Namespaces
Variants
Actions

Difference between revisions of "Form of an (algebraic) structure"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408001.png" /> be an extension of fields, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408002.png" /> be some "object" defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408003.png" />. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408004.png" /> could be a vector space together with a quadratic form, a Lie algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408005.png" />, an Azumaya algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408006.png" />, a variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408007.png" />, an algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408008.png" />, a representation of a finite group in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408009.png" />-vector space, etc. A form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080010.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080011.png" />, more precisely, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080013.png" />-form, is an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080014.png" /> of the same type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080017.png" /> become isomorphic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080018.png" />, i.e. after extending scalars from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080019.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080020.png" /> the objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080022.png" /> become isomorphic. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080023.png" /> denote the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080024.png" />-isomorphism classes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080025.png" /> forms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080026.png" />. If now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080027.png" /> is a Galois extension, then under suitable circumstances one has a bijection between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080028.png" /> and the Galois cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080029.png" /> (cf. [[Galois cohomology|Galois cohomology]]), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080030.png" /> is the group of automorphisms over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080032.png" />. Consider, for instance, the case where the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080033.png" /> is a finite-dimensional algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080034.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080035.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080036.png" /> is a form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080037.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080038.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080039.png" />-algebras. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080040.png" /> be an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080041.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080042.png" />, i.e. an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080043.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080044.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080045.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080046.png" /> is another <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080047.png" />-automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080048.png" />. This defines the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080049.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080050.png" />. Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080051.png" /> be a form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080052.png" />. The set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080053.png" />-isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080054.png" /> is naturally a principal homogeneous space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080055.png" /> and thus defines an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080056.png" />. This mapping is a bijection in this case. More generally one has such a bijection for the case that the structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080057.png" /> is a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080058.png" /> together with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080059.png" />-tensor (the previous case corresponds to the case of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080060.png" />-tensor). (To prove surjectivity one needs the generalization of Hilbert's theorem 90: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080061.png" />.) For the case of algebraic groups over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080062.png" /> cf. [[Form of an algebraic group|Form of an algebraic group]].
+
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408001.png" /> be an extension of fields, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408002.png" /> be some "object" defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408003.png" />. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408004.png" /> could be a vector space together with a quadratic form, a Lie algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408005.png" />, an Azumaya algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408006.png" />, a variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408007.png" />, an algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408008.png" />, a representation of a finite group in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408009.png" />-vector space, etc. A form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080010.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080011.png" />, more precisely, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080013.png" />-form, is an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080014.png" /> of the same type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080017.png" /> become isomorphic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080018.png" />, i.e. after extending scalars from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080019.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080020.png" /> the objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080022.png" /> become isomorphic. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080023.png" /> denote the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080024.png" />-isomorphism classes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080025.png" /> forms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080026.png" />. If now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080027.png" /> is a Galois extension, then under suitable circumstances one has a bijection between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080028.png" /> and the Galois cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080029.png" /> (cf. [[Galois cohomology|Galois cohomology]]), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080030.png" /> is the group of automorphisms over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080032.png" />. Consider, for instance, the case where the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080033.png" /> is a finite-dimensional algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080034.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080035.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080036.png" /> is a form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080037.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080038.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080039.png" />-algebras. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080040.png" /> be an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080041.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080042.png" />, i.e. an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080043.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080044.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080045.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080046.png" /> is another <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080047.png" />-automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080048.png" />. This defines the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080049.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080050.png" />. Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080051.png" /> be a form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080052.png" />. The set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080053.png" />-isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080054.png" /> is naturally a principal homogeneous space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080055.png" /> and thus defines an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080056.png" />. This mapping is a bijection in this case. More generally one has such a bijection for the case that the structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080057.png" /> is a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080058.png" /> together with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080059.png" />-tensor (the previous case corresponds to the case of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080060.png" />-tensor). (To prove surjectivity one needs the generalization of Hilbert's theorem 90: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080061.png" />.) For the case of algebraic groups over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080062.png" /> cf. [[Form of an algebraic group|Form of an algebraic group]].
  
 
For the case of algebraic varieties over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080063.png" /> one has that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080064.png" /> is injective and that it is bijective if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080065.png" /> is quasi-projective.
 
For the case of algebraic varieties over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080063.png" /> one has that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080064.png" /> is injective and that it is bijective if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080065.png" /> is quasi-projective.
Line 40: Line 40:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M.-A. Knus,   M. Ojanguren,   "Théorie de la descent et algèbres d'Azumaya" , Springer (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Grothendieck,   "Revêtements étales et groupe fondamental" , ''SGA 1960–1961'' , '''Exp. VI: Categories fibrées et descente''' , IHES (1961)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.P. Murre,   "Lectures on an introduction to Grothendieck's theory of the fundamental group." , Tata Inst. Fund. Res. (1967) pp. Chapt. VII</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.-P. Serre,   "Cohomologie Galoisienne" , Springer (1973)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> G.B. Seligman,   "Modular Lie algebras" , Springer (1967) pp. Chapt. IV</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J.-P. Serre,   "Groupes algébrique et corps des classes" , Hermann (1959) pp. Chapt. V, Sect. 20</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> N. Jacobson,   "Lie algebras" , Dover, reprint (1979) pp. Chapt. X ((also: Dover, reprint, 1979))</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M.-A. Knus, M. Ojanguren, "Théorie de la descent et algèbres d'Azumaya" , Springer (1974) {{MR|417149}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Grothendieck, "Revêtements étales et groupe fondamental" , ''SGA 1960–1961'' , '''Exp. VI: Categories fibrées et descente''' , IHES (1961) {{MR|2017446}} {{MR|0354651}} {{MR|0217088}} {{MR|0217087}} {{ZBL|1039.14001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.P. Murre, "Lectures on an introduction to Grothendieck's theory of the fundamental group." , Tata Inst. Fund. Res. (1967) pp. Chapt. VII {{MR|302650}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1973) {{MR|0404227}} {{ZBL|0259.12011}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> G.B. Seligman, "Modular Lie algebras" , Springer (1967) pp. Chapt. IV {{MR|0245627}} {{ZBL|0189.03201}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959) pp. Chapt. V, Sect. 20 {{MR|0103191}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Dover, reprint (1979) pp. Chapt. X ((also: Dover, reprint, 1979)) {{MR|0559927}} {{ZBL|0333.17009}} {{ZBL|0215.38701}} {{ZBL|0144.27103}} {{ZBL|0121.27601}} {{ZBL|0121.27504}} {{ZBL|0109.26201}} {{ZBL|0198.05404}} {{ZBL|0064.27002}} {{ZBL|0064.03503}} {{ZBL|0046.03402}} {{ZBL|0043.26803}} {{ZBL|0039.02803}} {{ZBL|0063.03015}} {{ZBL|0025.30302}} {{ZBL|0025.30301}} {{ZBL|0022.19801}} {{ZBL|0019.19402}} {{ZBL|0018.10302}} {{ZBL|0017.29203}} {{ZBL|0016.20001}} </TD></TR></table>

Revision as of 14:49, 24 March 2012

Let be an extension of fields, and let be some "object" defined over . For example, could be a vector space together with a quadratic form, a Lie algebra over , an Azumaya algebra over , a variety over , an algebraic group over , a representation of a finite group in a -vector space, etc. A form of over , more precisely, a -form, is an object of the same type over such that and become isomorphic over , i.e. after extending scalars from to the objects and become isomorphic. Let denote the set of -isomorphism classes of forms of . If now is a Galois extension, then under suitable circumstances one has a bijection between and the Galois cohomology group (cf. Galois cohomology), where is the group of automorphisms over of . Consider, for instance, the case where the object is a finite-dimensional algebra over . Then is a form of if as -algebras. Let be an automorphism of over , i.e. an isomorphism of -algebras , and let . Then is another -automorphism of . This defines the action of on . Now let be a form of . The set of -isomorphisms is naturally a principal homogeneous space over and thus defines an element of . This mapping is a bijection in this case. More generally one has such a bijection for the case that the structure is a vector space together with a -tensor (the previous case corresponds to the case of a -tensor). (To prove surjectivity one needs the generalization of Hilbert's theorem 90: .) For the case of algebraic groups over cf. Form of an algebraic group.

For the case of algebraic varieties over one has that is injective and that it is bijective if is quasi-projective.

The concept of forms makes sense in a far more general setting, e.g. in any category with base change, i.e. with fibre products. Indeed, let be such a category, and an object in . An object over is a morphism in , . Let be a morphism in . Base change from to gives the pullback (fibre product) defined by the Cartesian square

(In case , and is, for instance, the category of (affine) schemes this corresponds to extending scalars.)

An object is now an -form of if the objects and are isomorphic over . For an even more general setting cf. [a2].

A related problem (to that of forms) is the subject of descent theory. In the setting of a category with base change as above this theory is concerned with the question: Given , does there exists an over such that is isomorphic over to , and what properties must satisfy for this to be the case.

Below this question is examined in the following setting: is a commutative algebra (with unit element) and is a commutative -algebra. Given a module over the question is whether there exists a module over such that (as -modules). Below all tensor products are tensor products over : . If is of the form there is a natural isomorphism of modules given by . Let be an -module. A descent datum on is an isomorphism of modules such that . Here are the three natural -module homomorphisms defined by , where is the identity on factor and given by on the other two components:

The faithfully flat descent theorem now says that if is faithfully flat over and is a descent datum for over , then there exists an -module and an isomorphism such that the following diagram commutes

where the left vertical arrow is the descent datum on described above. Moreover, the pair is uniquely defined by this property. One defines by an invariance property: (which is like invariance under the Galois group in the case of Galois descent).

There is a similar theorem for descent of algebras over .

In algebraic geometry one has for instance the following descent theorem (a globalization of the previous one for algebras). For a morphism of schemes , consider the fibre products and and let be the projections , ; and the projections , . Let be faithfully flat and compact. Then to give a scheme affine over is the same as to give a scheme affine over together with an isomorphism such that .

The theory of descent is quite general and includes such matters as specifying a section of a sheaf by local sections and the construction of locally trivial fibre bundles by glueing together trivial bundles over the elements of an open covering of . Indeed, let be the disjoint union of the and the natural projection. Giving glueing data is the same as giving an isomorphism , where is the trivial vector bundle with fibre and the compatibility of the glueing data amounts to the condition .

For a treatment of forms of Lie algebras (over fields) cf. [a7], for Lie algebras over characteristic zero fields and the modular case (i.e. over fields of characteristic ) cf. [a5]. For a quite comprehensive treatment of descent and forms cf. [a1].

A form of an object is also occasionally called a twisted form.

In the case of descent with respect to a Galois field extension (or ) one speaks of Galois descent.

References

[a1] M.-A. Knus, M. Ojanguren, "Théorie de la descent et algèbres d'Azumaya" , Springer (1974) MR417149
[a2] A. Grothendieck, "Revêtements étales et groupe fondamental" , SGA 1960–1961 , Exp. VI: Categories fibrées et descente , IHES (1961) MR2017446 MR0354651 MR0217088 MR0217087 Zbl 1039.14001
[a3] J.P. Murre, "Lectures on an introduction to Grothendieck's theory of the fundamental group." , Tata Inst. Fund. Res. (1967) pp. Chapt. VII MR302650
[a4] J.-P. Serre, "Cohomologie Galoisienne" , Springer (1973) MR0404227 Zbl 0259.12011
[a5] G.B. Seligman, "Modular Lie algebras" , Springer (1967) pp. Chapt. IV MR0245627 Zbl 0189.03201
[a6] J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959) pp. Chapt. V, Sect. 20 MR0103191
[a7] N. Jacobson, "Lie algebras" , Dover, reprint (1979) pp. Chapt. X ((also: Dover, reprint, 1979)) MR0559927 Zbl 0333.17009 Zbl 0215.38701 Zbl 0144.27103 Zbl 0121.27601 Zbl 0121.27504 Zbl 0109.26201 Zbl 0198.05404 Zbl 0064.27002 Zbl 0064.03503 Zbl 0046.03402 Zbl 0043.26803 Zbl 0039.02803 Zbl 0063.03015 Zbl 0025.30302 Zbl 0025.30301 Zbl 0022.19801 Zbl 0019.19402 Zbl 0018.10302 Zbl 0017.29203 Zbl 0016.20001
How to Cite This Entry:
Form of an (algebraic) structure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Form_of_an_(algebraic)_structure&oldid=15826