Namespaces
Variants
Actions

Difference between revisions of "Constructible subset"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (MR/ZBL numbers added)
Line 6: Line 6:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Grothendieck,  J. Dieudonné,  "Eléments de géometrie algébrique" , '''I. Le langage des schémes''' , Springer  (1971) {{MR|0238860}} {{MR|0217086}} {{MR|0199181}} {{MR|0173675}} {{MR|0163911}} {{MR|0217085}} {{MR|0217084}} {{MR|0163910}} {{MR|0163909}} {{MR|0217083}} {{MR|0163908}} {{ZBL|0203.23301}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Borel,  "Linear algebraic groups" , Benjamin  (1969)  {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Grothendieck,  J. Dieudonné,  "Eléments de géometrie algébrique" , '''I. Le langage des schémes''' , Springer  (1971)   {{MR|0217085}} {ZBL|0203.23301}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Borel,  "Linear algebraic groups" , Benjamin  (1969)  {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR></table>

Revision as of 10:19, 24 March 2012

of an algebraic variety

A finite union of locally closed (in the Zariski topology) subsets. A locally closed subset is, by definition, an intersection of an open and a closed subset. The constructible subsets form a Boolean algebra and can be defined as elements of the Boolean algebra generated by the algebraic subvarieties. The role of constructible subsets in algebraic geometry is revealed by Chevalley's theorem: If is a morphism of algebraic varieties, then (and, moreover, the image of any constructible subset in ) is a constructible subset in . This is related to the fact that "algebraic" conditions determine the constructible subsets of an algebraic variety.

A mapping is called constructible if is finite and if for any point the pre-image is a constructible subset in .

References

[1] A. Grothendieck, J. Dieudonné, "Eléments de géometrie algébrique" , I. Le langage des schémes , Springer (1971) MR0217085 {ZBL|0203.23301}}
[2] A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
How to Cite This Entry:
Constructible subset. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Constructible_subset&oldid=21832
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article