Namespaces
Variants
Actions

Difference between revisions of "Rank of a Lie group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 9: Line 9:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.W. Carter,   "Simple groups of Lie type" , Wiley (Interscience) (1972) pp. Chapt. 1</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.S. Varadarajan,   "Lie groups, Lie algebras, and their representations" , Prentice-Hall (1974)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A.W. Knapp,   "Representation theory of semisimple groups" , Princeton Univ. Press (1986)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.E. Humphreys,   "Linear algebraic groups" , Springer (1975) pp. Sect. 35.1</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972) pp. Chapt. 1</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.S. Varadarajan, "Lie groups, Lie algebras, and their representations" , Prentice-Hall (1974) {{MR|0376938}} {{ZBL|0371.22001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A.W. Knapp, "Representation theory of semisimple groups" , Princeton Univ. Press (1986) {{MR|0855239}} {{ZBL|0604.22001}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975) pp. Sect. 35.1 {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR></table>

Revision as of 14:51, 24 March 2012

(real or complex)

The (real, respectively, complex) dimension of any Cartan subgroup of it. The rank of a Lie group coincides with the rank of its Lie algebra (see Rank of a Lie algebra). If a Lie group coincides with the set of real or complex points of a linear algebraic group , then the rank of coincides with the rank of (cf. Rank of an algebraic group).


Comments

References

[a1] R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972) pp. Chapt. 1
[a2] V.S. Varadarajan, "Lie groups, Lie algebras, and their representations" , Prentice-Hall (1974) MR0376938 Zbl 0371.22001
[a3] A.W. Knapp, "Representation theory of semisimple groups" , Princeton Univ. Press (1986) MR0855239 Zbl 0604.22001
[a4] J.E. Humphreys, "Linear algebraic groups" , Springer (1975) pp. Sect. 35.1 MR0396773 Zbl 0325.20039
How to Cite This Entry:
Rank of a Lie group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rank_of_a_Lie_group&oldid=12510
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article