Difference between revisions of "Poisson manifold"
From Encyclopedia of Mathematics
(Poisson manifold) |
|||
Line 3: | Line 3: | ||
A '''Poisson bracket''' on a smooth manifold $M$ is a Lie bracket $\{~,~\}$ on the space of smooth functions $C^\infty(M)$ which, additionally, satisfies the Leibniz identity: | A '''Poisson bracket''' on a smooth manifold $M$ is a Lie bracket $\{~,~\}$ on the space of smooth functions $C^\infty(M)$ which, additionally, satisfies the Leibniz identity: | ||
$$ \{f,gh\}=\{f,g\}h+g\{f,h\},\qquad \forall f,g,h\in C^\infty(M).$$ | $$ \{f,gh\}=\{f,g\}h+g\{f,h\},\qquad \forall f,g,h\in C^\infty(M).$$ | ||
+ | The pair $(M,\{~,~\})$ is called a '''Poisson manifold'''. | ||
+ | |||
+ | On a Poisson manifold $(M,\{~,~\}), any smooth function $h\in C^\infty(M)$ determines a '''hamiltonian vector field''' $X_h$ by setting: | ||
+ | $$ X_h(f):=\{h,f\}.$$ |
Revision as of 09:53, 30 August 2011
Poisson manifold
A Poisson bracket on a smooth manifold $M$ is a Lie bracket $\{~,~\}$ on the space of smooth functions $C^\infty(M)$ which, additionally, satisfies the Leibniz identity: $$ \{f,gh\}=\{f,g\}h+g\{f,h\},\qquad \forall f,g,h\in C^\infty(M).$$ The pair $(M,\{~,~\})$ is called a Poisson manifold.
On a Poisson manifold $(M,\{~,~\}), any smooth function $h\in C^\infty(M)$ determines a '''hamiltonian vector field''' $X_h$ by setting: $$ X_h(f):=\{h,f\}.$$
How to Cite This Entry:
Poisson manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_manifold&oldid=19519
Poisson manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_manifold&oldid=19519