Namespaces
Variants
Actions

Difference between revisions of "Cube-like continuum"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c0272302.png" />-cube-like continuum''
+
$n$-cube-like continuum''
  
A compactum (metrizable compactum) admitting, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c0272303.png" />, an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c0272304.png" />-mapping onto the ordinary cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c0272305.png" />. If a compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c0272306.png" /> is the limit of a countable spectrum of compacta imbeddable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c0272307.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c0272308.png" /> is a subset of a cube-like continuum. The class of cube-like continua contains a universal element, i.e. a cube-like continuum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c0272309.png" /> such that every cube-like continuum is homeomorphic to some subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c02723010.png" />.
+
A compactum (metrizable compactum) admitting, for any $\epsilon > 0$, an $\epsilon$-mapping onto the ordinary cube $I^n$. If a compactum $X$ is the limit of a countable spectrum of compacta imbeddable in $I^n$, then $X$ is a subset of a cube-like continuum. The class of cube-like continua contains a universal element, i.e. a cube-like continuum $U$ such that every cube-like continuum is homeomorphic to some subspace of $U$.
  
 
====References====
 
====References====
Line 9: Line 9:
  
 
====Comments====
 
====Comments====
In the special case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c02723011.png" />, these continua are also called snake-like, see [[#References|[a1]]].
+
In the special case $n=1$, these continua are also called snake-like, see [[#References|[a1]]].
  
In [[#References|[1]]] it is shown that a space is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c02723012.png" />-like if and only if it is homeomorphic to the limit of an inverse sequence of copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027230/c02723013.png" /> with surjective bounding mappings.
+
In [[#References|[1]]] it is shown that a space is $I^n$-like if and only if it is homeomorphic to the limit of an inverse sequence of copies of $I^n$ with surjective bounding mappings.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.H. Bing,  "Snake-like continua"  ''Duke Math. J.'' , '''18'''  (1951)  pp. 553–663</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.H. Bing,  "Snake-like continua"  ''Duke Math. J.'' , '''18'''  (1951)  pp. 553–663</TD></TR></table>

Revision as of 22:19, 22 April 2012

$n$-cube-like continuum

A compactum (metrizable compactum) admitting, for any $\epsilon > 0$, an $\epsilon$-mapping onto the ordinary cube $I^n$. If a compactum $X$ is the limit of a countable spectrum of compacta imbeddable in $I^n$, then $X$ is a subset of a cube-like continuum. The class of cube-like continua contains a universal element, i.e. a cube-like continuum $U$ such that every cube-like continuum is homeomorphic to some subspace of $U$.

References

[1] B.A. Pasynkov, "On universal compacta" Russian Math. Surveys , 21 : 4 (1966) pp. 77–86 Uspekhi Mat. Nauk , 21 : 4 (1966) pp. 91–100


Comments

In the special case $n=1$, these continua are also called snake-like, see [a1].

In [1] it is shown that a space is $I^n$-like if and only if it is homeomorphic to the limit of an inverse sequence of copies of $I^n$ with surjective bounding mappings.

References

[a1] R.H. Bing, "Snake-like continua" Duke Math. J. , 18 (1951) pp. 553–663
How to Cite This Entry:
Cube-like continuum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cube-like_continuum&oldid=16611
This article was adapted from an original article by L.G. Zambakhidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article