Difference between revisions of "Hahn decomposition"
From Encyclopedia of Mathematics
(Importing text file) |
(→References: Royden: internal link) |
||
Line 10: | Line 10: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Rudin, "Real and complex analysis" , McGraw-Hill (1966) pp. 57</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.L. Royden, | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Rudin, "Real and complex analysis" , McGraw-Hill (1966) pp. 57</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.L. Royden, [[Royden, "Real analysis"|"Real analysis"]], Macmillan (1968)</TD></TR></table> |
Revision as of 18:03, 26 April 2012
A partition of a set , on which a -additive set function is given on the -algebra of subsets, into two subsets and , , such that if , , and if , . Such a partition of is not unique, in general.
References
[1] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) |
Comments
See also Jordan decomposition. Instead of Hahn decomposition the phrase Hahn–Jordan decomposition is also used.
References
[a1] | P.R. Halmos, "Measure theory" , v. Nostrand (1950) |
[a2] | W. Rudin, "Real and complex analysis" , McGraw-Hill (1966) pp. 57 |
[a3] | H.L. Royden, "Real analysis", Macmillan (1968) |
How to Cite This Entry:
Hahn decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hahn_decomposition&oldid=13726
Hahn decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hahn_decomposition&oldid=13726
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article