Namespaces
Variants
Actions

Difference between revisions of "Fibre space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Completed rendering of article in TeX.)
 
Line 1: Line 1:
An object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f0400601.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f0400602.png" /> is a continuous surjective mapping of a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f0400603.png" /> onto a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f0400604.png" /> (a [[Fibration|fibration]]). <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f0400605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f0400606.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f0400607.png" /> are also called the total space, the base and the projection of the fibre space, respectively, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f0400608.png" /> is called the fibre above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f0400609.png" />. A fibre space can be regarded as the union of the fibres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006010.png" />, parametrized by the base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006011.png" /> and glued by the topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006012.png" />. For example, there is the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006014.png" /> is the projection onto the first factor; the fibration-base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006017.png" /> is identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006018.png" />; and the fibre space over a point, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006019.png" /> is identified with a (unique) space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006020.png" />.
+
An object $ (X,\pi,B) $, where $ \pi: X \to B $ is a continuous surjective mapping of a topological space $ X $ onto a topological space $ B $ (i.e., a [[Fibration|fibration]]). Note that $ X $, $ B $ and $ \pi $ are also called the '''total space''', the '''base space''' and the '''projection of the fibre space''', respectively, and $ {\pi^{\leftarrow}}[\{ b \}] $ is called the '''fibre above $ b $'''. A fibre space can be regarded as the union of the fibres $ {\pi^{\leftarrow}}[\{ b \}] $, parametrized by the base space $ B $ and glued by the topology of $ X $. For example, there is the product $ \pi: B \times F \to B $, where $ \pi $ is the projection onto the first factor; the fibration-base $ \pi: B \to B $, where $ \pi = \operatorname{id} $ and $ X $ is identified with $ B $; and the fibre space over a point, where $ X $ is identified with a (unique) space $ F $.
  
A section of a fibration (fibre space) is a continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006021.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006022.png" />.
+
A '''section''' of a fibration (fibre space) is a continuous mapping $ s: B \to X $ such that $ \pi \circ s = \operatorname{id}_{B} $.
  
The restriction of a fibration (fibre space) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006023.png" /> to a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006024.png" /> is the fibration <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006025.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006027.png" />. A generalization of the operation of restriction is the construction of an [[Induced fibre bundle|induced fibre bundle]].
+
The '''restriction''' of a fibration (fibre space) $ \pi: X \to B $ to a subset $ A \subseteq B $ is the fibration $ \pi': X' \to A $, where $ X' \stackrel{\text{df}}{=} {\pi^{\leftarrow}}[A] $ and $ \pi' \stackrel{\text{df}}{=} \pi|_{X'} $. A generalization of the operation of restriction is the construction of an [[Induced fibre bundle|induced fibre bundle]].
  
A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006028.png" /> is called a morphism of a fibre space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006029.png" /> into a fibre space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006030.png" /> if it maps fibres into fibres, that is, if for each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006031.png" /> there exists a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006032.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006033.png" />. Such an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006034.png" /> determines a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006035.png" />, given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006036.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006037.png" /> is a [[Covering|covering]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006038.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006039.png" />; the restrictions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006040.png" /> are mappings of fibres. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006042.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006043.png" /> is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006045.png" />-morphism. Fibre spaces and their morphisms form a category containing the fibre spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006046.png" /> and their <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006047.png" />-morphisms as a subcategory.
+
A mapping $ F: X \to X_{1} $ is called a '''morphism''' of a fibre space $ \pi: X \to B $ into a fibre space $ \pi_{1}: X_{1} \to B_{1} $ if and only if it maps fibres into fibres, i.e., if for each point $ b \in B $, there exists a point $ b_{1} \in B_{1} $ such that $ F[{\pi^{\leftarrow}}[\{ b \}]] \subseteq {\pi^{\leftarrow}}[\{ b_{1} \}] $. Such an $ F $ determines a mapping $ f: B \to B_{1} $, given by $ f(b) \stackrel{\text{df}}{=} (\pi \circ F)[{\pi^{\leftarrow}}[\{ b \}]] $. Note that $ F $ is a [[Covering|covering]] of $ f $ and that $ \pi_{1} \circ F = f \circ \pi $; the restrictions $ F_{b}: {\pi^{\leftarrow}}[\{ b \}] \to {\pi_{1}^{\leftarrow}}[\{ b_{1} \}] $ are mappings of fibres. If $ B = B_{1} $ and $ f = \operatorname{id} $, then $ F $ is called a '''$ B $-morphism'''. Fibre spaces with their morphisms form a category — one that contains fibre spaces over $ B $ with their $ B $-morphisms as a subcategory.
  
Any section of a fibration <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006048.png" /> is a fibre space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006049.png" />-morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006050.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006051.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006052.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006053.png" />, then the canonical imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006054.png" /> is a fibre space morphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006055.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006056.png" />.
+
Any section of a fibration $ \pi: X \to B $ is a fibre-space $ B $-morphism $ s: B \to X $ from $ (B,\operatorname{id},B) $ into $ (X,\pi,B) $. If $ A \subseteq B $, then the canonical imbedding $ i: {\pi^{\leftarrow}}[A] \to B $ is a fibre-space morphism from $ \pi|_{A} $ to $ \pi $.
  
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006057.png" /> is a homeomorphism, it is called a fibre space isomorphism, a fibre space isomorphic to a product is called a trivial fibre space, and an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006058.png" /> is called a trivialization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006059.png" />.
+
When $ F $ is a homeomorphism, it is called a '''fibre-space isomorphism'''. A fibre space isomorphic to a product is called a '''trivial fibre space'''. An isomorphism $ \theta: X \to B \times F $ is called a '''trivialization''' of $ \pi $.
 
 
If each fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006060.png" /> is homeomorphic to a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006061.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006062.png" /> is called a fibration with fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006063.png" />. For example, in any locally trivial fibre space over a connected base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006064.png" />, all the fibres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006065.png" /> are homeomorphic, and one can take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006066.png" /> to be any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006067.png" />; this determines homeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006068.png" />.
 
  
 +
If each fibre $ {\pi^{\leftarrow}}[\{ b \}] $ is homeomorphic to a space $ F $, then $ \pi $ is called a '''fibration with fibre $ F $'''. For example, in any locally trivial fibre space over a connected base space $ B $, all the fibres $ {\pi^{\leftarrow}}[\{ b \}] $ are homeomorphic to one another, and one can take $ F $ to be any $ {\pi^{\leftarrow}}[\{ b_{0} \}] $; this determines homeomorphisms $ \phi_{b}: F \to {\pi^{\leftarrow}}[\{ b \}] $.
  
 +
====Comments====
  
====Comments====
+
Both the notations $ \pi: X \to B $ and $ (X,\pi,B) $ are used to denote a [[Fibration|fibration]], a fibre space or a fibre bundle.
Both the notations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006069.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006070.png" /> are used to denote a [[Fibration|fibration]], a fibre space or a fibre bundle.
 
  
In the West a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006071.png" /> would only be called a fibration if it satisfied some suitable condition, for example, the homotopy lifting property for cubes ( "Serre fibration" ; see [[Covering homotopy|Covering homotopy]] for the homotopy lifting property, [[#References|[a3]]]). A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006072.png" /> would be called a morphism (respectively, an isomorphism) only if the induced function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040060/f04006073.png" /> were continuous (respectively, a [[Homeomorphism|homeomorphism]]).
+
In the West, a mapping $ \pi: X \to B $ would only be called a fibration if it satisfied some suitable condition, for example, the homotopy lifting property for cubes (such a fibration is known as a '''Serre fibration'''; see [[Covering homotopy|Covering homotopy]] for the homotopy lifting property ([[#References|[a3]]])). A mapping $ F: X \to X_{1} $ would be called a morphism (respectively, an isomorphism) only if the induced function $ f: B \to B_{1} $ were continuous (respectively, a [[Homeomorphism|homeomorphism]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Dold,   "Partitions of unity in the theory of fibrations"  ''Ann. of Math.'' , '''78''' (1963) pp. 223–255</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Husemoller,   "Fibre bundles" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.-P. Serre,   "Homologie singulière des èspaces fibrés"  ''Ann. of Math.'' , '''54''' (1951) pp. 425–505</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.H. Spanier,   "Algebraic topology" , McGraw-Hill (1966) pp. Chapt. 2</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> N.E. Steenrod,   "The topology of fibre bundles" , Princeton Univ. Press (1951)</TD></TR></table>
+
 
 +
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Dold, “Partitions of unity in the theory of fibrations”, ''Ann. of Math.'', '''78''' (1963), pp. 223–255.</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Husemoller, “Fibre bundles”, McGraw-Hill (1966).</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top"> J.-P. Serre, “Homologie singulière des èspaces fibrés”, ''Ann. of Math.'', '''54''' (1951), pp. 425–505.</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top"> E.H. Spanier, “Algebraic topology”, McGraw-Hill (1966), Chapt. 2.</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top"> N.E. Steenrod, “The topology of fibre bundles”, Princeton Univ. Press (1951).</TD></TR>
 +
</table>

Latest revision as of 01:34, 10 December 2016

An object $ (X,\pi,B) $, where $ \pi: X \to B $ is a continuous surjective mapping of a topological space $ X $ onto a topological space $ B $ (i.e., a fibration). Note that $ X $, $ B $ and $ \pi $ are also called the total space, the base space and the projection of the fibre space, respectively, and $ {\pi^{\leftarrow}}[\{ b \}] $ is called the fibre above $ b $. A fibre space can be regarded as the union of the fibres $ {\pi^{\leftarrow}}[\{ b \}] $, parametrized by the base space $ B $ and glued by the topology of $ X $. For example, there is the product $ \pi: B \times F \to B $, where $ \pi $ is the projection onto the first factor; the fibration-base $ \pi: B \to B $, where $ \pi = \operatorname{id} $ and $ X $ is identified with $ B $; and the fibre space over a point, where $ X $ is identified with a (unique) space $ F $.

A section of a fibration (fibre space) is a continuous mapping $ s: B \to X $ such that $ \pi \circ s = \operatorname{id}_{B} $.

The restriction of a fibration (fibre space) $ \pi: X \to B $ to a subset $ A \subseteq B $ is the fibration $ \pi': X' \to A $, where $ X' \stackrel{\text{df}}{=} {\pi^{\leftarrow}}[A] $ and $ \pi' \stackrel{\text{df}}{=} \pi|_{X'} $. A generalization of the operation of restriction is the construction of an induced fibre bundle.

A mapping $ F: X \to X_{1} $ is called a morphism of a fibre space $ \pi: X \to B $ into a fibre space $ \pi_{1}: X_{1} \to B_{1} $ if and only if it maps fibres into fibres, i.e., if for each point $ b \in B $, there exists a point $ b_{1} \in B_{1} $ such that $ F[{\pi^{\leftarrow}}[\{ b \}]] \subseteq {\pi^{\leftarrow}}[\{ b_{1} \}] $. Such an $ F $ determines a mapping $ f: B \to B_{1} $, given by $ f(b) \stackrel{\text{df}}{=} (\pi \circ F)[{\pi^{\leftarrow}}[\{ b \}]] $. Note that $ F $ is a covering of $ f $ and that $ \pi_{1} \circ F = f \circ \pi $; the restrictions $ F_{b}: {\pi^{\leftarrow}}[\{ b \}] \to {\pi_{1}^{\leftarrow}}[\{ b_{1} \}] $ are mappings of fibres. If $ B = B_{1} $ and $ f = \operatorname{id} $, then $ F $ is called a $ B $-morphism. Fibre spaces with their morphisms form a category — one that contains fibre spaces over $ B $ with their $ B $-morphisms as a subcategory.

Any section of a fibration $ \pi: X \to B $ is a fibre-space $ B $-morphism $ s: B \to X $ from $ (B,\operatorname{id},B) $ into $ (X,\pi,B) $. If $ A \subseteq B $, then the canonical imbedding $ i: {\pi^{\leftarrow}}[A] \to B $ is a fibre-space morphism from $ \pi|_{A} $ to $ \pi $.

When $ F $ is a homeomorphism, it is called a fibre-space isomorphism. A fibre space isomorphic to a product is called a trivial fibre space. An isomorphism $ \theta: X \to B \times F $ is called a trivialization of $ \pi $.

If each fibre $ {\pi^{\leftarrow}}[\{ b \}] $ is homeomorphic to a space $ F $, then $ \pi $ is called a fibration with fibre $ F $. For example, in any locally trivial fibre space over a connected base space $ B $, all the fibres $ {\pi^{\leftarrow}}[\{ b \}] $ are homeomorphic to one another, and one can take $ F $ to be any $ {\pi^{\leftarrow}}[\{ b_{0} \}] $; this determines homeomorphisms $ \phi_{b}: F \to {\pi^{\leftarrow}}[\{ b \}] $.

Comments

Both the notations $ \pi: X \to B $ and $ (X,\pi,B) $ are used to denote a fibration, a fibre space or a fibre bundle.

In the West, a mapping $ \pi: X \to B $ would only be called a fibration if it satisfied some suitable condition, for example, the homotopy lifting property for cubes (such a fibration is known as a Serre fibration; see Covering homotopy for the homotopy lifting property ([a3])). A mapping $ F: X \to X_{1} $ would be called a morphism (respectively, an isomorphism) only if the induced function $ f: B \to B_{1} $ were continuous (respectively, a homeomorphism).

References

[a1] A. Dold, “Partitions of unity in the theory of fibrations”, Ann. of Math., 78 (1963), pp. 223–255.
[a2] D. Husemoller, “Fibre bundles”, McGraw-Hill (1966).
[a3] J.-P. Serre, “Homologie singulière des èspaces fibrés”, Ann. of Math., 54 (1951), pp. 425–505.
[a4] E.H. Spanier, “Algebraic topology”, McGraw-Hill (1966), Chapt. 2.
[a5] N.E. Steenrod, “The topology of fibre bundles”, Princeton Univ. Press (1951).
How to Cite This Entry:
Fibre space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fibre_space&oldid=18348
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article