8 }$$ ; confidence 0.799
2013.
; $$g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$$ ; confidence 0.215
2014.
; $$\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$$ ; confidence 0.634
2015.
; $$0 \leq p \leq n / 2$$ ; confidence 0.998
2016.
; $$A _ { I l }$$ ; confidence 0.608
2017.
; $$L ( H )$$ ; confidence 0.995
2018.
; $$Q _ { A }$$ ; confidence 0.136
2019.
; $$S \cap R ( G ) = ( e )$$ ; confidence 0.872
2020.
; $$x ( 1 )$$ ; confidence 1.000
2021.
; $$Z \times T$$ ; confidence 0.994
2022.
; $$C ^ { n } / \Gamma _ { 1 }$$ ; confidence 0.708
2023.
; $$G \subset N ( F )$$ ; confidence 0.979
2024.
; $$\pi _ { 1 } ( G ) \cong \Gamma ( G ) / \Gamma _ { 0 }$$ ; confidence 0.992
2025.
; $$l _ { k } ( A )$$ ; confidence 0.348
2026.
; $$\epsilon$$ ; confidence 0.882
2027.
; $$\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$$ ; confidence 0.405
2028.
; $$\operatorname { lm } A _ { * } = \mathfrak { g }$$ ; confidence 0.711
2029.
; $$R ^ { n } \times R ^ { n }$$ ; confidence 0.554
2030.
; $$\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$$ ; confidence 0.191
2031.
; $$\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$$ ; confidence 0.680
2032.
; $$\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$$ ; confidence 0.857
2033.
; $$\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$$ ; confidence 0.845
2034.
; $$\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$$ ; confidence 0.875
2035.
; $$- \Delta u + c u$$ ; confidence 0.993
2036.
; $$Z y \rightarrow \infty$$ ; confidence 0.270
2037.
; $$y = \operatorname { sin } ( 1 / x )$$ ; confidence 1.000
2038.
; $$f _ { h } \in F _ { k }$$ ; confidence 0.549
2039.
; $$p i n$$ ; confidence 0.132
2040.
; $$+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$$ ; confidence 0.263
2041.
; $$L _ { h } u _ { k } = f _ { k }$$ ; confidence 0.508
2042.
; $$\{ \phi _ { i } \} _ { i k }$$ ; confidence 0.712
2043.
; $$l _ { 2 } u = \phi _ { 2 } ( t )$$ ; confidence 0.851
2044.
; $$\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$$ ; confidence 0.363
2045.
; $$\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$$ ; confidence 0.681
2046.
; $$T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$$ ; confidence 0.821
2047.
; $$A ^ { ( 0 ) }$$ ; confidence 0.506
2048.
; $$\dot { u } = A _ { n } u$$ ; confidence 0.195
2049.
; $$\operatorname { ln } t$$ ; confidence 0.999
2050.
; $$T _ { \Delta }$$ ; confidence 0.636
2051.
; $$\lambda \geq \gamma$$ ; confidence 0.474
2052.
; $$\Gamma _ { 0 } ( . )$$ ; confidence 0.995
2053.
; $$H ^ { k }$$ ; confidence 0.998
2054.
; $$v \in ( 1 - t ) V$$ ; confidence 0.837
2055.
; $$C _ { 0 } ( R )$$ ; confidence 0.976
2056.
; $$A -$$ ; confidence 0.967
2057.
; $$x ( t ) \equiv 0$$ ; confidence 0.999
2058.
; $$x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$$ ; confidence 0.867
2059.
; $$X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$$ ; confidence 0.977
2060.
; $$Y ( t ) = X ( t ) C$$ ; confidence 0.998
2061.
; $$W ( t ) \neq 0$$ ; confidence 0.995
2062.
; $$x ( 0 ) \in R ^ { n }$$ ; confidence 0.473
2063.
; $$\dot { y } = - A ^ { T } ( t ) y$$ ; confidence 0.993
2064.
; $$Q _ { 3 } ( b )$$ ; confidence 0.962
2065.
; $$x = F ( t ) y$$ ; confidence 0.992
2066.
; $$\rho ^ { ( j ) }$$ ; confidence 0.828
2067.
; $$\alpha ^ { ( 0 ) }$$ ; confidence 0.892
2068.
; $$| \epsilon | < \epsilon$$ ; confidence 0.461
2069.
; $$\frac { d z } { d t } = - A ( t ) ^ { * } Z$$ ; confidence 0.495
2070.
; $$L ( 0 ) = 0$$ ; confidence 1.000
2071.
; $$\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$$ ; confidence 0.716
2072.
; $$f \in H _ { p } ^ { \alpha }$$ ; confidence 0.996
2073.
; $$G ( K _ { p ^ { \prime } } )$$ ; confidence 0.801
2074.
; $$( K _ { p } ) _ { i n s }$$ ; confidence 0.851
2075.
; $$Z _ { \text { tot } S } = Z$$ ; confidence 0.066
2076.
; $$\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$$ ; confidence 0.399
2077.
; $$\alpha = E X _ { 1 }$$ ; confidence 0.670
2078.
; $$d ( A )$$ ; confidence 0.998
2079.
; $$\in \Theta$$ ; confidence 0.953
2080.
; $$m = n = 1$$ ; confidence 0.998
2081.
; $$\left. \begin{array} { c c c } { R } & { \stackrel { \pi _ { 2 } \mu } { \rightarrow } } & { B } \\ { \pi _ { 1 } \mu \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { \alpha } } & { C } \end{array} \right.$$ ; confidence 0.590
2082.
; $$R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$$ ; confidence 0.342
2083.
; $$h _ { U } = \phi _ { U } ^ { - 1 }$$ ; confidence 0.912
2084.
; $$w \in T V$$ ; confidence 0.524
2085.
; $$\int \frac { d x } { x } = \operatorname { ln } | x | + C$$ ; confidence 0.986
2086.
; $$\pi < \operatorname { arg } z \leq \pi$$ ; confidence 0.972
2087.
; $$\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$$ ; confidence 0.129
2088.
; $$Q \alpha = Q \beta \gamma$$ ; confidence 0.989
2089.
; $$\operatorname { inv } ( x )$$ ; confidence 0.875
2090.
; $$\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$$ ; confidence 0.659
2091.
; $$b \in Q$$ ; confidence 0.934
2092.
; $$Q _ { i - 1 } / Q _ { i }$$ ; confidence 0.640
2093.
; $$( S ^ { 1 } )$$ ; confidence 0.472
2094.
; $$z = e ^ { i \theta }$$ ; confidence 0.999
2095.
; $$\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$$ ; confidence 0.905
2096.
; $$f ^ { \prime } ( x ) = 0$$ ; confidence 1.000
2097.
; $$\| \alpha _ { j } ^ { i } \|$$ ; confidence 0.148
2098.
; $$x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$$ ; confidence 0.953
2099.
; $$\lambda _ { j } + \overline { \lambda } _ { k } = 0$$ ; confidence 0.991
2100.
; $$V _ { 0 } \subset E$$ ; confidence 0.979
2101.
; $$x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$$ ; confidence 0.802
2102.
; $$E ( T ) = \int \int _ { T } \frac { d x d y } { | x - y | }$$ ; confidence 0.572
2103.
; $$F _ { n } ( - \infty ) \rightarrow F ( - \infty )$$ ; confidence 0.972
2104.
; $$f _ { \theta } ( x )$$ ; confidence 0.998
2105.
; $$\varepsilon ^ { * } ( M A D ) = 1 / 2$$ ; confidence 0.731
2106.
; $$H _ { 2 } \times H _ { 1 }$$ ; confidence 0.537
2107.
; $$f \circ R _ { 1 } = R _ { 2 } \circ f$$ ; confidence 0.984
2108.
; $$F _ { A } = * D _ { A } \phi$$ ; confidence 0.738
2109.
; $$A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$$ ; confidence 0.768
2110.
; $$f ( z ^ { d } ) = f ( z ) - z$$ ; confidence 0.796
2111.
; $$p < q$$ ; confidence 0.966
2112.
; $$E$$ ; confidence 0.975
2113.
; $$\kappa = \mu ^ { * }$$ ; confidence 0.985
2114.
; $$- i \partial / \partial x _ { j }$$ ; confidence 0.526
2115.
; $$P ^ { * } ( D )$$ ; confidence 0.999
2116.
; $$q ^ { - 1 } = 1 - p ^ { - 1 }$$ ; confidence 1.000
2117.
; $$\Delta \lambda _ { i } ^ { \alpha }$$ ; confidence 0.329
2118.
; $$t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$$ ; confidence 0.532
2119.
; $$\pi _ { 1 } ( M ) \neq Z _ { 2 }$$ ; confidence 0.886
2120.
; $$\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$$ ; confidence 0.743
2121.
; $$M _ { \psi } ^ { 0 }$$ ; confidence 0.996
2122.
; $$\mu ^ { - 1 }$$ ; confidence 0.999
2123.
; $$T _ { i j }$$ ; confidence 0.337
2124.
; $$P \{ \xi ( 0 ) = j \} = p _ { j }$$ ; confidence 0.551
2125.
; $$\Lambda \in N ^ { t }$$ ; confidence 0.838
2126.
; $$\Lambda = \{ \omega : x _ { S } \in B \}$$ ; confidence 0.703
2127.
; $$F _ { \infty } ^ { s }$$ ; confidence 0.520
2128.
; $$\alpha _ { \epsilon } ( h ) = o ( h )$$ ; confidence 0.989
2129.
; $$| \theta - \frac { p } { n } | \leq \frac { 1 } { \tau q ^ { 2 } }$$ ; confidence 0.999
2130.
; $$u ( y ) \geq 0$$ ; confidence 0.997
2131.
; $$0 \leq w \leq v$$ ; confidence 0.958
2132.
; $$K _ { y } ^ { \alpha }$$ ; confidence 0.924
2133.
; $$C = Z ( Q )$$ ; confidence 0.941
2134.
; $$\xi _ { k } = + 1$$ ; confidence 0.992
2135.
; $$V _ { [ r ] }$$ ; confidence 0.977
2136.
; $$B = 0$$ ; confidence 0.833
2137.
; $$\alpha = \beta _ { 1 } \vee \ldots \vee \beta _ { r }$$ ; confidence 0.964
2138.
; $$\operatorname { lim } _ { \Delta x \rightarrow 0 } \Delta y = \operatorname { lim } _ { \Delta x \rightarrow 0 } [ f ( x + \Delta x ) - f ( x ) ] = 0$$ ; confidence 0.996
2139.
; $$F ^ { \prime } = f$$ ; confidence 0.997
2140.
; $$\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$$ ; confidence 0.089
2141.
; $$= f ( N _ { * } ) + f ^ { \prime } ( N _ { * } ) n + \frac { f ^ { \prime \prime } ( N _ { * } ) } { 2 } n ^ { 2 } + \ldots$$ ; confidence 0.619
2142.
; $$R _ { + } ^ { l }$$ ; confidence 0.977
2143.
; $$b \in R ^ { l - 1 }$$ ; confidence 0.980
2144.
; $$z \square ^ { ( s ) }$$ ; confidence 0.776
2145.
; $$x > y > z$$ ; confidence 0.999
2146.
; $$c ( t ) \geq 0$$ ; confidence 1.000
2147.
; $$\int _ { - \infty } ^ { \infty } x d F ( x )$$ ; confidence 1.000
2148.
; $$k \frac { \partial u } { \partial n } + h u | _ { S } = v ( x )$$ ; confidence 0.973
2149.
; $$\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$$ ; confidence 0.868
2150.
; $$x _ { i + 1 } = x _ { i } - ( \alpha _ { i } \nabla \nabla f ( x _ { j } ) + \beta _ { i } I ) ^ { - 1 } \nabla f ( x _ { i } )$$ ; confidence 0.559
2151.
; $$r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$$ ; confidence 0.822
2152.
; $$\hat { \theta } = X$$ ; confidence 0.545
2153.
; $$f ^ { ( m ) } ( x _ { 0 } ) < 0$$ ; confidence 0.978
2154.
; $$x _ { 3 } = z$$ ; confidence 0.989
2155.
; $$- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$$ ; confidence 0.887
2156.
; $$d \sigma ( t )$$ ; confidence 0.999
2157.
; $$\Lambda ( f ) \geq 0$$ ; confidence 0.995
2158.
; $$\mu _ { i } ( X _ { i } ) = 1$$ ; confidence 0.990
2159.
; $$E = E ^ { \prime }$$ ; confidence 0.996
2160.
; $$S _ { 1 } \times S _ { 2 }$$ ; confidence 0.981
2161.
; $$E \in S ( R )$$ ; confidence 0.988
2162.
; $$\prod x$$ ; confidence 0.487
2163.
; $$\int _ { - 1 } ^ { 1 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } f ( x ) d x \approx \frac { \pi } { N } \sum _ { k = 1 } ^ { N } f ( \operatorname { cos } \frac { 2 k - 1 } { 2 N } \pi )$$ ; confidence 0.978
2164.
; $$\square _ { q } F _ { p - 1 }$$ ; confidence 0.930
2165.
; $$t = t _ { 0 } > 0$$ ; confidence 0.996
2166.
; $$p \in P \backslash N$$ ; confidence 0.997
2167.
; $$( f ) = D$$ ; confidence 0.999
2168.
; $$D ( z ) \neq 0$$ ; confidence 0.995
2169.
; $$\psi _ { z } \neq 0$$ ; confidence 0.993
2170.
; $$z \in N$$ ; confidence 0.568
2171.
; $$F \mapsto F ( P )$$ ; confidence 0.864
2172.
; $$\int _ { c } ^ { \infty } f ( x ) d x$$ ; confidence 0.991
2173.
; $$n _ { 1 } < n _ { 2 } .$$ ; confidence 0.222
2174.
; $$\beta + \gamma \simeq \alpha . S ( t )$$ ; confidence 0.822
2175.
; $$E S$$ ; confidence 0.930
2176.
; $$0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$$ ; confidence 0.355
2177.
; $$\partial W _ { 1 } = M$$ ; confidence 0.996
2178.
; $$\sigma ( W )$$ ; confidence 0.989
2179.
; $$\theta _ { n } ( \partial \pi )$$ ; confidence 0.997
2180.
; $$\{ p _ { \theta } ( \omega ) = \frac { d p } { d \mu } ( \omega ) : \theta \in \Theta \}$$ ; confidence 0.987
2181.
; $$\int \int K d S \leq 2 \pi ( \chi - k )$$ ; confidence 0.858
2182.
; $$n \geq 9$$ ; confidence 0.998
2183.
; $$\int \int K d S$$ ; confidence 0.865
2184.
; $$\| x _ { k } - x ^ { * } \| \leq C q ^ { k }$$ ; confidence 0.985
2185.
; $$A = \pi r ^ { 2 }$$ ; confidence 0.999
2186.
; $$\| u \| _ { H ^ { \prime } } \leq R$$ ; confidence 0.473
2187.
; $$W ( N )$$ ; confidence 0.988
2188.
; $$\epsilon > 0$$ ; confidence 0.971
2189.
; $$F = W _ { 2 } ^ { - 1 } ( \Omega )$$ ; confidence 0.999
2190.
; $$\lambda K + t$$ ; confidence 0.994
2191.
; $$\tau \cup A C \cup B C$$ ; confidence 0.892
2192.
; $$d y / d s \geq 0$$ ; confidence 0.997
2193.
; $$\mathfrak { k } _ { n } | _ { 0 } = 0$$ ; confidence 0.128
2194.
; $$u | _ { \Gamma } = \psi$$ ; confidence 0.930
2195.
; $$k = m / 2$$ ; confidence 0.948
2196.
; $$GL _ { 2 } ( R )$$ ; confidence 0.691
2197.
; $$\operatorname { lm } A ( \tau )$$ ; confidence 0.945
2198.
; $$B O$$ ; confidence 0.877
2199.
; $$w = \lambda ( z )$$ ; confidence 0.985
2200.
; $$c = 0$$ ; confidence 0.874
2201.
; $$J ( F G / I ) = 0$$ ; confidence 0.991
2202.
; $$d ( x + y ) + d ( x y ) = d ( x ) + d ( y )$$ ; confidence 0.999
2203.
; $$m _ { G } = D ( u ) / 2 \pi$$ ; confidence 0.811
2204.
; $$G \rightarrow R _ { + } ^ { * }$$ ; confidence 0.778
2205.
; $$k _ { 1 } + \ldots + k _ { n } = k$$ ; confidence 0.849
2206.
; $$\alpha p$$ ; confidence 0.503
2207.
; $$C _ { \gamma } = C _ { \gamma _ { 1 } } C _ { \gamma _ { 2 } }$$ ; confidence 0.997
2208.
; $$t \in P ^ { 1 }$$ ; confidence 0.984
2209.
; $$\partial V _ { t }$$ ; confidence 0.996
2210.
; $$\alpha = \gamma ( 0 )$$ ; confidence 0.961
2211.
; $$f ( z ) = f ( x + i y )$$ ; confidence 1.000
2212.
; $$f _ { E } ^ { \prime } ( \zeta )$$ ; confidence 0.845
2213.
; $$f ( x ^ { \prime } ) < t$$ ; confidence 1.000
2214.
; $$\xi = x _ { m }$$ ; confidence 0.952
2215.
; $$T$$ ; confidence 0.520
2216.
; $$T _ { e } = j - 744$$ ; confidence 0.742
2217.
; $$Y ( K )$$ ; confidence 0.999
2218.
; $$( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$$ ; confidence 0.971
2219.
; $$- ( K _ { X } + B )$$ ; confidence 0.752
2220.
; $$\phi : X ^ { \prime } \rightarrow Y$$ ; confidence 0.951
2221.
; $$f : M \rightarrow R$$ ; confidence 0.936
2222.
; $$\sum _ { j = 0 } ^ { i } ( - 1 ) ^ { j } m _ { i - j } \geq \sum _ { j = 0 } ^ { i } ( - 1 ) ^ { j } b _ { i - j }$$ ; confidence 0.973
2223.
; $$V _ { 1 } = \emptyset$$ ; confidence 0.731
2224.
; $$\alpha = 4 \pi$$ ; confidence 1.000
2225.
; $$f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$$ ; confidence 0.413
2226.
; $$\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$$ ; confidence 0.163
2227.
; $$x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$$ ; confidence 0.056
2228.
; $$L C ^ { k - 1 }$$ ; confidence 0.734
2229.
; $$p _ { 1 } + \ldots + p _ { m } = p$$ ; confidence 0.769
2230.
; $$S _ { n }$$ ; confidence 0.963
2231.
; $$\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$$ ; confidence 0.229
2232.
; $$\alpha : A \rightarrow A _ { 1 }$$ ; confidence 0.999
2233.
; $$\lambda ^ { * } \in R ^ { m }$$ ; confidence 0.957
2234.
; $$G _ { 1 } / N$$ ; confidence 0.991
2235.
; $$\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$$ ; confidence 0.927
2236.
; $$\int | \rho _ { \varepsilon } ( x ) | d x$$ ; confidence 0.965
2237.
; $$s > n / 2$$ ; confidence 0.999
2238.
; $$M _ { 3 } ( R ^ { n } ) = \{$$ ; confidence 0.724
2239.
; $$d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$$ ; confidence 0.489
2240.
; $$\Phi _ { t } = id$$ ; confidence 0.507
2241.
; $$E = \{ e \}$$ ; confidence 0.981
2242.
; $$( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$$ ; confidence 0.351
2243.
; $$P ( \mathfrak { m } / \mathfrak { m } ^ { 2 } )$$ ; confidence 0.523
2244.
; $$n _ { \Delta } = 1$$ ; confidence 0.532
2245.
; $$x \lambda ( y ) = \rho ( x ) y$$ ; confidence 0.966
2246.
; $$\overline { \alpha } : P \rightarrow X$$ ; confidence 0.421
2247.
; $$\frac { | z | ^ { p } } { ( 1 + | z | ) ^ { 2 p } } \leq | f ( z ) | \leq \frac { | z | ^ { p } } { ( 1 - | z | ) ^ { 2 p } }$$ ; confidence 0.972
2248.
; $$L _ { \cap } \Gamma = 0$$ ; confidence 0.870
2249.
; $$H _ { n - 2 }$$ ; confidence 0.883
2250.
; $$P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$$ ; confidence 0.795
2251.
; $$\operatorname { Re } ( \lambda )$$ ; confidence 0.992
2252.
; $$A _ { i \psi }$$ ; confidence 0.179
2253.
; $$f \in L _ { \infty } ( T )$$ ; confidence 0.971
2254.
; $$L _ { \infty } ( T )$$ ; confidence 0.979
2255.
; $$\Sigma _ { n - 1 } ( x )$$ ; confidence 0.905
2256.
; $$x \in V _ { n }$$ ; confidence 0.777
2257.
; $$X _ { i } \subset \Delta _ { 1 } ^ { i }$$ ; confidence 0.988
2258.
; $$\{ x _ { \alpha } \} _ { \alpha \in \Sigma }$$ ; confidence 0.994
2259.
; $$x \in b M$$ ; confidence 0.705
2260.
; $$\overline { \partial } f = \phi$$ ; confidence 0.995
2261.
; $$\sum _ { n = 0 } ^ { \infty } A ^ { n } f$$ ; confidence 0.994
2262.
; $$\phi _ { \alpha } ( f ) = w _ { \alpha }$$ ; confidence 0.945
2263.
; $$f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$$ ; confidence 0.806
2264.
; $$\epsilon < \epsilon ^ { \prime } < \ldots$$ ; confidence 0.860
2265.
; $$A ( u ) = 0$$ ; confidence 1.000
2266.
; $$\Delta _ { k } ^ { k } f ^ { ( s ) }$$ ; confidence 0.968
2267.
; $$M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j }$$ ; confidence 0.662
2268.
; $$0 < r - s < k$$ ; confidence 0.996
2269.
; $$D \cap \{ x ^ { 1 } = c \}$$ ; confidence 0.983
2270.
; $$\{ \psi _ { i } \} _ { 0 } ^ { m }$$ ; confidence 0.581
2271.
; $$v = 1.1 m / sec$$ ; confidence 0.848
2272.
; $$b = 7$$ ; confidence 0.999
2273.
; $$G \rightarrow A$$ ; confidence 0.998
2274.
; $$m ( B ) = 0$$ ; confidence 1.000
2275.
; $$Q ^ { \prime } \subset Q$$ ; confidence 0.984
2276.
; $$y ( 0 ) = y ^ { \prime }$$ ; confidence 0.740
2277.
; $$\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$$ ; confidence 0.711
2278.
; $$y ^ { * } = \alpha ( g ^ { * } )$$ ; confidence 0.950
2279.
; $$\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$$ ; confidence 0.538
2280.
; $$\phi _ { i } / \partial x _ { Y }$$ ; confidence 0.338
2281.
; $$x + h \in G$$ ; confidence 0.992
2282.
; $$A : G \rightarrow Y$$ ; confidence 0.991
2283.
; $$x \in K$$ ; confidence 0.658
2284.
; $$\xi ( x ) = 1$$ ; confidence 0.999
2285.
; $$\pi / \rho$$ ; confidence 0.416
2286.
; $$y ^ { \prime \prime \prime } = \lambda y$$ ; confidence 0.979
2287.
; $$B O$$ ; confidence 0.799
2288.
; $$\phi ( x ) \geq 0$$ ; confidence 0.999
2289.
; $$U$$ ; confidence 0.698
2290.
; $$\sum _ { k = 1 } ^ { \infty } \| u _ { k } \| = \sum _ { k = 1 } ^ { \infty } 1 / k$$ ; confidence 0.925
2291.
; $$\phi _ { i } ( 0 ) = 0$$ ; confidence 1.000
2292.
; $$j \geq q + 1$$ ; confidence 0.999
2293.
; $$N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$$ ; confidence 0.323
2294.
; $$d j \neq 0$$ ; confidence 0.877
2295.
; $$A \simeq K$$ ; confidence 0.550
2296.
; $$N _ { G } ( H )$$ ; confidence 0.982
2297.
; $$( d \nu ) ( x _ { i } ) ( T _ { i } )$$ ; confidence 0.993
2298.
; $$\Omega _ { X }$$ ; confidence 0.976
2299.
; $$N ( A ^ { * } ) = \{ 0 \}$$ ; confidence 0.998
2300.
; $$A \in L _ { \infty } ( H )$$ ; confidence 0.994
2301.
; $$\operatorname { tr } _ { \sigma } A$$ ; confidence 0.814
2302.
; $$u \in E ^ { \prime } \otimes - E$$ ; confidence 0.540
2303.
; $$u = \operatorname { tr } \Gamma ( u )$$ ; confidence 0.766
2304.
; $$V \subset \rho U$$ ; confidence 0.940
2305.
; $$x y = 40$$ ; confidence 1.000
2306.
; $$\alpha + b = b + \alpha$$ ; confidence 0.739
2307.
; $$N > 5$$ ; confidence 0.901
2308.
; $$q 2 = 6$$ ; confidence 0.507
2309.
; $$12$$ ; confidence 0.490
2310.
; $$q 2 = 4$$ ; confidence 0.504
2311.
; $$\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$$ ; confidence 0.316
2312.
; $$F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$$ ; confidence 0.936
2313.
; $$I _ { p } ( L )$$ ; confidence 0.985
2314.
; $$K _ { \omega }$$ ; confidence 0.958
2315.
; $$\overline { P _ { 8 } }$$ ; confidence 0.610
2316.
; $$\alpha = 1 / 2$$ ; confidence 0.933
2317.
; $$K _ { 10 }$$ ; confidence 0.993
2318.
; $$K$$ ; confidence 0.967
2319.
; $$T ( t ) x$$ ; confidence 0.794
2320.
; $$X = \sum _ { i } X ^ { i } \partial / \partial x ^ { i }$$ ; confidence 0.987
2321.
; $$\operatorname { lim } _ { x \rightarrow x _ { 0 } } + 0$$ ; confidence 0.628
2322.
; $$e ^ { - \lambda s }$$ ; confidence 0.999
2323.
; $$\phi \in D ( A )$$ ; confidence 0.998
2324.
; $$v \in G$$ ; confidence 0.413
2325.
; $$v _ { n } \in G$$ ; confidence 0.357
2326.
; $$x _ { C }$$ ; confidence 0.256
2327.
; $$( \alpha b ) \sigma = \alpha \sigma b \sigma$$ ; confidence 0.467
2328.
; $$( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$$ ; confidence 0.449
2329.
; $$\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$$ ; confidence 0.897
2330.
; $$\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$$ ; confidence 0.147
2331.
; $$x ( t _ { 1 } ) = x ^ { 1 } \in R ^ { n }$$ ; confidence 0.985
2332.
; $$2 \leq t \leq 3$$ ; confidence 0.999
2333.
; $$\sigma \leq t \leq \theta$$ ; confidence 0.947
2334.
; $$X = \cup _ { \alpha } X _ { \alpha }$$ ; confidence 0.245
2335.
; $$G / G _ { X }$$ ; confidence 0.936
2336.
; $$G ( x ) = \{ g ( x ) : g \in G \}$$ ; confidence 0.999
2337.
; $$\operatorname { lim } \alpha / \beta = 0$$ ; confidence 0.903
2338.
; $$\beta ( x ) \neq 0$$ ; confidence 0.999
2339.
; $$\{ Z _ { n } \}$$ ; confidence 0.984
2340.
; $$Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$$ ; confidence 0.491
2341.
; $$W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$$ ; confidence 0.738
2342.
; $$\alpha ^ { n } < b ^ { n + 1 }$$ ; confidence 0.291
2343.
; $$C _ { \psi }$$ ; confidence 0.409
2344.
; $$C _ { \varphi }$$ ; confidence 0.982
2345.
; $$E$$ ; confidence 0.845
2346.
; $$\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$$ ; confidence 0.491
2347.
; $$- \beta V$$ ; confidence 0.966
2348.
; $$6 \pi \eta \alpha$$ ; confidence 0.422
2349.
; $$d W ( t ) / d t = W ^ { \prime } ( t )$$ ; confidence 0.993
2350.
; $$N ( n ) \rightarrow \infty$$ ; confidence 0.992
2351.
; $$A \perp A ^ { T }$$ ; confidence 0.994
2352.
; $$\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$$ ; confidence 0.937
2353.
; $$y = K _ { n } ( x )$$ ; confidence 0.826
2354.
; $$\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$$ ; confidence 0.076
2355.
; $$F ^ { k }$$ ; confidence 0.862
2356.
; $$F ( H )$$ ; confidence 0.998
2357.
; $$h > 1$$ ; confidence 0.985
2358.
; $$\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$$ ; confidence 0.887
2359.
; $$\underline { H } \square _ { f }$$ ; confidence 0.812
2360.
; $$B \operatorname { ccos } ( \omega t + \psi )$$ ; confidence 0.580
2361.
; $$\phi _ { im }$$ ; confidence 0.294
2362.
; $$\epsilon \ll 1$$ ; confidence 0.957
2363.
; $$| V _ { m n } | \ll | E _ { n } ^ { ( 0 ) } - E _ { m } ^ { ( 0 ) } |$$ ; confidence 0.535
2364.
; $$4 x$$ ; confidence 0.375
2365.
; $$E _ { i } ( x )$$ ; confidence 0.976
2366.
; $$\eta ( x ) \in \eta$$ ; confidence 0.999
2367.
; $$A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$$ ; confidence 0.414
2368.
; $$\lambda < \mu$$ ; confidence 1.000
2369.
; $$\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$$ ; confidence 0.191
2370.
; $$D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$$ ; confidence 0.131
2371.
; $$P _ { n } ( f )$$ ; confidence 0.919
2372.
; $$S \square ^ { * }$$ ; confidence 0.590
2373.
; $$T ^ { * } U$$ ; confidence 0.999
2374.
; $$d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$$ ; confidence 0.905
2375.
; $$I ( G _ { p } )$$ ; confidence 0.801
2376.
; $$d f ^ { j }$$ ; confidence 0.726
2377.
; $$p _ { i }$$ ; confidence 0.459
2378.
; $$\operatorname { sch } / S$$ ; confidence 0.616
2379.
; $$f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$$ ; confidence 0.802
2380.
; $$f ( L )$$ ; confidence 0.999
2381.
; $$t ( P )$$ ; confidence 0.999
2382.
; $$\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$$ ; confidence 0.541
2383.
; $$\theta$$ ; confidence 1.000
2384.
; $$n > 1$$ ; confidence 0.999
2385.
; $$E = E$$ ; confidence 0.907
2386.
; $$E _ { r } = S \cup T$$ ; confidence 0.755
2387.
; $$f ( x ) \mapsto \hat { f } ( y )$$ ; confidence 0.970
2388.
; $$\epsilon _ { i j } ^ { k }$$ ; confidence 0.400
2389.
; $$\sigma _ { i j } ( t )$$ ; confidence 0.998
2390.
; $$X \subset M ^ { n }$$ ; confidence 0.432
2391.
; $$H _ { k } ( M ^ { n } )$$ ; confidence 0.995
2392.
; $$\Omega _ { X } ( k ) \equiv \Omega ( k )$$ ; confidence 0.406
2393.
; $$_ { k }$$ ; confidence 0.179
2394.
; $$\{ z _ { k } \} \subset \Delta$$ ; confidence 0.994
2395.
; $$t _ { \gamma }$$ ; confidence 0.533
2396.
; $$\sigma _ { 2 n } = 2 \pi ^ { n } / ( n - 1 ) !$$ ; confidence 0.994
2397.
; $$u \in C ^ { 2 } ( D )$$ ; confidence 0.987
2398.
; $$p _ { 01 } p _ { 23 } + p _ { 02 } p _ { 31 } + p _ { 03 } p _ { 12 } = 0$$ ; confidence 0.676
2399.
; $$x \preceq y \Rightarrow z x t \preceq x y t$$ ; confidence 0.920
2400.
; $$w ( z ) = \int _ { \gamma } ( t - z ) ^ { \mu + n - 1 } u ( t ) d t$$ ; confidence 0.937
2401.
; $$\beta \in L _ { q }$$ ; confidence 0.972
2402.
; $$\mathfrak { g } = C$$ ; confidence 0.510
2403.
; $$L ( R ) \otimes _ { K } H _ { n } ( R ) = R$$ ; confidence 0.755
2404.
; $$V \cap L$$ ; confidence 0.905
2405.
; $$R \times D$$ ; confidence 0.945
2406.
; $$\mu A = m > 0$$ ; confidence 1.000
2407.
; $$q ^ { ( n ) } = d ^ { n } q / d x ^ { n }$$ ; confidence 0.958
2408.
; $$2 \lambda$$ ; confidence 1.000
2409.
; $$d S _ { n }$$ ; confidence 0.935
2410.
; $$X ( t _ { 2 } ) - X ( t _ { 1 } )$$ ; confidence 0.994
2411.
; $$/ t \rightarrow \lambda$$ ; confidence 0.669
2412.
; $$M ^ { 0 }$$ ; confidence 0.312
2413.
; $$P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$$ ; confidence 0.185
2414.
; $$W = M + U$$ ; confidence 0.972
2415.
; $$t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$$ ; confidence 0.226
2416.
; $$f ( n ) \geq 0$$ ; confidence 1.000
2417.
; $$[ f _ { G } ]$$ ; confidence 0.256
2418.
; $$l _ { n } = \# \{ s \in S : d ( s ) = n \}$$ ; confidence 0.868
2419.
; $$d ( s ) = \operatorname { sup } \{ n : s \in F _ { n } \}$$ ; confidence 0.970
2420.
; $$m / m ^ { 2 }$$ ; confidence 0.612
2421.
; $$( \xi ) _ { R }$$ ; confidence 0.672
2422.
; $$p _ { i } ( \xi ) \in H ^ { 4 i } ( B )$$ ; confidence 0.998
2423.
; $$e ( \xi \otimes C )$$ ; confidence 0.997
2424.
; $$\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$$ ; confidence 0.090
2425.
; $$E \subset X = R ^ { \prime }$$ ; confidence 0.250
2426.
; $$A \supset B$$ ; confidence 0.432
2427.
; $$x _ { 1 } = \ldots = x _ { n } = 0$$ ; confidence 0.697
2428.
; $$A / N _ { f }$$ ; confidence 0.994
2429.
; $$P ( x ) = a _ { 0 } + \alpha _ { 1 } x + \ldots + \alpha _ { n } x ^ { n }$$ ; confidence 0.639
2430.
; $$F \otimes S ^ { m } E$$ ; confidence 0.748
2431.
; $$O _ { 3 } = O _ { 6 } \cap O _ { 7 }$$ ; confidence 0.673
2432.
; $$F _ { 5 } ^ { \mu } = C _ { 4 } \cap F _ { 8 } ^ { \mu }$$ ; confidence 0.951
2433.
; $$\xi : F \rightarrow A$$ ; confidence 0.996
2434.
; $$v _ { i } = \partial f / \partial t ^ { i }$$ ; confidence 0.629
2435.
; $$\phi ^ { + } ( x )$$ ; confidence 0.999
2436.
; $$1 \leq p \leq n / 2$$ ; confidence 0.990
2437.
; $$p > n / 2$$ ; confidence 0.999
2438.
; $$- \infty \leq y < \infty$$ ; confidence 0.999
2439.
; $$\underline { \mathfrak { U } } \square _ { \phi } = - \overline { \mathfrak { U } } _ { \phi }$$ ; confidence 0.680
2440.
; $$f \in C$$ ; confidence 0.990
2441.
; $$\mu _ { 1 } = \mu _ { 2 } = \mu > 0$$ ; confidence 1.000
2442.
; $$\rho = | y |$$ ; confidence 0.958
2443.
; $$\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$$ ; confidence 0.456
2444.
; $$g _ { 0 } g ^ { \prime } \in G$$ ; confidence 0.189
2445.
; $$P \rightarrow e$$ ; confidence 0.910
2446.
; $$\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$$ ; confidence 0.746
2447.
; $$G = G ^ { \prime }$$ ; confidence 1.000
2448.
; $$\pi G ( x ) = b$$ ; confidence 0.845
2449.
; $$\Gamma _ { F }$$ ; confidence 0.663
2450.
; $$\gamma \in G$$ ; confidence 0.994
2451.
; $$q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$$ ; confidence 0.083
2452.
; $$q _ { i } R = 0$$ ; confidence 0.743
2453.
; $$0 \leq s _ { 0 } \leq l$$ ; confidence 0.979
2454.
; $$F _ { p q } \neq F _ { p q } ^ { * }$$ ; confidence 0.479
2455.
; $$x \in R ^ { + }$$ ; confidence 0.795
2456.
; $$E X _ { k } = a$$ ; confidence 0.520
2457.
; $$DX _ { k } = \sigma ^ { 2 }$$ ; confidence 0.511
2458.
; $$( K _ { i } / k )$$ ; confidence 0.490
2459.
; $$\alpha _ { 0 } \in A$$ ; confidence 0.998
2460.
; $$E _ { i j }$$ ; confidence 0.366
2461.
; $$x ^ { i } = y ^ { i } \lambda$$ ; confidence 0.985
2462.
; $$\pi _ { D } : X \rightarrow F ( D )$$ ; confidence 0.992
2463.
; $$\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$$ ; confidence 0.786
2464.
; $$d ( S )$$ ; confidence 0.993
2465.
; $$q IL$$ ; confidence 0.843
2466.
; $$P _ { n } ( R )$$ ; confidence 0.886
2467.
; $$P _ { s } ^ { l } ( k )$$ ; confidence 0.866
2468.
; $$X = \operatorname { Proj } ( R )$$ ; confidence 0.994
2469.
; $$\operatorname { Proj } ( R )$$ ; confidence 0.995
2470.
; $$F \subset G$$ ; confidence 0.978
2471.
; $$U _ { i j } = \operatorname { Spec } ( A _ { i j } )$$ ; confidence 0.973
2472.
; $$( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$$ ; confidence 0.827
2473.
; $$( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$$ ; confidence 0.823
2474.
; $$P Q = P \times Q$$ ; confidence 0.481
2475.
; $$\square ^ { n - 1 } R _ { n }$$ ; confidence 0.937
2476.
; $$X \cap U = \{ x \in U : \phi ( x ) > 0 \}$$ ; confidence 0.906
2477.
; $$\kappa : \Omega \rightarrow \Omega _ { 1 }$$ ; confidence 0.980
2478.
; $$\partial _ { x } = \partial / \partial x$$ ; confidence 0.368
2479.
; $$A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$$ ; confidence 0.458
2480.
; $$| \xi | \leq 1 / 2$$ ; confidence 0.995
2481.
; $$q ^ { 1 }$$ ; confidence 0.419
2482.
; $$\gamma \in R$$ ; confidence 0.998
2483.
; $$D \rightarrow \overline { D }$$ ; confidence 0.992
2484.
; $$a \vee b$$ ; confidence 0.827
2485.
; $$I$$ ; confidence 0.923
2486.
; $$P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$$ ; confidence 0.303
2487.
; $$\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$$ ; confidence 0.802
2488.
; $$\mathfrak { F } \subset \mathfrak { P }$$ ; confidence 0.687
2489.
; $$( n = 4 )$$ ; confidence 1.000
2490.
; $$\alpha = - 1 / 2$$ ; confidence 1.000
2491.
; $$x \in E _ { + } ( s )$$ ; confidence 0.775
2492.
; $$R ^ { 12 } R ^ { 13 } R ^ { 23 } = R ^ { 23 } R ^ { 13 } R ^ { 12 }$$ ; confidence 0.998
2493.
; $$\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$$ ; confidence 0.443
2494.
; $$R ^ { 12 }$$ ; confidence 1.000
2495.
; $$H _ { i } \in \mathfrak { g }$$ ; confidence 0.955
2496.
; $$X ( Y . f ) = ( Y X ) . f$$ ; confidence 0.433
2497.
; $$j _ { X } : F ^ { \prime } \rightarrow F$$ ; confidence 0.809
2498.
; $$3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$$ ; confidence 0.248
2499.
; $$D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$$ ; confidence 0.975
2500.
; $$H _ { k + 1 } y ^ { k } = s ^ { k }$$ ; confidence 0.999
2501.
; $$f \in W _ { 2 } ^ { 1 }$$ ; confidence 0.943
2502.
; $$f : R _ { + } ^ { n } \rightarrow R _ { + } ^ { n }$$ ; confidence 0.970
2503.
; $$S _ { 2 m + 1 } ^ { m }$$ ; confidence 0.627
2504.
; $$\square ^ { 01 } S _ { 3 } ^ { 1 }$$ ; confidence 0.621
2505.
; $$x ^ { 1 } = 0$$ ; confidence 0.991
2506.
; $$\beta X = S \square x = \omega _ { \kappa } X$$ ; confidence 0.261
2507.
; $$N _ { A }$$ ; confidence 0.730
2508.
; $$\omega _ { 1 } / \omega _ { 2 }$$ ; confidence 0.996
2509.
; $$K > 1$$ ; confidence 0.997
2510.
; $$J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$$ ; confidence 0.794
2511.
; $$R [ x ]$$ ; confidence 0.996
2512.
; $$R _ { q ^ { 2 } }$$ ; confidence 0.811
2513.
; $$X = x _ { 0 } + V$$ ; confidence 0.644
2514.
; $$\alpha > a ^ { * }$$ ; confidence 0.575
2515.
; $$\nu _ { 1 } ^ { S }$$ ; confidence 0.641
2516.
; $$\{ \tau _ { j } ^ { e } \} \in G _ { I }$$ ; confidence 0.146
2517.
; $$\leq \nu _ { i } ^ { s }$$ ; confidence 0.802
2518.
; $$T ^ { S }$$ ; confidence 0.805
2519.
; $$\tau _ { 0 } ^ { e ^ { 3 } }$$ ; confidence 0.252
2520.
; $$\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$$ ; confidence 0.716
2521.
; $$\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$$ ; confidence 0.087
2522.
; $$f ( \xi _ { T } ( t ) )$$ ; confidence 0.925
2523.
; $$E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$$ ; confidence 0.887
2524.
; $$\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$$ ; confidence 0.819
2525.
; $$\rho = E m \alpha \tau _ { j } ^ { e }$$ ; confidence 0.537
2526.
; $$p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$$ ; confidence 0.310
2527.
; $$Q _ { 0 } ^ { 0 } = Q ^ { 0 }$$ ; confidence 0.971
2528.
; $$P _ { k } ( x )$$ ; confidence 0.998
2529.
; $$P \{ X _ { n } \in \Delta \} \rightarrow 0$$ ; confidence 0.724
2530.
; $$G _ { l }$$ ; confidence 0.639
2531.
; $$w ^ { S } ( u ) = \operatorname { sup } _ { v \leq u } ( X ( u ) - X ( v ) )$$ ; confidence 0.601
2532.
; $$E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$$ ; confidence 0.250
2533.
; $$f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$$ ; confidence 0.805
2534.
; $$j$$ ; confidence 0.784
2535.
; $$k ( \pi )$$ ; confidence 0.988
2536.
; $$e _ { 3 } = ( \alpha + d ) + ( b + c )$$ ; confidence 0.551
2537.
; $$\Delta u + k ^ { 2 } u = - f$$ ; confidence 0.985
2538.
; $$r _ { 1 } > r _ { 2 }$$ ; confidence 0.966
2539.
; $$\phi < \beta < L < K < J < T < \tau < F$$ ; confidence 0.970
2540.
; $$T w | K v$$ ; confidence 0.987
2541.
; $$( n - \mu _ { 1 } ) / 2$$ ; confidence 1.000
2542.
; $$\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$$ ; confidence 0.840
2543.
; $$P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$$ ; confidence 0.432
2544.
; $$P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$$ ; confidence 0.812
2545.
; $$u _ { 0 } = 1$$ ; confidence 0.716
2546.
; $$T = T ( R )$$ ; confidence 1.000
2547.
; $$R ( x )$$ ; confidence 1.000
2548.
; $$\delta _ { \phi }$$ ; confidence 0.541
2549.
; $$D _ { n - 2 }$$ ; confidence 0.996
2550.
; $$u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$$ ; confidence 0.932
2551.
; $$k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$$ ; confidence 0.807
2552.
; $$P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$$ ; confidence 0.918
2553.
; $$\operatorname { dim } A = n = q - s$$ ; confidence 0.969
2554.
; $$\{ r _ { n } + r _ { n } ^ { \prime } \}$$ ; confidence 0.928
2555.
; $$t _ { k } \in R$$ ; confidence 0.947
2556.
; $$U$$ ; confidence 0.987
2557.
; $$\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$$ ; confidence 0.191
2558.
; $$F ( m ) = f _ { m } ( m )$$ ; confidence 0.639
2559.
; $$f ( x ) = x + 1$$ ; confidence 1.000
2560.
; $$E ( Y | x ) = m ( x )$$ ; confidence 0.542
2561.
; $$E ( Y - f ( x ) ) ^ { 2 }$$ ; confidence 0.547
2562.
; $$\beta$$ ; confidence 0.566
2563.
; $$X = \| x _ { i } \|$$ ; confidence 0.794
2564.
; $$y _ { t } = A x _ { t } + \epsilon _ { t }$$ ; confidence 0.979
2565.
; $$x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$$ ; confidence 0.172
2566.
; $$x ( t ) \in D ^ { c }$$ ; confidence 0.992
2567.
; $$x _ { n m _ { n } } \rightarrow ( 0 )$$ ; confidence 0.220
2568.
; $$e \omega ^ { r } f$$ ; confidence 0.300
2569.
; $$\overline { A } z = \overline { u }$$ ; confidence 0.777
2570.
; $$R _ { 0 } \subset F$$ ; confidence 0.991
2571.
; $$\{ \alpha _ { n } ^ { ( e ) } \}$$ ; confidence 0.972
2572.
; $$\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$$ ; confidence 0.264
2573.
; $$g 00 = 1 - 2 \phi / c ^ { 2 }$$ ; confidence 0.483
2574.
; $$p \leq \epsilon / 3$$ ; confidence 0.998
2575.
; $$c \approx 3.10 ^ { 10 } cm / se$$ ; confidence 0.741
2576.
; $$c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$$ ; confidence 0.906
2577.
; $$\frac { d ^ { 2 } x } { d \tau ^ { 2 } } - \lambda ( 1 - x ^ { 2 } ) \frac { d x } { d \tau } + x = 0$$ ; confidence 0.998
2578.
; $$t + \tau$$ ; confidence 0.811
2579.
; $$B = B _ { 1 } \cup B _ { 2 }$$ ; confidence 0.997
2580.
; $$H ( t ) = E N$$ ; confidence 0.783
2581.
; $$M _ { \gamma _ { i } } M _ { \gamma _ { j } }$$ ; confidence 0.992
2582.
; $$v _ { 2 } \in V _ { 2 }$$ ; confidence 0.962
2583.
; $$s < s ^ { \prime }$$ ; confidence 0.967
2584.
; $$\phi \in E ^ { \prime }$$ ; confidence 0.998
2585.
; $$A = A _ { 1 } \times A _ { 2 }$$ ; confidence 0.989
2586.
; $$e X$$ ; confidence 0.861
2587.
; $$g e = g$$ ; confidence 0.982
2588.
; $$E / E ^ { \prime }$$ ; confidence 0.807
2589.
; $$l _ { i } = \lambda _ { i } + n - i$$ ; confidence 0.990
2590.
; $$V _ { \lambda } ^ { 0 } \subset V _ { \lambda }$$ ; confidence 0.929
2591.
; $$g \mapsto ( \operatorname { det } g ) ^ { k } R ( g )$$ ; confidence 0.974
2592.
; $$\oplus R ( S _ { n } )$$ ; confidence 0.905
2593.
; $$\| f \| = 0$$ ; confidence 0.996
2594.
; $$\{ \phi j ( z ) \}$$ ; confidence 0.543
2595.
; $$\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$$ ; confidence 0.996
2596.
; $$\psi d z$$ ; confidence 0.981
2597.
; $$R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$$ ; confidence 0.396
2598.
; $$A = \int _ { - \infty } ^ { \infty } \lambda d E _ { \lambda }$$ ; confidence 1.000
2599.
; $$y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$$ ; confidence 0.881
2600.
; $$x ^ { T } ( t _ { 1 } ) \Phi x ( t _ { 1 } ) + \int _ { t _ { 0 } } ^ { t _ { 1 } } [ x ^ { T } ( t ) M ( t ) x ( t ) + u ^ { T } ( t ) N ( t ) u ( t ) ] d t$$ ; confidence 0.938
2601.
; $$\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$$ ; confidence 0.982
2602.
; $$D _ { n }$$ ; confidence 0.956
2603.
; $$\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$$ ; confidence 0.130
2604.
; $$D \cup \gamma$$ ; confidence 0.997
2605.
; $$G ( K ) \rightarrow G ( Q )$$ ; confidence 0.817
2606.
; $$a _ { 0 } ( z ) \neq 0$$ ; confidence 0.937
2607.
; $$b \in \overline { C }$$ ; confidence 0.690
2608.
; $$AH _ { p }$$ ; confidence 0.775
2609.
; $$\partial \overline { R } _ { \nu }$$ ; confidence 0.821
2610.
; $$2 g - 1$$ ; confidence 0.999
2611.
; $$f ^ { \mu } | _ { K }$$ ; confidence 0.278
2612.
; $$R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$$ ; confidence 0.210
2613.
; $$- \infty \leq \lambda < \mu \leq \infty$$ ; confidence 0.998
2614.
; $$d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$$ ; confidence 0.914
2615.
; $$\partial x ^ { i } / \partial v$$ ; confidence 0.737
2616.
; $$\operatorname { exp } _ { q } X = r$$ ; confidence 0.511
2617.
; $$\gamma : M ^ { n } \rightarrow M ^ { n }$$ ; confidence 0.911
2618.
; $$n < 7$$ ; confidence 0.999
2619.
; $$N = 0$$ ; confidence 0.990
2620.
; $$\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$$ ; confidence 0.291
2621.
; $$\gamma _ { \xi } ( t )$$ ; confidence 0.995
2622.
; $$V ^ { \prime } \subset R ^ { \prime }$$ ; confidence 0.979
2623.
; $$\gamma \geq \gamma _ { k }$$ ; confidence 0.999
2624.
; $$V ^ { \prime } = V ^ { \prime \prime } = R ^ { \prime } \cup R ^ { \prime \prime }$$ ; confidence 0.993
2625.
; $$o = e K$$ ; confidence 0.327
2626.
; $$| x _ { i } | \leq 1$$ ; confidence 0.845
2627.
; $$P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$$ ; confidence 0.932
2628.
; $$P _ { \sigma } ^ { 2 } = P _ { \sigma }$$ ; confidence 0.980
2629.
; $$\sigma ( R ) \backslash \lambda$$ ; confidence 0.997
2630.
; $$x + z < y + z$$ ; confidence 0.999
2631.
; $$p _ { \alpha } = e$$ ; confidence 0.518
2632.
; $$U : E \rightarrow M$$ ; confidence 0.994
2633.
; $$y _ { n } \leq x _ { n } \leq z _ { n }$$ ; confidence 0.841
2634.
; $$\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta$$ ; confidence 0.964
2635.
; $$s : M \rightarrow F ( M )$$ ; confidence 0.983
2636.
; $$\gamma _ { t } ( x + y ) = \sum _ { r = 0 } ^ { t } \gamma _ { r } ( x ) \gamma _ { t - r } ( y )$$ ; confidence 0.991
2637.
; $$I ( A ) = \operatorname { Ker } ( \epsilon )$$ ; confidence 0.898
2638.
; $$( \alpha b ) \alpha = \alpha ( b \alpha )$$ ; confidence 0.731
2639.
; $$( a + b ) \alpha = \alpha \alpha + b \alpha$$ ; confidence 0.463
2640.
; $$\| u - P _ { n } u \| _ { A } \rightarrow 0$$ ; confidence 0.332
2641.
; $$u _ { 0 } = A ^ { - 1 } f$$ ; confidence 0.941
2642.
; $$J ( q ) ^ { T }$$ ; confidence 0.999
2643.
; $$19$$ ; confidence 1.000
2644.
; $$1$$ ; confidence 0.430
2645.
; $$V = 5$$ ; confidence 0.985
2646.
; $$300$$ ; confidence 0.440
2647.
; $$j 2 ^ { - k - l }$$ ; confidence 0.858
2648.
; $$\lambda - \mu$$ ; confidence 1.000
2649.
; $$- 3$$ ; confidence 1.000
2650.
; $$M \dot { y } = f ( y )$$ ; confidence 0.805
2651.
; $$R ^ { \infty } \rightarrow \ldots \rightarrow R ^ { m } \rightarrow \ldots \rightarrow R ^ { 0 }$$ ; confidence 0.522
2652.
; $$c ^ { m } ( \Omega )$$ ; confidence 0.773
2653.
; $$c ^ { \infty } ( \Omega ) ^ { N }$$ ; confidence 0.774
2654.
; $$A _ { k } = U _ { k } ^ { * } A _ { k - 1 } U _ { k }$$ ; confidence 0.993
2655.
; $$| \chi | < \pi$$ ; confidence 0.998
2656.
; $$\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$$ ; confidence 0.304
2657.
; $$D _ { n } X _ { 1 }$$ ; confidence 0.828
2658.
; $$D _ { n } X \subset S ^ { n } \backslash X$$ ; confidence 0.497
2659.
; $$D _ { n } D _ { n } \theta = \theta$$ ; confidence 0.970
2660.
; $$m _ { i } = 0$$ ; confidence 0.997
2661.
; $$\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$$ ; confidence 0.234
2662.
; $$g _ { t } ( u )$$ ; confidence 0.987
2663.
; $$\phi ( T _ { X } N ) \subset T _ { X } N$$ ; confidence 0.941
2664.
; $$\phi ( D _ { X } ) = D _ { X }$$ ; confidence 0.531
2665.
; $$\overline { D } = \overline { D } _ { S }$$ ; confidence 0.978
2666.
; $$X ^ { * } = \Gamma \backslash D ^ { * }$$ ; confidence 0.822
2667.
; $$\phi _ { \mathscr { A } } ( . )$$ ; confidence 0.193
2668.
; $$d \in C$$ ; confidence 0.487
2669.
; $$\Phi ( r - b + c )$$ ; confidence 1.000
2670.
; $$\phi ( f ( x ) ) = g ( x ) \phi ( x ) + h ( x )$$ ; confidence 0.999
2671.
; $$\pi \Gamma$$ ; confidence 0.616
2672.
; $$\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$$ ; confidence 0.882
2673.
; $$s _ { \lambda } = \sum _ { T } x ^ { T }$$ ; confidence 0.998
2674.
; $$x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$$ ; confidence 0.977
2675.
; $$| \lambda | = \Sigma _ { i } \lambda$$ ; confidence 0.682
2676.
; $$S _ { B B } ( z ) \equiv 0$$ ; confidence 0.476
2677.
; $$\operatorname { Ccm } ( G )$$ ; confidence 0.094
2678.
; $$D ^ { - 1 } \in \pi$$ ; confidence 0.978
2679.
; $$\theta \in \Theta _ { 0 } \subseteq \Theta$$ ; confidence 0.992
2680.
; $$\sum _ { j = 1 } ^ { n } | b _ { j j } | \leq \rho$$ ; confidence 0.569
2681.
; $$q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$$ ; confidence 0.450
2682.
; $$q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$$ ; confidence 0.814
2683.
; $$\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$$ ; confidence 0.889
2684.
; $$c b = c$$ ; confidence 0.994
2685.
; $$18$$ ; confidence 0.479
2686.
; $$s _ { \alpha } \geq 1$$ ; confidence 0.984
2687.
; $$\operatorname { dim } K$$ ; confidence 0.982
2688.
; $$B d K$$ ; confidence 0.567
2689.
; $$s _ { i } : X _ { n } \rightarrow X _ { n } + 1$$ ; confidence 0.593
2690.
; $$X \rightarrow \Delta [ 0 ]$$ ; confidence 0.965
2691.
; $$\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$$ ; confidence 0.333
2692.
; $$x _ { i } \in \pi$$ ; confidence 0.507
2693.
; $$| \sigma ^ { n } |$$ ; confidence 0.923
2694.
; $$M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$$ ; confidence 0.440
2695.
; $$K = \nu - \nu$$ ; confidence 0.596
2696.
; $$\psi ( t ) = a * ( t ) g ( t ) +$$ ; confidence 0.645
2697.
; $$\| x \| = \rho$$ ; confidence 0.826
2698.
; $$x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$$ ; confidence 0.863
2699.
; $$L _ { 2 } : z = \phi _ { 2 } ( t )$$ ; confidence 0.995
2700.
; $$0 < \tau _ { 1 } \leq 1$$ ; confidence 0.993
2701.
; $$f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$$ ; confidence 0.837
2702.
; $$\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$$ ; confidence 0.676
2703.
; $$\varphi H G$$ ; confidence 0.652
2704.
; $$\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$$ ; confidence 0.755
2705.
; $$\phi : U \rightarrow \sum _ { i \in I } U _ { l }$$ ; confidence 0.895
2706.
; $$b ( x ) < 0$$ ; confidence 1.000
2707.
; $$| w | = \rho < 1$$ ; confidence 0.874
2708.
; $$\overline { D ^ { + } } = D ^ { + } \cup \Gamma$$ ; confidence 0.709
2709.
; $$M = M ^ { \perp \perp }$$ ; confidence 0.970
2710.
; $$J _ { m + n + 1 } ( x ) =$$ ; confidence 0.892
2711.
; $$s \in E ^ { n }$$ ; confidence 0.570
2712.
; $$\| x \| ^ { 2 } = \int _ { \sigma ( A ) } | f _ { \lambda } ( x ) | ^ { 2 } d \rho ( \lambda )$$ ; confidence 0.635
2713.
; $$\sigma _ { d x } ( A )$$ ; confidence 0.138
2714.
; $$A \Phi \subset \Phi$$ ; confidence 0.973
2715.
; $$B ( r ) = \int _ { 0 } ^ { \infty } J _ { 0 } ( \lambda r ) d F ( \lambda )$$ ; confidence 0.998
2716.
; $$s _ { 1 } - t _ { 1 } = s _ { 2 } - t _ { 2 }$$ ; confidence 0.998
2717.
; $$A _ { \delta }$$ ; confidence 0.997
2718.
; $$E | X ( t ) | ^ { n } \leq C < \infty$$ ; confidence 0.578
2719.
; $$d ^ { \prime }$$ ; confidence 0.445
2720.
; $$| T | _ { p }$$ ; confidence 0.714
2721.
; $$\theta _ { T } = \theta$$ ; confidence 0.989
2722.
; $$B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$$ ; confidence 0.980
2723.
; $$\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$$ ; confidence 0.075
2724.
; $$\Sigma ( \Sigma ^ { n } X ) \rightarrow \Sigma ^ { n + 1 } X$$ ; confidence 0.992
2725.
; $$( \pi )$$ ; confidence 1.000
2726.
; $$Z _ { 24 }$$ ; confidence 0.663
2727.
; $$i > 2 n - 1$$ ; confidence 0.989
2728.
; $$e ^ { - k - s | / \mu } / \mu$$ ; confidence 0.763
2729.
; $$V ^ { 3 } = E ^ { 3 }$$ ; confidence 0.992
2730.
; $$K ( d s ) = K$$ ; confidence 0.996
2731.
; $$\pi = n \sqrt { 1 + \sum p ^ { 2 } }$$ ; confidence 0.678
2732.
; $$O ( r )$$ ; confidence 0.866
2733.
; $$\lambda _ { m } ( t )$$ ; confidence 0.691
2734.
; $$5 + 7 n$$ ; confidence 0.141
2735.
; $$f \in W _ { 2 } ^ { 3 } ( \Omega )$$ ; confidence 0.999
2736.
; $$( 2 m - 2 )$$ ; confidence 1.000
2737.
; $$W _ { p } ^ { m } ( I ^ { d } )$$ ; confidence 0.958
2738.
; $$L \subset Z ^ { 0 }$$ ; confidence 0.864
2739.
; $$\Gamma = \Gamma _ { 1 } + \ldots + \Gamma _ { m }$$ ; confidence 0.966
2740.
; $$\gamma ( u ) < \infty$$ ; confidence 0.997
2741.
; $$\operatorname { det } S \neq 0$$ ; confidence 0.896
2742.
; $$- \infty \leq w \leq + \infty$$ ; confidence 0.301
2743.
; $$0 \leq \omega \leq \infty$$ ; confidence 0.754
2744.
; $$\| \eta ( \cdot ) \| ^ { 2 } = \int _ { 0 } ^ { \infty } | \eta ( t ) | ^ { 2 } d t$$ ; confidence 0.669
2745.
; $$\| x _ { 0 } \| \leq \delta$$ ; confidence 0.966
2746.
; $$V < 0$$ ; confidence 0.854
2747.
; $$k \leq p \leq n$$ ; confidence 0.985
2748.
; $$f _ { h } \in U _ { k }$$ ; confidence 0.371
2749.
; $$\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$$ ; confidence 0.172
2750.
; $$\delta < \alpha$$ ; confidence 0.956
2751.
; $$m < \infty$$ ; confidence 0.973
2752.
; $$\eta _ { 0 } ( i )$$ ; confidence 0.979
2753.
; $$V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$$ ; confidence 0.167
2754.
; $$m = E X ( s )$$ ; confidence 0.808
2755.
; $$Q _ { 1 }$$ ; confidence 0.060
2756.
; $$\Pi ^ { * } \in C$$ ; confidence 0.864
2757.
; $$\mathfrak { R } _ { \mu } ( \Pi _ { 0 } ) = \operatorname { inf } _ { \Pi } \Re _ { \mu } ( \Pi )$$ ; confidence 0.658
2758.
; $$H _ { i } ( \omega )$$ ; confidence 0.983
2759.
; $$I _ { n } ( \theta ) = n I ( \theta )$$ ; confidence 0.870
2760.
; $$P \{ s ^ { 2 } < \frac { \sigma ^ { 2 } x } { n - 1 } \} = G _ { n - 1 } ( x ) = D _ { n - 1 } \int _ { 0 } ^ { x } v ^ { ( n - 3 ) } / 2 e ^ { - v / 2 } d v$$ ; confidence 0.622
2761.
; $$\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$$ ; confidence 0.827
2762.
; $$\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$$ ; confidence 0.815
2763.
; $$\eta \in R ^ { k }$$ ; confidence 0.999
2764.
; $$H = H _ { V } ( \omega )$$ ; confidence 0.988
2765.
; $$\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$$ ; confidence 0.216
2766.
; $$\{ f \rangle _ { P } \sim | V |$$ ; confidence 0.071
2767.
; $$\frac { 1 } { 2 \pi } \sum _ { t = - T + 1 } ^ { T - 1 } e ^ { - i t \lambda } r ^ { * } ( t ) c T ( t )$$ ; confidence 0.607
2768.
; $$\xi = \sum b _ { j } x ( t _ { j } )$$ ; confidence 0.942
2769.
; $$\sum b _ { j } \phi _ { l } ( t _ { j } ) = 0$$ ; confidence 0.990
2770.
; $$I _ { T } ( \lambda ) = \frac { 1 } { 2 \pi T } | \int _ { 0 } ^ { T } e ^ { - i t \lambda } x ( t ) d t |$$ ; confidence 0.646
2771.
; $$a T \rightarrow \infty$$ ; confidence 0.506
2772.
; $$\theta _ { T } ^ { * }$$ ; confidence 0.481
2773.
; $$\{ \epsilon _ { t } \}$$ ; confidence 0.993
2774.
; $$h ^ { S * } ( . ) \approx \overline { E } \times ( . )$$ ; confidence 0.489
2775.
; $$\alpha < p b$$ ; confidence 0.578
2776.
; $$\alpha \leq p b$$ ; confidence 0.784
2777.
; $$g \neq 0$$ ; confidence 1.000
2778.
; $$I = \{ f \in O ( X ) : f ( x ) = 0 \}$$ ; confidence 0.993
2779.
; $$I \subset O ( X )$$ ; confidence 0.970
2780.
; $$n ( O _ { x } ) = 0$$ ; confidence 0.322
2781.
; $$f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$$ ; confidence 0.345
2782.
; $$\omega ( R )$$ ; confidence 0.999
2783.
; $$\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$$ ; confidence 0.947
2784.
; $$RP ^ { \infty }$$ ; confidence 0.165
2785.
; $$V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$$ ; confidence 0.259
2786.
; $$x [ M ^ { n } ] = \alpha ( x )$$ ; confidence 0.933
2787.
; $$w ^ { \prime }$$ ; confidence 0.380
2788.
; $$x + C$$ ; confidence 0.988
2789.
; $$| u ( x _ { 1 } ) - u ( x _ { 2 } ) | \leq C | x _ { 1 } - x _ { 2 }$$ ; confidence 0.995
2790.
; $$h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$$ ; confidence 0.183
2791.
; $$| \frac { 1 } { 1 - H \lambda _ { i } } | < 1$$ ; confidence 0.997
2792.
; $$y _ { n + 1 } = y _ { n } + \int _ { 0 } ^ { H / 2 } e ^ { A \tau } d \tau \times$$ ; confidence 0.976
2793.
; $$\alpha _ { 1 } = - 3$$ ; confidence 0.753
2794.
; $$\| y \| = \operatorname { max } _ { i } | y _ { i } |$$ ; confidence 0.800
2795.
; $$H \mapsto \alpha ( H )$$ ; confidence 0.996
2796.
; $$K . ( H X ) = ( K H ) X$$ ; confidence 0.766
2797.
; $$\partial _ { s }$$ ; confidence 0.939
2798.
; $$t / \lambda ^ { 2 } \rightarrow + \infty$$ ; confidence 0.986
2799.
; $$E$$ ; confidence 0.923
2800.
; $$B \in \mathfrak { B } _ { 0 }$$ ; confidence 0.992
2801.
; $$\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$$ ; confidence 0.500
2802.
; $$\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$$ ; confidence 0.740
2803.
; $$X ( t _ { 1 } ) = x$$ ; confidence 0.980
2804.
; $$t = Z$$ ; confidence 0.971
2805.
; $$x ( \phi )$$ ; confidence 0.999
2806.
; $$\overline { w }$$ ; confidence 0.553
2807.
; $$d x = A ( t ) x d t + B ( t ) d w ( t )$$ ; confidence 0.986
2808.
; $$d X ( t ) = a ( t ) Z ( t ) d t + d Y ( t )$$ ; confidence 0.505
2809.
; $$\alpha < t < b$$ ; confidence 0.786
2810.
; $$\zeta ^ { \phi } \in C ^ { d }$$ ; confidence 0.837
2811.
; $$W ^ { ( n ) } ( s )$$ ; confidence 0.986
2812.
; $$J ( y ) \leq J ( y )$$ ; confidence 0.683
2813.
; $$\overline { f } : X \rightarrow Y$$ ; confidence 0.998
2814.
; $$\overline { E } * ( X )$$ ; confidence 0.554
2815.
; $$j _ { X } ^ { k } ( u )$$ ; confidence 0.362
2816.
; $$f = 1$$ ; confidence 1.000
2817.
; $$a \neq a _ { 0 }$$ ; confidence 0.773
2818.
; $$p ( \alpha )$$ ; confidence 0.904
2819.
; $$l [ f ] = 0$$ ; confidence 0.979
2820.
; $$L _ { 0 } ^ { * } = L _ { 1 }$$ ; confidence 0.957
2821.
; $$\lambda _ { 1 } < \lambda _ { 2 } < \ldots$$ ; confidence 0.830
2822.
; $$\Phi ^ { \prime \prime } ( + 0 ) = - h$$ ; confidence 0.997
2823.
; $$m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } ( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } ) d \rho _ { 0 } ( t )$$ ; confidence 0.926
2824.
; $$X ^ { * }$$ ; confidence 0.447
2825.
; $$m : B \rightarrow A$$ ; confidence 0.962
2826.
; $$\xi = \infty \in \partial D$$ ; confidence 0.998
2827.
; $$V = V ( \infty ) = \{ x \in R ^ { n } : | x | > R \}$$ ; confidence 0.624
2828.
; $$c = \operatorname { const } \neq 0$$ ; confidence 0.470
2829.
; $$P _ { \theta } ( A | B )$$ ; confidence 0.963
2830.
; $$\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$$ ; confidence 0.795
2831.
; $$\lambda _ { n } = 1 / ( n + 1 ) ^ { s }$$ ; confidence 0.931
2832.
; $$s _ { n } \rightarrow s$$ ; confidence 0.696
2833.
; $$\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$$ ; confidence 0.542
2834.
; $$\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$$ ; confidence 0.425
2835.
; $$S ( L )$$ ; confidence 0.980
2836.
; $$x _ { 1 } ^ { 2 } = 0$$ ; confidence 0.997
2837.
; $$\frac { x ^ { 2 } } { p } - \frac { y ^ { 2 } } { q } = 2 z$$ ; confidence 0.932
2838.
; $$T ^ { * } Y \backslash 0$$ ; confidence 0.994
2839.
; $$\Phi ( f ( w ) ) = \sigma ( \Phi ( w ) )$$ ; confidence 0.999
2840.
; $$S ( B _ { n } ^ { m } )$$ ; confidence 0.719
2841.
; $$H ^ { n - k } \cap S ^ { k }$$ ; confidence 0.502
2842.
; $$\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$$ ; confidence 0.404
2843.
; $$\sim \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$$ ; confidence 0.975
2844.
; $$T _ { i } = C A ^ { i } B ^ { i } B$$ ; confidence 0.233
2845.
; $$- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$$ ; confidence 0.902
2846.
; $$R = \{ \pi ( i ) : \square i \in I \}$$ ; confidence 0.950
2847.
; $$\{ \pi ( i ) : \square i \in I _ { 0 } \}$$ ; confidence 0.752
2848.
; $$L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$$ ; confidence 0.831
2849.
; $$T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$$ ; confidence 0.699
2850.
; $$k = R / m$$ ; confidence 0.483
2851.
; $$g ^ { ( i ) }$$ ; confidence 0.484
2852.
; $$( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$$ ; confidence 0.385
2853.
; $$\tau x ^ { n }$$ ; confidence 0.790
2854.
; $$D _ { A } ^ { 2 } = 0$$ ; confidence 0.998
2855.
; $$\sigma ^ { \prime } ( A )$$ ; confidence 0.999
2856.
; $$\psi = \Psi ^ { \prime }$$ ; confidence 0.559
2857.
; $$E _ { 1 } E _ { 2 } E _ { 3 }$$ ; confidence 0.997
2858.
; $$e _ { v } \leq \mathfrak { e } _ { v } + 1$$ ; confidence 0.197
2859.
; $$R _ { T ^ { \prime \prime } }$$ ; confidence 0.675
2860.
; $$M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$$ ; confidence 0.076
2861.
; $$e ^ { \prime }$$ ; confidence 0.559
2862.
; $$( \pi | \tau _ { 1 } | \tau _ { 2 } )$$ ; confidence 0.977
2863.
; $$\theta ( z + \tau ) = \operatorname { exp } ( - 2 \pi i k z ) . \theta ( z )$$ ; confidence 0.660
2864.
; $$\delta = 2$$ ; confidence 0.999
2865.
; $$\operatorname { lm } A = \| \operatorname { lm } \alpha _ { \mu \nu } |$$ ; confidence 0.510
2866.
; $$B = I _ { p }$$ ; confidence 0.852
2867.
; $$d f _ { x } : R ^ { n } \rightarrow R ^ { p }$$ ; confidence 0.932
2868.
; $$f ^ { - 1 } ( S )$$ ; confidence 0.998
2869.
; $$c < 2$$ ; confidence 0.987
2870.
; $$u x + v x ^ { 2 } + w x ^ { 3 } + t x ^ { 4 }$$ ; confidence 0.989
2871.
; $$\{ \partial f \rangle$$ ; confidence 0.295
2872.
; $$x ^ { 3 } + x y ^ { 2 }$$ ; confidence 1.000
2873.
; $$E ^ { Q } ( N )$$ ; confidence 0.962
2874.
; $$N \geq Z$$ ; confidence 0.919
2875.
; $$\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$$ ; confidence 0.489
2876.
; $$M = M _ { 1 } \# M _ { 2 }$$ ; confidence 0.954
2877.
; $$O _ { S } ^ { * }$$ ; confidence 0.936
2878.
; $$( 5 \times 10 ^ { 6 } r ) ^ { 3 }$$ ; confidence 0.525
2879.
; $$X _ { ( \tau _ { 1 } + \ldots + \tau _ { j - 1 } + 1 ) } = \ldots = X _ { ( \tau _ { 1 } + \ldots + \tau _ { j } ) }$$ ; confidence 0.575
2880.
; $$B s$$ ; confidence 0.576
2881.
; $$\beta ( M )$$ ; confidence 0.995
2882.
; $$\square _ { H } T$$ ; confidence 0.979
2883.
; $$( Q )$$ ; confidence 0.999
2884.
; $$q R$$ ; confidence 0.245
2885.
; $$q _ { A }$$ ; confidence 0.118
2886.
; $$M = M \Lambda ^ { t }$$ ; confidence 0.505
2887.
; $$C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$$ ; confidence 0.440
2888.
; $$K ( L ^ { 2 } ( S ) )$$ ; confidence 0.779
2889.
; $$( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$$ ; confidence 0.710
2890.
; $$\eta \in A \mapsto \xi \eta \in A$$ ; confidence 0.962
2891.
; $$f \in S ( R ^ { n } )$$ ; confidence 0.981
2892.
; $$( f _ { i } : B _ { i } \rightarrow B ) _ { i \in l }$$ ; confidence 0.575
2893.
; $$F \in \gamma$$ ; confidence 0.994
2894.
; $$\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$$ ; confidence 0.342
2895.
; $$A \wedge B$$ ; confidence 0.923
2896.
; $$= C$$ ; confidence 0.931
2897.
; $$\operatorname { sin } 0$$ ; confidence 0.092
2898.
; $$\{ p _ { i } ^ { - 1 } U _ { i } : U _ { i } \in \mu _ { i \square } \text { and } i \in I \}$$ ; confidence 0.601
2899.
; $$A ^ { * } = A \cup \{ \infty _ { A } \}$$ ; confidence 0.980
2900.
; $$p _ { 1 } \otimes \sim p _ { 2 }$$ ; confidence 0.782
2901.
; $$\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$$ ; confidence 0.229
2902.
; $$D ( R ^ { n + k } )$$ ; confidence 0.995
2903.
; $$H \rightarrow TOP$$ ; confidence 0.688
2904.
; $$\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$$ ; confidence 0.066
2905.
; $$X \rightarrow P L / O$$ ; confidence 0.928
2906.
; $$d \Phi$$ ; confidence 0.791
2907.
; $$d = 6$$ ; confidence 0.998
2908.
; $$( X ) \in M$$ ; confidence 0.998
2909.
; $$r _ { 2 } \in R$$ ; confidence 0.862
2910.
; $$S _ { j } ^ { k } = \Gamma _ { i j } ^ { k } - \Gamma _ { j i } ^ { k }$$ ; confidence 0.505
2911.
; $$x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$$ ; confidence 0.391
2912.
; $$r < | w | < 1$$ ; confidence 0.982
2913.
; $$d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$$ ; confidence 0.470
2914.
; $$\operatorname { lim } _ { \epsilon \rightarrow 0 } d ( E _ { \epsilon } ) = d ( E )$$ ; confidence 0.993
2915.
; $$x = f ( \alpha )$$ ; confidence 0.993
2916.
; $$\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$$ ; confidence 0.104
2917.
; $$\mathfrak { A } f$$ ; confidence 0.742
2918.
; $$R ^ { 0 } f$$ ; confidence 0.999
2919.
; $$g = R ^ { \alpha } f$$ ; confidence 0.864
2920.
; $$P ( S )$$ ; confidence 0.765
2921.
; $$o ( N ) / N \rightarrow 0$$ ; confidence 0.792
2922.
; $$T _ { 23 } n ( \operatorname { cos } \pi \omega )$$ ; confidence 0.946
2923.
; $$g _ { n } ( \Omega )$$ ; confidence 0.875
2924.
; $$l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$$ ; confidence 0.308
2925.
; $$Q _ { n } W ^ { k } = P _ { n } c ( W ^ { k } + \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$$ ; confidence 0.976
2926.
; $$g _ { k } = ( 1 + y _ { k } ) / 2$$ ; confidence 0.953
2927.
; $$V = f ^ { - 1 } ( X )$$ ; confidence 1.000
2928.
; $$Q _ { 1 } \cup \square \ldots \cup Q _ { m }$$ ; confidence 0.878
2929.
; $$f ( x ) = g ( y )$$ ; confidence 1.000
2930.
; $$2 / ( 3 N / 2 )$$ ; confidence 0.990
2931.
; $$\frac { a _ { 0 } } { 4 } x ^ { 2 } - \sum _ { k = 1 } ^ { \infty } \frac { a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x } { k ^ { 2 } }$$ ; confidence 0.667
2932.
; $$\operatorname { Fix } ( T ) \subset \mathfrak { R }$$ ; confidence 0.710
2933.
; $$\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$$ ; confidence 0.204
2934.
; $$\overline { U } / \partial \overline { U }$$ ; confidence 0.976
2935.
; $$u _ { m } = u ( M _ { m } )$$ ; confidence 0.360
2936.
; $$m > - 1$$ ; confidence 0.998
2937.
; $$\operatorname { Re } G _ { 1 } ( r ) \geq B$$ ; confidence 0.984
2938.
; $$\sum ( k _ { i } - 1 )$$ ; confidence 0.930
2939.
; $$\{ \omega _ { n } ^ { + } ( V ) \}$$ ; confidence 0.949
2940.
; $$f _ { 0 } \neq 0$$ ; confidence 0.997
2941.
; $$\alpha \geq A _ { 0 }$$ ; confidence 0.904
2942.
; $$\forall v \phi$$ ; confidence 0.989
2943.
; $$\in M$$ ; confidence 0.717
2944.
; $$( \phi \& \psi )$$ ; confidence 0.997
2945.
; $$\{ f ( z ) \}$$ ; confidence 1.000
2946.
; $$\phi ( z ) = \frac { 1 - z ^ { 2 } } { z } f ( z ) \in C$$ ; confidence 0.993
2947.
; $$T ( X ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } X = 1 } \\ { 0 } & { \text { if } X \geq 2 } \end{array} \right.$$ ; confidence 0.976
2948.
; $$f _ { \alpha } ( x ) \geq - c$$ ; confidence 0.977
2949.
; $$\{ d f _ { n } / d x \}$$ ; confidence 0.954
2950.
; $$t \rightarrow t + w z$$ ; confidence 0.466
2951.
; $$w = \operatorname { sin }$$ ; confidence 0.905
2952.
; $$( g - 1 ) ^ { n } = 0$$ ; confidence 0.996
2953.
; $$U _ { n } ( K )$$ ; confidence 0.987
2954.
; $$g ^ { p } = e$$ ; confidence 0.978
2955.
; $$O ( \epsilon _ { N } )$$ ; confidence 0.478
2956.
; $$U ( \epsilon )$$ ; confidence 0.998
2957.
; $$\sum _ { k = 1 } ^ { \infty } | \alpha _ { k } | ^ { 2 } = \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } | f ( e ^ { i t } ) | ^ { 2 } d t \leq 1$$ ; confidence 0.986
2958.
; $$U : B \rightarrow A$$ ; confidence 0.544
2959.
; $$( n \geq 0 )$$ ; confidence 1.000
2960.
; $$v ( x ) \geq f ( x )$$ ; confidence 0.996
2961.
; $$f ( z ) \in K$$ ; confidence 0.998
2962.
; $$\lambda \leq 0.5$$ ; confidence 0.968
2963.
; $$( f ) \subseteq V ( f )$$ ; confidence 0.998
2964.
; $$s ( r )$$ ; confidence 0.997
2965.
; $$x \in Y ( u )$$ ; confidence 0.570
2966.
; $$( a + b ) + c = a + ( b + c )$$ ; confidence 0.946
2967.
; $$a \perp b$$ ; confidence 0.521
2968.
; $$\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$$ ; confidence 0.378
2969.
; $$u ^ { * } ( \pi )$$ ; confidence 0.996
2970.
; $$\pi ^ { \prime } \oplus \theta ^ { \prime }$$ ; confidence 0.992
2971.
; $$G ^ { k } ( V ) \times V$$ ; confidence 0.950
2972.
; $$w : \xi \oplus \zeta \rightarrow \pi$$ ; confidence 0.996
2973.
; $$\pi : B \rightarrow G ^ { k } ( V )$$ ; confidence 0.258
2974.
; $$X ^ { \prime } \cap \pi ^ { - 1 } ( b )$$ ; confidence 0.999
2975.
; $$+ \frac { 1 } { N ! } \int _ { t _ { 0 } } ^ { t } ( t - \tau ) ^ { N _ { r } ( N + 1 ) } ( \tau ) d \tau$$ ; confidence 0.696
2976.
; $$j \in ( 1 / 2 ) Z$$ ; confidence 0.983
2977.
; $$1 _ { n } ( w ) = 0$$ ; confidence 0.957
2978.
; $$f ^ { * } : H ^ { * } ( Y ) \rightarrow H ^ { * } ( X )$$ ; confidence 0.997
2979.
; $$H ^ { n } ( S ^ { n } )$$ ; confidence 0.629
2980.
; $$\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$$ ; confidence 0.259
2981.
; $$F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$$ ; confidence 0.783
2982.
; $$t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$$ ; confidence 0.119
2983.
; $$d _ { k } = rd _ { Y } M _ { k }$$ ; confidence 0.623
2984.
; $$n \geq 12$$ ; confidence 0.886
2985.
; $$P ^ { 2 r - k }$$ ; confidence 0.936
2986.
; $$v _ { \nu } ( t _ { 0 } ) = 0$$ ; confidence 0.996
2987.
; $$F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$$ ; confidence 0.909
2988.
; $$q e ^ { ( - i \theta ) }$$ ; confidence 0.903
2989.
; $$\vec { V }$$ ; confidence 0.987
2990.
; $$\tau _ { j } < 0$$ ; confidence 0.887
2991.
; $$2 i$$ ; confidence 0.747
2992.
; $$\theta = 2 \pi$$ ; confidence 0.999
2993.
; $$U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$$ ; confidence 0.768
2994.
; $$\Pi I _ { \lambda }$$ ; confidence 0.300
2995.
; $$\phi ( U T U ^ { - 1 } ) = \phi ( T )$$ ; confidence 0.999
2996.
; $$III _ { 0 }$$ ; confidence 0.560
2997.
; $$P \sim P _ { 1 }$$ ; confidence 0.999
2998.
; $$Q = U U ^ { * }$$ ; confidence 0.977
2999.
; $$P _ { 1 } \in A$$ ; confidence 0.996
3000.
; $$\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$$ ; confidence 0.832
3001.
; $$U = \cup _ { i } \operatorname { Im } f$$ ; confidence 0.671
3002.
; $$\int _ { 0 } ^ { \pi / 2 } \operatorname { sin } ^ { 2 m + 1 } x d x$$ ; confidence 0.964
3003.
; $$2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$$ ; confidence 0.976
3004.
; $$F ( x )$$ ; confidence 1.000
3005.
; $$\lambda = 2 \pi / | k |$$ ; confidence 0.980
3006.
; $$A _ { n } ( x _ { 0 } )$$ ; confidence 0.499
3007.
; $$\partial ^ { 2 } u / \partial x ^ { 2 } + \partial ^ { 2 } u / \partial y ^ { 2 } + k ^ { 2 } u = 0$$ ; confidence 0.997
3008.
; $$A = N \oplus s$$ ; confidence 0.521
3009.
; $$A = N \oplus S _ { 1 }$$ ; confidence 0.438
3010.
; $$j = g ^ { 3 } / g ^ { 2 }$$ ; confidence 0.799
3011.
; $$= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$$ ; confidence 0.426
3012.
; $$x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$$ ; confidence 0.980
3013.
; $$K = - ( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \} ^ { 2 }$$ ; confidence 0.571
3014.
; $$m _ { k } = \dot { k }$$ ; confidence 0.352
3015.
; $$q \in T _ { n } ( k )$$ ; confidence 0.977
3016.
; $$D = \langle x ^ { 2 } \} \subset R [ x ]$$ ; confidence 0.413
3017.
; $$D = R [ x ] / D$$ ; confidence 0.968
3018.
; $$H ^ { i } ( X )$$ ; confidence 0.995
3019.
; $$H ^ { 2 n } ( X )$$ ; confidence 0.999
3020.
; $$\beta$$ ; confidence 0.911
3021.
; $$\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$$ ; confidence 0.315
3022.
; $$\operatorname { gr } ( A _ { 1 } ( K ) )$$ ; confidence 0.860
3023.
; $$A _ { k + 1 } ( C )$$ ; confidence 0.634
3024.
; $$\oplus V _ { k } ( M ) / V _ { k - 1 } ( M )$$ ; confidence 0.970
3025.
; $$q$$ ; confidence 0.899
3026.
; $$C ^ { \prime } = 1$$ ; confidence 0.999
3027.
; $$W ( f \times g ) = W ( f ) . W ( g )$$ ; confidence 0.906
3028.
; $$Z _ { \zeta } ( T )$$ ; confidence 0.463
3029.
; $$N _ { G } ( T ) / Z _ { G } ( T )$$ ; confidence 0.990
3030.
; $$N _ { G } ( T )$$ ; confidence 0.970
3031.
; $$f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$$ ; confidence 0.966
3032.
; $$\Delta ( \lambda ) ^ { \mu }$$ ; confidence 1.000
3033.
; $$L ( \mu )$$ ; confidence 0.993
3034.
; $$\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$$ ; confidence 0.487
3035.
; $$S ( R ^ { n } ) \times S ( R ^ { n } )$$ ; confidence 0.944
3036.
; $$\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$$ ; confidence 0.058
3037.
; $$\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$$ ; confidence 0.712
3038.
; $$A ^ { * } \sigma A = \sigma$$ ; confidence 0.887
3039.
; $$G = G ^ { \sigma }$$ ; confidence 0.956
3040.
; $$X \in \Phi$$ ; confidence 0.895
3041.
; $$g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$$ ; confidence 0.357
3042.
; $$\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$$ ; confidence 0.354
3043.
; $$S \square T$$ ; confidence 0.898
3044.
; $$T _ { n }$$ ; confidence 0.602
3045.
; $$N = 2$$ ; confidence 0.996
3046.
; $$S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$$ ; confidence 0.942
3047.
; $$T _ { 1 } \sim \Lambda$$ ; confidence 0.998
3048.
; $$\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$$ ; confidence 0.238
3049.
; $$l \equiv 2 ( \operatorname { mod } 3 )$$ ; confidence 0.997
3050.
; $$B ( \lambda )$$ ; confidence 1.000
3051.
; $$L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$$ ; confidence 0.885
3052.
; $$\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$$ ; confidence 0.591
3053.
; $$\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$$ ; confidence 0.909
3054.
; $$( g ) = g ^ { \prime }$$ ; confidence 1.000
3055.
; $$t _ { 1 } \in D ^ { - }$$ ; confidence 0.997
3056.
; $$\| x \| _ { 1 }$$ ; confidence 0.650
3057.
; $$P = - i \hbar \nabla _ { x }$$ ; confidence 0.929
3058.
; $$T _ { W \alpha } = T$$ ; confidence 0.134
3059.
; $$\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$$ ; confidence 0.515
3060.
; $$B _ { m } = R$$ ; confidence 0.993
3061.
; $$p ( n + 1 ) / 2$$ ; confidence 0.997
3062.
; $$( D ) \leq c \text { length } ( C )$$ ; confidence 0.985
3063.
; $$Y \times X$$ ; confidence 0.869
3064.
; $$\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$$ ; confidence 0.228
3065.
; $$\sigma \in \operatorname { Aut } ( R )$$ ; confidence 0.958
3066.
; $$D ( R )$$ ; confidence 0.960
3067.
; $$J ( \phi )$$ ; confidence 0.976
3068.
; $$\| \phi _ { q } \| _ { q } = 1$$ ; confidence 0.797
3069.
; $$H _ { 1 } \subset L _ { N }$$ ; confidence 0.459
3070.
; $$g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$$ ; confidence 0.828
3071.
; $$R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$$ ; confidence 0.996
3072.
; $$R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$$ ; confidence 0.794
3073.
; $$R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$$ ; confidence 0.786
3074.
; $$\sigma ( M ^ { 4 } )$$ ; confidence 1.000
3075.
; $$\pi _ { 1 } : P _ { 1 } \rightarrow S ^ { 4 }$$ ; confidence 0.998
3076.
; $$t _ { \lambda } ^ { \prime }$$ ; confidence 0.881
3077.
; $$\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$$ ; confidence 0.569
3078.
; $$\forall y ( \neg y \in x )$$ ; confidence 0.930
3079.
; $$I = ( f )$$ ; confidence 0.997
3080.
; $$( f g f h )$$ ; confidence 0.723
3081.
; $$1.609$$ ; confidence 0.997
3082.
; $$001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$$ ; confidence 0.156
3083.
; $$x _ { 2 } = r \operatorname { sin } \theta$$ ; confidence 0.977
Maximilian Janisch/latexlist/latex/1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/1&oldid=43806