Difference between revisions of "Bochner integral"
(Importing text file) |
(TeX-ed article.) |
||
Line 1: | Line 1: | ||
− | An integral of a function with values in a Banach space with respect to a scalar measure. It belongs to the so-called strong integrals (cf. [[Strong integral|Strong integral]]). | + | An integral of a function with values in a Banach space with respect to a scalar-valued measure. It belongs to the family of so-called ''strong integrals'' (cf. [[Strong integral|Strong integral]]). |
− | Let | + | Let $ F(X;E,\mathfrak{B},\mu) $ denote the vector space of functions $ x: E \to X $, where $ X $ is a Banach space and $ (E,\mathfrak{B},\mu) $ is a measure space, with $ \mu $ being a countably-additive scalar-valued measure on a $ \sigma $-algebra $ \mathfrak{B} $ of subsets of $ E $. A function $ x_{0} \in F $ is called ''simple'' if and only if for some $ n \in \mathbb{N} $, there exist distinct points $ x_{1},\ldots,x_{n} \in X $ and measurable subsets $ B_{1},\ldots,B_{n} \in \mathfrak{B} $, satisfying $ \mu(B_{i}) < \infty $ for all $ i \in \{ 1,\ldots,n \} $ as well as $ B_{i} \cap B_{j} = \varnothing $ for all distinct $ i,j \in \{ 1,\ldots,n \} $, such that |
+ | $$ | ||
+ | \forall t \in E: \quad | ||
+ | {x_{0}}(t) = | ||
+ | \begin{cases} | ||
+ | x_{i} & \text{if $ t \in B_{i} $ for some $ i \in \{ 1,\ldots,n \} $}; \\ | ||
+ | 0 & \text{if $ \displaystyle t \in E \Bigg\backslash \bigcup_{i = 1}^{n} B_{i} $}. | ||
+ | \end{cases} | ||
+ | $$ | ||
− | + | A function $ x \in F $ is called ''strongly measurable'' if and only if there exists a sequence $ (x_{n})_{n \in \mathbb{N}} $ of simple functions such that $ \displaystyle \lim_{n \to \infty} \| {x_{n}}(\bullet) - x(\bullet) \|_{X} = 0 $ pointwise almost-everywhere on $ E $ with respect to $ \mu $. In this case, the scalar-valued function $ \| x(\bullet) \|_{X}: E \to [0,\infty) $ is $ \mathfrak{B} $-measurable. For the simple function $ x_{0} $, define its Bochner-integral by | |
+ | $$ | ||
+ | \int_{E} {x_{0}}(t) ~ \mathrm{d}{\mu(t)} \stackrel{\text{df}}{=} \sum_{i = 1}^{n} \mu(B_{i}) \cdot x_{i}. | ||
+ | $$ | ||
− | A function | + | A function $ x \in F $ is called ''Bochner-integrable'' if and only if it is strongly measurable and for some approximating sequence $ (x_{n})_{n \in \mathbb{N}} $ of simple functions, we have |
+ | $$ | ||
+ | \lim_{n \to \infty} \int_{E} \| x(t) - {x_{n}}(t) \|_{X} ~ \mathrm{d}{\mu(t)} = 0. | ||
+ | $$ | ||
+ | The Bochner-integral of such a function over a measurable subset $ B \in \mathfrak{B} $ is then defined by | ||
+ | $$ | ||
+ | \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \stackrel{\text{df}}{=} \lim_{n \to \infty} \int_{E} {\chi_{B}}(t) \cdot {x_{n}}(t) ~ \mathrm{d}{\mu(t)}, | ||
+ | $$ | ||
+ | where $ \chi_{B} $ denotes the characteristic function of $ B $, and the limit is understood in the sense of strong convergence in $ X $. This limit exists and is independent of the choice of an approximating sequence of simple functions. | ||
− | + | '''Criterion for Bochner-integrability:''' For a strongly-measurable function $ x \in F $ to be Bochner-integrable, it is necessary and sufficient for its pointwise-norm to be integrable, i.e., | |
+ | $$ | ||
+ | \int_{E} \| x(t) \|_{X} ~ \mathrm{d}{\mu(t)} < \infty. | ||
+ | $$ | ||
− | + | The set of Bochner-integrable functions forms a vector subspace $ \mathcal{L} $ of $ F $, and the Bochner-integral is a linear operator on this subspace. | |
− | + | '''Properties of Bochner-integrals:''' | |
− | + | 1) $ \displaystyle \left\| \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right\|_{X} \leq \int_{B} \| x(t) \|_{X} ~ \mathrm{d}{\mu(t)} $ for every $ B \in \mathfrak{B} $. | |
− | + | 2) A Bochner integral is a countably-additive $ \mu $-absolutely continuous set-function on the $ \sigma $-algebra $ \mathfrak{B} $<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671036.png" />, i.e., | |
+ | $$ | ||
+ | \int_{\bigcup_{i = 1}^{\infty} B_{i}} x(t) ~ \mathrm{d}{\mu(t)} = \sum_{i = 1}^{\infty} \int_{B_{i}} x(t) ~ \mathrm{d}{\mu(t)}, | ||
+ | $$ | ||
+ | if $ B_{i} \in \mathfrak{B} $ and $ \mu(B_{i}) < \infty $ for all $ i \in \{ 1,\ldots,n \} $, $ B_{i} \cap B_{j} = \varnothing $ for all distinct $ i,j \in \{ 1,\ldots,n \} $, and $ \displaystyle \left\| \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right\|_{X} \to 0 $ if $ \mu(B) \to 0 $, uniformly for $ B \in \mathfrak{B} $. | ||
− | + | 3) If $ (x_{n})_{n \in \mathbb{N}} $ is a sequence in $ F $ and $ \displaystyle \lim_{n \to \infty} x_{n} = x $ pointwise almost-everywhere on $ B \in \mathfrak{B} $ with respect to $ \mu $, if $ \| {x_{n}}(\bullet) \|_{X} \leq f $ pointwise almost-everywhere on $ B $ with respect to $ \mu $, and if $ \displaystyle \int_{B} f ~ \mathrm{d}{\mu} < \infty $, then | |
+ | $$ | ||
+ | x \in \mathcal{L} \qquad \text{and} \qquad | ||
+ | \lim_{n \to \infty} \int_{B} {x_{n}}(t) ~ \mathrm{d}{\mu(t)} = \int_{B} x(t) ~ \mathrm{d}{\mu(t)}. | ||
+ | $$ | ||
− | + | 4) The space $ \mathcal{L} $ is complete with respect to the norm (cf. [[Convergence in norm|Convergence in norm]]) | |
− | + | $$ | |
− | + | \| x - y \|_{\mathcal{L}} \stackrel{\text{df}}{=} \int_{E} \| x(t) - y(t) \|_{X} ~ \mathrm{d}{\mu(t)}. | |
− | + | $$ | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | 4) The space | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | 5) If $ T $ is a closed linear operator from a Banach space $ X $ to another $ Y $, and if | ||
+ | $$ | ||
+ | x \in \mathcal{L}(X;E,\mathfrak{B},\mu) \qquad \text{and} \qquad | ||
+ | T \circ x \in \mathcal{L}(Y;E,\mathfrak{B},\mu), | ||
+ | $$ | ||
then | then | ||
+ | $$ | ||
+ | \forall B \in \mathfrak{B}: \quad | ||
+ | \int_{B} T(x(t)) ~ \mathrm{d}{\mu(t)} = T \! \left( \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right). | ||
+ | $$ | ||
+ | If $ T $ is bounded, then the condition | ||
+ | $$ | ||
+ | T \circ x \in \mathcal{L}(Y;E,\mathfrak{B},\mu) | ||
+ | $$ | ||
+ | is automatically fulfilled ([[#References|[3]]]–[[#References|[5]]]). | ||
− | + | The Bochner integral was introduced by S. Bochner [[#References|[1]]]. Equivalent definitions were given by T. Hildebrandt [[#References|[2]]] and N. Dunford (the $ D_{0} $-integral). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | The Bochner integral was introduced by S. Bochner [[#References|[1]]]. Equivalent definitions were given by T. Hildebrandt [[#References|[2]]] and N. Dunford (the | ||
====References==== | ====References==== | ||
− | |||
− | |||
+ | <table> | ||
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind” ''Fund. Math.'', '''20''' (1933), pp. 262–276.</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> T.H. Hildebrandt, “Integration in abstract spaces” ''Bull. Amer. Math. Soc.'', '''59''' (1953), pp. 111–139.</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> K. Yosida, “Functional analysis”, Springer (1980), Ch. 8, §1.</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> E. Hille, R.S. Phillips, “Functional analysis and semi-groups”, Amer. Math. Soc. (1957).</TD></TR> | ||
+ | <TR><TD valign="top">[5]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, “Linear operators. General theory”, '''1''', Interscience (1958).</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | A simple function is also called a step function. A good recent textbook on integrals with values in a Banach space is [[#References|[a1]]]; [[#References|[a4]]] is specifically about the Bochner integral. | + | A simple function is also called a step function. A good recent textbook on integrals with values in a Banach space is [[#References|[a1]]]; [[#References|[a4]]] is specifically about the Bochner-integral. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Diestel, J.J. Uhl, Jr., “Vector measures”, ''Math. Surveys'', '''15''', Amer. Math. Soc. (1977).</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, “Integration”, North-Holland (1967).</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Bourbaki, “Elements of mathematics. Integration”, Addison-Wesley (1975), Ch. 6, 7, 8 (translated from French).</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Mikusiński, “The Bochner integral”, Acad. Press (1978).</TD></TR> | ||
+ | </table> |
Revision as of 07:48, 26 April 2016
An integral of a function with values in a Banach space with respect to a scalar-valued measure. It belongs to the family of so-called strong integrals (cf. Strong integral).
Let $ F(X;E,\mathfrak{B},\mu) $ denote the vector space of functions $ x: E \to X $, where $ X $ is a Banach space and $ (E,\mathfrak{B},\mu) $ is a measure space, with $ \mu $ being a countably-additive scalar-valued measure on a $ \sigma $-algebra $ \mathfrak{B} $ of subsets of $ E $. A function $ x_{0} \in F $ is called simple if and only if for some $ n \in \mathbb{N} $, there exist distinct points $ x_{1},\ldots,x_{n} \in X $ and measurable subsets $ B_{1},\ldots,B_{n} \in \mathfrak{B} $, satisfying $ \mu(B_{i}) < \infty $ for all $ i \in \{ 1,\ldots,n \} $ as well as $ B_{i} \cap B_{j} = \varnothing $ for all distinct $ i,j \in \{ 1,\ldots,n \} $, such that $$ \forall t \in E: \quad {x_{0}}(t) = \begin{cases} x_{i} & \text{if $ t \in B_{i} $ for some $ i \in \{ 1,\ldots,n \} $}; \\ 0 & \text{if $ \displaystyle t \in E \Bigg\backslash \bigcup_{i = 1}^{n} B_{i} $}. \end{cases} $$
A function $ x \in F $ is called strongly measurable if and only if there exists a sequence $ (x_{n})_{n \in \mathbb{N}} $ of simple functions such that $ \displaystyle \lim_{n \to \infty} \| {x_{n}}(\bullet) - x(\bullet) \|_{X} = 0 $ pointwise almost-everywhere on $ E $ with respect to $ \mu $. In this case, the scalar-valued function $ \| x(\bullet) \|_{X}: E \to [0,\infty) $ is $ \mathfrak{B} $-measurable. For the simple function $ x_{0} $, define its Bochner-integral by $$ \int_{E} {x_{0}}(t) ~ \mathrm{d}{\mu(t)} \stackrel{\text{df}}{=} \sum_{i = 1}^{n} \mu(B_{i}) \cdot x_{i}. $$
A function $ x \in F $ is called Bochner-integrable if and only if it is strongly measurable and for some approximating sequence $ (x_{n})_{n \in \mathbb{N}} $ of simple functions, we have $$ \lim_{n \to \infty} \int_{E} \| x(t) - {x_{n}}(t) \|_{X} ~ \mathrm{d}{\mu(t)} = 0. $$ The Bochner-integral of such a function over a measurable subset $ B \in \mathfrak{B} $ is then defined by $$ \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \stackrel{\text{df}}{=} \lim_{n \to \infty} \int_{E} {\chi_{B}}(t) \cdot {x_{n}}(t) ~ \mathrm{d}{\mu(t)}, $$ where $ \chi_{B} $ denotes the characteristic function of $ B $, and the limit is understood in the sense of strong convergence in $ X $. This limit exists and is independent of the choice of an approximating sequence of simple functions.
Criterion for Bochner-integrability: For a strongly-measurable function $ x \in F $ to be Bochner-integrable, it is necessary and sufficient for its pointwise-norm to be integrable, i.e., $$ \int_{E} \| x(t) \|_{X} ~ \mathrm{d}{\mu(t)} < \infty. $$
The set of Bochner-integrable functions forms a vector subspace $ \mathcal{L} $ of $ F $, and the Bochner-integral is a linear operator on this subspace.
Properties of Bochner-integrals:
1) $ \displaystyle \left\| \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right\|_{X} \leq \int_{B} \| x(t) \|_{X} ~ \mathrm{d}{\mu(t)} $ for every $ B \in \mathfrak{B} $.
2) A Bochner integral is a countably-additive $ \mu $-absolutely continuous set-function on the $ \sigma $-algebra $ \mathfrak{B} $, i.e., $$ \int_{\bigcup_{i = 1}^{\infty} B_{i}} x(t) ~ \mathrm{d}{\mu(t)} = \sum_{i = 1}^{\infty} \int_{B_{i}} x(t) ~ \mathrm{d}{\mu(t)}, $$ if $ B_{i} \in \mathfrak{B} $ and $ \mu(B_{i}) < \infty $ for all $ i \in \{ 1,\ldots,n \} $, $ B_{i} \cap B_{j} = \varnothing $ for all distinct $ i,j \in \{ 1,\ldots,n \} $, and $ \displaystyle \left\| \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right\|_{X} \to 0 $ if $ \mu(B) \to 0 $, uniformly for $ B \in \mathfrak{B} $.
3) If $ (x_{n})_{n \in \mathbb{N}} $ is a sequence in $ F $ and $ \displaystyle \lim_{n \to \infty} x_{n} = x $ pointwise almost-everywhere on $ B \in \mathfrak{B} $ with respect to $ \mu $, if $ \| {x_{n}}(\bullet) \|_{X} \leq f $ pointwise almost-everywhere on $ B $ with respect to $ \mu $, and if $ \displaystyle \int_{B} f ~ \mathrm{d}{\mu} < \infty $, then $$ x \in \mathcal{L} \qquad \text{and} \qquad \lim_{n \to \infty} \int_{B} {x_{n}}(t) ~ \mathrm{d}{\mu(t)} = \int_{B} x(t) ~ \mathrm{d}{\mu(t)}. $$
4) The space $ \mathcal{L} $ is complete with respect to the norm (cf. Convergence in norm) $$ \| x - y \|_{\mathcal{L}} \stackrel{\text{df}}{=} \int_{E} \| x(t) - y(t) \|_{X} ~ \mathrm{d}{\mu(t)}. $$
5) If $ T $ is a closed linear operator from a Banach space $ X $ to another $ Y $, and if $$ x \in \mathcal{L}(X;E,\mathfrak{B},\mu) \qquad \text{and} \qquad T \circ x \in \mathcal{L}(Y;E,\mathfrak{B},\mu), $$ then $$ \forall B \in \mathfrak{B}: \quad \int_{B} T(x(t)) ~ \mathrm{d}{\mu(t)} = T \! \left( \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right). $$ If $ T $ is bounded, then the condition $$ T \circ x \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $$ is automatically fulfilled ([3]–[5]).
The Bochner integral was introduced by S. Bochner [1]. Equivalent definitions were given by T. Hildebrandt [2] and N. Dunford (the $ D_{0} $-integral).
References
[1] | S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind” Fund. Math., 20 (1933), pp. 262–276. |
[2] | T.H. Hildebrandt, “Integration in abstract spaces” Bull. Amer. Math. Soc., 59 (1953), pp. 111–139. |
[3] | K. Yosida, “Functional analysis”, Springer (1980), Ch. 8, §1. |
[4] | E. Hille, R.S. Phillips, “Functional analysis and semi-groups”, Amer. Math. Soc. (1957). |
[5] | N. Dunford, J.T. Schwartz, “Linear operators. General theory”, 1, Interscience (1958). |
Comments
A simple function is also called a step function. A good recent textbook on integrals with values in a Banach space is [a1]; [a4] is specifically about the Bochner-integral.
References
[a1] | J. Diestel, J.J. Uhl, Jr., “Vector measures”, Math. Surveys, 15, Amer. Math. Soc. (1977). |
[a2] | A.C. Zaanen, “Integration”, North-Holland (1967). |
[a3] | N. Bourbaki, “Elements of mathematics. Integration”, Addison-Wesley (1975), Ch. 6, 7, 8 (translated from French). |
[a4] | J. Mikusiński, “The Bochner integral”, Acad. Press (1978). |
Bochner integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bochner_integral&oldid=11334