Namespaces
Variants
Actions

Difference between revisions of "Meusnier theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 1: Line 1:
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637401.png" /> is a curve lying on a surface and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637402.png" /> is a point on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637403.png" />, then the curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637404.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637405.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637406.png" />, the curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637407.png" /> of the normal section of the surface by the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637408.png" /> passing through the tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637409.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374010.png" />, and the angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374011.png" /> between the osculating plane of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374012.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374013.png" /> and the normal plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374014.png" />, satisfy the relation
+
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637401.png" /> is a curve lying on a surface and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637402.png" /> is a point on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637403.png" />, then the curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637404.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637405.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637406.png" />, the curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637407.png" /> of the normal section of the surface by the osculating plane passing through the unit tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m0637409.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374010.png" /> and the unit normal vector, and the angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374011.png" /> between the referred osculating plane of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374012.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374013.png" /> and any other osculating plane that does not go through the unit normal vector, satisfy the relation
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374015.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063740/m06374015.png" /></td> </tr></table>

Revision as of 16:25, 26 July 2014

If is a curve lying on a surface and is a point on , then the curvature of at , the curvature of the normal section of the surface by the osculating plane passing through the unit tangent to at and the unit normal vector, and the angle between the referred osculating plane of at and any other osculating plane that does not go through the unit normal vector, satisfy the relation

In particular, the curvature of every inclined section of the surface can be expressed in terms of the curvature of the normal section with the same tangent.

This theorem was proved by J. Meusnier in 1779 (and was published in [1]).

References

[1] J. Meusnier, Mém. prés. par div. Etrangers. Acad. Sci. Paris , 10 (1785) pp. 477–510


Comments

References

[a1] M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976) pp. 142
[a2] W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973)
How to Cite This Entry:
Meusnier theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Meusnier_theorem&oldid=15630
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article