Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/44"
Rui Martins (talk | contribs) |
|||
(4 intermediate revisions by 3 users not shown) | |||
Line 6: | Line 6: | ||
3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032018.png ; $\| y \| = \| v \|$ ; confidence 0.747 | 3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032018.png ; $\| y \| = \| v \|$ ; confidence 0.747 | ||
− | 4. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006022.png ; $G _ { r_ | + | 4. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006022.png ; $G _ { r_ i } ( A )$ ; confidence 0.747 |
5. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005038.png ; $N / 2$ ; confidence 0.747 | 5. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005038.png ; $N / 2$ ; confidence 0.747 | ||
Line 28: | Line 28: | ||
14. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020066.png ; $\mathfrak { g } ( A )$ ; confidence 0.746 | 14. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020066.png ; $\mathfrak { g } ( A )$ ; confidence 0.746 | ||
− | 15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005041.png ; $\overline { \Sigma } \square ^ { i } ( f ) = \ | + | 15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005041.png ; $\overline { \Sigma } \square ^ { i } ( f ) = \bigcup _ { h \geq i } \Sigma ^ { i } ( f ).$ ; confidence 0.746 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005093.png ; $x \in \mathfrak{ | + | 16. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005093.png ; $x \in \mathfrak{H}$ ; confidence 0.746 |
17. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013056.png ; $\operatorname{Hom}_\Lambda ( T , . )$ ; confidence 0.746 | 17. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013056.png ; $\operatorname{Hom}_\Lambda ( T , . )$ ; confidence 0.746 | ||
− | 18. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008019.png ; $\sigma \in ( 1 / 2 ) \ | + | 18. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008019.png ; $\sigma \in ( 1 / 2 ) \mathbf{Z}$ ; confidence 0.746 |
19. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026390/c02639034.png ; $\gamma_2$ ; confidence 0.746 | 19. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026390/c02639034.png ; $\gamma_2$ ; confidence 0.746 | ||
Line 52: | Line 52: | ||
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026016.png ; $\zeta ( 5 )$ ; confidence 0.746 | 26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026016.png ; $\zeta ( 5 )$ ; confidence 0.746 | ||
− | 27. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260143.png ; $X = M ( A ) \ | + | 27. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260143.png ; $X = M ( A ) \bigoplus _ { Q ( A ) } B =$ ; confidence 0.746 |
28. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017019.png ; $\varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.746 | 28. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017019.png ; $\varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.746 | ||
Line 64: | Line 64: | ||
32. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006029.png ; $f , g : \mathbf{R} ^ { n } \rightarrow M$ ; confidence 0.745 | 32. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006029.png ; $f , g : \mathbf{R} ^ { n } \rightarrow M$ ; confidence 0.745 | ||
− | 33. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001017.png ; $G F = | + | 33. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001017.png ; $G F = \operatorname {id}_X$ ; confidence 0.745 |
34. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013027.png ; $\theta _ { n - 1} $ ; confidence 0.745 | 34. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013027.png ; $\theta _ { n - 1} $ ; confidence 0.745 | ||
Line 76: | Line 76: | ||
38. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000178.png ; $\beta \in B$ ; confidence 0.745 | 38. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000178.png ; $\beta \in B$ ; confidence 0.745 | ||
− | 39. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004016.png ; $Cl _ { 2 } ( z ) : = - \int _ { 0 } ^ { z } \operatorname { log } | 2 \operatorname { sin } ( \frac { 1 } { 2 } t ) | d t =$ ; confidence 0.745 | + | 39. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004016.png ; $ \operatorname {Cl} _ { 2 } ( z ) : = - \int _ { 0 } ^ { z } \operatorname { log } \left| 2 \operatorname { sin } \left( \frac { 1 } { 2 } t \right) \right| d t =$ ; confidence 0.745 |
40. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007023.png ; $\mathbf{f} \in R ( t ) ^ { l }$ ; confidence 0.745 | 40. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007023.png ; $\mathbf{f} \in R ( t ) ^ { l }$ ; confidence 0.745 | ||
Line 82: | Line 82: | ||
41. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015086.png ; $H _ { \mathbf{R} }$ ; confidence 0.745 | 41. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015086.png ; $H _ { \mathbf{R} }$ ; confidence 0.745 | ||
− | 42. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200606.png ; $u [ 1 ] = u + 2 \sigma _ { | + | 42. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200606.png ; $u [ 1 ] = u + 2 \sigma _ { x }.$ ; confidence 0.745 |
43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050123.png ; $\sigma _ { T } ( A , \mathcal{X} / \mathcal{Y} )$ ; confidence 0.745 | 43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050123.png ; $\sigma _ { T } ( A , \mathcal{X} / \mathcal{Y} )$ ; confidence 0.745 | ||
Line 88: | Line 88: | ||
44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210129.png ; $\Delta _ { n } ( \theta )$ ; confidence 0.745 | 44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210129.png ; $\Delta _ { n } ( \theta )$ ; confidence 0.745 | ||
− | 45. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070117.png ; $A ( t ) u = L ( , t , D _ { x } ) u\text { for } u \in D ( A ( t ) ).$ ; confidence 0.745 | + | 45. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070117.png ; $A ( t ) u = L ( . , t , D _ { x } ) u\text { for } u \in D ( A ( t ) ).$ ; confidence 0.745 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232010.png ; $u ( x ) = - \int _ { K } E _ { | + | 46. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232010.png ; $u ( x ) = - \int _ { K } E _ { n } ( | x - y | ) d \mu ( y ) + h ( x ),$ ; confidence 0.745 |
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027010.png ; $P _ { n } : Y \rightarrow X_n$ ; confidence 0.745 | 47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027010.png ; $P _ { n } : Y \rightarrow X_n$ ; confidence 0.745 | ||
Line 102: | Line 102: | ||
51. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003048.png ; $b \uparrow \infty$ ; confidence 0.745 | 51. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003048.png ; $b \uparrow \infty$ ; confidence 0.745 | ||
− | 52. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004022.png ; $V _ { \xi } \ | + | 52. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004022.png ; $V _ { \xi } \subset_{*} V _ { \eta }$ ; confidence 0.745 |
53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110112.png ; $( a \circ \chi ) ^ { w } = M ^ { * } a ^ { w } M.$ ; confidence 0.745 | 53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110112.png ; $( a \circ \chi ) ^ { w } = M ^ { * } a ^ { w } M.$ ; confidence 0.745 | ||
Line 110: | Line 110: | ||
55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016022.png ; $( A + \Delta A ) \hat{x} = b$ ; confidence 0.744 | 55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016022.png ; $( A + \Delta A ) \hat{x} = b$ ; confidence 0.744 | ||
− | 56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040525.png ; $\operatorname{FFi} _ { \mathcal{D} } \ | + | 56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040525.png ; $\operatorname{FFi} _ { \mathcal{D} } \mathbf{A}$ ; confidence 0.744 |
57. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035033.png ; $\hat { \theta } _ { N }$ ; confidence 0.744 | 57. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035033.png ; $\hat { \theta } _ { N }$ ; confidence 0.744 | ||
Line 126: | Line 126: | ||
63. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501037.png ; $B O _ { n } = \operatorname { lim } _ { r \rightarrow \infty } \operatorname { inf } \operatorname { Gras } _ { n } ( \mathbf{R} ^ { r + n } )$ ; confidence 0.744 | 63. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501037.png ; $B O _ { n } = \operatorname { lim } _ { r \rightarrow \infty } \operatorname { inf } \operatorname { Gras } _ { n } ( \mathbf{R} ^ { r + n } )$ ; confidence 0.744 | ||
− | 64. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w1300906.png ; $\ | + | 64. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w1300906.png ; $\tilde{h}$ ; confidence 0.744 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023083.png ; $A | + | 65. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023083.png ; $A \geq 0$ ; confidence 0.744 |
66. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002019.png ; $A _ { \varepsilon } = \{ x : \{ x \} \times Y \subset O _ { \varepsilon } \}$ ; confidence 0.744 | 66. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002019.png ; $A _ { \varepsilon } = \{ x : \{ x \} \times Y \subset O _ { \varepsilon } \}$ ; confidence 0.744 | ||
Line 134: | Line 134: | ||
67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010014.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } c ( n ) e ^ { 2 \pi i n z }.$ ; confidence 0.744 | 67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010014.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } c ( n ) e ^ { 2 \pi i n z }.$ ; confidence 0.744 | ||
− | 68. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100103.png ; $\downarrow \forall x \exists y \forall w ( w \in y \leftrightarrow \exists v ( v \in x \ | + | 68. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100103.png ; $\downarrow \forall x \exists y \forall w ( w \in y \leftrightarrow \exists v ( v \in x \bigwedge \varphi ) ).$ ; confidence 0.744 |
69. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008027.png ; $\{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.743 | 69. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008027.png ; $\{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.743 | ||
Line 140: | Line 140: | ||
70. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016035.png ; $\mu _ { R } ( M ) \leq \operatorname { max } \{ \mu ( M , P ) : P \in \operatorname { Spec } ( R ) \} + \operatorname { Kdim } ( R ).$ ; confidence 0.743 | 70. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016035.png ; $\mu _ { R } ( M ) \leq \operatorname { max } \{ \mu ( M , P ) : P \in \operatorname { Spec } ( R ) \} + \operatorname { Kdim } ( R ).$ ; confidence 0.743 | ||
− | 71. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017075.png ; $\delta _ { A , B } ( X ) \in C _ { 2 }$ ; confidence 0.743 | + | 71. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017075.png ; $\delta _ { A , B } ( X ) \in \mathcal{C} _ { 2 }$ ; confidence 0.743 |
72. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024010.png ; $K ( L ( a , b ) c , d ) + K ( c , L ( a , b ) d ) + K ( a , K ( c , d ) b ) = 0,$ ; confidence 0.743 | 72. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024010.png ; $K ( L ( a , b ) c , d ) + K ( c , L ( a , b ) d ) + K ( a , K ( c , d ) b ) = 0,$ ; confidence 0.743 | ||
Line 164: | Line 164: | ||
82. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c02028061.png ; $d s$ ; confidence 0.743 | 82. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c02028061.png ; $d s$ ; confidence 0.743 | ||
− | 83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270106.png ; $= \frac { E \int _ { 0 } ^ { T _ { 1 } } h ( Z ( u ) ) d u } { E ( T _ { 1 } ) }.$ ; confidence 0.743 | + | 83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270106.png ; $= \frac { \mathsf{E} \int _ { 0 } ^ { T _ { 1 } } h ( Z ( u ) ) d u } { \mathsf{E} ( T _ { 1 } ) }.$ ; confidence 0.743 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032046.png ; $E ( Y ) = 0$ ; confidence 0.743 | + | 84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032046.png ; $ \mathsf{E} ( Y ) = 0$ ; confidence 0.743 |
85. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026087.png ; $i \gg 1$ ; confidence 0.743 | 85. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026087.png ; $i \gg 1$ ; confidence 0.743 | ||
Line 172: | Line 172: | ||
86. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s1305409.png ; $x _ { i j } ( a )$ ; confidence 0.743 | 86. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s1305409.png ; $x _ { i j } ( a )$ ; confidence 0.743 | ||
− | 87. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025063.png ; $R _ { j } = \{ k : | + | 87. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025063.png ; $R _ { j } = \{ k : I _ { k } ( T _ { j } - ) = 1 \}$ ; confidence 0.742 |
88. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015820/b0158205.png ; $L > 0$ ; confidence 0.742 | 88. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015820/b0158205.png ; $L > 0$ ; confidence 0.742 | ||
Line 186: | Line 186: | ||
93. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006064.png ; $a _ { i - 1 } = \lfloor \frac { m _ { i - 1 } } { m _ { i } } \rfloor ,$ ; confidence 0.742 | 93. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006064.png ; $a _ { i - 1 } = \lfloor \frac { m _ { i - 1 } } { m _ { i } } \rfloor ,$ ; confidence 0.742 | ||
− | 94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040795.png ; $K _ { 0 }$ ; confidence 0.742 | + | 94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040795.png ; $ \mathsf{K} _ { 0 }$ ; confidence 0.742 |
95. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027064.png ; $\rightarrow \operatorname{Hom}_{\mathbf{Z}} ( K _ { 1 } ( A ) , \mathbf{Z} ) \rightarrow 0.$ ; confidence 0.742 | 95. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027064.png ; $\rightarrow \operatorname{Hom}_{\mathbf{Z}} ( K _ { 1 } ( A ) , \mathbf{Z} ) \rightarrow 0.$ ; confidence 0.742 | ||
Line 192: | Line 192: | ||
96. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020020.png ; $x _ { n } \neq b$ ; confidence 0.742 | 96. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020020.png ; $x _ { n } \neq b$ ; confidence 0.742 | ||
− | 97. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png ; $ | + | 97. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png ; $I$ ; confidence 0.742 |
98. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742 | 98. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742 | ||
Line 198: | Line 198: | ||
99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052086.png ; $\prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.742 | 99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052086.png ; $\prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.742 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100138.png ; $\delta _ { | + | 100. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100138.png ; $\delta _ { x }$ ; confidence 0.742 |
101. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003016.png ; $\lambda \approx 0.2$ ; confidence 0.742 | 101. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003016.png ; $\lambda \approx 0.2$ ; confidence 0.742 | ||
Line 206: | Line 206: | ||
103. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072980/p07298017.png ; $t _ { 0 } \in \Gamma$ ; confidence 0.742 | 103. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072980/p07298017.png ; $t _ { 0 } \in \Gamma$ ; confidence 0.742 | ||
− | 104. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015067.png ; $\frac { d ^ { 2 x ^ { i } } } { d t ^ { 2 } } + \gamma ^ { | + | 104. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015067.png ; $\frac { d ^ { 2 x ^ { i } } } { d t ^ { 2 } } + \gamma ^ { i_{ j k} } ( x ) \frac { d x ^ { j } } { d t } \frac { d x ^ { k } } { d t } = \lambda _ { ( i ) } \frac { d x ^ { i } } { d t },$ ; confidence 0.742 |
105. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018085.png ; $( \mathbf{R} _ { d } , + )$ ; confidence 0.742 | 105. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018085.png ; $( \mathbf{R} _ { d } , + )$ ; confidence 0.742 | ||
Line 224: | Line 224: | ||
112. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008027.png ; $\{ l _ { 1 } , l _ { 2 } \}$ ; confidence 0.741 | 112. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008027.png ; $\{ l _ { 1 } , l _ { 2 } \}$ ; confidence 0.741 | ||
− | 113. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d1202607.png ; $\ | + | 113. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d1202607.png ; $\mathsf{E} \xi _ { k } ^ { 2 } = \sigma ^ { 2 } > 0$ ; confidence 0.741 |
114. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006030.png ; $\langle \dot { y } , f \rangle$ ; confidence 0.741 | 114. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006030.png ; $\langle \dot { y } , f \rangle$ ; confidence 0.741 | ||
Line 242: | Line 242: | ||
121. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029090.png ; $y _ { n } = f ( q _ { m } )$ ; confidence 0.741 | 121. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029090.png ; $y _ { n } = f ( q _ { m } )$ ; confidence 0.741 | ||
− | 122. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012042.png ; $C = \mathbf{Z} ( R ) = C _ { Q } ( R )$ ; confidence 0.741 | + | 122. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012042.png ; $C = \mathbf{Z} ( R ) = \mathbf{C} _ { Q } ( R )$ ; confidence 0.741 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018028.png ; $f J ^ { \ | + | 123. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018028.png ; $f J ^ { \circ_E}$ ; confidence 0.741 |
124. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520373.png ; $\Lambda \equiv ( \lambda _ { 1 } , \dots , \lambda _ { n } ) \neq 0$ ; confidence 0.741 | 124. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520373.png ; $\Lambda \equiv ( \lambda _ { 1 } , \dots , \lambda _ { n } ) \neq 0$ ; confidence 0.741 | ||
Line 268: | Line 268: | ||
134. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026012.png ; $L _ { \mu } ( \theta ) = \int _ { E } \operatorname { exp } \langle \theta , x \rangle \mu ( d x )$ ; confidence 0.740 | 134. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026012.png ; $L _ { \mu } ( \theta ) = \int _ { E } \operatorname { exp } \langle \theta , x \rangle \mu ( d x )$ ; confidence 0.740 | ||
− | 135. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012026.png ; $h ( G ) \leq l ( A )$ ; confidence 0.740 | + | 135. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012026.png ; $h ( G ) \leq \text{l} ( A )$ ; confidence 0.740 |
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240444.png ; $\mathbf{Y}$ ; confidence 0.740 | 136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240444.png ; $\mathbf{Y}$ ; confidence 0.740 | ||
Line 278: | Line 278: | ||
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049044.png ; $A _ { j } \cap B = \emptyset$ ; confidence 0.740 | 139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049044.png ; $A _ { j } \cap B = \emptyset$ ; confidence 0.740 | ||
− | 140. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012029.png ; $L ( \theta | Y _ { obs } )$ ; confidence 0.740 | + | 140. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012029.png ; $L ( \theta | Y _ { \text{obs} } )$ ; confidence 0.740 |
141. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002051.png ; $R \# U ( L )$ ; confidence 0.740 | 141. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002051.png ; $R \# U ( L )$ ; confidence 0.740 | ||
Line 298: | Line 298: | ||
149. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090133.png ; $\lambda _ { p } ( K / k ) > 0$ ; confidence 0.739 | 149. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090133.png ; $\lambda _ { p } ( K / k ) > 0$ ; confidence 0.739 | ||
− | 150. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012037.png ; $Q _ { | + | 150. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012037.png ; $Q _ { \text{l} } ( R ) = R$ ; confidence 0.739 |
151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230123.png ; $R = I$ ; confidence 0.739 | 151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230123.png ; $R = I$ ; confidence 0.739 | ||
Line 332: | Line 332: | ||
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008050.png ; $u _ { 1 } \in V$ ; confidence 0.738 | 166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008050.png ; $u _ { 1 } \in V$ ; confidence 0.738 | ||
− | 167. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053061.png ; $ | + | 167. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053061.png ; $\operatorname{St} _ { q }$ ; confidence 0.738 |
168. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002048.png ; $\overline { H } \square _ { c } ^ { * }$ ; confidence 0.738 | 168. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002048.png ; $\overline { H } \square _ { c } ^ { * }$ ; confidence 0.738 | ||
Line 346: | Line 346: | ||
173. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738 | 173. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738 | ||
− | 174. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080119.png ; $| u ( y ) | = | \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { 1 / 2 } v _ { j } \varphi _ { j } ( x ) | < c \Lambda \| v \| _ { 0 } = c \Lambda \| u \| _ { + },$ ; confidence 0.738 | + | 174. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080119.png ; $| u ( y ) | = \left| \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { 1 / 2 } v _ { j } \varphi _ { j } ( x ) \right| < c \Lambda \| v \| _ { 0 } = c \Lambda \| u \| _ { + },$ ; confidence 0.738 |
175. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012048.png ; $d \alpha = d \alpha'$ ; confidence 0.738 | 175. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012048.png ; $d \alpha = d \alpha'$ ; confidence 0.738 | ||
− | 176. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050103.png ; $\sigma _ { r }$ ; confidence 0.738 | + | 176. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050103.png ; $\sigma _ { \text{r} }$ ; confidence 0.738 |
177. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024055.png ; $( - \infty , - g ( t ) ]$ ; confidence 0.738 | 177. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024055.png ; $( - \infty , - g ( t ) ]$ ; confidence 0.738 | ||
Line 356: | Line 356: | ||
178. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015058.png ; $\mathcal{A} ^ { \prime \prime }$ ; confidence 0.738 | 178. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015058.png ; $\mathcal{A} ^ { \prime \prime }$ ; confidence 0.738 | ||
− | 179. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005052.png ; $\frac { \partial A } { \partial \tau } = A + ( 1 + i | + | 179. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005052.png ; $\frac { \partial A } { \partial \tau } = A + ( 1 + i a ) \frac { \partial ^ { 2 } A } { \partial \xi ^ { 2 } } - ( 1 + i b ) A | A | ^ { 2 },$ ; confidence 0.737 |
180. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021036.png ; $f _ { m } = ( f , \phi _ { m } )$ ; confidence 0.737 | 180. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021036.png ; $f _ { m } = ( f , \phi _ { m } )$ ; confidence 0.737 | ||
Line 400: | Line 400: | ||
200. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380029.png ; $\Sigma ^ { * }$ ; confidence 0.736 | 200. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380029.png ; $\Sigma ^ { * }$ ; confidence 0.736 | ||
− | 201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024022.png ; $f = | + | 201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024022.png ; $f = f_+ . \delta . f_-$ ; confidence 0.736 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005015.png ; $n = \pi \sigma ^ { 2 } N | + | 202. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005015.png ; $n = \pi \sigma ^ { 2 } N c.$ ; confidence 0.736 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028023.png ; $A ( D ) ^ { * } \simeq A _ { 0 } ( \overline { C } \backslash D )$ ; confidence 0.736 | + | 203. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028023.png ; $A ( D ) ^ { * } \simeq A _ { 0 } ( \overline { \mathbf{C} } \backslash D ),$ ; confidence 0.736 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046046.png ; $V _ { H e | + | 204. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046046.png ; $V _ { H }e$ ; confidence 0.736 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049017.png ; $\nu _ { 1 } | + | 205. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049017.png ; $\nu _ { 1 } / 2$ ; confidence 0.736 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005044.png ; $\dot { | + | 206. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005044.png ; $\dot { a } ( i k _ { j } ) \neq 0$ ; confidence 0.736 |
207. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012550/a01255047.png ; $a ( f )$ ; confidence 0.736 | 207. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012550/a01255047.png ; $a ( f )$ ; confidence 0.736 | ||
Line 416: | Line 416: | ||
208. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p1201505.png ; $X$ ; confidence 0.736 | 208. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p1201505.png ; $X$ ; confidence 0.736 | ||
− | 209. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052080.png ; $F ( x _ { | + | 209. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052080.png ; $F ( x _ { n } )$ ; confidence 0.736 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008062.png ; $( K ^ { H _ { i } } , v | + | 210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008062.png ; $( K ^ { H _ { i } } , v ^ { H _ { i } } )$ ; confidence 0.736 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007051.png ; $| u ( y ) | \leq c ( y ) \| u \| +$ ; confidence 0.736 | + | 211. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007051.png ; $| u ( y ) | \leq c ( y ) \| u \|_+$ ; confidence 0.736 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049050.png ; $| N _ { k } | = | N _ { | + | 212. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049050.png ; $| N _ { k } | = | N _ { r \langle P \rangle -k } |$ ; confidence 0.736 |
213. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015059.png ; $b$ ; confidence 0.736 | 213. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015059.png ; $b$ ; confidence 0.736 | ||
− | 214. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408035.png ; $\pi _ { n } ( A , A \ | + | 214. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408035.png ; $\pi _ { n } ( A , A \bigcap B , * ) \rightarrow \pi _ { n } ( X , B , * )$ ; confidence 0.736 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005030.png ; $ | + | 215. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005030.png ; $k_c$ ; confidence 0.736 |
216. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007037.png ; $( b )$ ; confidence 0.736 | 216. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007037.png ; $( b )$ ; confidence 0.736 | ||
− | 217. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019015.png ; $a _ { k } = \frac { 1 } { 2 N c _ { k } } \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) e ^ { - i k x _ { j } }$ ; confidence 0.736 | + | 217. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019015.png ; $a _ { k } = \frac { 1 } { 2 N c _ { k } } \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) e ^ { - i k x _ { j } },$ ; confidence 0.736 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016060.png ; $\| f \| \neq \operatorname { dist } ( f , C ( S ) \otimes \pi _ { k } ( T ) + \ | + | 218. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016060.png ; $\| f \| \neq \operatorname { dist } ( f , C ( S ) \otimes \pi _ { k } ( T ) + \pi_{\text{l}}( S ) \otimes C ( T ) )$ ; confidence 0.736 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520295.png ; $H _ { | + | 219. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520295.png ; $\mathcal{H} _ { \alpha }$ ; confidence 0.736 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060127.png ; $R \ | + | 220. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060127.png ; $R \subseteq X$ ; confidence 0.736 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011038.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi | + | 221. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011038.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l }.$ ; confidence 0.735 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110158.png ; $R ^ { n } - i \Delta \cap \{ | \eta | \geq \varepsilon \}$ ; confidence 0.735 | + | 222. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110158.png ; $\mathbf{R} ^ { n } - i \Delta \cap \{ | \eta | \geq \varepsilon \}$ ; confidence 0.735 |
223. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029011.png ; $( g , m ) \rightarrow \square ^ { g } m$ ; confidence 0.735 | 223. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029011.png ; $( g , m ) \rightarrow \square ^ { g } m$ ; confidence 0.735 | ||
− | 224. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006040.png ; $| \mu - \lambda | \leq \| V \| | + | 224. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006040.png ; $| \mu - \lambda | \leq \| V \| . \| V ^ { - 1 } \| . \| E \|,$ ; confidence 0.735 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b1102208.png ; $H _ { B } ( X )$ ; confidence 0.735 | + | 225. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b1102208.png ; $H _ { \text{B} } ( X )$ ; confidence 0.735 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290160.png ; $( X , L ) \in | | + | 226. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290160.png ; $( X , L ) \in | \mathbf{SET} \times \mathbf{C}|$ ; confidence 0.735 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024043.png ; $z ^ { n } = \{ z _ { i } ^ { n } \}$ ; confidence 0.735 | + | 227. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024043.png ; $\mathbf{z} ^ { n } = \{ z _ { i } ^ { n } \}$ ; confidence 0.735 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090389.png ; $\nabla ( \lambda ) = M _ { K }$ ; confidence 0.735 | + | 228. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090389.png ; $\nabla ( \lambda ) = \hat{M} _ { K }$ ; confidence 0.735 |
229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002011.png ; $\alpha = ( \alpha _ { 1 } , \dots , \alpha _ { D } ) ^ { T }$ ; confidence 0.735 | 229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002011.png ; $\alpha = ( \alpha _ { 1 } , \dots , \alpha _ { D } ) ^ { T }$ ; confidence 0.735 | ||
− | 230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012020.png ; $\hat { Q } _ { p }$ ; confidence 0.735 | + | 230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012020.png ; $\hat { \mathbf{Q} } _ { p }$ ; confidence 0.735 |
231. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015032.png ; $\alpha$ ; confidence 0.735 | 231. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015032.png ; $\alpha$ ; confidence 0.735 | ||
− | 232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080151.png ; $L _ { p } ( G ) \otimes \ | + | 232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080151.png ; $L _ { p } ( G ) \otimes \widehat{} L _ { q } ( G )$ ; confidence 0.735 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310106.png ; $( T )$ ; confidence 0.735 | + | 233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310106.png ; $\operatorname{AvDTime}( T )$ ; confidence 0.735 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068037.png ; $ | + | 234. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c02068037.png ; $h_i$ ; confidence 0.735 |
235. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100175.png ; $f _ { j } ^ { * } d \theta / 2 \pi \rightarrow \mu _ { z }$ ; confidence 0.735 | 235. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100175.png ; $f _ { j } ^ { * } d \theta / 2 \pi \rightarrow \mu _ { z }$ ; confidence 0.735 | ||
− | 236. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001017.png ; $G ( Q )$ ; confidence 0.735 | + | 236. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001017.png ; $G ( \mathbf{Q} )$ ; confidence 0.735 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010033.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq \nu \| y - z \| ^ { 2 } , y , z \in C ^ { n }$ ; confidence 0.735 | + | 237. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010033.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq \nu \| y - z \| ^ { 2 } , y , z \in \mathbf{C} ^ { n }.$ ; confidence 0.735 |
238. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016074.png ; $L _ { 1 } ( S \times T )$ ; confidence 0.735 | 238. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016074.png ; $L _ { 1 } ( S \times T )$ ; confidence 0.735 | ||
− | 239. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004013.png ; $H ^ { m } ( E \ | + | 239. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004013.png ; $\mathcal{H} ^ { m } ( E \bigcap f ( \mathbf{R} ^ { m } ) ) = 0.$ ; confidence 0.735 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030690/d0306905.png ; $\phi$ ; confidence 0.735 | + | 240. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030690/d0306905.png ; $\overline{\phi}$ ; confidence 0.735 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020184.png ; $U _ { t } ^ { 1 } U _ { t } ^ { 2 } - \int _ { 0 } ^ { t } \nabla u _ { 1 } ( B _ { s } ) | + | 241. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020184.png ; $U _ { t } ^ { 1 } U _ { t } ^ { 2 } - \int _ { 0 } ^ { t } \nabla u _ { 1 } ( B _ { s } ) . \nabla u _ { 2 } ( B _ { s } ) d s$ ; confidence 0.735 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029072.png ; $H _ { m } ^ { i } ( M ) = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { Ext } _ { A } ^ { i } ( A / \mathfrak { m } ^ { n } , M ) \quad ( i \in Z )$ ; confidence 0.734 | + | 242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029072.png ; $H _ { \mathfrak{m} } ^ { i } ( M ) = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { Ext } _ { A } ^ { i } ( A / \mathfrak { m } ^ { n } , M ) \quad ( i \in \mathbf{Z} )$ ; confidence 0.734 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031096.png ; $ | + | 243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031096.png ; $\mathcal{DEXP}$ ; confidence 0.734 |
244. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009093.png ; $Y _ { \lambda }$ ; confidence 0.734 | 244. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009093.png ; $Y _ { \lambda }$ ; confidence 0.734 | ||
− | 245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032043.png ; $P _ { \theta } ( S _ { N } = K ) = ( 1 - r ^ { J } ) ( 1 - r ^ { K + J } ) ^ { - 1 }$ ; confidence 0.734 | + | 245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032043.png ; $\mathsf{P} _ { \theta } ( S _ { N } = K ) = ( 1 - r ^ { J } ) ( 1 - r ^ { K + J } ) ^ { - 1 }$ ; confidence 0.734 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049021.png ; $P \{ F _ { \nu _ { 1 } , \nu _ { 2 } } < x \} = B _ { \nu _ { 1 | + | 246. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049021.png ; $\mathsf{P} \{ F _ { \nu _ { 1 } , \nu _ { 2 } } < x \} = B _ { \nu _ { 1 } / 2 , \nu _ { 2 } / 2} \left( \frac { ( \nu _ { 1 } / \nu _ { 2 } ) x } { 1 + ( \nu _ { 1 } / \nu _ { 2 } ) x } \right).$ ; confidence 0.734 |
247. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023037.png ; $X X ^ { \prime }$ ; confidence 0.734 | 247. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023037.png ; $X X ^ { \prime }$ ; confidence 0.734 | ||
− | 248. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025047.png ; $L C ^ { | + | 248. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025047.png ; $L C ^ { n - 1 }$ ; confidence 0.734 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043064.png ; $\varepsilon x = 0 , S x = - x$ ; confidence 0.734 | + | 249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043064.png ; $\varepsilon x = 0 , S x = - x,$ ; confidence 0.734 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png ; $ | + | 250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png ; $a = 1,2,3$ ; confidence 0.734 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017039.png ; $\langle | + | 251. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017039.png ; $\langle a , b | b a ^ { 2 } b ^ { - 1 } = a ^ { 3 } , a b ^ { 2 } a ^ { - 1 } = b ^ { 3 } \rangle$ ; confidence 0.734 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201306.png ; $a _ { | + | 252. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201306.png ; $a _ { n } \neq 0$ ; confidence 0.734 |
253. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007012.png ; $n | = 1$ ; confidence 0.734 | 253. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007012.png ; $n | = 1$ ; confidence 0.734 | ||
− | 254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160145.png ; $ | + | 254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160145.png ; $Q_{it}$ ; confidence 0.734 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010106.png ; $E \subset P ^ { | + | 255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010106.png ; $E \subset \mathbf{P} ^ { n }$ ; confidence 0.734 |
256. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013029.png ; $A ^ { + } = A ^ { - } + \nabla \chi$ ; confidence 0.734 | 256. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013029.png ; $A ^ { + } = A ^ { - } + \nabla \chi$ ; confidence 0.734 | ||
− | 257. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690053.png ; $H = \sum | + | 257. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690053.png ; $H = \sum^\oplus H_i$ ; confidence 0.733 |
258. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004032.png ; $( \partial _ { t } - \sum _ { j = 1 } ^ { n } \partial _ { x _ { j } } ^ { 2 } ) u = 0$ ; confidence 0.733 | 258. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004032.png ; $( \partial _ { t } - \sum _ { j = 1 } ^ { n } \partial _ { x _ { j } } ^ { 2 } ) u = 0$ ; confidence 0.733 | ||
− | 259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300708.png ; $\phi ( \phi ( s , u ) , v ) = \phi ( s , u ^ { * } v )$ ; confidence 0.733 | + | 259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300708.png ; $\phi ( \phi ( s , u ) , v ) = \phi ( s , u ^ { * } v ),$ ; confidence 0.733 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015047.png ; $\left\{ \begin{array} { l } { \Delta u + \alpha u = 0 \quad \text { in } \Omega } \\ { \frac { \partial u } { \partial n } = 0 \text { and } u = 1 \quad \text { on } \partial \Omega } \end{array} \right.$ ; confidence 0.733 | + | 260. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015047.png ; $\left\{ \begin{array} { l } { \Delta u + \alpha u = 0 \quad \text { in } \Omega, } \\ { \frac { \partial u } { \partial n } = 0 \text { and } u = 1 \quad \text { on } \partial \Omega. } \end{array} \right.$ ; confidence 0.733 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002010.png ; $ | + | 261. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002010.png ; $S ^ { 1 }$ ; confidence 0.733 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050192.png ; $A ( p )$ ; confidence 0.733 | + | 262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050192.png ; $\mathcal{A} ( p )$ ; confidence 0.733 |
263. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232041.png ; $J ( \rho )$ ; confidence 0.733 | 263. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232041.png ; $J ( \rho )$ ; confidence 0.733 | ||
Line 534: | Line 534: | ||
267. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020019.png ; $x _ { 1 } \neq a$ ; confidence 0.733 | 267. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020019.png ; $x _ { 1 } \neq a$ ; confidence 0.733 | ||
− | 268. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012066.png ; $F _ { | + | 268. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012066.png ; $F _ { \text{a.c.} }$ ; confidence 0.733 |
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014010.png ; $x , y \in X$ ; confidence 0.733 | 269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014010.png ; $x , y \in X$ ; confidence 0.733 | ||
− | 270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240498.png ; $X _ { 3 } = ( 1 , - 1 )$ ; confidence 0.733 | + | 270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240498.png ; $\mathbf{X} _ { 3 } = ( 1 , - 1 )$ ; confidence 0.733 |
271. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080144.png ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) )$ ; confidence 0.733 | 271. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080144.png ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) )$ ; confidence 0.733 | ||
Line 546: | Line 546: | ||
273. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015010.png ; $T _ { f } h : = P ( f h )$ ; confidence 0.733 | 273. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015010.png ; $T _ { f } h : = P ( f h )$ ; confidence 0.733 | ||
− | 274. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010043.png ; $D _ { | + | 274. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010043.png ; $D _ { P }$ ; confidence 0.733 |
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007051.png ; $\omega ( a ) + \omega ( b ) < k$ ; confidence 0.733 | 275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007051.png ; $\omega ( a ) + \omega ( b ) < k$ ; confidence 0.733 | ||
Line 554: | Line 554: | ||
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a1302509.png ; $x , y , z , u , v \in V$ ; confidence 0.733 | 277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a1302509.png ; $x , y , z , u , v \in V$ ; confidence 0.733 | ||
− | 278. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080190.png ; $\Theta = ( u , \delta v ) - ( 1 / \kappa ) \sum H _ { | + | 278. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080190.png ; $\Theta = ( u , \delta v ) - ( 1 / \kappa ) \sum H _ { a } \delta t _ { a }$ ; confidence 0.733 |
279. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500083.png ; $L _ { 2 } ( [ a , b ] )$ ; confidence 0.733 | 279. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500083.png ; $L _ { 2 } ( [ a , b ] )$ ; confidence 0.733 | ||
− | 280. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290172.png ; $H _ { m } ^ { i } ( A )$ ; confidence 0.733 | + | 280. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290172.png ; $H _ { \mathfrak{m} } ^ { i } ( A )$ ; confidence 0.733 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040639.png ; $P , \mathfrak { M }$ ; confidence 0.733 | + | 281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040639.png ; $\operatorname{mng}_{\mathcal{S}_{P} ,} \mathfrak { M }$ ; confidence 0.733 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t1300403.png ; $D y ( x ) : = y ^ { \prime } ( x ) + y ( x ) = 0,0 \leq x \leq 1$ ; confidence 0.733 | + | 282. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t1300403.png ; $\mathbf{D} y ( x ) : = y ^ { \prime } ( x ) + y ( x ) = 0,0 \leq x \leq 1,$ ; confidence 0.733 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026019.png ; $f = ( f ^ { ( n ) } ) _ { n \in N _ { 0 } }$ ; confidence 0.733 | + | 283. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026019.png ; $f = ( f ^ { ( n ) } ) _ { n \in \mathbf{N} _ { 0 } }$ ; confidence 0.733 |
284. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025045.png ; $] t , t + h ]$ ; confidence 0.733 | 284. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025045.png ; $] t , t + h ]$ ; confidence 0.733 | ||
Line 570: | Line 570: | ||
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a1101508.png ; $\psi ( . )$ ; confidence 0.732 | 285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a1101508.png ; $\psi ( . )$ ; confidence 0.732 | ||
− | 286. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c1301309.png ; $A = \frac { \partial Q } { \partial K } | + | 286. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c1301309.png ; $A = \frac { \partial Q } { \partial K } . \frac { 1 } { \alpha } . k ^ { 1 - \alpha },$ ; confidence 0.732 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006023.png ; $M f$ ; confidence 0.732 | + | 287. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006023.png ; $\mathcal{M} f$ ; confidence 0.732 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015021.png ; $P ( X \in A ) = \int _ { A } f _ { X } ( X ) d X$ ; confidence 0.732 | + | 288. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015021.png ; $\mathsf{P} ( X \in A ) = \int _ { A } f _ { X } ( X ) d X$ ; confidence 0.732 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050017.png ; $F _ { l } \neq | + | 289. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050017.png ; $\mathcal{F} _ { l } \neq \emptyset$ ; confidence 0.732 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034027.png ; $SH ^ { * } ( M , \omega ) \ | + | 290. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034027.png ; $\operatorname{SH} ^ { * } ( M , \omega ) \bigotimes \operatorname{SH} ^ { * } ( M , \omega ) \rightarrow \operatorname{SH} ^ { * } ( M , \omega ).$ ; confidence 0.732 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204209.png ; $\Psi _ { V , W } : V \ | + | 291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204209.png ; $\Psi _ { V , W } : V \bigotimes W \rightarrow W \bigotimes V$ ; confidence 0.732 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013041.png ; $W _ { n } = \operatorname { span } _ { C } \{ \frac { \partial ^ { k } \Psi _ { 1 , n } ( x , z ) } { \partial x _ { 1 } } : k = 0,1 , \ldots \}$ ; confidence 0.732 | + | 292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013041.png ; $W _ { n } = \operatorname { span } _ { \text{C} } \left\{ \frac { \partial ^ { k } \Psi _ { 1 , n } ( x , z ) } { \partial x _ { 1 } } : k = 0,1 , \ldots \right\},$ ; confidence 0.732 |
293. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630131.png ; $u | _ { \partial \Omega } \in H _ { 2 } ^ { 1 / 2 } ( \partial \Omega )$ ; confidence 0.732 | 293. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630131.png ; $u | _ { \partial \Omega } \in H _ { 2 } ^ { 1 / 2 } ( \partial \Omega )$ ; confidence 0.732 | ||
− | 294. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006015.png ; $\sigma _ { 1 } \Phi A _ { 2 } ^ { * } - \sigma _ { 2 } \Phi A _ { 1 } ^ { * } = \gamma \Phi$ ; confidence 0.732 | + | 294. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006015.png ; $\sigma _ { 1 } \Phi A _ { 2 } ^ { * } - \sigma _ { 2 } \Phi A _ { 1 } ^ { * } = \gamma \Phi ,$ ; confidence 0.732 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021081.png ; $m _ { j } = \sum \{ n _ { i } : 1 \leq i < \text { | + | 295. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021081.png ; $m _ { j } = \sum \{ n _ { i } : 1 \leq i < j \ \text{ and } \ \lambda _ { i } - \lambda _ { j } \in \mathbf{N} \}.$ ; confidence 0.732 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007031.png ; $\Delta : = \left( \begin{array} { c c c } { a _ { 11 } } & { \dots } & { a _ { 1 r } } \\ { \vdots } & { \square } & { \vdots } \\ { a _ { r 1 } } & { \dots } & { a _ { m } } \end{array} \right)$ ; confidence 0.732 | + | 296. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007031.png ; $\Delta : = \left( \begin{array} { c c c } { a _ { 11 } } & { \dots } & { a _ { 1 r } } \\ { \vdots } & { \square } & { \vdots } \\ { a _ { r 1 } } & { \dots } & { a _ { m } } \end{array} \right).$ ; confidence 0.732 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011045.png ; $p * : \pi _ { 1 } ( M ) \rightarrow \pi _ { 1 } ( S ^ { 1 } ) = Z$ ; confidence 0.732 | + | 297. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011045.png ; $p * : \pi _ { 1 } ( M ) \rightarrow \pi _ { 1 } ( S ^ { 1 } ) = \mathbf{Z}$ ; confidence 0.732 |
298. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007050.png ; $d \phi / d S$ ; confidence 0.732 | 298. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007050.png ; $d \phi / d S$ ; confidence 0.732 | ||
− | 299. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c0221004.png ; $p ( x ) = \frac { 1 } { 2 ^ { | + | 299. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c0221004.png ; $p ( x ) = \frac { 1 } { 2 ^ { n / 2 } \Gamma ( n / 2 ) } e ^ { - x / 2 } x ^ { n / 2 - 1 },$ ; confidence 0.732 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007024.png ; $ | + | 300. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007024.png ; $\mathbf{Z} ^ { 3 }$ ; confidence 0.732 |
Latest revision as of 14:10, 10 May 2020
List
1. ; $2 l$ ; confidence 0.747
2. ; $P _ { \alpha }$ ; confidence 0.747
3. ; $\| y \| = \| v \|$ ; confidence 0.747
4. ; $G _ { r_ i } ( A )$ ; confidence 0.747
5. ; $N / 2$ ; confidence 0.747
6. ; $s = t,$ ; confidence 0.747
7. ; $\psi \in L ^ { 2 } ( \mathbf{R} )$ ; confidence 0.747
8. ; $0 \rightarrow P _ { 1 } \rightarrow P _ { 0 } \rightarrow X \rightarrow 0$ ; confidence 0.747
9. ; $B ( . )$ ; confidence 0.747
10. ; $v = v ^ { \prime } + \sum_j r_j v_j$ ; confidence 0.747
11. ; $L _ { E } ( z ) = \operatorname { sup } \{ v ( z ) : v \in \mathcal{L} , v \leq 0 \text { on } E \}.$ ; confidence 0.747
12. ; $D T_j^i =$ ; confidence 0.747
13. ; $\operatorname { Im } h ^ { I I } ( z )$ ; confidence 0.747
14. ; $\mathfrak { g } ( A )$ ; confidence 0.746
15. ; $\overline { \Sigma } \square ^ { i } ( f ) = \bigcup _ { h \geq i } \Sigma ^ { i } ( f ).$ ; confidence 0.746
16. ; $x \in \mathfrak{H}$ ; confidence 0.746
17. ; $\operatorname{Hom}_\Lambda ( T , . )$ ; confidence 0.746
18. ; $\sigma \in ( 1 / 2 ) \mathbf{Z}$ ; confidence 0.746
19. ; $\gamma_2$ ; confidence 0.746
20. ; $B \in \mathcal{A}$ ; confidence 0.746
21. ; $\varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H ^ { 1 } ( \Omega )$ ; confidence 0.746
22. ; $\| x ^ { \prime } \| _ { X ^ { \prime } } = \operatorname { sup } \{ \int _ { \Omega } | x x ^ { \prime } | d \mu : \| x \| _ { X } \leq 1 \}.$ ; confidence 0.746
23. ; $\mu_0$ ; confidence 0.746
24. ; $\operatorname{mult}\alpha = \dim \mathfrak{g}^\alpha$ ; confidence 0.746
25. ; $W _ { \epsilon }$ ; confidence 0.746
26. ; $\zeta ( 5 )$ ; confidence 0.746
27. ; $X = M ( A ) \bigoplus _ { Q ( A ) } B =$ ; confidence 0.746
28. ; $\varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.746
29. ; $x = x_0$ ; confidence 0.746
30. ; $t ( k , r ) = \operatorname { lim } _ { n \rightarrow \infty } \frac { T ( n , k , r ) } { \left( \begin{array} { l } { n } \\ { r } \end{array} \right) }$ ; confidence 0.746
31. ; $\tilde { \Omega }F$ ; confidence 0.746
32. ; $f , g : \mathbf{R} ^ { n } \rightarrow M$ ; confidence 0.745
33. ; $G F = \operatorname {id}_X$ ; confidence 0.745
34. ; $\theta _ { n - 1} $ ; confidence 0.745
35. ; $F _ { \tau }$ ; confidence 0.745
36. ; $C ^ { t } [ G _ { \text { inn } } ]$ ; confidence 0.745
37. ; $1 , \ldots , n _ { 1 }$ ; confidence 0.745
38. ; $\beta \in B$ ; confidence 0.745
39. ; $ \operatorname {Cl} _ { 2 } ( z ) : = - \int _ { 0 } ^ { z } \operatorname { log } \left| 2 \operatorname { sin } \left( \frac { 1 } { 2 } t \right) \right| d t =$ ; confidence 0.745
40. ; $\mathbf{f} \in R ( t ) ^ { l }$ ; confidence 0.745
41. ; $H _ { \mathbf{R} }$ ; confidence 0.745
42. ; $u [ 1 ] = u + 2 \sigma _ { x }.$ ; confidence 0.745
43. ; $\sigma _ { T } ( A , \mathcal{X} / \mathcal{Y} )$ ; confidence 0.745
44. ; $\Delta _ { n } ( \theta )$ ; confidence 0.745
45. ; $A ( t ) u = L ( . , t , D _ { x } ) u\text { for } u \in D ( A ( t ) ).$ ; confidence 0.745
46. ; $u ( x ) = - \int _ { K } E _ { n } ( | x - y | ) d \mu ( y ) + h ( x ),$ ; confidence 0.745
47. ; $P _ { n } : Y \rightarrow X_n$ ; confidence 0.745
48. ; $\operatorname { Fun } _ { q } ( G / H )$ ; confidence 0.745
49. ; $\xi _ { r } ^ { 0 }$ ; confidence 0.745
50. ; $s = ( m - 1 , m - 2 , \dots , 1,0 )$ ; confidence 0.745
51. ; $b \uparrow \infty$ ; confidence 0.745
52. ; $V _ { \xi } \subset_{*} V _ { \eta }$ ; confidence 0.745
53. ; $( a \circ \chi ) ^ { w } = M ^ { * } a ^ { w } M.$ ; confidence 0.745
54. ; $B = \tau _ { V , V } R$ ; confidence 0.744
55. ; $( A + \Delta A ) \hat{x} = b$ ; confidence 0.744
56. ; $\operatorname{FFi} _ { \mathcal{D} } \mathbf{A}$ ; confidence 0.744
57. ; $\hat { \theta } _ { N }$ ; confidence 0.744
58. ; $\operatorname{Gal}( K / k ) \cong \mathbf{Z} _ { p }$ ; confidence 0.744
59. ; $\square ^ { 1 } S _ { 2 }$ ; confidence 0.744
60. ; $P = 0$ ; confidence 0.744
61. ; $\nabla \times \mathbf{E} = \mathbf{O} , \nabla .\mathbf{D} = q _ { f };$ ; confidence 0.744
62. ; $P _ { n } ( x ) = U _ { n } ( x )$ ; confidence 0.744
63. ; $B O _ { n } = \operatorname { lim } _ { r \rightarrow \infty } \operatorname { inf } \operatorname { Gras } _ { n } ( \mathbf{R} ^ { r + n } )$ ; confidence 0.744
64. ; $\tilde{h}$ ; confidence 0.744
65. ; $A \geq 0$ ; confidence 0.744
66. ; $A _ { \varepsilon } = \{ x : \{ x \} \times Y \subset O _ { \varepsilon } \}$ ; confidence 0.744
67. ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } c ( n ) e ^ { 2 \pi i n z }.$ ; confidence 0.744
68. ; $\downarrow \forall x \exists y \forall w ( w \in y \leftrightarrow \exists v ( v \in x \bigwedge \varphi ) ).$ ; confidence 0.744
69. ; $\{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.743
70. ; $\mu _ { R } ( M ) \leq \operatorname { max } \{ \mu ( M , P ) : P \in \operatorname { Spec } ( R ) \} + \operatorname { Kdim } ( R ).$ ; confidence 0.743
71. ; $\delta _ { A , B } ( X ) \in \mathcal{C} _ { 2 }$ ; confidence 0.743
72. ; $K ( L ( a , b ) c , d ) + K ( c , L ( a , b ) d ) + K ( a , K ( c , d ) b ) = 0,$ ; confidence 0.743
73. ; $[ g _ { i } ] : Y \rightarrow P _ { i }$ ; confidence 0.743
74. ; $\lambda _ { s } > \operatorname { max } \{ \lambda _ { s +1 } ,1 \}$ ; confidence 0.743
75. ; $1 \in A$ ; confidence 0.743
76. ; $\Phi ( M ) \in \operatorname{Wh} ( \pi _ { 1 } ( M ) )$ ; confidence 0.743
77. ; $\operatorname{WF} ( B f ) = \operatorname{WF} ( f )$ ; confidence 0.743
78. ; $\Delta \subset \mathfrak { h } ^ { * }$ ; confidence 0.743
79. ; $e _ { i } ^ { p } = 0$ ; confidence 0.743
80. ; $\{ e _ { 2 } ^ { j } \}$ ; confidence 0.743
81. ; $\nu \geq 2$ ; confidence 0.743
82. ; $d s$ ; confidence 0.743
83. ; $= \frac { \mathsf{E} \int _ { 0 } ^ { T _ { 1 } } h ( Z ( u ) ) d u } { \mathsf{E} ( T _ { 1 } ) }.$ ; confidence 0.743
84. ; $ \mathsf{E} ( Y ) = 0$ ; confidence 0.743
85. ; $i \gg 1$ ; confidence 0.743
86. ; $x _ { i j } ( a )$ ; confidence 0.743
87. ; $R _ { j } = \{ k : I _ { k } ( T _ { j } - ) = 1 \}$ ; confidence 0.742
88. ; $L > 0$ ; confidence 0.742
89. ; $\operatorname{GL} ( n )$ ; confidence 0.742
90. ; $R _ { - } ( x ) : = - \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( - k ) \frac { a ( - k ) } { a ( k ) } e ^ { - i k x } d k$ ; confidence 0.742
91. ; $M \leq \operatorname { cr } ( D _ { L } ) - s ( D _ { L } ) + 1$ ; confidence 0.742
92. ; $\lambda / r$ ; confidence 0.742
93. ; $a _ { i - 1 } = \lfloor \frac { m _ { i - 1 } } { m _ { i } } \rfloor ,$ ; confidence 0.742
94. ; $ \mathsf{K} _ { 0 }$ ; confidence 0.742
95. ; $\rightarrow \operatorname{Hom}_{\mathbf{Z}} ( K _ { 1 } ( A ) , \mathbf{Z} ) \rightarrow 0.$ ; confidence 0.742
96. ; $x _ { n } \neq b$ ; confidence 0.742
97. ; $I$ ; confidence 0.742
98. ; $T _ { e } = j - 744$ ; confidence 0.742
99. ; $\prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.742
100. ; $\delta _ { x }$ ; confidence 0.742
101. ; $\lambda \approx 0.2$ ; confidence 0.742
102. ; $N \leq Z$ ; confidence 0.742
103. ; $t _ { 0 } \in \Gamma$ ; confidence 0.742
104. ; $\frac { d ^ { 2 x ^ { i } } } { d t ^ { 2 } } + \gamma ^ { i_{ j k} } ( x ) \frac { d x ^ { j } } { d t } \frac { d x ^ { k } } { d t } = \lambda _ { ( i ) } \frac { d x ^ { i } } { d t },$ ; confidence 0.742
105. ; $( \mathbf{R} _ { d } , + )$ ; confidence 0.742
106. ; $\mathcal{A} \sim ( A , \overline { A } )$ ; confidence 0.742
107. ; $\tau T _ { n } ^ { * } ( x )$ ; confidence 0.742
108. ; $G_n$ ; confidence 0.742
109. ; $\Delta ^ { \circ } = \{ x : \langle x , \eta \rangle \geq 0 \text { for all } \eta \in \Delta \}$ ; confidence 0.741
110. ; $\tau : a \mapsto a , b \mapsto b ^ { - 1 },$ ; confidence 0.741
111. ; $\geq | z _ { h_2 } + 1 | \geq \ldots \geq | z _ { n } |.$ ; confidence 0.741
112. ; $\{ l _ { 1 } , l _ { 2 } \}$ ; confidence 0.741
113. ; $\mathsf{E} \xi _ { k } ^ { 2 } = \sigma ^ { 2 } > 0$ ; confidence 0.741
114. ; $\langle \dot { y } , f \rangle$ ; confidence 0.741
115. ; $L _ { m , n } a _ { n } = f _ { m }$ ; confidence 0.741
116. ; $0 \leq t \leq T$ ; confidence 0.741
117. ; $f _ { \pm }$ ; confidence 0.741
118. ; $f _ { A } ( x + h ) = f ( x ) + \sum _ { | \alpha | \geq 1 } \frac { 1 } { \alpha ! } \frac { \partial ^ { | \alpha | } f } { \partial x ^ { \alpha } } | _ { x } h ^ { \alpha },$ ; confidence 0.741
119. ; $L _ { w }$ ; confidence 0.741
120. ; $y ^ { \prime } = f ( t , y ) , y ( t _ { 0 } ) = y _ { 0 } , t \in [ t _ { 0 } , t _ { e } ],$ ; confidence 0.741
121. ; $y _ { n } = f ( q _ { m } )$ ; confidence 0.741
122. ; $C = \mathbf{Z} ( R ) = \mathbf{C} _ { Q } ( R )$ ; confidence 0.741
123. ; $f J ^ { \circ_E}$ ; confidence 0.741
124. ; $\Lambda \equiv ( \lambda _ { 1 } , \dots , \lambda _ { n } ) \neq 0$ ; confidence 0.741
125. ; $d \Omega _ { n } \sim d ( \lambda ^ { n } ) + \ldots$ ; confidence 0.740
126. ; $w ( t ) = 2 t 1 r 213$ ; confidence 0.740
127. ; $q \in \overline { A \cup p }$ ; confidence 0.740
128. ; $d \zeta / \zeta = d \zeta _ { 2 } / \zeta _ { 2 } \wedge \ldots \wedge d \zeta _ { n } / \zeta _ { n }$ ; confidence 0.740
129. ; $x \in G \backslash N$ ; confidence 0.740
130. ; $\{ a _ { n } ^ { * } \}$ ; confidence 0.740
131. ; $\kappa_i$ ; confidence 0.740
132. ; $( \phi , e ^ { - i H t } \phi )$ ; confidence 0.740
133. ; $m_j$ ; confidence 0.740
134. ; $L _ { \mu } ( \theta ) = \int _ { E } \operatorname { exp } \langle \theta , x \rangle \mu ( d x )$ ; confidence 0.740
135. ; $h ( G ) \leq \text{l} ( A )$ ; confidence 0.740
136. ; $\mathbf{Y}$ ; confidence 0.740
137. ; $\rho ( x )$ ; confidence 0.740
138. ; $\geq 1$ ; confidence 0.740
139. ; $A _ { j } \cap B = \emptyset$ ; confidence 0.740
140. ; $L ( \theta | Y _ { \text{obs} } )$ ; confidence 0.740
141. ; $R \# U ( L )$ ; confidence 0.740
142. ; $a ( Y )$ ; confidence 0.740
143. ; $\mathcal{U} _ { p }$ ; confidence 0.740
144. ; $\operatorname{SU} ( n )$ ; confidence 0.740
145. ; $\| \mathcal{S} \| : = \int _ { 0 } ^ { \infty } ( 1 + x ) | F ^ { \prime } ( x ) | d x$ ; confidence 0.740
146. ; $z \in E ^ { * * }$ ; confidence 0.739
147. ; $\partial f ( x ) : = \{ \zeta : f ^ { \circ } ( x ; v ) \geq \langle \zeta , v \rangle , \forall v \in X \},$ ; confidence 0.739
148. ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } z_j \frac { \partial f ( z ) } { \partial z _ { j } }.$ ; confidence 0.739
149. ; $\lambda _ { p } ( K / k ) > 0$ ; confidence 0.739
150. ; $Q _ { \text{l} } ( R ) = R$ ; confidence 0.739
151. ; $R = I$ ; confidence 0.739
152. ; $F = X + F _ { ( 2 ) } + \ldots + F _ { ( d ) }$ ; confidence 0.739
153. ; $\int _ { \mathbf{R} } d \mu ( t ) = 1$ ; confidence 0.739
154. ; $f ^ { \prime } ( z _ { 0 } , z _ { 0 } ) = 1$ ; confidence 0.739
155. ; $\operatorname{Sh}$ ; confidence 0.739
156. ; $\{ ( x _ { i } , y _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.739
157. ; $\int _ { - \infty } ^ { \infty } ( G _ { b } ^ { \alpha } f ) ( \omega ) d b = \hat { f } ( \omega ),$ ; confidence 0.739
158. ; $T _ { n } ( x ) = \operatorname { cos } ( n \operatorname { cos } ^ { - 1 } x )$ ; confidence 0.739
159. ; $q \in L _ { 1 , 1} $ ; confidence 0.739
160. ; $P _ { \pm }$ ; confidence 0.739
161. ; $\xi _ { i }(.)$ ; confidence 0.739
162. ; $X _ { j _ { 1 } } , \dots , X _ { j _ { k } }$ ; confidence 0.738
163. ; $\mathbf{J}$ ; confidence 0.738
164. ; $\operatorname{SL} _ { 2 } ( \mathbf{Z} )$ ; confidence 0.738
165. ; $( 0 , q )$ ; confidence 0.738
166. ; $u _ { 1 } \in V$ ; confidence 0.738
167. ; $\operatorname{St} _ { q }$ ; confidence 0.738
168. ; $\overline { H } \square _ { c } ^ { * }$ ; confidence 0.738
169. ; $( P _ { b } )$ ; confidence 0.738
170. ; $\mathbf{B}$ ; confidence 0.738
171. ; $K$ ; confidence 0.738
172. ; $\Gamma$ ; confidence 0.738
173. ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738
174. ; $| u ( y ) | = \left| \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { 1 / 2 } v _ { j } \varphi _ { j } ( x ) \right| < c \Lambda \| v \| _ { 0 } = c \Lambda \| u \| _ { + },$ ; confidence 0.738
175. ; $d \alpha = d \alpha'$ ; confidence 0.738
176. ; $\sigma _ { \text{r} }$ ; confidence 0.738
177. ; $( - \infty , - g ( t ) ]$ ; confidence 0.738
178. ; $\mathcal{A} ^ { \prime \prime }$ ; confidence 0.738
179. ; $\frac { \partial A } { \partial \tau } = A + ( 1 + i a ) \frac { \partial ^ { 2 } A } { \partial \xi ^ { 2 } } - ( 1 + i b ) A | A | ^ { 2 },$ ; confidence 0.737
180. ; $f _ { m } = ( f , \phi _ { m } )$ ; confidence 0.737
181. ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Re } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau,$ ; confidence 0.737
182. ; $v \in H ^ { 1 } ( \Omega )$ ; confidence 0.737
183. ; $\{ U _ { n } , V _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.737
184. ; $\tilde{x} ^ { ( k ) }$ ; confidence 0.737
185. ; $\mathcal{B} _ { i } \rightarrow \mathcal{B} _ { i +1} $ ; confidence 0.737
186. ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
187. ; $x \in G$ ; confidence 0.737
188. ; $1 \leq m \leq n$ ; confidence 0.737
189. ; $c : V ^ { f } \rightarrow J$ ; confidence 0.737
190. ; $G _ { g }$ ; confidence 0.737
191. ; $T _ { \overline{m} }$ ; confidence 0.737
192. ; $W ^ { ( i ) }$ ; confidence 0.737
193. ; $f \in \mathcal{D}$ ; confidence 0.737
194. ; $A ( ( X ) ) = \{ \sum _ { n \geq n _ { 0 } } ^ { \infty } a _ { n } X ^ { n } : n _ { 0 } \in \mathbf{Z} , a _ { n } \in A \}$ ; confidence 0.737
195. ; $G_q$ ; confidence 0.737
196. ; $A _ { 2 } \in C ^ { m \times ( n - m ) }$ ; confidence 0.737
197. ; $n K + m ^ { - 1 } B _ { X^{**} } $ ; confidence 0.737
198. ; $\nu ^ { \Lambda } / \mathcal{I}$ ; confidence 0.737
199. ; $S _ { N + 1 } = S _ { 1 }$ ; confidence 0.736
200. ; $\Sigma ^ { * }$ ; confidence 0.736
201. ; $f = f_+ . \delta . f_-$ ; confidence 0.736
202. ; $n = \pi \sigma ^ { 2 } N c.$ ; confidence 0.736
203. ; $A ( D ) ^ { * } \simeq A _ { 0 } ( \overline { \mathbf{C} } \backslash D ),$ ; confidence 0.736
204. ; $V _ { H }e$ ; confidence 0.736
205. ; $\nu _ { 1 } / 2$ ; confidence 0.736
206. ; $\dot { a } ( i k _ { j } ) \neq 0$ ; confidence 0.736
207. ; $a ( f )$ ; confidence 0.736
208. ; $X$ ; confidence 0.736
209. ; $F ( x _ { n } )$ ; confidence 0.736
210. ; $( K ^ { H _ { i } } , v ^ { H _ { i } } )$ ; confidence 0.736
211. ; $| u ( y ) | \leq c ( y ) \| u \|_+$ ; confidence 0.736
212. ; $| N _ { k } | = | N _ { r \langle P \rangle -k } |$ ; confidence 0.736
213. ; $b$ ; confidence 0.736
214. ; $\pi _ { n } ( A , A \bigcap B , * ) \rightarrow \pi _ { n } ( X , B , * )$ ; confidence 0.736
215. ; $k_c$ ; confidence 0.736
216. ; $( b )$ ; confidence 0.736
217. ; $a _ { k } = \frac { 1 } { 2 N c _ { k } } \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) e ^ { - i k x _ { j } },$ ; confidence 0.736
218. ; $\| f \| \neq \operatorname { dist } ( f , C ( S ) \otimes \pi _ { k } ( T ) + \pi_{\text{l}}( S ) \otimes C ( T ) )$ ; confidence 0.736
219. ; $\mathcal{H} _ { \alpha }$ ; confidence 0.736
220. ; $R \subseteq X$ ; confidence 0.736
221. ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l }.$ ; confidence 0.735
222. ; $\mathbf{R} ^ { n } - i \Delta \cap \{ | \eta | \geq \varepsilon \}$ ; confidence 0.735
223. ; $( g , m ) \rightarrow \square ^ { g } m$ ; confidence 0.735
224. ; $| \mu - \lambda | \leq \| V \| . \| V ^ { - 1 } \| . \| E \|,$ ; confidence 0.735
225. ; $H _ { \text{B} } ( X )$ ; confidence 0.735
226. ; $( X , L ) \in | \mathbf{SET} \times \mathbf{C}|$ ; confidence 0.735
227. ; $\mathbf{z} ^ { n } = \{ z _ { i } ^ { n } \}$ ; confidence 0.735
228. ; $\nabla ( \lambda ) = \hat{M} _ { K }$ ; confidence 0.735
229. ; $\alpha = ( \alpha _ { 1 } , \dots , \alpha _ { D } ) ^ { T }$ ; confidence 0.735
230. ; $\hat { \mathbf{Q} } _ { p }$ ; confidence 0.735
231. ; $\alpha$ ; confidence 0.735
232. ; $L _ { p } ( G ) \otimes \widehat{} L _ { q } ( G )$ ; confidence 0.735
233. ; $\operatorname{AvDTime}( T )$ ; confidence 0.735
234. ; $h_i$ ; confidence 0.735
235. ; $f _ { j } ^ { * } d \theta / 2 \pi \rightarrow \mu _ { z }$ ; confidence 0.735
236. ; $G ( \mathbf{Q} )$ ; confidence 0.735
237. ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq \nu \| y - z \| ^ { 2 } , y , z \in \mathbf{C} ^ { n }.$ ; confidence 0.735
238. ; $L _ { 1 } ( S \times T )$ ; confidence 0.735
239. ; $\mathcal{H} ^ { m } ( E \bigcap f ( \mathbf{R} ^ { m } ) ) = 0.$ ; confidence 0.735
240. ; $\overline{\phi}$ ; confidence 0.735
241. ; $U _ { t } ^ { 1 } U _ { t } ^ { 2 } - \int _ { 0 } ^ { t } \nabla u _ { 1 } ( B _ { s } ) . \nabla u _ { 2 } ( B _ { s } ) d s$ ; confidence 0.735
242. ; $H _ { \mathfrak{m} } ^ { i } ( M ) = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { Ext } _ { A } ^ { i } ( A / \mathfrak { m } ^ { n } , M ) \quad ( i \in \mathbf{Z} )$ ; confidence 0.734
243. ; $\mathcal{DEXP}$ ; confidence 0.734
244. ; $Y _ { \lambda }$ ; confidence 0.734
245. ; $\mathsf{P} _ { \theta } ( S _ { N } = K ) = ( 1 - r ^ { J } ) ( 1 - r ^ { K + J } ) ^ { - 1 }$ ; confidence 0.734
246. ; $\mathsf{P} \{ F _ { \nu _ { 1 } , \nu _ { 2 } } < x \} = B _ { \nu _ { 1 } / 2 , \nu _ { 2 } / 2} \left( \frac { ( \nu _ { 1 } / \nu _ { 2 } ) x } { 1 + ( \nu _ { 1 } / \nu _ { 2 } ) x } \right).$ ; confidence 0.734
247. ; $X X ^ { \prime }$ ; confidence 0.734
248. ; $L C ^ { n - 1 }$ ; confidence 0.734
249. ; $\varepsilon x = 0 , S x = - x,$ ; confidence 0.734
250. ; $a = 1,2,3$ ; confidence 0.734
251. ; $\langle a , b | b a ^ { 2 } b ^ { - 1 } = a ^ { 3 } , a b ^ { 2 } a ^ { - 1 } = b ^ { 3 } \rangle$ ; confidence 0.734
252. ; $a _ { n } \neq 0$ ; confidence 0.734
253. ; $n | = 1$ ; confidence 0.734
254. ; $Q_{it}$ ; confidence 0.734
255. ; $E \subset \mathbf{P} ^ { n }$ ; confidence 0.734
256. ; $A ^ { + } = A ^ { - } + \nabla \chi$ ; confidence 0.734
257. ; $H = \sum^\oplus H_i$ ; confidence 0.733
258. ; $( \partial _ { t } - \sum _ { j = 1 } ^ { n } \partial _ { x _ { j } } ^ { 2 } ) u = 0$ ; confidence 0.733
259. ; $\phi ( \phi ( s , u ) , v ) = \phi ( s , u ^ { * } v ),$ ; confidence 0.733
260. ; $\left\{ \begin{array} { l } { \Delta u + \alpha u = 0 \quad \text { in } \Omega, } \\ { \frac { \partial u } { \partial n } = 0 \text { and } u = 1 \quad \text { on } \partial \Omega. } \end{array} \right.$ ; confidence 0.733
261. ; $S ^ { 1 }$ ; confidence 0.733
262. ; $\mathcal{A} ( p )$ ; confidence 0.733
263. ; $J ( \rho )$ ; confidence 0.733
264. ; $s \left( \begin{array} { l } { v } \\ { t } \end{array} \right)$ ; confidence 0.733
265. ; $\operatorname { Bel } ( \Xi ) = 1$ ; confidence 0.733
266. ; $e ^ { - i x s }$ ; confidence 0.733
267. ; $x _ { 1 } \neq a$ ; confidence 0.733
268. ; $F _ { \text{a.c.} }$ ; confidence 0.733
269. ; $x , y \in X$ ; confidence 0.733
270. ; $\mathbf{X} _ { 3 } = ( 1 , - 1 )$ ; confidence 0.733
271. ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) )$ ; confidence 0.733
272. ; $P _ { \Lambda }$ ; confidence 0.733
273. ; $T _ { f } h : = P ( f h )$ ; confidence 0.733
274. ; $D _ { P }$ ; confidence 0.733
275. ; $\omega ( a ) + \omega ( b ) < k$ ; confidence 0.733
276. ; $C ( \Omega )$ ; confidence 0.733
277. ; $x , y , z , u , v \in V$ ; confidence 0.733
278. ; $\Theta = ( u , \delta v ) - ( 1 / \kappa ) \sum H _ { a } \delta t _ { a }$ ; confidence 0.733
279. ; $L _ { 2 } ( [ a , b ] )$ ; confidence 0.733
280. ; $H _ { \mathfrak{m} } ^ { i } ( A )$ ; confidence 0.733
281. ; $\operatorname{mng}_{\mathcal{S}_{P} ,} \mathfrak { M }$ ; confidence 0.733
282. ; $\mathbf{D} y ( x ) : = y ^ { \prime } ( x ) + y ( x ) = 0,0 \leq x \leq 1,$ ; confidence 0.733
283. ; $f = ( f ^ { ( n ) } ) _ { n \in \mathbf{N} _ { 0 } }$ ; confidence 0.733
284. ; $] t , t + h ]$ ; confidence 0.733
285. ; $\psi ( . )$ ; confidence 0.732
286. ; $A = \frac { \partial Q } { \partial K } . \frac { 1 } { \alpha } . k ^ { 1 - \alpha },$ ; confidence 0.732
287. ; $\mathcal{M} f$ ; confidence 0.732
288. ; $\mathsf{P} ( X \in A ) = \int _ { A } f _ { X } ( X ) d X$ ; confidence 0.732
289. ; $\mathcal{F} _ { l } \neq \emptyset$ ; confidence 0.732
290. ; $\operatorname{SH} ^ { * } ( M , \omega ) \bigotimes \operatorname{SH} ^ { * } ( M , \omega ) \rightarrow \operatorname{SH} ^ { * } ( M , \omega ).$ ; confidence 0.732
291. ; $\Psi _ { V , W } : V \bigotimes W \rightarrow W \bigotimes V$ ; confidence 0.732
292. ; $W _ { n } = \operatorname { span } _ { \text{C} } \left\{ \frac { \partial ^ { k } \Psi _ { 1 , n } ( x , z ) } { \partial x _ { 1 } } : k = 0,1 , \ldots \right\},$ ; confidence 0.732
293. ; $u | _ { \partial \Omega } \in H _ { 2 } ^ { 1 / 2 } ( \partial \Omega )$ ; confidence 0.732
294. ; $\sigma _ { 1 } \Phi A _ { 2 } ^ { * } - \sigma _ { 2 } \Phi A _ { 1 } ^ { * } = \gamma \Phi ,$ ; confidence 0.732
295. ; $m _ { j } = \sum \{ n _ { i } : 1 \leq i < j \ \text{ and } \ \lambda _ { i } - \lambda _ { j } \in \mathbf{N} \}.$ ; confidence 0.732
296. ; $\Delta : = \left( \begin{array} { c c c } { a _ { 11 } } & { \dots } & { a _ { 1 r } } \\ { \vdots } & { \square } & { \vdots } \\ { a _ { r 1 } } & { \dots } & { a _ { m } } \end{array} \right).$ ; confidence 0.732
297. ; $p * : \pi _ { 1 } ( M ) \rightarrow \pi _ { 1 } ( S ^ { 1 } ) = \mathbf{Z}$ ; confidence 0.732
298. ; $d \phi / d S$ ; confidence 0.732
299. ; $p ( x ) = \frac { 1 } { 2 ^ { n / 2 } \Gamma ( n / 2 ) } e ^ { - x / 2 } x ^ { n / 2 - 1 },$ ; confidence 0.732
300. ; $\mathbf{Z} ^ { 3 }$ ; confidence 0.732
Maximilian Janisch/latexlist/latex/NoNroff/44. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/44&oldid=45614