Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/55"
Rui Martins (talk | contribs) |
|||
(8 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170206.png ; $\ | + | 1. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170206.png ; $\pi_1 ( L )$ ; confidence 0.559 |
2. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201607.png ; $\operatorname{coker}T$ ; confidence 0.559 | 2. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201607.png ; $\operatorname{coker}T$ ; confidence 0.559 | ||
Line 18: | Line 18: | ||
9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015055.png ; $d _ { 1 } ^ { * } d _ { 2 } ^ { * }$ ; confidence 0.558 | 9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015055.png ; $d _ { 1 } ^ { * } d _ { 2 } ^ { * }$ ; confidence 0.558 | ||
− | 10. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002038.png ; $\varphi ( \vartheta ) := | \operatorname { log } | \operatorname { tan } \frac { 1 } { 2 } \vartheta \|$ ; confidence 0.558 | + | 10. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002038.png ; $\varphi ( \vartheta ) := \left| \operatorname { log } \left| \operatorname { tan } \frac { 1 } { 2 } \vartheta \right| \right|$ ; confidence 0.558 |
11. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200119.png ; $0 = | z _ { 1 } - 1 | \leq \ldots \leq | z _ { n } - 1 |$ ; confidence 0.558 | 11. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200119.png ; $0 = | z _ { 1 } - 1 | \leq \ldots \leq | z _ { n } - 1 |$ ; confidence 0.558 | ||
Line 30: | Line 30: | ||
15. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002017.png ; $- T$ ; confidence 0.558 | 15. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002017.png ; $- T$ ; confidence 0.558 | ||
− | 16. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001028.png ; $\| f \| _ { q } = \{ \operatorname { lim } _ { x \rightarrow \infty } \frac { 1 } { x } | + | 16. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001028.png ; $\| f \| _ { q } = \left\{ \operatorname { lim } _ { x \rightarrow \infty } \frac { 1 } { x } . \sum _ { n \leq x } | f ( n ) | ^ { q } \right\} ^ { 1 / q } < \infty,$ ; confidence 0.558 |
17. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008030.png ; $( a ^ { 2 } \alpha ^ { - 1 } : b ^ { 2 } \beta ^ { - 1 } : c ^ { 2 } \gamma ^ { - 1 } )$ ; confidence 0.558 | 17. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008030.png ; $( a ^ { 2 } \alpha ^ { - 1 } : b ^ { 2 } \beta ^ { - 1 } : c ^ { 2 } \gamma ^ { - 1 } )$ ; confidence 0.558 | ||
Line 60: | Line 60: | ||
30. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011025.png ; $\xi _ { 1 } ( . ) , \ldots , \xi _ { n } ( . )$ ; confidence 0.557 | 30. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011025.png ; $\xi _ { 1 } ( . ) , \ldots , \xi _ { n } ( . )$ ; confidence 0.557 | ||
− | 31. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024032.png ; $\mathbf{E} = \{ E _ { n } | \sigma : \Sigma : E _ { n } \rightarrow E _ { n | + | 31. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024032.png ; $\mathbf{E} = \{ E _ { n } | \sigma : \Sigma : E _ { n } \rightarrow E _ { n + 1} \}$ ; confidence 0.557 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013027.png ; $\underline | + | 32. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013027.png ; $\underline{ Top } ( X , Y ) _ { n } = Top ( X \times \Delta ^ { n } , Y )$ ; confidence 0.557 |
33. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201606.png ; $\sum _ { j } p _ { i k,j } = 1$ ; confidence 0.557 | 33. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201606.png ; $\sum _ { j } p _ { i k,j } = 1$ ; confidence 0.557 | ||
− | 34. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022025.png ; $H _ { B } ^ { i } ( X )$ ; confidence 0.557 | + | 34. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022025.png ; $H _ { \text{B} } ^ { i } ( X )$ ; confidence 0.557 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011022.png ; $( \operatorname{Op} ( J ^ { t } | + | 35. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011022.png ; $( \operatorname{Op} ( J ^ { t } a ) u ) ( x ) =$ ; confidence 0.557 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040312.png ; $c \equiv d ( \Theta _ { Q } ( a , b ) )$ ; confidence 0.557 | + | 36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040312.png ; $c \equiv d ( \Theta _ { \text{Q} } ( a , b ) )$ ; confidence 0.557 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180192.png ; $R ( g ) \in \ | + | 37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180192.png ; $R ( g ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.557 |
38. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004046.png ; $\operatorname { limsup } _ { r \rightarrow 0 } \frac { \mathcal{H} ^ { m } ( E \cap B ( x , r ) ) } { r ^ { m } } > 0$ ; confidence 0.556 | 38. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004046.png ; $\operatorname { limsup } _ { r \rightarrow 0 } \frac { \mathcal{H} ^ { m } ( E \cap B ( x , r ) ) } { r ^ { m } } > 0$ ; confidence 0.556 | ||
Line 78: | Line 78: | ||
39. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021090.png ; $= a ^ { 2 } o ( \lambda - \lambda _ { 1 } ) ( \lambda - \lambda _ { 2 } ).$ ; confidence 0.556 | 39. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021090.png ; $= a ^ { 2 } o ( \lambda - \lambda _ { 1 } ) ( \lambda - \lambda _ { 2 } ).$ ; confidence 0.556 | ||
− | 40. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007031.png ; $H ^ { n } ( C , cM ) = 0$ ; confidence 0.556 | + | 40. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007031.png ; $H ^ { n } ( \mathcal{C} , cM ) = 0$ ; confidence 0.556 |
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022023.png ; $\square _ { R } \ \operatorname{Mod}$ ; confidence 0.556 | 41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022023.png ; $\square _ { R } \ \operatorname{Mod}$ ; confidence 0.556 | ||
Line 86: | Line 86: | ||
43. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019012.png ; $T ( n , k , r ) \geq \lceil \frac { n } { n - r } T ( n - 1 , k , r ) \rceil.$ ; confidence 0.556 | 43. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019012.png ; $T ( n , k , r ) \geq \lceil \frac { n } { n - r } T ( n - 1 , k , r ) \rceil.$ ; confidence 0.556 | ||
− | 44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040228.png ; $\Gamma \approx \Delta \vDash _ { \ | + | 44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040228.png ; $\Gamma \approx \Delta \vDash _ { \mathsf{K} } \varphi \approx \psi$ ; confidence 0.556 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010029.png ; $\operatorname { lim } _ { t \rightarrow \infty } \frac { f ( t ) ^ { 2 / d } } { t } \operatorname { log } P ( | W ^ { | + | 45. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010029.png ; $\operatorname { lim } _ { t \rightarrow \infty } \frac { f ( t ) ^ { 2 / d } } { t } \operatorname { log } \mathsf{P} ( | W ^ { a } ( t ) | \leq f ( t ) ) = - \frac { 1 } { 2 } \lambda _ { d }$ ; confidence 0.556 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006036.png ; $\mathfrak { V } ^ { \prime } = ( A _ { 1 } ^ { \prime } , A _ { 2 } ^ { \prime } , \mathcal{H} ^ { \prime } , \Phi ^ { \prime } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma ^ { \prime } , \ | + | 46. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006036.png ; $\mathfrak { V } ^ { \prime } = ( A _ { 1 } ^ { \prime } , A _ { 2 } ^ { \prime } , \mathcal{H} ^ { \prime } , \Phi ^ { \prime } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma ^ { \prime } , \widetilde { \gamma } ^ { \prime } ),$ ; confidence 0.556 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011058.png ; $\ | + | 47. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011058.png ; $\widetilde{Q}$ ; confidence 0.556 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014037.png ; $\operatorname { log } \frac { z ( \zeta ) - z ( \zeta ^ { \prime } ) } { \zeta - \zeta ^ { \prime } } = - \sum _ { k , l = 1 } ^ { \infty } | + | 48. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014037.png ; $\operatorname { log } \frac { z ( \zeta ) - z ( \zeta ^ { \prime } ) } { \zeta - \zeta ^ { \prime } } = - \sum _ { k , l = 1 } ^ { \infty } a _ { k l } \zeta ^ { - k } \zeta ^ { \prime - l },$ ; confidence 0.556 |
49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200509.png ; $\operatorname{Im}K _ { 1 / 2 + i \tau } ( x ) = \frac { K _ { 1 / 2 + i \tau } ( x ) - K _ { 1 / 2 - i \tau } ( x ) } { 2 i }.$ ; confidence 0.556 | 49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200509.png ; $\operatorname{Im}K _ { 1 / 2 + i \tau } ( x ) = \frac { K _ { 1 / 2 + i \tau } ( x ) - K _ { 1 / 2 - i \tau } ( x ) } { 2 i }.$ ; confidence 0.556 | ||
Line 100: | Line 100: | ||
50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290112.png ; $R ( I )$ ; confidence 0.556 | 50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290112.png ; $R ( I )$ ; confidence 0.556 | ||
− | 51. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005045.png ; $\Gamma _ { | + | 51. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005045.png ; $\Gamma _ { x } \subset \mathbf{R} ^ { n } \times \mathbf{R} ^ { p }$ ; confidence 0.556 |
52. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028052.png ; $X \mapsto D _ { 2n } H *\Omega X$ ; confidence 0.556 | 52. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028052.png ; $X \mapsto D _ { 2n } H *\Omega X$ ; confidence 0.556 | ||
− | 53. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080108.png ; $d S _ { S W } = d \ | + | 53. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080108.png ; $d S _ { S W } = d \widehat { \Omega } _ { 1 } = \lambda \left( \frac { d w } { w } \right) = \lambda \frac { d P } { y } = \lambda \frac { d y } { P }.$ ; confidence 0.555 |
54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052013.png ; $x_{n+1}$ ; confidence 0.555 | 54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052013.png ; $x_{n+1}$ ; confidence 0.555 | ||
Line 124: | Line 124: | ||
62. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c1300509.png ; $y x ^ { - 1 } \in S$ ; confidence 0.555 | 62. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c1300509.png ; $y x ^ { - 1 } \in S$ ; confidence 0.555 | ||
− | 63. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008035.png ; $V _ { k + l } ^ { k - l } ( x , y ; \alpha ) = e ^ { i ( k - l ) \theta } R _ { k + l } ^ { k - l } ( r | + | 63. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008035.png ; $V _ { k + l } ^ { k - l } ( x , y ; \alpha ) = e ^ { i ( k - l ) \theta } R _ { k + l } ^ { k - l } ( r ; \alpha ) =$ ; confidence 0.555 |
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027042.png ; $a _ { 1 } ^ { n } , \ldots , a _ { n } ^ { n }$ ; confidence 0.555 | 64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027042.png ; $a _ { 1 } ^ { n } , \ldots , a _ { n } ^ { n }$ ; confidence 0.555 | ||
Line 142: | Line 142: | ||
71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202306.png ; $X := \Gamma X \Lambda$ ; confidence 0.554 | 71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202306.png ; $X := \Gamma X \Lambda$ ; confidence 0.554 | ||
− | 72. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020177.png ; $\ | + | 72. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020177.png ; $\mathsf{E} [ U _ { \infty } ^ { 1 } U _ { \infty } ^ { 2 } ] = \int _ { \partial D } u _ { 1 } u _ { 2 } \frac { d \vartheta } { 2 \pi } = \int _ { \partial D } v _ { 1 } v _ { 2 } \frac { d \vartheta } { 2 \pi } = \mathsf{E} [ V _ { \infty } ^ { 1 } V _ { \infty } ^ { 2 } ].$ ; confidence 0.554 |
73. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507067.png ; $\gamma_\omega = - \omega$ ; confidence 0.554 | 73. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507067.png ; $\gamma_\omega = - \omega$ ; confidence 0.554 | ||
Line 156: | Line 156: | ||
78. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013020.png ; $T ( z ) = - I _ { n }$ ; confidence 0.554 | 78. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013020.png ; $T ( z ) = - I _ { n }$ ; confidence 0.554 | ||
− | 79. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080149.png ; $\varphi = \sum _ { k = 1 } ^ { \infty } f _ { k } * \ | + | 79. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080149.png ; $\varphi = \sum _ { k = 1 } ^ { \infty } f _ { k } * \widetilde{g} _ { k },$ ; confidence 0.554 |
80. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091015.png ; $\tau _ { n }$ ; confidence 0.554 | 80. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091015.png ; $\tau _ { n }$ ; confidence 0.554 | ||
− | 81. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015024.png ; $\varphi : G \times _ { G _ { | + | 81. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015024.png ; $\varphi : G \times _ { G _ { x } } S \rightarrow X$ ; confidence 0.554 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002026.png ; $\ | + | 82. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002026.png ; $\mathsf{P} ( \theta , \mu ) = \operatorname { exp } [ \langle \theta , x \rangle - k _ { \mu } ( \theta ) ] \mu ( d x ),$ ; confidence 0.554 |
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b120220100.png ; $u ^ { n + 1 }$ ; confidence 0.554 | 83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b120220100.png ; $u ^ { n + 1 }$ ; confidence 0.554 | ||
Line 170: | Line 170: | ||
85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022066.png ; $f : \Xi \rightarrow \mathbf{R} ^ { p }$ ; confidence 0.554 | 85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022066.png ; $f : \Xi \rightarrow \mathbf{R} ^ { p }$ ; confidence 0.554 | ||
− | 86. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002043.png ; $\operatorname { ln } \ | + | 86. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002043.png ; $\operatorname { ln } \mathsf{P} ( X = 0 ) \sim - \lambda$ ; confidence 0.553 |
87. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090189.png ; $w = f ( z , z_0 )$ ; confidence 0.553 | 87. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090189.png ; $w = f ( z , z_0 )$ ; confidence 0.553 | ||
− | 88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064042.png ; $H ( | + | 88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064042.png ; $H ( a ) H ( \tilde{a} ^ { - 1 } )$ ; confidence 0.553 |
89. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010070.png ; $f _ { 1 } , f _ { 2 } , \ldots$ ; confidence 0.553 | 89. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010070.png ; $f _ { 1 } , f _ { 2 } , \ldots$ ; confidence 0.553 | ||
Line 182: | Line 182: | ||
91. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080145.png ; $R \in \operatorname { Hol } ( \mathcal{D} )$ ; confidence 0.553 | 91. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080145.png ; $R \in \operatorname { Hol } ( \mathcal{D} )$ ; confidence 0.553 | ||
− | 92. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008082.png ; $\ | + | 92. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008082.png ; $\mathsf{E} [ T ( x ) ]$ ; confidence 0.553 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301207.png ; $d ( x , A ) = \operatorname { inf } \{ d ( x , a ) : | + | 93. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301207.png ; $d ( x , A ) = \operatorname { inf } \{ d ( x , a ) : a \in A \}$ ; confidence 0.553 |
94. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011010.png ; $\varepsilon_0$ ; confidence 0.553 | 94. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011010.png ; $\varepsilon_0$ ; confidence 0.553 | ||
Line 194: | Line 194: | ||
97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010220.png ; $\lambda _ { i }$ ; confidence 0.553 | 97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010220.png ; $\lambda _ { i }$ ; confidence 0.553 | ||
− | 98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004052.png ; $= \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) [ \operatorname{CF} ( \zeta - z , w ) - \sum _ { k = 0 } ^ { m } \frac { ( k + n - 1 ) } { k ! } \phi _ { k } ];$ ; confidence 0.553 | + | 98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004052.png ; $= \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) \left[ \operatorname{CF} ( \zeta - z , w ) - \sum _ { k = 0 } ^ { m } \frac { ( k + n - 1 ) } { k ! } \phi _ { k } \right];$ ; confidence 0.553 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046040.png ; $( \oplus _ { b } | + | 99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046040.png ; $( \oplus _ { b ^{ G } \neq B } b )$ ; confidence 0.553 |
100. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200304.png ; $c _ { 1 } ( M ) _ { \mathbf{R} }$ ; confidence 0.553 | 100. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200304.png ; $c _ { 1 } ( M ) _ { \mathbf{R} }$ ; confidence 0.553 | ||
Line 204: | Line 204: | ||
102. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090356.png ; $\{ x _ { \alpha } ( t ) : t \in K , \alpha \in \Phi \}$ ; confidence 0.553 | 102. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090356.png ; $\{ x _ { \alpha } ( t ) : t \in K , \alpha \in \Phi \}$ ; confidence 0.553 | ||
− | 103. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008012.png ; $\ | + | 103. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008012.png ; $\widetilde{P} _ { + } ^ { \uparrow}$ ; confidence 0.552 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003023.png ; $\sum _ { k = 0 } ^ { \infty } \beta _ { k } ^ { ( | + | 104. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003023.png ; $\sum _ { k = 0 } ^ { \infty } \beta _ { k } ^ { ( i ) } \alpha ^ { d ^ { k } } ( 1 \leq i \leq n )$ ; confidence 0.552 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b1203108.png ; $\hat { f } ( \xi ) = \int _ { \mathbf{R} ^ { n } } f ( x ) e ^ { - 2 \pi i x | + | 105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b1203108.png ; $\hat { f } ( \xi ) = \int _ { \mathbf{R} ^ { n } } f ( x ) e ^ { - 2 \pi i x . \xi } d x$ ; confidence 0.552 |
106. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110154.png ; $G ( \zeta ) \in \widetilde { \mathcal{O} } ( D ^ { n } - i \Gamma )$ ; confidence 0.552 | 106. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110154.png ; $G ( \zeta ) \in \widetilde { \mathcal{O} } ( D ^ { n } - i \Gamma )$ ; confidence 0.552 | ||
Line 232: | Line 232: | ||
116. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002049.png ; $( \alpha _ { 1 } , \alpha _ { 2 } , \ldots , \alpha _ { q } \cup \gamma ) \in \mathcal{F} ( S ) ^ { q }$ ; confidence 0.552 | 116. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002049.png ; $( \alpha _ { 1 } , \alpha _ { 2 } , \ldots , \alpha _ { q } \cup \gamma ) \in \mathcal{F} ( S ) ^ { q }$ ; confidence 0.552 | ||
− | 117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015085.png ; $D _ { | + | 117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015085.png ; $D _ { s } ^ { \perp }$ ; confidence 0.552 |
118. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l1300604.png ; $u _ { i } = z _ { i } / m$ ; confidence 0.552 | 118. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l1300604.png ; $u _ { i } = z _ { i } / m$ ; confidence 0.552 | ||
Line 262: | Line 262: | ||
131. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013083.png ; $\tilde{\mathbf{Z}} ^ { n }$ ; confidence 0.551 | 131. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013083.png ; $\tilde{\mathbf{Z}} ^ { n }$ ; confidence 0.551 | ||
− | 132. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400132.png ; $i \neq l ( w )$ ; confidence 0.551 | + | 132. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400132.png ; $i \neq \text{l} ( w )$ ; confidence 0.551 |
133. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021033.png ; $c _ { j } ( \lambda ) = - \sum _ { k = 0 } ^ { j - 1 } \frac { c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) } { \pi ( \lambda + j ) }$ ; confidence 0.551 | 133. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021033.png ; $c _ { j } ( \lambda ) = - \sum _ { k = 0 } ^ { j - 1 } \frac { c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) } { \pi ( \lambda + j ) }$ ; confidence 0.551 | ||
Line 270: | Line 270: | ||
135. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090139.png ; $k / \mathbf{Q}$ ; confidence 0.550 | 135. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090139.png ; $k / \mathbf{Q}$ ; confidence 0.550 | ||
− | 136. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008053.png ; $\int _ { 0 } ^ { 1 } R _ { k + l } ^ { k - l } ( r | + | 136. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008053.png ; $\int _ { 0 } ^ { 1 } R _ { k + l } ^ { k - l } ( r ; \alpha ) J _ { k - l } ( r s ) ( 1 - r ^ { 2 } ) ^ { \alpha } r d r =$ ; confidence 0.550 |
137. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230193.png ; $\mathcal{E} ( L ) \equiv ( 1 + \Omega d S ) ^ { k } \Omega d ( L \Delta ).$ ; confidence 0.550 | 137. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230193.png ; $\mathcal{E} ( L ) \equiv ( 1 + \Omega d S ) ^ { k } \Omega d ( L \Delta ).$ ; confidence 0.550 | ||
Line 284: | Line 284: | ||
142. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220092.png ; $t_0$ ; confidence 0.550 | 142. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220092.png ; $t_0$ ; confidence 0.550 | ||
− | 143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240182.png ; $\mathcal{H} _ { A }$ ; confidence 0.550 | + | 143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240182.png ; $\mathcal{H} _ { \text{A} }$ ; confidence 0.550 |
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013085.png ; $L$ ; confidence 0.550 | 144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013085.png ; $L$ ; confidence 0.550 | ||
Line 300: | Line 300: | ||
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a1300909.png ; $\pi_2$ ; confidence 0.549 | 150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a1300909.png ; $\pi_2$ ; confidence 0.549 | ||
− | 151. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007010.png ; $\Gamma _ { 0 } ( N ) = \{ \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in SL ( 2 , Z ) : c \equiv 0 ( \operatorname { mod } N ) \}$ ; confidence 0.549 | + | 151. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007010.png ; $\Gamma _ { 0 } ( N ) = \left\{ \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in \operatorname{SL} ( 2 , \mathbf{Z} ) : c \equiv 0 ( \operatorname { mod } N ) \right\},$ ; confidence 0.549 |
152. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356041.png ; $\lambda _ { f } ( x ) : x \mapsto x y$ ; confidence 0.549 | 152. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356041.png ; $\lambda _ { f } ( x ) : x \mapsto x y$ ; confidence 0.549 | ||
Line 306: | Line 306: | ||
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029041.png ; $Y _ { 0 }$ ; confidence 0.549 | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029041.png ; $Y _ { 0 }$ ; confidence 0.549 | ||
− | 154. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003058.png ; $H _ { 3 } ( O ^ { | + | 154. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003058.png ; $\mathcal{H} _ { 3 } ( \mathbf{O} ^ { c } )$ ; confidence 0.549 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230163.png ; $B _ { | + | 155. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230163.png ; $B _ { n } = 0$ ; confidence 0.549 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050100.png ; $\alpha _ { | + | 156. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050100.png ; $\alpha _ { n} \rightarrow 0$ ; confidence 0.549 |
157. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900163.png ; $\zeta \mapsto T ( \zeta ) f ( \zeta )$ ; confidence 0.549 | 157. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900163.png ; $\zeta \mapsto T ( \zeta ) f ( \zeta )$ ; confidence 0.549 | ||
Line 318: | Line 318: | ||
159. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008061.png ; $p \in E$ ; confidence 0.549 | 159. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008061.png ; $p \in E$ ; confidence 0.549 | ||
− | 160. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v09604018.png ; $P ( Y < T ) < P ( Z < T )$ ; confidence 0.549 | + | 160. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v09604018.png ; $\mathsf{P} ( Y < T ) < \mathsf{P} ( Z < T )$ ; confidence 0.549 |
161. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001013.png ; $d _ { \chi _ { \lambda } } ^ { S _ { n } }$ ; confidence 0.549 | 161. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001013.png ; $d _ { \chi _ { \lambda } } ^ { S _ { n } }$ ; confidence 0.549 | ||
− | 162. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020147.png ; $ | + | 162. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020147.png ; $\mathcal{BMO}$ ; confidence 0.549 |
163. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004068.png ; $K _ { 1,3 }$ ; confidence 0.549 | 163. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004068.png ; $K _ { 1,3 }$ ; confidence 0.549 | ||
Line 328: | Line 328: | ||
164. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008012.png ; $L _ { 2 } ^ { \prime }$ ; confidence 0.549 | 164. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008012.png ; $L _ { 2 } ^ { \prime }$ ; confidence 0.549 | ||
− | 165. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002021.png ; $( | + | 165. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002021.png ; $( a , b ) \in ( \mathbf{Q} \backslash \mathbf{Z} ) ^ { 2 }$ ; confidence 0.548 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f1200406.png ; $f ^ { c \langle \varphi \rangle } : W \rightarrow \overline { R }$ ; confidence 0.548 | + | 166. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f1200406.png ; $f ^ { c \langle \varphi \rangle } : W \rightarrow \overline { \mathbf{R} }$ ; confidence 0.548 |
167. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110130/c11013076.png ; $| \alpha |$ ; confidence 0.548 | 167. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110130/c11013076.png ; $| \alpha |$ ; confidence 0.548 | ||
− | 168. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290200.png ; $\{ t _ { i } \} _ { 0 | + | 168. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290200.png ; $\{ t _ { i } \} _ { 0 \leq i \leq d - 1}$ ; confidence 0.548 |
169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007089.png ; $\{ ( \alpha _ { i } , \beta _ { i } ) : i = 1 , \ldots , k \}$ ; confidence 0.548 | 169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007089.png ; $\{ ( \alpha _ { i } , \beta _ { i } ) : i = 1 , \ldots , k \}$ ; confidence 0.548 | ||
− | 170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008030.png ; $\Delta ( \Lambda ) = \operatorname { Det } [ | + | 170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008030.png ; $\Delta ( \Lambda ) = \operatorname { Det } [ I _ { m } \bigotimes \Lambda - A _ { 1 } ] =$ ; confidence 0.548 |
171. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040128.png ; $w _ { 1 } \ldots w _ { k }$ ; confidence 0.548 | 171. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040128.png ; $w _ { 1 } \ldots w _ { k }$ ; confidence 0.548 | ||
Line 344: | Line 344: | ||
172. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160112.png ; $\vee S$ ; confidence 0.548 | 172. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160112.png ; $\vee S$ ; confidence 0.548 | ||
− | 173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301201.png ; $A = \{ f : \| f \| _ { A } = \sum _ { m = - \infty } ^ { \infty } | \hat { f } ( m ) | < \infty \}$ ; confidence 0.548 | + | 173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301201.png ; $\mathcal{A} = \{ f : \| f \| _ { \mathcal{A} } = \sum _ { m = - \infty } ^ { \infty } | \hat { f } ( m ) | < \infty \},$ ; confidence 0.548 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240371.png ; $Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.548 | + | 174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240371.png ; $\mathbf{Z} _ { 1 } \mathbf{M} _ { \mathsf{E} } ^ { - 1 } \mathbf{Z} _ { 1 } ^ { \prime }$ ; confidence 0.548 |
175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008082.png ; $k = 1 , \dots , 4$ ; confidence 0.548 | 175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008082.png ; $k = 1 , \dots , 4$ ; confidence 0.548 | ||
Line 352: | Line 352: | ||
176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202504.png ; $\mu ( x ) = \left( \begin{array} { l l } { \mu _ { 11 } } & { \mu _ { 12 } } \\ { \mu _ { 21 } } & { \mu _ { 22 } } \end{array} \right) =$ ; confidence 0.548 | 176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202504.png ; $\mu ( x ) = \left( \begin{array} { l l } { \mu _ { 11 } } & { \mu _ { 12 } } \\ { \mu _ { 21 } } & { \mu _ { 22 } } \end{array} \right) =$ ; confidence 0.548 | ||
− | 177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044068.png ; $T _ { H } ^ { G } ( | + | 177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044068.png ; $T _ { H } ^ { G } ( a ) = \sum _ { j } g _ { j } ^ { - 1 } a g_j$ ; confidence 0.548 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005040.png ; $ | + | 178. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005040.png ; $\beta_6$ ; confidence 0.548 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040714.png ; $\exists | + | 179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040714.png ; $\exists v_i \varphi$ ; confidence 0.548 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002024.png ; $ | + | 180. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002024.png ; $F_{m + 1}$ ; confidence 0.548 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005051.png ; $\operatorname { Re } l < 0$ ; confidence 0.548 | + | 181. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005051.png ; $\operatorname { Re } \text{l} < 0$ ; confidence 0.548 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240332.png ; $Z = Y X$ ; confidence 0.548 | + | 182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240332.png ; $\mathbf{Z} = \mathbf{Y X}_4$ ; confidence 0.548 |
183. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020010.png ; $1 , \dots , f$ ; confidence 0.547 | 183. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020010.png ; $1 , \dots , f$ ; confidence 0.547 | ||
− | 184. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001048.png ; $ | + | 184. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001048.png ; $a \in F$ ; confidence 0.547 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006064.png ; $p _ { | + | 185. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006064.png ; $p _ { n } ( z )$ ; confidence 0.547 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051080.png ; $H _ { k } - 1$ ; confidence 0.547 | + | 186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051080.png ; $H _ { k } ^{- 1}$ ; confidence 0.547 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301009.png ; $L _ { C } ^ { p ^ { \prime } } ( G )$ ; confidence 0.547 | + | 187. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301009.png ; $\mathcal{L} _ { \text{C} } ^ { p ^ { \prime } } ( G )$ ; confidence 0.547 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040114.png ; $\int \theta d H ^ { m } | + | 188. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040114.png ; $\int \theta d \mathcal{H} ^ { m } | _ { R } < \infty$ ; confidence 0.547 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005016.png ; $( G , \Omega ) = \operatorname { order } ( G )$ ; confidence 0.547 | + | 189. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005016.png ; $\operatorname{degree}( G , \Omega ) = \operatorname { order } ( G )$ ; confidence 0.547 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066016.png ; $\| f \| | + | 190. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066016.png ; $\| f \|_*$ ; confidence 0.547 |
191. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030015.png ; $( \tilde { B } ( t ) , t \geq 0 )$ ; confidence 0.547 | 191. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030015.png ; $( \tilde { B } ( t ) , t \geq 0 )$ ; confidence 0.547 | ||
Line 384: | Line 384: | ||
192. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024022.png ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} > m$ ; confidence 0.547 | 192. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024022.png ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} > m$ ; confidence 0.547 | ||
− | 193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015032.png ; $\ | + | 193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015032.png ; $\mathsf{P} \in \mathcal{P}$ ; confidence 0.547 |
194. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014025.png ; $i = 0 , \ldots , 2 t - 1$ ; confidence 0.547 | 194. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014025.png ; $i = 0 , \ldots , 2 t - 1$ ; confidence 0.547 | ||
− | 195. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005019.png ; $S ^ { | + | 195. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005019.png ; $S ^ { \text{l} } ( \mathfrak { g } ^ { * } )$ ; confidence 0.547 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006026.png ; $\| D ^ { \alpha } f | + | 196. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006026.png ; $\| D ^ { \alpha } f |_{L _ { \Phi _ { \alpha } }} ( \Omega ) \|$ ; confidence 0.547 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018010.png ; $mng : Mod \times Fm \rightarrow$ ; confidence 0.547 | + | 197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018010.png ; $\operatorname{mng} : \operatorname{Mod} \times \operatorname{Fm} \rightarrow \operatorname{Sets}$ ; confidence 0.547 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006025.png ; $L ( x ) < | + | 198. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006025.png ; $L ( x ) <_QU ( x )$ ; confidence 0.547 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008016.png ; $\hat { \mu } ( x ) = \int _ { G } \overline { \chi ( x ) } d \mu ( \chi ) , x \in G$ ; confidence 0.547 | + | 199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008016.png ; $\hat { \mu } ( x ) = \int _ { \hat{G} } \overline { \chi ( x ) } d \mu ( \chi ) , x \in G,$ ; confidence 0.547 |
200. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020106.png ; $| \{ \vartheta \in I : | \varphi ( e ^ { i \vartheta } ) - \varphi _ { I } | \geq \lambda \} | \leq C e ^ { - \gamma \lambda } | I |$ ; confidence 0.547 | 200. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020106.png ; $| \{ \vartheta \in I : | \varphi ( e ^ { i \vartheta } ) - \varphi _ { I } | \geq \lambda \} | \leq C e ^ { - \gamma \lambda } | I |$ ; confidence 0.547 | ||
Line 404: | Line 404: | ||
202. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023031.png ; $X _ { 1 } \sim \operatorname { RS } _ { p , m } ( \phi )$ ; confidence 0.546 | 202. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023031.png ; $X _ { 1 } \sim \operatorname { RS } _ { p , m } ( \phi )$ ; confidence 0.546 | ||
− | 203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027076.png ; $\sum _ { n = 0 } ^ { \infty } ( | \overline { m } _ { n } ( h ) | + | m \underline { \square } _ { n } ( h ) | ) < \infty$ ; confidence 0.546 | + | 203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027076.png ; $\sum _ { n = 0 } ^ { \infty } ( | \overline { m } _ { n } ( h ) | + | m \underline { \square } _ { n } ( h ) | ) < \infty,$ ; confidence 0.546 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f1200909.png ; $K \subseteq C ^ { | + | 204. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f1200909.png ; $K \subseteq \mathbf{C} ^ { n }$ ; confidence 0.546 |
205. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015040.png ; $\varepsilon ^ { i }$ ; confidence 0.546 | 205. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015040.png ; $\varepsilon ^ { i }$ ; confidence 0.546 | ||
− | 206. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110590/a11059017.png ; $k = 1 , \dots , n$ ; confidence 0.546 | + | 206. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110590/a11059017.png ; $k = 1 , \dots , n.$ ; confidence 0.546 |
207. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430164.png ; $q \neq 1$ ; confidence 0.546 | 207. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430164.png ; $q \neq 1$ ; confidence 0.546 | ||
− | 208. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070154.png ; $ | + | 208. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070154.png ; $a_5 ( g )$ ; confidence 0.546 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023098.png ; $A ( \sigma ) = \int _ { M } L ( \sigma ^ { k } ( x ) ) d x$ ; confidence 0.546 | + | 209. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023098.png ; $\mathcal{A} ( \sigma ) = \int _ { M } L ( \sigma ^ { k } ( x ) ) d x$ ; confidence 0.546 |
210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047012.png ; $( T - \lambda I ) ^ { n } X$ ; confidence 0.546 | 210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047012.png ; $( T - \lambda I ) ^ { n } X$ ; confidence 0.546 | ||
− | 211. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120080/n1200804.png ; $\operatorname { lim } _ { | + | 211. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120080/n1200804.png ; $\operatorname { lim } _ { n \rightarrow \infty } \mu _ { n } ( E ) = \mu ( E )$ ; confidence 0.546 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002015.png ; $\Delta = \frac { 1 } { 2 } \sum _ { A \neq B , A | + | 212. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002015.png ; $\Delta = \frac { 1 } { 2 } \sum _ { A \neq B , A \bigcap B \neq \emptyset } \mathsf{E} ( I _ { A } I _ { B } ) , \overline { \Delta } = \lambda + 2 \Delta.$ ; confidence 0.546 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m1300802.png ; $\ | + | 213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m1300802.png ; $\widetilde { \mathcal{P} }_+ ^ { \uparrow }$ ; confidence 0.546 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011037.png ; $u , v \in S ( R ^ { | + | 214. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011037.png ; $u , v \in \mathcal{S} ( \mathbf{R} ^ { n } )$ ; confidence 0.546 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240252.png ; $F > F _ { \alpha ; q , n - | + | 215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240252.png ; $\mathcal{F} > F _ { \alpha ; q , n - r}$ ; confidence 0.546 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k1201109.png ; $x = | + | 216. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k1201109.png ; $x = t_1$ ; confidence 0.546 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040381.png ; $h | + | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040381.png ; $h : \mathbf{A} \rightarrow \mathbf{B}$ ; confidence 0.546 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002042.png ; $\alpha _ { n | + | 218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002042.png ; $\alpha _ { n ,F} \circ Q \equiv \alpha _ { n }$ ; confidence 0.545 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005091.png ; $u _ { | + | 219. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005091.png ; $u _ { n } = u / z ^ { n }$ ; confidence 0.545 |
220. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005044.png ; $S \cap \text { aff } P \neq \emptyset$ ; confidence 0.545 | 220. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005044.png ; $S \cap \text { aff } P \neq \emptyset$ ; confidence 0.545 | ||
− | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040570.png ; $D$ ; confidence 0.545 | + | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040570.png ; $\operatorname{Alg FMod}^{* \text{L} }\mathcal{D}$ ; confidence 0.545 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008054.png ; $E = [ E \lambda - A ] ^ { - 1 } E , A = [ E \lambda - A ] ^ { - 1 } A$ ; confidence 0.545 | + | 222. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008054.png ; $\overline{E} = [ E \lambda - A ] ^ { - 1 } E , \overline{A} = [ E \lambda - A ] ^ { - 1 } A$ ; confidence 0.545 |
223. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005069.png ; $( - Y _ { 0 } , Y _ { 1 } , \dots , Y _ { n } )$ ; confidence 0.545 | 223. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005069.png ; $( - Y _ { 0 } , Y _ { 1 } , \dots , Y _ { n } )$ ; confidence 0.545 | ||
− | 224. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200213.png ; $ | + | 224. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200213.png ; $k_j - 1$ ; confidence 0.545 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016025.png ; $f _ { | + | 225. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016025.png ; $f _ { \mathfrak{A}} ( P )$ ; confidence 0.545 |
226. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080135.png ; $J _ { i j } = \pm J$ ; confidence 0.545 | 226. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080135.png ; $J _ { i j } = \pm J$ ; confidence 0.545 | ||
Line 454: | Line 454: | ||
227. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017043.png ; $\psi ( . , . )$ ; confidence 0.545 | 227. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017043.png ; $\psi ( . , . )$ ; confidence 0.545 | ||
− | 228. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090104.png ; $y | + | 228. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090104.png ; $y \lambda $ ; confidence 0.545 |
229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001056.png ; $\lambda ^ { \prime } = ( \lambda _ { 1 } , \dots , \lambda _ { s } - 1 , \lambda _ { s + 1 } , \dots , \lambda _ { t } , 1 )$ ; confidence 0.545 | 229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001056.png ; $\lambda ^ { \prime } = ( \lambda _ { 1 } , \dots , \lambda _ { s } - 1 , \lambda _ { s + 1 } , \dots , \lambda _ { t } , 1 )$ ; confidence 0.545 | ||
− | 230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020056.png ; $P _ { j } P _ { k } = \left\{ \left. \begin{array} { l l } { P _ { k } } & { \text { for } j = k } \\ { 0 } & { \text { for } j \neq k } \end{array} \right. ( j , k = 1 , \dots , n ) \right.$ ; confidence 0.545 | + | 230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020056.png ; $P _ { j } P _ { k } = \left\{ \left. \begin{array} { l l } { P _ { k } } & { \text { for } j = k } \\ { 0 } & { \text { for } j \neq k } \end{array} \right. ( j , k = 1 , \dots , n ) \right. ;$ ; confidence 0.545 |
231. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200208.png ; $M ( q )$ ; confidence 0.545 | 231. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200208.png ; $M ( q )$ ; confidence 0.545 | ||
− | 232. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080194.png ; $\{ . | + | 232. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080194.png ; $\{ .\}_0 \sim \omega ^ { 0 }$ ; confidence 0.545 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023030.png ; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { | + | 233. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023030.png ; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { x } u ( t , x ) \| ^ { 2 } = 0 , \quad ( t , x ) \in ( 0 , T ) \times H.$ ; confidence 0.545 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170110.png ; $K ^ { 2 } \ | + | 234. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170110.png ; $K ^ { 2 } / \searrow L ^ { 2 }$ ; confidence 0.545 |
235. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007054.png ; $q = e ^ { \hbar / 2 }$ ; confidence 0.545 | 235. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007054.png ; $q = e ^ { \hbar / 2 }$ ; confidence 0.545 | ||
− | 236. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023360/c02336027.png ; $ | + | 236. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023360/c02336027.png ; $\hbar$ ; confidence 0.545 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065054.png ; $S _ { k + 1 } ( z ) = z ^ { - 1 } \frac { S _ { k } ( z ) - S _ { k } ( 0 ) } { 1 - \overline { S | + | 237. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065054.png ; $S _ { k + 1 } ( z ) = z ^ { - 1 } \frac { S _ { k } ( z ) - S _ { k } ( 0 ) } { 1 - \overline { S _ { k } ( 0 ) }S _ { k } ( z ) }$ ; confidence 0.545 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013056.png ; $\left | + | 238. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013056.png ; $\left\{ \begin{array}{l}{ N _ { * } ^ { 1 } = \frac { K _ { ( 1 ) } - \delta _ { ( 1 ) } K _ { ( 2 ) } } { 1 - \delta _ { ( 1 ) } \delta _ { ( 2 ) } }, }\\{ N _ { * } ^ { 2 } = \frac { K _ { ( 2 ) } - \delta _ { ( 2 ) } K _ { ( 1 ) } } { 1 - \delta _ { ( 1 ) } \delta _ { ( 2 ) } }. }\end{array} \right.$ ; confidence 0.545 |
239. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698051.png ; $E _ { 7 }$ ; confidence 0.545 | 239. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698051.png ; $E _ { 7 }$ ; confidence 0.545 | ||
Line 484: | Line 484: | ||
242. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013076.png ; $\psi + = \psi _ { - } - n \phi$ ; confidence 0.544 | 242. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013076.png ; $\psi + = \psi _ { - } - n \phi$ ; confidence 0.544 | ||
− | 243. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001075.png ; $s \in Z ^ { | + | 243. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001075.png ; $s \in \mathbf{Z}_+ ^ { n }$ ; confidence 0.544 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013020.png ; $P _ { | + | 244. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013020.png ; $P _ { n } = U _ { n }$ ; confidence 0.544 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002044.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { F _ { n | + | 245. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002044.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { F _ { n + 1 } } { F _ { n } } = \frac { 1 } { 2 } ( \sqrt { 5 } + 1 ) \simeq 1.618.$ ; confidence 0.544 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210019.png ; $P \{ \chi _ { n } ^ { 2 } < x \} \rightarrow \Phi ( \sqrt { 2 x } - \sqrt { 2 n - 1 } ) \quad \text { as } n \rightarrow \infty$ ; confidence 0.544 | + | 246. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210019.png ; $\mathsf{P} \{ \chi _ { n } ^ { 2 } < x \} \rightarrow \Phi ( \sqrt { 2 x } - \sqrt { 2 n - 1 } ) \quad \text { as } n \rightarrow \infty,$ ; confidence 0.544 |
247. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046550/h04655076.png ; $u \geq 0$ ; confidence 0.544 | 247. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046550/h04655076.png ; $u \geq 0$ ; confidence 0.544 | ||
Line 498: | Line 498: | ||
249. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327039.png ; $H _ { 1 } , \dots , H _ { k }$ ; confidence 0.544 | 249. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327039.png ; $H _ { 1 } , \dots , H _ { k }$ ; confidence 0.544 | ||
− | 250. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507016.png ; $\operatorname { dim } A ^ { 1 } = \frac { 1 } { 2 } \operatorname { dim } H ^ { 1 } ( M , C )$ ; confidence 0.544 | + | 250. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507016.png ; $\operatorname { dim } A ^ { 1 } = \frac { 1 } { 2 } \operatorname { dim } H ^ { 1 } ( M , \mathbf{C} )$ ; confidence 0.544 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png ; $R el$ ; confidence 0.544 | + | 251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png ; $\mathcal{R} \text{el}$ ; confidence 0.544 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011019.png ; $J ^ { t } = \operatorname { exp } 2 i \pi t D _ { | + | 252. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011019.png ; $J ^ { t } = \operatorname { exp } 2 i \pi t D _ { x } . D _ { \xi }$ ; confidence 0.544 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092030/t0920308.png ; $U _ { | + | 253. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092030/t0920308.png ; $U _ { x } \not\ni y$ ; confidence 0.544 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004079.png ; $H ^ { m } | _ { E }$ ; confidence 0.544 | + | 254. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004079.png ; $\mathcal{H} ^ { m } | _ { E }$ ; confidence 0.544 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200603.png ; $- \psi _ { | + | 255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200603.png ; $- \psi _ { x x } + u ( x ) \psi = \lambda \psi,$ ; confidence 0.544 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520454.png ; $\Lambda = 0$ ; confidence 0.544 | + | 256. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520454.png ; $\operatorname{Re}\Lambda = 0$ ; confidence 0.544 |
257. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065019.png ; $H = \Phi _ { n } ^ { * }$ ; confidence 0.544 | 257. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065019.png ; $H = \Phi _ { n } ^ { * }$ ; confidence 0.544 | ||
− | 258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009091.png ; $f ( z ) = \{ \int _ { 0 } ^ { z } g ^ { \alpha } ( \xi ) h ( \xi ) \xi ^ { i \beta - 1 } d \xi \} ^ { 1 / ( \alpha + i \beta ) }$ ; confidence 0.544 | + | 258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009091.png ; $f ( z ) = \{ \int _ { 0 } ^ { z } g ^ { \alpha } ( \xi ) h ( \xi ) \xi ^ { i \beta - 1 } d \xi \} ^ { 1 / ( \alpha + i \beta ) }.$ ; confidence 0.544 |
259. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043320/g04332012.png ; $\xi = ( \xi ^ { 1 } , \dots , \xi ^ { n } )$ ; confidence 0.543 | 259. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043320/g04332012.png ; $\xi = ( \xi ^ { 1 } , \dots , \xi ^ { n } )$ ; confidence 0.543 | ||
Line 520: | Line 520: | ||
260. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003035.png ; $e _ { j } = \sqrt { 3 } \lambda _ { j }$ ; confidence 0.543 | 260. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003035.png ; $e _ { j } = \sqrt { 3 } \lambda _ { j }$ ; confidence 0.543 | ||
− | 261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017058.png ; $\gamma ^ { ( 2 | + | 261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017058.png ; $\gamma ^ { ( 2 n ) }$ ; confidence 0.543 |
262. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940806.png ; $x _ { 0 } \in A \cap B$ ; confidence 0.543 | 262. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940806.png ; $x _ { 0 } \in A \cap B$ ; confidence 0.543 | ||
Line 526: | Line 526: | ||
263. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c1300807.png ; $\mathfrak { p } = A _ { K } \cap \mathfrak { P }$ ; confidence 0.543 | 263. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c1300807.png ; $\mathfrak { p } = A _ { K } \cap \mathfrak { P }$ ; confidence 0.543 | ||
− | 264. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300908.png ; $( t , | + | 264. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300908.png ; $( t , \mathbf{x} )$ ; confidence 0.543 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \ | + | 265. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \phi_j ( z ) \}$ ; confidence 0.543 |
266. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080107.png ; $m _ { s } \propto ( 1 - T / T _ { c } ) ^ { \beta }$ ; confidence 0.543 | 266. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080107.png ; $m _ { s } \propto ( 1 - T / T _ { c } ) ^ { \beta }$ ; confidence 0.543 | ||
− | 267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031075.png ; $f \in C ( T ^ { n } )$ ; confidence 0.543 | + | 267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031075.png ; $f \in C ( \mathcal{T} ^ { n } )$ ; confidence 0.543 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004020.png ; $D _ { s } ^ { \prime } ( \Omega )$ ; confidence 0.543 | + | 268. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004020.png ; $\mathcal{D} _ { s } ^ { \prime } ( \Omega )$ ; confidence 0.543 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025068.png ; $\ | + | 269. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025068.png ; $\widehat { A } ( t | \widehat { \beta } )$ ; confidence 0.543 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002097.png ; $\leq E [ X ^ { * } ] \leq$ ; confidence 0.543 | + | 270. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002097.png ; $\leq \mathsf{E} [ X ^ { * } ] \leq$ ; confidence 0.543 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040602.png ; $S _ { P }$ ; confidence 0.543 | + | 271. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040602.png ; $\mathcal{S} _ { P }$ ; confidence 0.543 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016062.png ; $\Delta ^ { | + | 272. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016062.png ; $\Delta ^ { n - 1 }$ ; confidence 0.542 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024073.png ; $n = I K$ ; confidence 0.542 | + | 273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024073.png ; $n = I J K$ ; confidence 0.542 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026051.png ; $F ( t , \nu ) = \{ P ( \theta , t , \nu ) : \theta \in \Theta ( \mu ) \}$ ; confidence 0.542 | + | 274. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026051.png ; $F ( t , \nu ) = \{ \mathsf{P} ( \theta , t , \nu ) : \theta \in \Theta ( \mu ) \},$ ; confidence 0.542 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009022.png ; $\ | + | 275. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009022.png ; $a : \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.542 |
276. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c1302103.png ; $a _ { 1 } , a _ { 2 } , \dots$ ; confidence 0.542 | 276. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c1302103.png ; $a _ { 1 } , a _ { 2 } , \dots$ ; confidence 0.542 | ||
− | 277. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004019.png ; $( v z ) ^ { \operatorname { com } ( L ) - 1 } P _ { L } ( v , z ) \in Z [ v ^ { \pm 2 } , z ^ { 2 } ]$ ; confidence 0.542 | + | 277. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004019.png ; $( v z ) ^ { \operatorname { com } ( L ) - 1 } P _ { L } ( v , z ) \in \mathbf{Z} [ v ^ { \pm 2 } , z ^ { 2 } ]$ ; confidence 0.542 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006027.png ; $E _ { 2 }$ ; confidence 0.542 | + | 278. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006027.png ; $\operatorname{Bel}_{E _ { 2 }}$ ; confidence 0.542 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031030.png ; $\mu _ { | + | 279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031030.png ; $\mu _ { n }$ ; confidence 0.542 |
280. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090370.png ; $\lambda \in \Delta ^ { + }$ ; confidence 0.542 | 280. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090370.png ; $\lambda \in \Delta ^ { + }$ ; confidence 0.542 | ||
− | 281. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110117.png ; $( \tau _ { x _ { 0 } , \xi _ { 0 } } u ) ( y ) = u ( y - x _ { 0 } ) e ^ { 2 i \pi \langle y - x _ { 0 } / 2 , \xi _ { 0 } \rangle }$ ; confidence 0.542 | + | 281. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110117.png ; $( \tau _ { x _ { 0 } , \xi _ { 0 } } u ) ( y ) = u ( y - x _ { 0 } ) e ^ { 2 i \pi \langle y - x _ { 0 } / 2 , \xi _ { 0 } \rangle }.$ ; confidence 0.542 |
282. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544023.png ; $D _ { k }$ ; confidence 0.542 | 282. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544023.png ; $D _ { k }$ ; confidence 0.542 | ||
− | 283. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015059.png ; $\frac { 1 } { 2 ^ { n p / 2 } \Gamma _ { p } ( n / 2 ) | \Sigma | ^ { n / 2 } } | S | ^ { ( n - p - 1 ) / 2 } \operatorname { etr } ( - \frac { 1 } { 2 } \Sigma ^ { - 1 } S )$ ; confidence 0.542 | + | 283. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015059.png ; $\frac { 1 } { 2 ^ { n p / 2 } \Gamma _ { p } ( n / 2 ) | \Sigma | ^ { n / 2 } } | S | ^ { ( n - p - 1 ) / 2 } \operatorname { etr } \left( - \frac { 1 } { 2 } \Sigma ^ { - 1 } S \right),$ ; confidence 0.542 |
284. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007023.png ; $A _ { m } \rightarrow A _ { m - 1 }$ ; confidence 0.542 | 284. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007023.png ; $A _ { m } \rightarrow A _ { m - 1 }$ ; confidence 0.542 | ||
− | 285. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004024.png ; $H ^ { m }$ ; confidence 0.542 | + | 285. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004024.png ; $\mathcal{H} ^ { m }$ ; confidence 0.542 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040506.png ; $\ | + | 286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040506.png ; $\Lambda \mathcal{C}$ ; confidence 0.542 |
287. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009023.png ; $S = \{ p _ { 1 } , \dots , p _ { s } \}$ ; confidence 0.542 | 287. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009023.png ; $S = \{ p _ { 1 } , \dots , p _ { s } \}$ ; confidence 0.542 | ||
− | 288. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140108.png ; $\overline { D } _ { 1 }$ ; confidence 0.542 | + | 288. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140108.png ; $\overline { \mathcal{D} } _ { 1 }$ ; confidence 0.542 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007052.png ; $ | + | 289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007052.png ; $j_g ( z ) = \frac { 1 } { q } + a _ { 1 } ( g ) q + a _ { 2 } ( g ) q ^ { 2 } + \dots$ ; confidence 0.542 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026084.png ; $x \in B [ R$ ; confidence 0.542 | + | 290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026084.png ; $x \in B [ R ]$ ; confidence 0.542 |
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050194.png ; $r = 1,2 , \dots$ ; confidence 0.541 | 291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050194.png ; $r = 1,2 , \dots$ ; confidence 0.541 | ||
− | 292. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840175.png ; $E \lambda$ ; confidence 0.541 | + | 292. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840175.png ; $\mathcal{E}_\lambda$ ; confidence 0.541 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a01067011.png ; $ | + | 293. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a01067011.png ; $\zeta$ ; confidence 0.541 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584029.png ; $( K , [ , ] )$ ; confidence 0.541 | + | 294. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584029.png ; $( \mathcal{K} , [. , .] )$ ; confidence 0.541 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840226.png ; $\operatorname { Im } \sigma ( A | L ) \geq 0$ ; confidence 0.541 | + | 295. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840226.png ; $\operatorname { Im } \sigma ( A |_\mathcal{L} ) \geq 0$ ; confidence 0.541 |
296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066012.png ; $\{ z , \ldots , z ^ { n - 1 } \}$ ; confidence 0.541 | 296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066012.png ; $\{ z , \ldots , z ^ { n - 1 } \}$ ; confidence 0.541 | ||
− | 297. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015052.png ; $E ( X ) = ( E ( X _ { | + | 297. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015052.png ; $\mathsf{E} ( X ) = ( \mathsf{E} ( X _ { ij } ) )$ ; confidence 0.541 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302805.png ; $0 = Sq ^ { i } : H _ { n } X \rightarrow H _ { n - i } X , 2 i > n$ ; confidence 0.541 | + | 298. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302805.png ; $0 = \text{Sq} ^ { i } : H _ { n } X \rightarrow H _ { n - i } X , 2 i > n.$ ; confidence 0.541 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043380/g04338013.png ; $( \frac { \partial f ( x _ { 0 } ) } { \partial x _ { 1 } } , \ldots , \frac { \partial f ( x _ { 0 } ) } { \partial x _ { n } } )$ ; confidence 0.541 | + | 299. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043380/g04338013.png ; $\left( \frac { \partial f ( x _ { 0 } ) } { \partial x _ { 1 } } , \ldots , \frac { \partial f ( x _ { 0 } ) } { \partial x _ { n } } \right),$ ; confidence 0.541 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541 | + | 300. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png ; $\mathcal{S} = \text{SU} ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541 |
Latest revision as of 16:12, 10 May 2020
List
1. ; $\pi_1 ( L )$ ; confidence 0.559
2. ; $\operatorname{coker}T$ ; confidence 0.559
3. ; $b \in \mathbf{R}$ ; confidence 0.558
4. ; $\tau ^ { p_p } = 1$ ; confidence 0.558
5. ; $a d - b c = 1$ ; confidence 0.558
6. ; $\operatorname{Exp}( \mathbf{C} ^ { n } )$ ; confidence 0.558
7. ; $( \mathcal{BC} ) _ { \infty }$ ; confidence 0.558
8. ; $\square_p F _ { q - 1 }$ ; confidence 0.558
9. ; $d _ { 1 } ^ { * } d _ { 2 } ^ { * }$ ; confidence 0.558
10. ; $\varphi ( \vartheta ) := \left| \operatorname { log } \left| \operatorname { tan } \frac { 1 } { 2 } \vartheta \right| \right|$ ; confidence 0.558
11. ; $0 = | z _ { 1 } - 1 | \leq \ldots \leq | z _ { n } - 1 |$ ; confidence 0.558
12. ; $\phi , \psi \in C _ { 00 } ( G ; \mathbf{C} )$ ; confidence 0.558
13. ; $X = x$ ; confidence 0.558
14. ; $\mathcal{C} _ { \{ \Phi \} } = \mathcal{C} _ { \Gamma }$ ; confidence 0.558
15. ; $- T$ ; confidence 0.558
16. ; $\| f \| _ { q } = \left\{ \operatorname { lim } _ { x \rightarrow \infty } \frac { 1 } { x } . \sum _ { n \leq x } | f ( n ) | ^ { q } \right\} ^ { 1 / q } < \infty,$ ; confidence 0.558
17. ; $( a ^ { 2 } \alpha ^ { - 1 } : b ^ { 2 } \beta ^ { - 1 } : c ^ { 2 } \gamma ^ { - 1 } )$ ; confidence 0.558
18. ; $G _ { \chi } ( T ) = \pi ^ { \mu_\chi } g _ { \chi } ( T ) u _ { \chi } ( T )$ ; confidence 0.558
19. ; $| F ( u ) | \leq C \sum _ { j = 0 } ^ { m } \rho ^ { j - N / p } | u | _ { p , j , T }$ ; confidence 0.557
20. ; $V _ { \mathbf{R} }$ ; confidence 0.557
21. ; $( M , \xi = \operatorname { ker } \alpha )$ ; confidence 0.557
22. ; $\square ^ { t } g J g = J$ ; confidence 0.557
23. ; $F _ { L / K } ( \mathfrak{p} )$ ; confidence 0.557
24. ; $D ^ { 2 n }$ ; confidence 0.557
25. ; $\Phi = ( \Phi ^ { \prime } \Phi ^ { \prime \prime } )$ ; confidence 0.557
26. ; $x = ( x _ { i } ) _ { i \in Q _ { 0 } } \in \mathbf{Z} ^ { Q _ { 0 } }$ ; confidence 0.557
27. ; $\mathbf{C} _ { + }$ ; confidence 0.557
28. ; $\forall x : x ^ { - 1 } P x \subseteq P$ ; confidence 0.557
29. ; $y ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ) , y ( t - g _ { 1 } ( t ) ) , \ldots , y ( t - g_l ( t ) ) ).$ ; confidence 0.557
30. ; $\xi _ { 1 } ( . ) , \ldots , \xi _ { n } ( . )$ ; confidence 0.557
31. ; $\mathbf{E} = \{ E _ { n } | \sigma : \Sigma : E _ { n } \rightarrow E _ { n + 1} \}$ ; confidence 0.557
32. ; $\underline{ Top } ( X , Y ) _ { n } = Top ( X \times \Delta ^ { n } , Y )$ ; confidence 0.557
33. ; $\sum _ { j } p _ { i k,j } = 1$ ; confidence 0.557
34. ; $H _ { \text{B} } ^ { i } ( X )$ ; confidence 0.557
35. ; $( \operatorname{Op} ( J ^ { t } a ) u ) ( x ) =$ ; confidence 0.557
36. ; $c \equiv d ( \Theta _ { \text{Q} } ( a , b ) )$ ; confidence 0.557
37. ; $R ( g ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.557
38. ; $\operatorname { limsup } _ { r \rightarrow 0 } \frac { \mathcal{H} ^ { m } ( E \cap B ( x , r ) ) } { r ^ { m } } > 0$ ; confidence 0.556
39. ; $= a ^ { 2 } o ( \lambda - \lambda _ { 1 } ) ( \lambda - \lambda _ { 2 } ).$ ; confidence 0.556
40. ; $H ^ { n } ( \mathcal{C} , cM ) = 0$ ; confidence 0.556
41. ; $\square _ { R } \ \operatorname{Mod}$ ; confidence 0.556
42. ; $\tilde{u} _ { 1 } \neq 0$ ; confidence 0.556
43. ; $T ( n , k , r ) \geq \lceil \frac { n } { n - r } T ( n - 1 , k , r ) \rceil.$ ; confidence 0.556
44. ; $\Gamma \approx \Delta \vDash _ { \mathsf{K} } \varphi \approx \psi$ ; confidence 0.556
45. ; $\operatorname { lim } _ { t \rightarrow \infty } \frac { f ( t ) ^ { 2 / d } } { t } \operatorname { log } \mathsf{P} ( | W ^ { a } ( t ) | \leq f ( t ) ) = - \frac { 1 } { 2 } \lambda _ { d }$ ; confidence 0.556
46. ; $\mathfrak { V } ^ { \prime } = ( A _ { 1 } ^ { \prime } , A _ { 2 } ^ { \prime } , \mathcal{H} ^ { \prime } , \Phi ^ { \prime } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma ^ { \prime } , \widetilde { \gamma } ^ { \prime } ),$ ; confidence 0.556
47. ; $\widetilde{Q}$ ; confidence 0.556
48. ; $\operatorname { log } \frac { z ( \zeta ) - z ( \zeta ^ { \prime } ) } { \zeta - \zeta ^ { \prime } } = - \sum _ { k , l = 1 } ^ { \infty } a _ { k l } \zeta ^ { - k } \zeta ^ { \prime - l },$ ; confidence 0.556
49. ; $\operatorname{Im}K _ { 1 / 2 + i \tau } ( x ) = \frac { K _ { 1 / 2 + i \tau } ( x ) - K _ { 1 / 2 - i \tau } ( x ) } { 2 i }.$ ; confidence 0.556
50. ; $R ( I )$ ; confidence 0.556
51. ; $\Gamma _ { x } \subset \mathbf{R} ^ { n } \times \mathbf{R} ^ { p }$ ; confidence 0.556
52. ; $X \mapsto D _ { 2n } H *\Omega X$ ; confidence 0.556
53. ; $d S _ { S W } = d \widehat { \Omega } _ { 1 } = \lambda \left( \frac { d w } { w } \right) = \lambda \frac { d P } { y } = \lambda \frac { d y } { P }.$ ; confidence 0.555
54. ; $x_{n+1}$ ; confidence 0.555
55. ; $k \leq x \leq n$ ; confidence 0.555
56. ; $O _ { \mathcal{E} }$ ; confidence 0.555
57. ; $\underline{\mathcal{O}} \approx$ ; confidence 0.555
58. ; $= f ( t , x ^ { ( m _ { 1 } ) } ( t - h _ { 1 } ( t ) ) , \ldots , x ^ { ( m _ { k } ) } ( t - h _ { k } ( t ) ) ).$ ; confidence 0.555
59. ; $Q \sim \mathcal{U} _ { p , n }$ ; confidence 0.555
60. ; $\| tg ( t ) \| _ { 2 } \| \gamma \hat{g} ( \gamma ) \| _ { 2 } < \infty$ ; confidence 0.555
61. ; $\mathcal{MM} _ { k }$ ; confidence 0.555
62. ; $y x ^ { - 1 } \in S$ ; confidence 0.555
63. ; $V _ { k + l } ^ { k - l } ( x , y ; \alpha ) = e ^ { i ( k - l ) \theta } R _ { k + l } ^ { k - l } ( r ; \alpha ) =$ ; confidence 0.555
64. ; $a _ { 1 } ^ { n } , \ldots , a _ { n } ^ { n }$ ; confidence 0.555
65. ; $\mathcal{O} ( U ) = \mathcal{O} ( U ) \otimes \Lambda ( \xi _ { 1 } , \ldots , \xi _ { q } )$ ; confidence 0.555
66. ; $v = ( \succsim _ { 1 } , \dots , \succsim _ { n } )$ ; confidence 0.555
67. ; $a_j \in \mathbf{R}$ ; confidence 0.555
68. ; $S _ { H } : \tilde{P} \rightarrow \mathbf{R}$ ; confidence 0.554
69. ; $( f , \phi ) ^ { \rightarrow }$ ; confidence 0.554
70. ; $e ( U ^ { i } , f ) \leq C _ { 1 }. m _ { i } ^ { - k }. \| f \| _ { k },$ ; confidence 0.554
71. ; $X := \Gamma X \Lambda$ ; confidence 0.554
72. ; $\mathsf{E} [ U _ { \infty } ^ { 1 } U _ { \infty } ^ { 2 } ] = \int _ { \partial D } u _ { 1 } u _ { 2 } \frac { d \vartheta } { 2 \pi } = \int _ { \partial D } v _ { 1 } v _ { 2 } \frac { d \vartheta } { 2 \pi } = \mathsf{E} [ V _ { \infty } ^ { 1 } V _ { \infty } ^ { 2 } ].$ ; confidence 0.554
73. ; $\gamma_\omega = - \omega$ ; confidence 0.554
74. ; $| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 },$ ; confidence 0.554
75. ; $\mathbf{R} ^ { n } \times \mathbf{R} ^ { n }$ ; confidence 0.554
76. ; $\overline { \mathbf{E} } * ( X )$ ; confidence 0.554
77. ; $\operatorname{Col} M ( r )$ ; confidence 0.554
78. ; $T ( z ) = - I _ { n }$ ; confidence 0.554
79. ; $\varphi = \sum _ { k = 1 } ^ { \infty } f _ { k } * \widetilde{g} _ { k },$ ; confidence 0.554
80. ; $\tau _ { n }$ ; confidence 0.554
81. ; $\varphi : G \times _ { G _ { x } } S \rightarrow X$ ; confidence 0.554
82. ; $\mathsf{P} ( \theta , \mu ) = \operatorname { exp } [ \langle \theta , x \rangle - k _ { \mu } ( \theta ) ] \mu ( d x ),$ ; confidence 0.554
83. ; $u ^ { n + 1 }$ ; confidence 0.554
84. ; $\mod A$ ; confidence 0.554
85. ; $f : \Xi \rightarrow \mathbf{R} ^ { p }$ ; confidence 0.554
86. ; $\operatorname { ln } \mathsf{P} ( X = 0 ) \sim - \lambda$ ; confidence 0.553
87. ; $w = f ( z , z_0 )$ ; confidence 0.553
88. ; $H ( a ) H ( \tilde{a} ^ { - 1 } )$ ; confidence 0.553
89. ; $f _ { 1 } , f _ { 2 } , \ldots$ ; confidence 0.553
90. ; $X _ { 1 } , \ldots , X _ { k }$ ; confidence 0.553
91. ; $R \in \operatorname { Hol } ( \mathcal{D} )$ ; confidence 0.553
92. ; $\mathsf{E} [ T ( x ) ]$ ; confidence 0.553
93. ; $d ( x , A ) = \operatorname { inf } \{ d ( x , a ) : a \in A \}$ ; confidence 0.553
94. ; $\varepsilon_0$ ; confidence 0.553
95. ; $\mu = ( \mu _ { 1 } , \dots , \mu _ { l } )$ ; confidence 0.553
96. ; $\| f \| _ { k } = \operatorname { max } \{ \| D ^ { \alpha } f \| _ { L _ { \infty } } : \alpha \in \mathbf{N} _ { 0 } ^ { d } , \alpha _ { i } \leq k \},$ ; confidence 0.553
97. ; $\lambda _ { i }$ ; confidence 0.553
98. ; $= \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) \left[ \operatorname{CF} ( \zeta - z , w ) - \sum _ { k = 0 } ^ { m } \frac { ( k + n - 1 ) } { k ! } \phi _ { k } \right];$ ; confidence 0.553
99. ; $( \oplus _ { b ^{ G } \neq B } b )$ ; confidence 0.553
100. ; $c _ { 1 } ( M ) _ { \mathbf{R} }$ ; confidence 0.553
101. ; $A _ { 2 } \in C ^ { m n \times p }$ ; confidence 0.553
102. ; $\{ x _ { \alpha } ( t ) : t \in K , \alpha \in \Phi \}$ ; confidence 0.553
103. ; $\widetilde{P} _ { + } ^ { \uparrow}$ ; confidence 0.552
104. ; $\sum _ { k = 0 } ^ { \infty } \beta _ { k } ^ { ( i ) } \alpha ^ { d ^ { k } } ( 1 \leq i \leq n )$ ; confidence 0.552
105. ; $\hat { f } ( \xi ) = \int _ { \mathbf{R} ^ { n } } f ( x ) e ^ { - 2 \pi i x . \xi } d x$ ; confidence 0.552
106. ; $G ( \zeta ) \in \widetilde { \mathcal{O} } ( D ^ { n } - i \Gamma )$ ; confidence 0.552
107. ; $p _ { i } \in \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.552
108. ; $A \in H _ { 2 } ( M ; \mathbf{Z} )$ ; confidence 0.552
109. ; $\gamma _ { n }$ ; confidence 0.552
110. ; $n = 0 , \ldots , N$ ; confidence 0.552
111. ; $\widehat { M u } ( \xi ) = m ( \xi ) \hat { u } ( \xi )$ ; confidence 0.552
112. ; $( \nabla ^ { 2 } + k ^ { 2 } ) u = 0 \text { in } D ^ { \prime } : = \mathbf{R} ^ { 3 } \backslash D , k > 0,$ ; confidence 0.552
113. ; $\rho ( u ) = ( 1 + O ( \frac { 1 } { u } ) ) \sqrt { \frac { \xi ^ { \prime } ( u ) } { 2 \pi } } \times$ ; confidence 0.552
114. ; $\dim_AM = s$ ; confidence 0.552
115. ; $+ \frac { n } { p _ { 1 } p _ { 2 } } + \ldots + \frac { n } { p _ { k - 1 } p _ { k } } + - \frac { n } { p _ { 1 } p _ { 2 } p _ { 3 } } - \ldots + ( - 1 ) ^ { k } \frac { n } { p _ { 1 } \ldots p _ { k } }.$ ; confidence 0.552
116. ; $( \alpha _ { 1 } , \alpha _ { 2 } , \ldots , \alpha _ { q } \cup \gamma ) \in \mathcal{F} ( S ) ^ { q }$ ; confidence 0.552
117. ; $D _ { s } ^ { \perp }$ ; confidence 0.552
118. ; $u _ { i } = z _ { i } / m$ ; confidence 0.552
119. ; $B ^ { - 1 } \| f \| _ { 2 } ^ { 2 } \leq \sum _ { n , m \in \mathbf{Z} } | c _ { n , m } ( f ) | ^ { 2 } \leq A ^ { - 1 } \| f \| _ { 2 } ^ { 2 }$ ; confidence 0.552
120. ; $( - 1 ) ^ { e }$ ; confidence 0.552
121. ; $q ^ { \partial ( I) } = \operatorname { card } ( R / I )$ ; confidence 0.551
122. ; $Q = Q _ { \mathcal{F} } ( R )$ ; confidence 0.551
123. ; $g ( z ) \in S ^ { * }$ ; confidence 0.551
124. ; $S _ { n } = - J$ ; confidence 0.551
125. ; $h _ { i j }$ ; confidence 0.551
126. ; $\mathbf{R} ^ { n } \times \mathbf{R} ^ { n } \times \mathbf{R} ^ { 1 }$ ; confidence 0.551
127. ; $\delta _ { A^{*} , B ^ { * } } ( X ) \in \mathcal{C} _ { 2 }$ ; confidence 0.551
128. ; $g = g _ { a b }$ ; confidence 0.551
129. ; $( e _ { i } ) _ { t } x ^ { ( j ) } = \left( \left( \begin{array} { c } { i + j } \\ { i + 1 } \end{array} \right) + t \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right)\right) x ^ { ( i + j ) }.$ ; confidence 0.551
130. ; $\partial _ { q }$ ; confidence 0.551
131. ; $\tilde{\mathbf{Z}} ^ { n }$ ; confidence 0.551
132. ; $i \neq \text{l} ( w )$ ; confidence 0.551
133. ; $c _ { j } ( \lambda ) = - \sum _ { k = 0 } ^ { j - 1 } \frac { c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) } { \pi ( \lambda + j ) }$ ; confidence 0.551
134. ; $u_n( v ) = \sum _ { i \geq 0 } ( - 1 ) ^ { i + n + 1 } D ^ { ( i ) } ( v _ { n + i } ( u ) )$ ; confidence 0.551
135. ; $k / \mathbf{Q}$ ; confidence 0.550
136. ; $\int _ { 0 } ^ { 1 } R _ { k + l } ^ { k - l } ( r ; \alpha ) J _ { k - l } ( r s ) ( 1 - r ^ { 2 } ) ^ { \alpha } r d r =$ ; confidence 0.550
137. ; $\mathcal{E} ( L ) \equiv ( 1 + \Omega d S ) ^ { k } \Omega d ( L \Delta ).$ ; confidence 0.550
138. ; $x _ { 0 } \in S$ ; confidence 0.550
139. ; $\overline { \mathbf{C} } \backslash D \subset Q$ ; confidence 0.550
140. ; $r_0 ( z ) = b ( z )$ ; confidence 0.550
141. ; $P _ { i } : H \rightarrow U _ { i }$ ; confidence 0.550
142. ; $t_0$ ; confidence 0.550
143. ; $\mathcal{H} _ { \text{A} }$ ; confidence 0.550
144. ; $L$ ; confidence 0.550
145. ; $\mathcal{H}$ ; confidence 0.550
146. ; $A \simeq K$ ; confidence 0.550
147. ; $w \in \mathbf{C} ^ { n }$ ; confidence 0.550
148. ; $\det Q \neq 0$ ; confidence 0.550
149. ; $Z ( \delta _ { k } ( n ) ) = \sum _ { j = 0 } ^ { \infty } \delta _ { k } ( j ) z ^ { - j } = z ^ { - k } \text{ for all }z.$ ; confidence 0.550
150. ; $\pi_2$ ; confidence 0.549
151. ; $\Gamma _ { 0 } ( N ) = \left\{ \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in \operatorname{SL} ( 2 , \mathbf{Z} ) : c \equiv 0 ( \operatorname { mod } N ) \right\},$ ; confidence 0.549
152. ; $\lambda _ { f } ( x ) : x \mapsto x y$ ; confidence 0.549
153. ; $Y _ { 0 }$ ; confidence 0.549
154. ; $\mathcal{H} _ { 3 } ( \mathbf{O} ^ { c } )$ ; confidence 0.549
155. ; $B _ { n } = 0$ ; confidence 0.549
156. ; $\alpha _ { n} \rightarrow 0$ ; confidence 0.549
157. ; $\zeta \mapsto T ( \zeta ) f ( \zeta )$ ; confidence 0.549
158. ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} < m$ ; confidence 0.549
159. ; $p \in E$ ; confidence 0.549
160. ; $\mathsf{P} ( Y < T ) < \mathsf{P} ( Z < T )$ ; confidence 0.549
161. ; $d _ { \chi _ { \lambda } } ^ { S _ { n } }$ ; confidence 0.549
162. ; $\mathcal{BMO}$ ; confidence 0.549
163. ; $K _ { 1,3 }$ ; confidence 0.549
164. ; $L _ { 2 } ^ { \prime }$ ; confidence 0.549
165. ; $( a , b ) \in ( \mathbf{Q} \backslash \mathbf{Z} ) ^ { 2 }$ ; confidence 0.548
166. ; $f ^ { c \langle \varphi \rangle } : W \rightarrow \overline { \mathbf{R} }$ ; confidence 0.548
167. ; $| \alpha |$ ; confidence 0.548
168. ; $\{ t _ { i } \} _ { 0 \leq i \leq d - 1}$ ; confidence 0.548
169. ; $\{ ( \alpha _ { i } , \beta _ { i } ) : i = 1 , \ldots , k \}$ ; confidence 0.548
170. ; $\Delta ( \Lambda ) = \operatorname { Det } [ I _ { m } \bigotimes \Lambda - A _ { 1 } ] =$ ; confidence 0.548
171. ; $w _ { 1 } \ldots w _ { k }$ ; confidence 0.548
172. ; $\vee S$ ; confidence 0.548
173. ; $\mathcal{A} = \{ f : \| f \| _ { \mathcal{A} } = \sum _ { m = - \infty } ^ { \infty } | \hat { f } ( m ) | < \infty \},$ ; confidence 0.548
174. ; $\mathbf{Z} _ { 1 } \mathbf{M} _ { \mathsf{E} } ^ { - 1 } \mathbf{Z} _ { 1 } ^ { \prime }$ ; confidence 0.548
175. ; $k = 1 , \dots , 4$ ; confidence 0.548
176. ; $\mu ( x ) = \left( \begin{array} { l l } { \mu _ { 11 } } & { \mu _ { 12 } } \\ { \mu _ { 21 } } & { \mu _ { 22 } } \end{array} \right) =$ ; confidence 0.548
177. ; $T _ { H } ^ { G } ( a ) = \sum _ { j } g _ { j } ^ { - 1 } a g_j$ ; confidence 0.548
178. ; $\beta_6$ ; confidence 0.548
179. ; $\exists v_i \varphi$ ; confidence 0.548
180. ; $F_{m + 1}$ ; confidence 0.548
181. ; $\operatorname { Re } \text{l} < 0$ ; confidence 0.548
182. ; $\mathbf{Z} = \mathbf{Y X}_4$ ; confidence 0.548
183. ; $1 , \dots , f$ ; confidence 0.547
184. ; $a \in F$ ; confidence 0.547
185. ; $p _ { n } ( z )$ ; confidence 0.547
186. ; $H _ { k } ^{- 1}$ ; confidence 0.547
187. ; $\mathcal{L} _ { \text{C} } ^ { p ^ { \prime } } ( G )$ ; confidence 0.547
188. ; $\int \theta d \mathcal{H} ^ { m } | _ { R } < \infty$ ; confidence 0.547
189. ; $\operatorname{degree}( G , \Omega ) = \operatorname { order } ( G )$ ; confidence 0.547
190. ; $\| f \|_*$ ; confidence 0.547
191. ; $( \tilde { B } ( t ) , t \geq 0 )$ ; confidence 0.547
192. ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} > m$ ; confidence 0.547
193. ; $\mathsf{P} \in \mathcal{P}$ ; confidence 0.547
194. ; $i = 0 , \ldots , 2 t - 1$ ; confidence 0.547
195. ; $S ^ { \text{l} } ( \mathfrak { g } ^ { * } )$ ; confidence 0.547
196. ; $\| D ^ { \alpha } f |_{L _ { \Phi _ { \alpha } }} ( \Omega ) \|$ ; confidence 0.547
197. ; $\operatorname{mng} : \operatorname{Mod} \times \operatorname{Fm} \rightarrow \operatorname{Sets}$ ; confidence 0.547
198. ; $L ( x ) <_QU ( x )$ ; confidence 0.547
199. ; $\hat { \mu } ( x ) = \int _ { \hat{G} } \overline { \chi ( x ) } d \mu ( \chi ) , x \in G,$ ; confidence 0.547
200. ; $| \{ \vartheta \in I : | \varphi ( e ^ { i \vartheta } ) - \varphi _ { I } | \geq \lambda \} | \leq C e ^ { - \gamma \lambda } | I |$ ; confidence 0.547
201. ; $\lambda / r = p / q$ ; confidence 0.547
202. ; $X _ { 1 } \sim \operatorname { RS } _ { p , m } ( \phi )$ ; confidence 0.546
203. ; $\sum _ { n = 0 } ^ { \infty } ( | \overline { m } _ { n } ( h ) | + | m \underline { \square } _ { n } ( h ) | ) < \infty,$ ; confidence 0.546
204. ; $K \subseteq \mathbf{C} ^ { n }$ ; confidence 0.546
205. ; $\varepsilon ^ { i }$ ; confidence 0.546
206. ; $k = 1 , \dots , n.$ ; confidence 0.546
207. ; $q \neq 1$ ; confidence 0.546
208. ; $a_5 ( g )$ ; confidence 0.546
209. ; $\mathcal{A} ( \sigma ) = \int _ { M } L ( \sigma ^ { k } ( x ) ) d x$ ; confidence 0.546
210. ; $( T - \lambda I ) ^ { n } X$ ; confidence 0.546
211. ; $\operatorname { lim } _ { n \rightarrow \infty } \mu _ { n } ( E ) = \mu ( E )$ ; confidence 0.546
212. ; $\Delta = \frac { 1 } { 2 } \sum _ { A \neq B , A \bigcap B \neq \emptyset } \mathsf{E} ( I _ { A } I _ { B } ) , \overline { \Delta } = \lambda + 2 \Delta.$ ; confidence 0.546
213. ; $\widetilde { \mathcal{P} }_+ ^ { \uparrow }$ ; confidence 0.546
214. ; $u , v \in \mathcal{S} ( \mathbf{R} ^ { n } )$ ; confidence 0.546
215. ; $\mathcal{F} > F _ { \alpha ; q , n - r}$ ; confidence 0.546
216. ; $x = t_1$ ; confidence 0.546
217. ; $h : \mathbf{A} \rightarrow \mathbf{B}$ ; confidence 0.546
218. ; $\alpha _ { n ,F} \circ Q \equiv \alpha _ { n }$ ; confidence 0.545
219. ; $u _ { n } = u / z ^ { n }$ ; confidence 0.545
220. ; $S \cap \text { aff } P \neq \emptyset$ ; confidence 0.545
221. ; $\operatorname{Alg FMod}^{* \text{L} }\mathcal{D}$ ; confidence 0.545
222. ; $\overline{E} = [ E \lambda - A ] ^ { - 1 } E , \overline{A} = [ E \lambda - A ] ^ { - 1 } A$ ; confidence 0.545
223. ; $( - Y _ { 0 } , Y _ { 1 } , \dots , Y _ { n } )$ ; confidence 0.545
224. ; $k_j - 1$ ; confidence 0.545
225. ; $f _ { \mathfrak{A}} ( P )$ ; confidence 0.545
226. ; $J _ { i j } = \pm J$ ; confidence 0.545
227. ; $\psi ( . , . )$ ; confidence 0.545
228. ; $y \lambda $ ; confidence 0.545
229. ; $\lambda ^ { \prime } = ( \lambda _ { 1 } , \dots , \lambda _ { s } - 1 , \lambda _ { s + 1 } , \dots , \lambda _ { t } , 1 )$ ; confidence 0.545
230. ; $P _ { j } P _ { k } = \left\{ \left. \begin{array} { l l } { P _ { k } } & { \text { for } j = k } \\ { 0 } & { \text { for } j \neq k } \end{array} \right. ( j , k = 1 , \dots , n ) \right. ;$ ; confidence 0.545
231. ; $M ( q )$ ; confidence 0.545
232. ; $\{ .\}_0 \sim \omega ^ { 0 }$ ; confidence 0.545
233. ; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { x } u ( t , x ) \| ^ { 2 } = 0 , \quad ( t , x ) \in ( 0 , T ) \times H.$ ; confidence 0.545
234. ; $K ^ { 2 } / \searrow L ^ { 2 }$ ; confidence 0.545
235. ; $q = e ^ { \hbar / 2 }$ ; confidence 0.545
236. ; $\hbar$ ; confidence 0.545
237. ; $S _ { k + 1 } ( z ) = z ^ { - 1 } \frac { S _ { k } ( z ) - S _ { k } ( 0 ) } { 1 - \overline { S _ { k } ( 0 ) }S _ { k } ( z ) }$ ; confidence 0.545
238. ; $\left\{ \begin{array}{l}{ N _ { * } ^ { 1 } = \frac { K _ { ( 1 ) } - \delta _ { ( 1 ) } K _ { ( 2 ) } } { 1 - \delta _ { ( 1 ) } \delta _ { ( 2 ) } }, }\\{ N _ { * } ^ { 2 } = \frac { K _ { ( 2 ) } - \delta _ { ( 2 ) } K _ { ( 1 ) } } { 1 - \delta _ { ( 1 ) } \delta _ { ( 2 ) } }. }\end{array} \right.$ ; confidence 0.545
239. ; $E _ { 7 }$ ; confidence 0.545
240. ; $\alpha _ { i } \equiv 1$ ; confidence 0.544
241. ; $( d x ^ { 1 } / d t , \ldots , d x ^ { n } / d t ) = ( d x / d t ) = ( \dot { x } )$ ; confidence 0.544
242. ; $\psi + = \psi _ { - } - n \phi$ ; confidence 0.544
243. ; $s \in \mathbf{Z}_+ ^ { n }$ ; confidence 0.544
244. ; $P _ { n } = U _ { n }$ ; confidence 0.544
245. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { F _ { n + 1 } } { F _ { n } } = \frac { 1 } { 2 } ( \sqrt { 5 } + 1 ) \simeq 1.618.$ ; confidence 0.544
246. ; $\mathsf{P} \{ \chi _ { n } ^ { 2 } < x \} \rightarrow \Phi ( \sqrt { 2 x } - \sqrt { 2 n - 1 } ) \quad \text { as } n \rightarrow \infty,$ ; confidence 0.544
247. ; $u \geq 0$ ; confidence 0.544
248. ; $G \rightarrow \operatorname { Aut } ( A )$ ; confidence 0.544
249. ; $H _ { 1 } , \dots , H _ { k }$ ; confidence 0.544
250. ; $\operatorname { dim } A ^ { 1 } = \frac { 1 } { 2 } \operatorname { dim } H ^ { 1 } ( M , \mathbf{C} )$ ; confidence 0.544
251. ; $\mathcal{R} \text{el}$ ; confidence 0.544
252. ; $J ^ { t } = \operatorname { exp } 2 i \pi t D _ { x } . D _ { \xi }$ ; confidence 0.544
253. ; $U _ { x } \not\ni y$ ; confidence 0.544
254. ; $\mathcal{H} ^ { m } | _ { E }$ ; confidence 0.544
255. ; $- \psi _ { x x } + u ( x ) \psi = \lambda \psi,$ ; confidence 0.544
256. ; $\operatorname{Re}\Lambda = 0$ ; confidence 0.544
257. ; $H = \Phi _ { n } ^ { * }$ ; confidence 0.544
258. ; $f ( z ) = \{ \int _ { 0 } ^ { z } g ^ { \alpha } ( \xi ) h ( \xi ) \xi ^ { i \beta - 1 } d \xi \} ^ { 1 / ( \alpha + i \beta ) }.$ ; confidence 0.544
259. ; $\xi = ( \xi ^ { 1 } , \dots , \xi ^ { n } )$ ; confidence 0.543
260. ; $e _ { j } = \sqrt { 3 } \lambda _ { j }$ ; confidence 0.543
261. ; $\gamma ^ { ( 2 n ) }$ ; confidence 0.543
262. ; $x _ { 0 } \in A \cap B$ ; confidence 0.543
263. ; $\mathfrak { p } = A _ { K } \cap \mathfrak { P }$ ; confidence 0.543
264. ; $( t , \mathbf{x} )$ ; confidence 0.543
265. ; $\{ \phi_j ( z ) \}$ ; confidence 0.543
266. ; $m _ { s } \propto ( 1 - T / T _ { c } ) ^ { \beta }$ ; confidence 0.543
267. ; $f \in C ( \mathcal{T} ^ { n } )$ ; confidence 0.543
268. ; $\mathcal{D} _ { s } ^ { \prime } ( \Omega )$ ; confidence 0.543
269. ; $\widehat { A } ( t | \widehat { \beta } )$ ; confidence 0.543
270. ; $\leq \mathsf{E} [ X ^ { * } ] \leq$ ; confidence 0.543
271. ; $\mathcal{S} _ { P }$ ; confidence 0.543
272. ; $\Delta ^ { n - 1 }$ ; confidence 0.542
273. ; $n = I J K$ ; confidence 0.542
274. ; $F ( t , \nu ) = \{ \mathsf{P} ( \theta , t , \nu ) : \theta \in \Theta ( \mu ) \},$ ; confidence 0.542
275. ; $a : \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.542
276. ; $a _ { 1 } , a _ { 2 } , \dots$ ; confidence 0.542
277. ; $( v z ) ^ { \operatorname { com } ( L ) - 1 } P _ { L } ( v , z ) \in \mathbf{Z} [ v ^ { \pm 2 } , z ^ { 2 } ]$ ; confidence 0.542
278. ; $\operatorname{Bel}_{E _ { 2 }}$ ; confidence 0.542
279. ; $\mu _ { n }$ ; confidence 0.542
280. ; $\lambda \in \Delta ^ { + }$ ; confidence 0.542
281. ; $( \tau _ { x _ { 0 } , \xi _ { 0 } } u ) ( y ) = u ( y - x _ { 0 } ) e ^ { 2 i \pi \langle y - x _ { 0 } / 2 , \xi _ { 0 } \rangle }.$ ; confidence 0.542
282. ; $D _ { k }$ ; confidence 0.542
283. ; $\frac { 1 } { 2 ^ { n p / 2 } \Gamma _ { p } ( n / 2 ) | \Sigma | ^ { n / 2 } } | S | ^ { ( n - p - 1 ) / 2 } \operatorname { etr } \left( - \frac { 1 } { 2 } \Sigma ^ { - 1 } S \right),$ ; confidence 0.542
284. ; $A _ { m } \rightarrow A _ { m - 1 }$ ; confidence 0.542
285. ; $\mathcal{H} ^ { m }$ ; confidence 0.542
286. ; $\Lambda \mathcal{C}$ ; confidence 0.542
287. ; $S = \{ p _ { 1 } , \dots , p _ { s } \}$ ; confidence 0.542
288. ; $\overline { \mathcal{D} } _ { 1 }$ ; confidence 0.542
289. ; $j_g ( z ) = \frac { 1 } { q } + a _ { 1 } ( g ) q + a _ { 2 } ( g ) q ^ { 2 } + \dots$ ; confidence 0.542
290. ; $x \in B [ R ]$ ; confidence 0.542
291. ; $r = 1,2 , \dots$ ; confidence 0.541
292. ; $\mathcal{E}_\lambda$ ; confidence 0.541
293. ; $\zeta$ ; confidence 0.541
294. ; $( \mathcal{K} , [. , .] )$ ; confidence 0.541
295. ; $\operatorname { Im } \sigma ( A |_\mathcal{L} ) \geq 0$ ; confidence 0.541
296. ; $\{ z , \ldots , z ^ { n - 1 } \}$ ; confidence 0.541
297. ; $\mathsf{E} ( X ) = ( \mathsf{E} ( X _ { ij } ) )$ ; confidence 0.541
298. ; $0 = \text{Sq} ^ { i } : H _ { n } X \rightarrow H _ { n - i } X , 2 i > n.$ ; confidence 0.541
299. ; $\left( \frac { \partial f ( x _ { 0 } ) } { \partial x _ { 1 } } , \ldots , \frac { \partial f ( x _ { 0 } ) } { \partial x _ { n } } \right),$ ; confidence 0.541
300. ; $\mathcal{S} = \text{SU} ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541
Maximilian Janisch/latexlist/latex/NoNroff/55. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/55&oldid=45718