Difference between revisions of "Campbell-Hausdorff formula"
Ulf Rehmann (talk | contribs) m (moved Campbell–Hausdorff formula to Campbell-Hausdorff formula: ascii title) |
(Completed rendering of article in TeX.) |
||
Line 1: | Line 1: | ||
A formula for computing | A formula for computing | ||
+ | $$ | ||
+ | w = \ln(e^{u} e^{v}) | ||
+ | $$ | ||
+ | in the algebra of formal power series in and v , where the latter are assumed to be associative but non-commutative. More precisely, let A be a free associative algebra with unit over the field \mathbb{Q} , with free generators u and v ; let L be the Lie subalgebra of A generated by these elements relative to the commutation operation [x,y] = x y - y x ; and let \widehat{A} and \widehat{L} denote, respectively, the natural power-series completions of A and L , i.e., \widehat{A} is the ring of power series in the associative but non-commutative variables u and v , and \widehat{L} is the closure of L in \widehat{A} . Then the mapping | ||
+ | $$ | ||
+ | \exp: x \mapsto e^{x} = \sum_{n = 0}^{\infty} \frac{1}{n!} x^{n} | ||
+ | $$ | ||
+ | is a continuous bijection of \widehat{A} onto the multiplicative group 1 + \widehat{A}_{1} , where \widehat{A}_{1} is the set of series without a constant term. The inverse of this mapping is | ||
+ | $$ | ||
+ | \ln: y \mapsto \ln(y) = \sum_{n = 1}^{\infty} \frac{(-1)^{n - 1}}{n} (y - 1)^{n}. | ||
+ | $$ | ||
− | + | The restriction of \exp to \widehat{L} is a bijection of \widehat{L} onto the group 1 + \widehat{L} . One can thus introduce a group operation, $ x \circ y \stackrel{\text{df}}{=} \ln(e^{x} e^{y}) $, on the set of elements of the Lie algebra \widehat{L} , and it can be shown that the subgroup of this group that is generated by u and v is free. The Campbell-Hausdorff formula provides an expression for u \circ v as a power series in u and v : | |
− | + | $$ | |
− | + | \sum_{m = 1}^{\infty} | |
− | + | \left[ | |
− | + | \frac{(-1)^{m - 1}}{m} | |
− | + | \sum_{\substack{p_{1},\ldots,p_{m} \in \mathbf{N}_{0} \\ q_{1},\ldots,q_{m} \in \mathbf{N}_{0} \\ p_{1} + q_{1} > 0 \\ \vdots \\ p_{m} + q_{m} > 0}} | |
− | + | \frac{1}{\sum_{i = 1}^{m} (p_{i} + q_{i}) \cdot \prod_{i = 1}^{m} p_{i}! q_{i}!} | |
− | + | [\underbrace{u,[u,\ldots [u}_{p_{1}},[\underbrace{v,[v, \ldots [v}_{q_{1}}, \ldots [\underbrace{u,[u, \ldots [u}_{p_{m}},[\underbrace{v,[v, \ldots [v,v}_{q_{m}}]] \ldots ]] | |
− | + | \right] \qquad (\ast) | |
− | + | $$ | |
− | The restriction of | + | or (in terms of the adjoint representation $ (\operatorname{ad} x)(y) = [x,y] $) |
− | + | $$ | |
− | + | w = \sum_{n = 1}^{\infty} \left[ \frac{1}{n} \sum_{\substack{r + s = n \\ r,s \geq 0}} (w'_{r,s} + w''_{r,s}) \right], | |
− | + | $$ | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
where | where | ||
+ | $$ | ||
+ | w'_{r,s} \stackrel{\text{df}}{=} | ||
+ | \sum_{m = 1}^{\infty} | ||
+ | \left[ \frac{(-1)^{m - 1}}{m} \sum^{\ast} \left( \! \left( \prod_{i = 1}^{m - 1} \frac{(\operatorname{ad} u)^{r_{i}}}{r_{i}!} \frac{(\operatorname{ad} v)^{s_{i}}}{s_{i}!} \right) \frac{(\operatorname{ad} u)^{r_{m}}}{r_{m}!} \right) \! (v) \right] | ||
+ | $$ | ||
+ | and | ||
+ | $$ | ||
+ | w''_{r,s} \stackrel{\text{df}}{=} \sum_{m = 1}^{\infty} \left[ \frac{(-1)^{m - 1}}{m} \sum^{\ast \ast} \left( \prod_{i = 1}^{m - 1} \frac{(\operatorname{ad} u)^{r_{1}}}{r_{i}!} \frac{(\operatorname{ad} v)^{s_{i}}}{s_{i}!} \right) \! (u) \right]. | ||
+ | $$ | ||
+ | Here, \displaystyle \sum^{\ast} denotes summation over r_{1} + \cdots + r_{m} = r , s_{1} + \cdots + s_{m - 1} = s - 1 , r_{1} + s_{1} \geq 1,\ldots,r_{m - 1} + s_{m - 1} \geq 1 ; and \displaystyle \sum^{\ast \ast} denotes summation over r_{1} + \cdots + r_{m - 1} = r - 1 , s_{1} + \cdots + s_{m - 1} = s , r_{1} + s_{1} \geq 1,\ldots,r_{m - 1} + s_{m - 1} \geq 1 . | ||
− | + | The first investigation of the expression w is due to J.E. Campbell. F. Hausdorff ([[#References|[2]]]) proved that w can be expressed in terms of the commutators of u and v , i.e., it is an element of the Lie algebra \widehat{L} . | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | The first investigation of the expression | ||
− | If | + | If \mathfrak{g} is a normed Lie algebra over a complete non-discretely normed field \mathbb{K} , then the series $ (\ast) $, with u,v \in \mathfrak{g} , is convergent in a neighbourhood of 0_{\mathfrak{g}} . Near 0_{\mathfrak{g}} , one can thus define the structure of a local Banach Lie group over \mathbb{K} (in the ultrametric case — the structure of a Banach Lie group), with Lie algebra \mathfrak{g} . This yields one of the existence proofs for a local Lie group with a given Lie algebra (Lie’s third theorem). Conversely, in any local Lie group, multiplication can be expressed in canonical coordinates by the Campbell-Hausdorff formula. |
====References==== | ====References==== | ||
− | |||
− | |||
+ | <table> | ||
+ | <TR><TD valign="top">[1a]</TD><TD valign="top"> | ||
+ | J.E. Campbell, ''Proc. London Math. Soc.'', '''28''' (1897), pp. 381−390.</TD></TR> | ||
+ | <TR><TD valign="top">[1b]</TD><TD valign="top"> | ||
+ | J.E. Campbell, ''Proc. London Math. Soc.'', '''29''' (1898), pp. 14−32.</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD><TD valign="top"> | ||
+ | F. Hausdorff, “Die symbolische Exponential Formel in der Gruppentheorie”, ''Leipziger Ber.'', '''58''' (1906), pp. 19−48.</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD><TD valign="top"> | ||
+ | N. Bourbaki, “Elements of mathematics. Lie groups and Lie algebras”, Addison-Wesley (1975). (Translated from French)</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD><TD valign="top"> | ||
+ | J.-P. Serre, “Lie algebras and Lie groups”, Benjamin (1965). (Translated from French)</TD></TR> | ||
+ | <TR><TD valign="top">[5]</TD><TD valign="top"> | ||
+ | ''Theórie des algèbres de Lie. Topologie des groupes de Lie'', ''Sem. S. Lie'', '''1e année 1954−1955''', École Norm. Sup. (1955).</TD></TR> | ||
+ | <TR><TD valign="top">[6]</TD><TD valign="top"> | ||
+ | W. Magnus, A. Karrass, B. Solitar, “Combinatorial group theory: presentations in terms of generators and relations”, Wiley (Interscience) (1966).</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | |||
− | + | Let A^{n} denote the component of A consisting of non-commutative polynomials of degree n . Then $ \displaystyle \widehat{A} = \prod_{i = 1}^{\infty} A^{n} . Similarly, \displaystyle \widehat{L} = \prod_{i = 1}^{\infty} L^{n} $. | |
− | + | The formula for $ w = u \circ v $ is also known as the '''Baker-Campbell-Hausdorff formula''' or the '''Campbell-Baker-Hausdorff formula'''. The first few terms are: | |
+ | $$ | ||
+ | w = u + v + \frac{1}{2} [u,v] + \frac{1}{12} [u,[u,v]] + \frac{1}{12} [v,[v,u]] + \cdots. | ||
+ | $$ | ||
+ | The formula in terms of the w'_{r,s} ’s and w''_{r,s} ’s is known as the '''explicit Campbell-Hausdorff formula''' (in Dynkin’s form). | ||
− | + | ====References==== | |
− | + | <table> | |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <TR><TD valign="top">[a1]</TD><TD valign="top"> |
+ | H.F. Baker, “Alternants and continuous groups”, ''Proc. London Math. Soc. (2)'', '''3''' (1905), pp. 24−47.</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD><TD valign="top"> | ||
+ | V.S. Varadarajan, “Lie groups, Lie algebras, and their representations”, Springer (1984), Section 2.15.</TD></TR> | ||
+ | </table> |
Latest revision as of 17:41, 4 May 2017
A formula for computing w = \ln(e^{u} e^{v}) in the algebra of formal power series in u and v , where the latter are assumed to be associative but non-commutative. More precisely, let A be a free associative algebra with unit over the field \mathbb{Q} , with free generators u and v ; let L be the Lie subalgebra of A generated by these elements relative to the commutation operation [x,y] = x y - y x ; and let \widehat{A} and \widehat{L} denote, respectively, the natural power-series completions of A and L , i.e., \widehat{A} is the ring of power series in the associative but non-commutative variables u and v , and \widehat{L} is the closure of L in \widehat{A} . Then the mapping \exp: x \mapsto e^{x} = \sum_{n = 0}^{\infty} \frac{1}{n!} x^{n} is a continuous bijection of \widehat{A} onto the multiplicative group 1 + \widehat{A}_{1} , where \widehat{A}_{1} is the set of series without a constant term. The inverse of this mapping is \ln: y \mapsto \ln(y) = \sum_{n = 1}^{\infty} \frac{(-1)^{n - 1}}{n} (y - 1)^{n}.
The restriction of \exp to \widehat{L} is a bijection of \widehat{L} onto the group 1 + \widehat{L} . One can thus introduce a group operation, x \circ y \stackrel{\text{df}}{=} \ln(e^{x} e^{y}) , on the set of elements of the Lie algebra \widehat{L} , and it can be shown that the subgroup of this group that is generated by u and v is free. The Campbell-Hausdorff formula provides an expression for u \circ v as a power series in u and v : \sum_{m = 1}^{\infty} \left[ \frac{(-1)^{m - 1}}{m} \sum_{\substack{p_{1},\ldots,p_{m} \in \mathbf{N}_{0} \\ q_{1},\ldots,q_{m} \in \mathbf{N}_{0} \\ p_{1} + q_{1} > 0 \\ \vdots \\ p_{m} + q_{m} > 0}} \frac{1}{\sum_{i = 1}^{m} (p_{i} + q_{i}) \cdot \prod_{i = 1}^{m} p_{i}! q_{i}!} [\underbrace{u,[u,\ldots [u}_{p_{1}},[\underbrace{v,[v, \ldots [v}_{q_{1}}, \ldots [\underbrace{u,[u, \ldots [u}_{p_{m}},[\underbrace{v,[v, \ldots [v,v}_{q_{m}}]] \ldots ]] \right] \qquad (\ast) or (in terms of the adjoint representation (\operatorname{ad} x)(y) = [x,y] ) w = \sum_{n = 1}^{\infty} \left[ \frac{1}{n} \sum_{\substack{r + s = n \\ r,s \geq 0}} (w'_{r,s} + w''_{r,s}) \right], where w'_{r,s} \stackrel{\text{df}}{=} \sum_{m = 1}^{\infty} \left[ \frac{(-1)^{m - 1}}{m} \sum^{\ast} \left( \! \left( \prod_{i = 1}^{m - 1} \frac{(\operatorname{ad} u)^{r_{i}}}{r_{i}!} \frac{(\operatorname{ad} v)^{s_{i}}}{s_{i}!} \right) \frac{(\operatorname{ad} u)^{r_{m}}}{r_{m}!} \right) \! (v) \right] and w''_{r,s} \stackrel{\text{df}}{=} \sum_{m = 1}^{\infty} \left[ \frac{(-1)^{m - 1}}{m} \sum^{\ast \ast} \left( \prod_{i = 1}^{m - 1} \frac{(\operatorname{ad} u)^{r_{1}}}{r_{i}!} \frac{(\operatorname{ad} v)^{s_{i}}}{s_{i}!} \right) \! (u) \right]. Here, \displaystyle \sum^{\ast} denotes summation over r_{1} + \cdots + r_{m} = r , s_{1} + \cdots + s_{m - 1} = s - 1 , r_{1} + s_{1} \geq 1,\ldots,r_{m - 1} + s_{m - 1} \geq 1 ; and \displaystyle \sum^{\ast \ast} denotes summation over r_{1} + \cdots + r_{m - 1} = r - 1 , s_{1} + \cdots + s_{m - 1} = s , r_{1} + s_{1} \geq 1,\ldots,r_{m - 1} + s_{m - 1} \geq 1 .
The first investigation of the expression w is due to J.E. Campbell. F. Hausdorff ([2]) proved that w can be expressed in terms of the commutators of u and v , i.e., it is an element of the Lie algebra \widehat{L} .
If \mathfrak{g} is a normed Lie algebra over a complete non-discretely normed field \mathbb{K} , then the series (\ast) , with u,v \in \mathfrak{g} , is convergent in a neighbourhood of 0_{\mathfrak{g}} . Near 0_{\mathfrak{g}} , one can thus define the structure of a local Banach Lie group over \mathbb{K} (in the ultrametric case — the structure of a Banach Lie group), with Lie algebra \mathfrak{g} . This yields one of the existence proofs for a local Lie group with a given Lie algebra (Lie’s third theorem). Conversely, in any local Lie group, multiplication can be expressed in canonical coordinates by the Campbell-Hausdorff formula.
References
[1a] | J.E. Campbell, Proc. London Math. Soc., 28 (1897), pp. 381−390. |
[1b] | J.E. Campbell, Proc. London Math. Soc., 29 (1898), pp. 14−32. |
[2] | F. Hausdorff, “Die symbolische Exponential Formel in der Gruppentheorie”, Leipziger Ber., 58 (1906), pp. 19−48. |
[3] | N. Bourbaki, “Elements of mathematics. Lie groups and Lie algebras”, Addison-Wesley (1975). (Translated from French) |
[4] | J.-P. Serre, “Lie algebras and Lie groups”, Benjamin (1965). (Translated from French) |
[5] | Theórie des algèbres de Lie. Topologie des groupes de Lie, Sem. S. Lie, 1e année 1954−1955, École Norm. Sup. (1955). |
[6] | W. Magnus, A. Karrass, B. Solitar, “Combinatorial group theory: presentations in terms of generators and relations”, Wiley (Interscience) (1966). |
Comments
Let A^{n} denote the component of A consisting of non-commutative polynomials of degree n . Then \displaystyle \widehat{A} = \prod_{i = 1}^{\infty} A^{n} . Similarly, \displaystyle \widehat{L} = \prod_{i = 1}^{\infty} L^{n} .
The formula for w = u \circ v is also known as the Baker-Campbell-Hausdorff formula or the Campbell-Baker-Hausdorff formula. The first few terms are: w = u + v + \frac{1}{2} [u,v] + \frac{1}{12} [u,[u,v]] + \frac{1}{12} [v,[v,u]] + \cdots. The formula in terms of the w'_{r,s} ’s and w''_{r,s} ’s is known as the explicit Campbell-Hausdorff formula (in Dynkin’s form).
References
[a1] | H.F. Baker, “Alternants and continuous groups”, Proc. London Math. Soc. (2), 3 (1905), pp. 24−47. |
[a2] | V.S. Varadarajan, “Lie groups, Lie algebras, and their representations”, Springer (1984), Section 2.15. |
Campbell-Hausdorff formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Campbell-Hausdorff_formula&oldid=22235