Namespaces
Variants
Actions

Difference between revisions of "Stochastic differential equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 31: Line 31:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008046.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008046.png" /></td> </tr></table>
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008047.png" />. The term "weak solution" sometimes applies only to the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008048.png" /> that appears in the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008049.png" />. A weak solution of equation (3) exists under weaker hypotheses. It is sufficient, for example, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008050.png" />, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008051.png" /> be continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008052.png" />, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008053.png" /> be measurable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008054.png" />, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008055.png" />.
+
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008047.png" />. The term "weak solution" sometimes applies only to the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008048.png" /> that appears in the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008049.png" />. A weak solution of equation (3) exists under weaker hypotheses. It is sufficient, for example, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008050.png" />, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008051.png" /> be continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008052.png" />, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008053.png" /> be measurable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008054.png" />, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008055.png" />.
  
 
The development of the theory of stochastic integration (see [[Stochastic integral|Stochastic integral]]) using semi-martingales (cf. [[Semi-martingale|Semi-martingale]]) and random measures has led to the study of more general stochastic differential equations, where semi-martingales and random measures are used as generators (along with a Wiener process). The following result is typical. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008056.png" /> be a probability space, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008057.png" /> be an increasing family of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008058.png" />-algebras, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008059.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008060.png" />-dimensional semi-martingale, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008061.png" /> be a matrix consisting of non-anticipative functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008062.png" /> such that
 
The development of the theory of stochastic integration (see [[Stochastic integral|Stochastic integral]]) using semi-martingales (cf. [[Semi-martingale|Semi-martingale]]) and random measures has led to the study of more general stochastic differential equations, where semi-martingales and random measures are used as generators (along with a Wiener process). The following result is typical. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008056.png" /> be a probability space, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008057.png" /> be an increasing family of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008058.png" />-algebras, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008059.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008060.png" />-dimensional semi-martingale, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008061.png" /> be a matrix consisting of non-anticipative functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008062.png" /> such that
Line 50: Line 50:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.I. Gikhman,   A.V. Skorokhod,   "Stochastic differential equations and their applications" , Springer (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.S. Liptser,   A.N. Shiryaev,   "Statistics of random processes" , '''1–2''' , Springer (1977–1978) (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.I. Gikhman, A.V. Skorokhod, "Stochastic differential equations and their applications" , Springer (1972) (Translated from Russian) {{MR|0678374}} {{ZBL|0557.60041}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , '''1–2''' , Springer (1977–1978) (Translated from Russian) {{MR|1800858}} {{MR|1800857}} {{MR|0608221}} {{MR|0488267}} {{MR|0474486}} {{ZBL|1008.62073}} {{ZBL|1008.62072}} {{ZBL|0556.60003}} {{ZBL|0369.60001}} {{ZBL|0364.60004}} </TD></TR></table>
  
  
Line 58: Line 58:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Arnold,   "Stochastic differential equations" , Wiley (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Bunke,   "Gewöhnliche Differentialgleichungen mit zufällige Parametern" , Akademie Verlag (1972)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Freedman,   "Stochastic differential equations and applications" , '''1''' , Acad. Press (1975)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.Z. [R.Z. Khasmins'kii] Hasminski,   "Stochastic stability of differential equations" , Sijthoff &amp; Noordhoff (1980) (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> N. Ikeda,   S. Watanabe,   "Stochastic differential equations and diffusion processes" , North-Holland &amp; Kodansha (1981)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> T.T. Soong,   "Random differential equations in science and engineering" , Acad. Press (1973)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> S.K. Srinivasan,   R. Vasudevan,   "Introduction to random differential equations and their applications" , Amer. Elsevier (1971)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> R.L. Stratonovich,   "Topics in the theory of random noise" , '''1–2''' , Gordon &amp; Breach (1963–1967)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> D.W. Stroock,   S.R.S. Varadhan,   "Multidimensional diffusion processes" , Springer (1979)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> Th. Gard,   "Introduction to stochastic differential equations" , M. Dekker (1988)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> B. Øksendahl,   "Stochastic differential equations" , Springer (1987)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> P. Protter,   "Stochastic integration and differential equations" , Springer (1990)</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> S. Albeverio,   M. Röckner,   "Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms" ''Probab. Th. Rel. Fields'' , '''89''' (1991) pp. 347–386</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> K.D. Elworthy,   "Stochastic differential equations on manifolds" , Cambridge Univ. Press (1982)</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> M. Emery,   "Stochastic calculus in manifolds" , Springer (1989) ((Appendix by P.A. Meyer.))</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> K. Sobczyk,   "Stochastic differential equations. With applications to physics and engineering" , Kluwer (1991)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Arnold, "Stochastic differential equations" , Wiley (1974) (Translated from Russian) {{MR|0443083}} {{ZBL|0278.60039}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Bunke, "Gewöhnliche Differentialgleichungen mit zufällige Parametern" , Akademie Verlag (1972) {{MR|423523}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Freedman, "Stochastic differential equations and applications" , '''1''' , Acad. Press (1975)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.Z. [R.Z. Khasmins'kii] Hasminski, "Stochastic stability of differential equations" , Sijthoff &amp; Noordhoff (1980) (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> N. Ikeda, S. Watanabe, "Stochastic differential equations and diffusion processes" , North-Holland &amp; Kodansha (1981) {{MR|0637061}} {{ZBL|0495.60005}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> T.T. Soong, "Random differential equations in science and engineering" , Acad. Press (1973) {{MR|0451405}} {{ZBL|0348.60081}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> S.K. Srinivasan, R. Vasudevan, "Introduction to random differential equations and their applications" , Amer. Elsevier (1971) {{MR|0329025}} {{ZBL|0242.60002}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> R.L. Stratonovich, "Topics in the theory of random noise" , '''1–2''' , Gordon &amp; Breach (1963–1967) {{MR|0158437}} {{ZBL|0183.22007}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> D.W. Stroock, S.R.S. Varadhan, "Multidimensional diffusion processes" , Springer (1979) {{MR|0532498}} {{ZBL|0426.60069}} </TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> Th. Gard, "Introduction to stochastic differential equations" , M. Dekker (1988) {{MR|0917064}} {{ZBL|0628.60064}} </TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> B. Øksendahl, "Stochastic differential equations" , Springer (1987)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> P. Protter, "Stochastic integration and differential equations" , Springer (1990) {{MR|1037262}} {{ZBL|0694.60047}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> S. Albeverio, M. Röckner, "Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms" ''Probab. Th. Rel. Fields'' , '''89''' (1991) pp. 347–386 {{MR|1113223}} {{ZBL|0725.60055}} </TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> K.D. Elworthy, "Stochastic differential equations on manifolds" , Cambridge Univ. Press (1982) {{MR|0675100}} {{ZBL|0514.58001}} </TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> M. Emery, "Stochastic calculus in manifolds" , Springer (1989) ((Appendix by P.A. Meyer.)) {{MR|1030543}} {{ZBL|0697.60060}} </TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> K. Sobczyk, "Stochastic differential equations. With applications to physics and engineering" , Kluwer (1991) {{MR|1135326}} {{ZBL|0762.60050}} </TD></TR></table>

Revision as of 10:32, 27 March 2012

for a process with respect to a Wiener process

An equation of the form

(1)

where and are non-anticipative functionals, and the random variable plays the part of the initial value. There are two separate concepts for a solution of a stochastic differential equation — strong and weak.

Let be a probability space with an increasing family of -algebras , and let be a Wiener process. One says that a continuous stochastic process is a strong solution of the stochastic differential equation (1) with drift coefficient , diffusion coefficient and initial value , if for every with probability one:

(2)

where it is supposed that the integrals in (2) are defined.

The first general result on the existence and uniqueness of a strong solution of a stochastic differential equation of the form

(3)

was obtained by K. Itô. He demonstrated that if for every the functions and satisfy a Lipschitz condition with respect to and increase not faster than linearly, then a continuous solution of the equation (3) exists, and this solution is unique in the sense that if is another continuous solution, then

If , the measurability and boundedness of the drift coefficient (vector) guarantees the existence and uniqueness of a strong solution of (3). The equation , generally speaking, does not have a strong solution for any bounded non-anticipative functional .

When studying the concept of a weak solution of the stochastic differential equation (1), the probability space with the family of -algebras , the Wiener process and the random variable are not fixed in advance, but the non-anticipative functionals , , defined for continuous functions , and the distribution function (so to speak, the initial value) are fixed. Then by a weak solution of the equation (1) with given , and one understands a set of objects

where is a Wiener process relative to , and and are related by

and . The term "weak solution" sometimes applies only to the process that appears in the set . A weak solution of equation (3) exists under weaker hypotheses. It is sufficient, for example, that , and that be continuous in , that be measurable in , and that .

The development of the theory of stochastic integration (see Stochastic integral) using semi-martingales (cf. Semi-martingale) and random measures has led to the study of more general stochastic differential equations, where semi-martingales and random measures are used as generators (along with a Wiener process). The following result is typical. Let be a probability space, let be an increasing family of -algebras, let be an -dimensional semi-martingale, and let be a matrix consisting of non-anticipative functionals such that

where the do not increase too rapidly (in ). Then the stochastic differential equation , , has a unique strong solution.

If the functions and , , , satisfy a Lipschitz condition (in ) and do not increase faster than linearly, then the solution of equation (3) (unique up to stochastic equivalence) will be a Markov process. If, moreover, and are continuous in all variables, then this will be a diffusion process. Using stochastic differential equations, starting only from a Wiener process, it is thus possible to construct Markov and diffusion processes.

Given certain extra conditions of smoothness on the functions and , the solution of equation (3) with initial condition is such that the function , given a sufficiently smooth function , satisfies the backward Kolmogorov equation

in the domain , , with the boundary condition

References

[1] I.I. Gikhman, A.V. Skorokhod, "Stochastic differential equations and their applications" , Springer (1972) (Translated from Russian) MR0678374 Zbl 0557.60041
[2] R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , 1–2 , Springer (1977–1978) (Translated from Russian) MR1800858 MR1800857 MR0608221 MR0488267 MR0474486 Zbl 1008.62073 Zbl 1008.62072 Zbl 0556.60003 Zbl 0369.60001 Zbl 0364.60004


Comments

References

[a1] L. Arnold, "Stochastic differential equations" , Wiley (1974) (Translated from Russian) MR0443083 Zbl 0278.60039
[a2] H. Bunke, "Gewöhnliche Differentialgleichungen mit zufällige Parametern" , Akademie Verlag (1972) MR423523
[a3] A. Freedman, "Stochastic differential equations and applications" , 1 , Acad. Press (1975)
[a4] R.Z. [R.Z. Khasmins'kii] Hasminski, "Stochastic stability of differential equations" , Sijthoff & Noordhoff (1980) (Translated from Russian)
[a5] N. Ikeda, S. Watanabe, "Stochastic differential equations and diffusion processes" , North-Holland & Kodansha (1981) MR0637061 Zbl 0495.60005
[a6] T.T. Soong, "Random differential equations in science and engineering" , Acad. Press (1973) MR0451405 Zbl 0348.60081
[a7] S.K. Srinivasan, R. Vasudevan, "Introduction to random differential equations and their applications" , Amer. Elsevier (1971) MR0329025 Zbl 0242.60002
[a8] R.L. Stratonovich, "Topics in the theory of random noise" , 1–2 , Gordon & Breach (1963–1967) MR0158437 Zbl 0183.22007
[a9] D.W. Stroock, S.R.S. Varadhan, "Multidimensional diffusion processes" , Springer (1979) MR0532498 Zbl 0426.60069
[a10] Th. Gard, "Introduction to stochastic differential equations" , M. Dekker (1988) MR0917064 Zbl 0628.60064
[a11] B. Øksendahl, "Stochastic differential equations" , Springer (1987)
[a12] P. Protter, "Stochastic integration and differential equations" , Springer (1990) MR1037262 Zbl 0694.60047
[a13] S. Albeverio, M. Röckner, "Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms" Probab. Th. Rel. Fields , 89 (1991) pp. 347–386 MR1113223 Zbl 0725.60055
[a14] K.D. Elworthy, "Stochastic differential equations on manifolds" , Cambridge Univ. Press (1982) MR0675100 Zbl 0514.58001
[a15] M. Emery, "Stochastic calculus in manifolds" , Springer (1989) ((Appendix by P.A. Meyer.)) MR1030543 Zbl 0697.60060
[a16] K. Sobczyk, "Stochastic differential equations. With applications to physics and engineering" , Kluwer (1991) MR1135326 Zbl 0762.60050
How to Cite This Entry:
Stochastic differential equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_differential_equation&oldid=18807
This article was adapted from an original article by A.N. Shiryaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article