Namespaces
Variants
Actions

Difference between revisions of "Natural function"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 12: Line 12:
  
 
A natural function is a Lipschitz function and the smallest Lipschitz constant equals .
 
A natural function is a Lipschitz function and the smallest Lipschitz constant equals 1.
 +
 +
Let f:[a,b] \to \mathbb{R}
  
 
A function f: E \to X has bounded variation if and only if there exists a non-decreasing bounded function \phi : E \to \mathbb{R} and a natural function g: \phi (E) \to X such that f=g\circ\phi on E.
 
A function f: E \to X has bounded variation if and only if there exists a non-decreasing bounded function \phi : E \to \mathbb{R} and a natural function g: \phi (E) \to X such that f=g\circ\phi on E.

Revision as of 16:31, 21 April 2016


A function g: E \to X is natural if V(g,E_a^b)=b-a for all a,b \in E, a \leq b , where E\subset \mathbb{R} is a non-empty bounded set, E_a^b=\{s \in E: a \leq s \leq b \} for a,b \in E (a \leq b), X is a metric space with a metric d, V(g,E_a^b) variation of g on E_a^b.

Let {E_t}^-=\{s \in E: s \leq t\} and {E_t}^+=\{s \in E: t \leq s\}. The following conditions are equivalent:

(a) f is a natural function;

(b) V(f,{E_x}^-)=x+c, x \in E, where c=-inf(E);

(c) f is a Lipschitz function such that Lip(f) \leq 1 and V(f,E)=sup(E)-inf(E).

A natural function is a Lipschitz function and the smallest Lipschitz constant equals 1.

Let f:[a,b] \to \mathbb{R}

A function f: E \to X has bounded variation if and only if there exists a non-decreasing bounded function \phi : E \to \mathbb{R} and a natural function g: \phi (E) \to X such that f=g\circ\phi on E.


References

[1] V.V. Chistyakov, On the theory of set-valued maps of bounded variation of one real variable, Sbornik: Mathematics 189:5 (1998), 797-819.

How to Cite This Entry:
Natural function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Natural_function&oldid=38598