Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/67"
(AUTOMATIC EDIT of page 67 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
|||
(16 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040165.png ; $p _ { | + | 1. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040165.png ; $p _ { m } ( t , x ; \tau , \xi ) = 0$ ; confidence 0.334 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050146.png ; $\zeta _ { G } ( z ) = \sum _ { | + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050146.png ; $\zeta _ { G } ( z ) = \sum _ { n = 1 } ^ { \infty } G ( n ) n ^ { - z } = \sum _ { a \in G } | a | ^ { - z } =$ ; confidence 0.334 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759015.png ; $D \in | + | 3. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759015.png ; $D \in \operatorname{WC} ( A , k )$ ; confidence 0.334 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012022.png ; $L ( \theta | Y _ { | + | 4. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012022.png ; $L ( \theta | Y _ { \text{obs} } ) = \int L ( \theta | Y _ { \text{com} } ) d Y_{\text{mis}}$ ; confidence 0.334 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p0745208.png ; $ | + | 5. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p0745208.png ; $a R b \subseteq P \Rightarrow a \in P \text { or } b \in P,$ ; confidence 0.334 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019027.png ; $ | + | 6. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019027.png ; $a , b \in P$ ; confidence 0.334 |
7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010010.png ; $H _ { n } = \sum _ { i = 1 } ^ { n } p _ { i } ^ { 2 } / 2 + \sum _ { 1 = i < j } ^ { n } \Phi ( q _ { i } - q _ { j } )$ ; confidence 0.334 | 7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010010.png ; $H _ { n } = \sum _ { i = 1 } ^ { n } p _ { i } ^ { 2 } / 2 + \sum _ { 1 = i < j } ^ { n } \Phi ( q _ { i } - q _ { j } )$ ; confidence 0.334 | ||
− | 8. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011340/a0113401.png ; $ | + | 8. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011340/a0113401.png ; $a _ { 0 } x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n } = 0.$ ; confidence 0.333 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d12032021.png ; $ | + | 9. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d12032021.png ; $\mathbf{l}_{1}$ ; confidence 0.333 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022021.png ; $D _ { j } = \partial / \partial | + | 10. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022021.png ; $D _ { j } = \partial / \partial x_ { j } $ ; confidence 0.333 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018034.png ; $ | + | 11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018034.png ; $\vdash _ { \tau }$ ; confidence 0.333 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022570/c0225703.png ; $x _ { | + | 12. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022570/c0225703.png ; $x _ { n } \rightarrow x$ ; confidence 0.333 |
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120290/a1202907.png ; $G _ { \delta }$ ; confidence 0.333 | 13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120290/a1202907.png ; $G _ { \delta }$ ; confidence 0.333 | ||
− | 14. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070113.png ; $c | + | 14. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070113.png ; $c a = q a c ,\; b a = q a b ,\; d b = q b d ,\; d c = q c b,$ ; confidence 0.333 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019060.png ; $R ^ { | + | 15. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019060.png ; $\mathbf{R} ^ { l }$ ; confidence 0.333 |
16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020019.png ; $\operatorname { inf } _ { z _ { j } \in U } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } } { M _ { d } ( k ) }$ ; confidence 0.333 | 16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020019.png ; $\operatorname { inf } _ { z _ { j } \in U } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } } { M _ { d } ( k ) }$ ; confidence 0.333 | ||
Line 34: | Line 34: | ||
17. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070259.png ; $\Re ( C )$ ; confidence 0.333 | 17. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070259.png ; $\Re ( C )$ ; confidence 0.333 | ||
− | 18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021031.png ; $\delta _ { k } ( X \ | + | 18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021031.png ; $\delta _ { k } ( X \bigotimes X _ { 1 } \bigwedge \ldots \bigwedge X _ { k } ) =$ ; confidence 0.333 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120172.png ; $K _ { | + | 19. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120172.png ; $K _ { s } [ \overline { \sigma } ] \cap K _ { \text{tot }S }$ ; confidence 0.333 |
20. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007033.png ; $a = ( a _ { 1 } , \dots , a _ { k } )$ ; confidence 0.333 | 20. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007033.png ; $a = ( a _ { 1 } , \dots , a _ { k } )$ ; confidence 0.333 | ||
− | 21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053094.png ; $S _ { | + | 21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053094.png ; $S _ { P }$ ; confidence 0.333 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090166.png ; $u \in Z _ { p } ^ { \ | + | 22. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090166.png ; $u \in \mathbf{Z} _ { p } ^ { \times }$ ; confidence 0.333 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018040.png ; $\ | + | 23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018040.png ; $\models_{\tau} $ ; confidence 0.333 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019024.png ; $M _ { | + | 24. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019024.png ; $M _ { n } = [ m _ { i - j} ] _ { i ,\, j = 0 } ^ { n }$ ; confidence 0.333 |
25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016068.png ; $c _ { 1 } \lambda ^ { 2 }$ ; confidence 0.333 | 25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016068.png ; $c _ { 1 } \lambda ^ { 2 }$ ; confidence 0.333 | ||
− | 26. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011052.png ; $B _ { \alpha } ( x ^ { * } ) = \{ x \in R ^ { n } : \xi _ { x ^ { * } } ( x ) \geq \alpha \}$ ; confidence 0.332 | + | 26. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011052.png ; $B _ { \alpha } ( \underline{x} ^ { * } ) = \{ \underline{x} \in \mathbf{R} ^ { n } : \xi _ { \underline{x} ^ { * } } ( \underline{x} ) \geq \alpha \}$ ; confidence 0.332 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002033.png ; $F _ { | + | 27. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002033.png ; $F _ { m } F _ { n }$ ; confidence 0.332 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007034.png ; $Z G \simeq Z H \Rightarrow G \simeq H$ ; confidence 0.332 | + | 28. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007034.png ; $\mathbf{Z} G \simeq \mathbf{Z} H \Rightarrow G \simeq H.$ ; confidence 0.332 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302304.png ; $( L _ { + } ^ { \prime } , L ^ { \prime } - , L _ { 0 } ^ { \prime } )$ ; confidence 0.332 | + | 29. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302304.png ; $( L _ { + } ^ { \prime } , L ^ { \prime }_{ -} , L _ { 0 } ^ { \prime } )$ ; confidence 0.332 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012058.png ; $c _ { 1 } \stackrel { \phi _ { 1 } } { \rightarrow } \ldots \stackrel { \phi _ { n - 1 } } { \rightarrow } c _ { n }$ ; confidence 0.332 | + | 30. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012058.png ; $c _ { 1 } \stackrel { \phi _ { 1 } } { \rightarrow } \ldots \stackrel { \phi _ { n - 1 } } { \rightarrow } c _ { n },$ ; confidence 0.332 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022034.png ; $| u | _ { p , m , T } = \sum _ { | \alpha | = m } \| D ^ { \alpha } u \| _ { p , T }$ ; confidence 0.332 | + | 31. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022034.png ; $| u | _ { p , m , T } = \sum _ { | \alpha | = m } \| D ^ { \alpha } u \| _ { p , T }.$ ; confidence 0.332 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090100.png ; $\lambda ( X ) = \sum _ { i = 1 } ^ { | + | 32. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090100.png ; $\lambda ( X ) = \sum _ { i = 1 } ^ { s } \operatorname { deg } ( f _ { i } ( T ) ^ { l _ { i } } ) , \ \mu ( X ) = \sum _ { j = 1 } ^ { t } m _ { j }.$ ; confidence 0.332 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $ | + | 33. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $\mathcal{FT} \operatorname {op}$ ; confidence 0.332 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920135.png ; $E ^ { | + | 34. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920135.png ; $E ^ { n + 1}$ ; confidence 0.332 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051073.png ; $u = ( u _ { 1 } , \dots , u _ { m } ) , v = ( v _ { 1 } , \dots , v _ { m } ) \in V$ ; confidence 0.332 | + | 35. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051073.png ; $\mathbf{u} = ( u _ { 1 } , \dots , u _ { m } ) , \mathbf{v} = ( v _ { 1 } , \dots , v _ { m } ) \in \mathbf{V}$ ; confidence 0.332 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005099.png ; $e ^ { s } ( T , V ) = e \Rightarrow e ( T , V ) = e \Rightarrow e ^ { w } ( T , V ) = e$ ; confidence 0.332 | + | 36. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005099.png ; $e ^ { s } ( T , V ) = e \Rightarrow e ( T , V ) = e \Rightarrow e ^ { w } ( T , V ) = e.$ ; confidence 0.332 |
37. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020025.png ; $a _ { i i } \leq 0$ ; confidence 0.332 | 37. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020025.png ; $a _ { i i } \leq 0$ ; confidence 0.332 | ||
− | 38. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n12001010.png ; $( \pi ( M ) , \ | + | 38. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n12001010.png ; $( \pi ( M ) , \pi_{*} g )$ ; confidence 0.332 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104207.png ; $n = 1,2 , \dots$ ; confidence 0.331 | + | 39. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104207.png ; $n = 1,2 , \dots,$ ; confidence 0.331 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050212.png ; $\sum _ { n \leq x } | + | 40. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050212.png ; $\sum _ { n \leq x } a ( n ) = A _ { 1 } x + O ( \sqrt { x } ) \quad \text { as } x \rightarrow \infty,$ ; confidence 0.331 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232076.png ; $e \leq | + | 41. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232076.png ; $e \leq c$ ; confidence 0.331 |
42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040146.png ; $x _ { 1 } \in X _ { 1 }$ ; confidence 0.331 | 42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040146.png ; $x _ { 1 } \in X _ { 1 }$ ; confidence 0.331 | ||
− | 43. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006046.png ; $H = \ | + | 43. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006046.png ; $H = \bigoplus _ { n } \mathcal{H} _ { n }.$ ; confidence 0.331 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001034.png ; $g ( X , Y ) = g ( X , J Y ) + \alpha ( X ) \alpha ( Y )$ ; confidence 0.331 | + | 44. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001034.png ; $g ( X , Y ) = g (J X , J Y ) + \alpha ( X ) \alpha ( Y )$ ; confidence 0.331 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007085.png ; $( u , v ) \mapsto u _ { | + | 45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007085.png ; $( u , v ) \mapsto u _ { n } v$ ; confidence 0.331 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090195.png ; $\mu _ { \chi } \in Z _ { \geq 0 }$ ; confidence 0.331 | + | 46. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090195.png ; $\mu _ { \chi } \in \mathbf{Z} _ { \geq 0 }$ ; confidence 0.331 |
47. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005040.png ; $\operatorname { Aut } ( G , S ) = \{ \sigma \in \operatorname { Aut } ( G ) : S ^ { \sigma } = S \}$ ; confidence 0.331 | 47. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005040.png ; $\operatorname { Aut } ( G , S ) = \{ \sigma \in \operatorname { Aut } ( G ) : S ^ { \sigma } = S \}$ ; confidence 0.331 | ||
− | 48. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p1201206.png ; $ | + | 48. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p1201206.png ; $g$ ; confidence 0.331 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002011.png ; $\operatorname { lim } _ { | + | 49. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002011.png ; $\operatorname { lim } _ { n \rightarrow \infty } \| \alpha _ { n } + \beta _ { n } \| = 0$ ; confidence 0.331 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200105.png ; $\operatorname { max } _ { 1 \leq k \leq 4 | + | 50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200105.png ; $\operatorname { max } _ { 1 \leq k \leq 4 \left( \begin{array} { c } { n + r - 1 } \\ { r } \end{array} \right)} | g ( k ) | \geq | g ( 0 ) | \left( 2 e \left( \begin{array} { c } { n + r - 1 } \\ { r } \end{array} \right) \right) ^ { - 1 / r }.$ ; confidence 0.330 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040146.png ; $T , \psi \ | + | 51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040146.png ; $T , \psi \vdash_{\text{S}5}$ ; confidence 0.330 |
52. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004056.png ; $J _ { m }$ ; confidence 0.330 | 52. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004056.png ; $J _ { m }$ ; confidence 0.330 | ||
− | 53. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090111.png ; $H _ { n _ { 1 } } ( \int _ { 0 } ^ { 1 } e _ { 1 } ( t ) d B ( t ) ) H _ { n _ { 2 } } ( \int _ { 0 } ^ { 1 } | + | 53. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090111.png ; $.\mathcal{H} _ { n _ { 1 } } \left( \int _ { 0 } ^ { 1 } e _ { 1 } ( t ) d B ( t ) \right) \mathcal{H} _ { n _ { 2 } } \left( \int _ { 0 } ^ { 1 } e _ { 2 } ( t ) d B ( t ) \right) \ldots ,\; n _ { j } \geq 0 ,\; n _ { 1 } + n _ { 2 } + \ldots = n ,\; n \geq 0,$ ; confidence 0.330 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020030.png ; $( f , g ) = \operatorname { lim } _ { \eta \rightarrow \rho - 0 } \int _ { | | + | 54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020030.png ; $( f , g ) = \operatorname { lim } _ { \eta \rightarrow \rho - 0 } \int _ { | z | = \eta } f ( z ) \overline { g ( z ) } d s.$ ; confidence 0.330 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019038.png ; $\ | + | 55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019038.png ; $\varphi_{ * } : K _ { 0 } ^ { \text{alg} } ( A ) \rightarrow \mathbf{C}$ ; confidence 0.330 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019018.png ; $\psi _ { w } = \sum \lambda _ { i } \int _ { R ^ { 3 N } } e ^ { i p z / \hbar } \overline { \psi } _ { i } ( x + \frac { z } { 2 } ) \psi _ { i } ( x - \frac { z } { 2 } ) d z$ ; confidence 0.330 | + | 56. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019018.png ; $\psi _ { \text{w} } = \sum \lambda _ { i } \int _ { \mathbf{R} ^ { 3 N } } e ^ { i p z / \hbar } \overline { \psi } _ { i } \left( x + \frac { z } { 2 } \right) \psi _ { i } \left( x - \frac { z } { 2 } \right) d z.$ ; confidence 0.330 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110390/b11039077.png ; $B \ | + | 57. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110390/b11039077.png ; $B \Gamma$ ; confidence 0.330 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300906.png ; $a x = c$ ; confidence 0.330 | + | 58. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300906.png ; $\mathbf{a} \cdot \mathbf{x} = c$ ; confidence 0.330 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110400/h1104006.png ; $f \in | + | 59. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110400/h1104006.png ; $f \in L _ { 2 }$ ; confidence 0.330 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018011.png ; $\{ E , K , \ | + | 60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018011.png ; $\{ E , \mathcal{K} , \langle \cdot , \cdot \rangle \}$ ; confidence 0.330 |
61. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330 | 61. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330 | ||
− | 62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040349.png ; $ | + | 62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040349.png ; $\leftrightarrow$ ; confidence 0.330 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630116.png ; $H _ { p } ^ { | + | 63. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630116.png ; $H _ { p } ^ { r } ( \Omega )$ ; confidence 0.330 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170141.png ; $\operatorname { | + | 64. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170141.png ; $\operatorname { lnt } C ^ { * }$ ; confidence 0.330 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046034.png ; $R H = ( \oplus _ { b } | + | 65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046034.png ; $R H = ( \oplus _ { b ^{ G} = B } b ) \oplus (\oplus_{ b ^{ G} \neq B } b )$ ; confidence 0.330 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050181.png ; $\sigma _ { Te } ( ( L _ { A } , R _ { B } ) , L ( H ) ) =$ ; confidence 0.330 | + | 66. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050181.png ; $\sigma _ { \text{Te} } ( ( L _ { A } , R _ { B } ) , \mathcal{L} ( \mathcal{H} ) ) =$ ; confidence 0.330 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120209.png ; $\alpha : G ( K _ { \operatorname { tot } } | + | 67. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120209.png ; $\alpha : G ( K _ { \operatorname { tot } S } ) \rightarrow G$ ; confidence 0.330 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520127.png ; $N _ { 1 } = \left\| \begin{array} { c c c c c } { L ( d _ { q + 1 } ) } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { . } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { L ( d _ { n } ) } \end{array} \right\|$ ; confidence 0.330 | + | 68. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520127.png ; $N _ { 1 } = \left\| \begin{array} { c c c c c } { L ( d _ { q + 1 } ) } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { . } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { L ( d _ { n } ) } \end{array} \right\|,$ ; confidence 0.330 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011057.png ; $\psi ( x )$ ; confidence 0.330 | + | 69. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011057.png ; $\psi ( \underline{x} )$ ; confidence 0.330 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012019.png ; $T _ { | + | 70. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012019.png ; $\mathcal{T} _ { \text{H}d }$ ; confidence 0.330 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007052.png ; $ | + | 71. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007052.png ; $ \operatorname {ln} ( d w / d Z )$ ; confidence 0.330 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014017.png ; $A = ( \ | + | 72. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014017.png ; $A = ( a_{i ,\, j} )$ ; confidence 0.330 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021095.png ; $ | + | 73. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021095.png ; $L_{j}$ ; confidence 0.330 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380416.png ; $\ | + | 74. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380416.png ; $\tilde { \Phi }$ ; confidence 0.329 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029083.png ; $\mathfrak { m } \cdot H _ { \mathfrak { m } } ^ { | + | 75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029083.png ; $\mathfrak { m } \cdot H _ { \mathfrak { m } } ^ { i } ( M ) = ( 0 )$ ; confidence 0.329 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160011.png ; $ | + | 76. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160011.png ; $x_{i}$ ; confidence 0.329 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { | + | 77. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { a }$ ; confidence 0.329 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009058.png ; $U _ { | + | 78. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009058.png ; $U _ { n } ^ { ( k ) } ( x ) = x ^ { 1 - n } F _ { n } ^ { ( k ) } ( x ^ { k } ) ,\; n = 1,2 , \ldots .$ ; confidence 0.329 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019029.png ; $HP ^ { | + | 79. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019029.png ; $\operatorname{HP} ^ { q } ( \mathbf{C} [ \Gamma ] )$ ; confidence 0.329 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034034.png ; $K _ { | + | 80. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034034.png ; $K _ { cr } = K _ { + } - K _ { - }$ ; confidence 0.329 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028013.png ; $U _ { z } \ | + | 81. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028013.png ; $U _ { z } \hat { x } ( n ) = z ^ { n } \hat { x } ( n )$ ; confidence 0.329 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001025.png ; $\left( \begin{array} { l } { v } \\ { \theta } \\ { p } \end{array} \right) = \sum _ { n = 0 } ^ { \infty } \varepsilon ^ { n } \left( \begin{array} { c } { v _ { n } } \\ { \theta _ { n } } \\ { p _ { n } } \end{array} \right)$ ; confidence 0.329 | + | 82. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001025.png ; $\left( \begin{array} { l } { \mathbf{v} } \\ { \theta } \\ { p } \end{array} \right) = \sum _ { n = 0 } ^ { \infty } \varepsilon ^ { n } \left( \begin{array} { c } { \mathbf{v} _ { n } } \\ { \theta _ { n } } \\ { p _ { n } } \end{array} \right),$ ; confidence 0.329 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004036.png ; $\ | + | 83. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004036.png ; $\odot = +$ ; confidence 0.329 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005041.png ; $\mathfrak { D } _ { \ | + | 84. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005041.png ; $\mathfrak { D } _ {\text{p} }$ ; confidence 0.329 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001040.png ; $x ( z ) z ^ { n - 1 }$ ; confidence 0.329 | + | 85. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001040.png ; $\tilde{x} ( z ) z ^ { n - 1 }$ ; confidence 0.329 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004020.png ; $a | + | 86. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004020.png ; $a _{p}$ ; confidence 0.329 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011070.png ; $\{ \mu _ { | + | 87. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011070.png ; $\{ \mu _ { n } ( x ) : x = 1,2 , \ldots \}$ ; confidence 0.329 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041037.png ; $b _ { | + | 88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041037.png ; $b _ { n ,\, n - k} \neq 0$ ; confidence 0.328 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013038.png ; $ | + | 89. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013038.png ; $\operatorname {mod} \Lambda$ ; confidence 0.328 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020127.png ; $\| \phi - f \| _ { L } \ | + | 90. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020127.png ; $\| \phi - f \| _ { L ^{\infty} ( \mathbf{T} )} = \| H _ { \phi } \|$ ; confidence 0.328 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020098.png ; $1 / ( P _ { m , n } - \epsilon )$ ; confidence 0.328 | + | 91. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020098.png ; $1 / ( P _ { m ,\, n } - \epsilon )$ ; confidence 0.328 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007064.png ; $r \in | + | 92. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007064.png ; $r \in \operatorname { sl} _ { 2 } \otimes \operatorname { sl} _ { 2 }$ ; confidence 0.328 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066085.png ; $\ | + | 93. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066085.png ; $\mathbf{C}^{m}$ ; confidence 0.328 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180309.png ; $A ^ { 2 } E \otimes A ^ { 2 } E \subset \otimes ^ { 4 } E$ ; confidence 0.327 | + | 94. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180309.png ; $\mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E} \subset \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.327 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110079.png ; $ | + | 95. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110079.png ; $a \in A$ ; confidence 0.327 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691034.png ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { | + | 96. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691034.png ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { a } ^ { b } f ( x ) d g _ { n } ( x ) = \int _ { a } ^ { b } f ( x ) d g ( x ),$ ; confidence 0.327 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a1104602.png ; $\ | + | 97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a1104602.png ; $\overset{\rightharpoonup }{ v }$ ; confidence 0.327 |
98. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013050/a0130502.png ; $d = ( d _ { 1 } , \dots , d _ { n } )$ ; confidence 0.327 | 98. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013050/a0130502.png ; $d = ( d _ { 1 } , \dots , d _ { n } )$ ; confidence 0.327 | ||
Line 198: | Line 198: | ||
99. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013020.png ; $H ( r _ { 0 } , \theta )$ ; confidence 0.327 | 99. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013020.png ; $H ( r _ { 0 } , \theta )$ ; confidence 0.327 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035013.png ; $ | + | 100. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035013.png ; $\hat{y} ( t | t - 1 ) = f ( Z ^ { t - 1 } , t ).$ ; confidence 0.327 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015046.png ; $ | + | 101. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015046.png ; $\zeta_{e}$ ; confidence 0.327 |
102. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007066.png ; $\forall x \in P$ ; confidence 0.327 | 102. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007066.png ; $\forall x \in P$ ; confidence 0.327 | ||
Line 206: | Line 206: | ||
103. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302309.png ; $L _ { 0 } \sim _ { c } L _ { 0 } ^ { \prime }$ ; confidence 0.327 | 103. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302309.png ; $L _ { 0 } \sim _ { c } L _ { 0 } ^ { \prime }$ ; confidence 0.327 | ||
− | 104. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059048.png ; $\sum | + | 104. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059048.png ; $\sum e_{ n}$ ; confidence 0.327 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041030.png ; $ | + | 105. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041030.png ; $P^{1}$ ; confidence 0.327 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840274.png ; $\sigma ( A | _ { ( I - E ( \Delta ) ) K } ) \subset \overline { ( R \backslash \Delta ) } \cup \sigma _ { 0 } ( A )$ ; confidence 0.327 | + | 106. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840274.png ; $\sigma ( A | _ { ( I - E ( \Delta ) ) \mathcal{K} } ) \subset \overline { ( \mathbf{R} \backslash \Delta ) } \cup \sigma _ { 0 } ( A )$ ; confidence 0.327 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540104.png ; $x _ { i } | + | 107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540104.png ; $x _ { i j }( \cdot )$ ; confidence 0.327 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019029.png ; $A _ { \ | + | 108. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019029.png ; $A _ { \text{w} } ( x , p ) =$ ; confidence 0.327 |
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420110.png ; $| v | , | w | , | z | \in G$ ; confidence 0.326 | 109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420110.png ; $| v | , | w | , | z | \in G$ ; confidence 0.326 | ||
− | 110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040409.png ; $Mod ^ { * } | + | 110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040409.png ; $\operatorname{Mod} ^ { * \text{L}} \mathcal{D} = \mathbf{P} _ { \text{SD} } \operatorname{Mod} ^ { * \text{L}} \mathcal{D}$ ; confidence 0.326 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702025.png ; $ | + | 111. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702025.png ; $\mathbf{Z} / l ^ { n } \mathbf{Z}$ ; confidence 0.326 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011035.png ; $\frac { 1 } { N } \sum _ { | + | 112. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011035.png ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } \prod _ { i = 1 } ^ { H } f _ { i } \circ T ^ { i n }$ ; confidence 0.326 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014038.png ; $D _ { | + | 113. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014038.png ; $D _ { n } ( x , 0 ) = x ^ { n }$ ; confidence 0.326 |
114. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005035.png ; $\mathfrak { H } _ { + }$ ; confidence 0.326 | 114. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005035.png ; $\mathfrak { H } _ { + }$ ; confidence 0.326 | ||
− | 115. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008029.png ; $K f : = ( K f ) ( | + | 115. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008029.png ; $K f : = ( K f ) ( \cdot ) = ( f , K ( x , ) ) = f ( \cdot )$ ; confidence 0.326 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170181.png ; $M _ { | + | 116. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170181.png ; $M _ { r_{j} } ( n + k _ { j } ) \geq 0$ ; confidence 0.326 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \ | + | 117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $^{ \bigtriangleup } _ { \bigtriangledown } ( G / K )$ ; confidence 0.326 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c11040046.png ; $ | + | 118. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c11040046.png ; $o$ ; confidence 0.326 |
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160123.png ; $e ^ { a }$ ; confidence 0.326 | 119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160123.png ; $e ^ { a }$ ; confidence 0.326 | ||
− | 120. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001030.png ; $| k | ^ { 2 } = k _ { 1 } ^ { 2 } + \ldots + k _ { | + | 120. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001030.png ; $| k | ^ { 2 } = k _ { 1 } ^ { 2 } + \ldots + k _ { n } ^ { 2 }$ ; confidence 0.326 |
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201001.png ; $F ( t ) = ( F _ { 1 } ( t , x _ { 1 } ) , \ldots , F _ { n } ( t , x _ { 1 } , \ldots , x _ { n } ) , \ldots )$ ; confidence 0.326 | 121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201001.png ; $F ( t ) = ( F _ { 1 } ( t , x _ { 1 } ) , \ldots , F _ { n } ( t , x _ { 1 } , \ldots , x _ { n } ) , \ldots )$ ; confidence 0.326 | ||
− | 122. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601048.png ; $ | + | 122. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601048.png ; $\operatorname{dim} W \geq 6$ ; confidence 0.326 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008019.png ; $S ( R ^ { 2 n } )$ ; confidence 0.326 | + | 123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008019.png ; $S ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.326 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300305.png ; $\Gamma \subset | + | 124. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300305.png ; $\Gamma \subset \operatorname{GL} _ { 2 } ( \mathbf{Z} )$ ; confidence 0.325 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148063.png ; $a _ { 0 } , \dots , a _ { | + | 125. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148063.png ; $a _ { 0 } , \dots , a _ { n }$ ; confidence 0.325 |
126. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009075.png ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n \}$ ; confidence 0.325 | 126. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009075.png ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n \}$ ; confidence 0.325 | ||
− | 127. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002021.png ; $P ( A _ { 1 } \ | + | 127. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002021.png ; $\mathsf{P} ( A _ { i_{1} } \bigcap \ldots \bigcap A _ { i_{k} } ) = \frac { ( n - k ) ! } { n ! },$ ; confidence 0.325 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002010.png ; $| d ( K )$ ; confidence 0.325 | + | 128. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002010.png ; $\operatorname{log} | d ( K ) |$ ; confidence 0.325 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018069.png ; $r _ { 2 } ( t , s ) = \prod _ { | + | 129. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018069.png ; $r _ { 2 } ( t , s ) = \prod _ { i = 1 } ^ { N } t _ { i } \wedge s _ { i } - \prod _ { i = 1 } ^ { N } t _ { i } s _ { i } ,$ ; confidence 0.325 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019041.png ; $\phi ( \sigma , \tau ) = \int _ { R ^ { 3 N } \times R ^ { 3 N } } e ^ { i ( \sigma x + r | + | 130. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019041.png ; $\phi ( \sigma , \tau ) = \int _ { \mathbf{R} ^ { 3 N } \times \mathbf{R} ^ { 3 N } } e ^ { i ( \sigma x + r \cdot p ) / \hbar } f ( x , p ) d x d p.$ ; confidence 0.325 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003081.png ; $I _ { nd } = \{ ( u | + | 131. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003081.png ; $\mathcal{I} _ { \text{nd} } = \{ ( u _{j} )_{ j \in \mathbf{N}}$ ; confidence 0.325 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301301.png ; $B = g | + | 132. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301301.png ; $\mathbf{B} = g \frac { \mathbf{r} } { r^{3} },$ ; confidence 0.325 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090110.png ; $P ( X = n ) = p ^ { r } H _ { n + 1 , r } ^ { ( k ) } ( q _ { 1 } , \dots , q _ { k } )$ ; confidence 0.325 | + | 133. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090110.png ; $\mathsf{P} ( X = n ) = p ^ { r } H _ { n + 1 , r } ^ { ( k ) } ( q _ { 1 } , \dots , q _ { k } ),$ ; confidence 0.325 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005096.png ; $\sigma _ { T } ( L _ { | + | 134. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005096.png ; $\sigma _ { T } ( L _ { a } , \mathcal{B} ) = \sigma _ { T } ( a , \mathcal{H} )$ ; confidence 0.325 |
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040541.png ; $h ( \psi ^ { i } ) \in C ( \{ h ( \varphi _ { 0 } ^ { i } ) , \ldots , h ( \varphi _ { n _ { i } - 1 } ^ { i } ) \} )$ ; confidence 0.325 | 135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040541.png ; $h ( \psi ^ { i } ) \in C ( \{ h ( \varphi _ { 0 } ^ { i } ) , \ldots , h ( \varphi _ { n _ { i } - 1 } ^ { i } ) \} )$ ; confidence 0.325 | ||
− | 136. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004017.png ; $\lambda _ { 1 } \geq \frac { 4 \pi ^ { 2 } | + | 136. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004017.png ; $\lambda _ { 1 } \geq \frac { 4 \pi ^ { 2 } j _ { 0,1 } ^ { 2 } } { L ^ { 2 } },$ ; confidence 0.325 |
137. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663036.png ; $H _ { p } ^ { r } ( \Omega ) = H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( \Omega )$ ; confidence 0.325 | 137. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663036.png ; $H _ { p } ^ { r } ( \Omega ) = H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( \Omega )$ ; confidence 0.325 | ||
− | 138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031010.png ; $ | + | 138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031010.png ; $M$ ; confidence 0.325 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025012.png ; $( \partial , | + | 139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025012.png ; $( \partial , \circ )$ ; confidence 0.325 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327031.png ; $A \rightarrow \overline { A } = \operatorname { sp } ( A ) \ | + | 140. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327031.png ; $A \rightarrow \overline { A } = \operatorname { sp } ( A ) \bigcap S,$ ; confidence 0.324 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f1200407.png ; $f ^ { c ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \{ \varphi ( x , w ) - f ( x ) \} ( w \in W )$ ; confidence 0.324 | + | 141. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f1200407.png ; $f ^ { c ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \{ \varphi ( x , w ) - f ( x ) \} ( w \in W ),$ ; confidence 0.324 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324 | + | 142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $\mathbf{c}$ ; confidence 0.324 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210012.png ; $\chi _ { | + | 143. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210012.png ; $\chi _ { n } ^ { 2 } = X _ { 1 } ^ { 2 } + \ldots + X _ { n } ^ { 2 }$ ; confidence 0.324 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011036.png ; $G _ { | + | 144. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011036.png ; $G _ { n } ( x ) x \approx \mu _ { n } ,\; x = f _{( 1 , n )} , f _{( 2 , n )}, \dots .$ ; confidence 0.324 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012061.png ; $p \in P _ { L }$ ; confidence 0.324 | + | 145. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012061.png ; $\operatorname { p} \in P _ { L }$ ; confidence 0.324 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024094.png ; $C H ^ { | + | 146. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024094.png ; $C H ^ { r } ( X \otimes _ { K } K _ { n } )$ ; confidence 0.324 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290116.png ; $ | + | 147. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290116.png ; $\mathbf{TOP}$ ; confidence 0.324 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017057.png ; $y \ | + | 148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017057.png ; $y \succsim _{i} x $ ; confidence 0.324 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001020.png ; $\psi ( a ( z ) ( \frac { d } { d z } ) ^ { n } , b ( z ) ( \frac { d } { d z } ) ^ { m } ) =$ ; confidence 0.324 | + | 149. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001020.png ; $\psi \left( a ( z ) \left( \frac { d } { d z } \right) ^ { n } , b ( z ) \left( \frac { d } { d z } \right) ^ { m } \right) =$ ; confidence 0.324 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021085.png ; $ | + | 150. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021085.png ; $c_{j}$ ; confidence 0.323 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002033.png ; $v ^ { * } = \sum _ { k \in P } \lambda _ { k } x ^ { ( k ) } + \sum _ { k \in R } \mu _ { k } x ^ { ( k ) }$ ; confidence 0.323 | + | 151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002033.png ; $v ^ { * } = \sum _ { k \in P } \lambda _ { k } x ^ { ( k ) } + \sum _ { k \in R } \mu _ { k } \tilde{x} ^ { ( k ) },$ ; confidence 0.323 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032017.png ; $ | + | 152. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032017.png ; $L_{\overline{0}}$ ; confidence 0.323 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004075.png ; $\hat { | + | 153. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004075.png ; $\hat { u } _ { i } ^ { + } = u _ { i } ^ { n } + \frac { \Delta t } { \Delta x } ( f _ { i } ^ { n } - f _ { i + 1 } ^ { n } );$ ; confidence 0.323 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030100.png ; $\| x _ { | + | 154. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030100.png ; $\| x _ { n } \| _ { \rightarrow } \| x \|$ ; confidence 0.323 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530234.png ; $ | + | 155. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530234.png ; $\aleph_{0}$ ; confidence 0.323 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323 | + | 156. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $N _ { 2 } = \left\| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right\|.$ ; confidence 0.323 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007067.png ; $L \in \operatorname { PSH } ( C ^ { n } )$ ; confidence 0.323 | + | 157. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007067.png ; $L \in \operatorname { PSH } ( \mathbf{C} ^ { n } )$ ; confidence 0.323 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420144.png ; $ | + | 158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420144.png ; $\triangleright$ ; confidence 0.323 |
159. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140129.png ; $r _ { j , 1 }$ ; confidence 0.323 | 159. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140129.png ; $r _ { j , 1 }$ ; confidence 0.323 | ||
− | 160. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023058.png ; $\times \int _ { \Gamma } f ( \zeta ) ( \frac { \operatorname { grad } \psi } { | + | 160. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023058.png ; $\times \int _ { \Gamma } f ( \zeta ) \left( \frac { \operatorname { grad } \psi } { ( \operatorname { grad } \psi , \zeta ) } \right) ^ { q } \operatorname {CF} ( \zeta , \operatorname { grad } \psi ),$ ; confidence 0.323 |
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032074.png ; $( a _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.323 | 161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032074.png ; $( a _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.323 | ||
− | 162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008046.png ; $A _ { 2 } \in C ^ { p \times m | + | 162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008046.png ; $A _ { 2 } \in C ^ { p \times m n }$ ; confidence 0.322 |
163. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020183.png ; $\underline { v } = - \infty$ ; confidence 0.322 | 163. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020183.png ; $\underline { v } = - \infty$ ; confidence 0.322 | ||
Line 328: | Line 328: | ||
164. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080202.png ; $B ( \hat { K } ) = M ( G )$ ; confidence 0.322 | 164. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080202.png ; $B ( \hat { K } ) = M ( G )$ ; confidence 0.322 | ||
− | 165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060146.png ; $P _ { E } ^ { \# } ( n )$ ; confidence 0.322 | + | 165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060146.png ; $\mathcal{P} _ { E } ^ { \# } ( n )$ ; confidence 0.322 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040123.png ; $\| x \| _ { X } = \operatorname { sup } \{ | \int _ { \Omega } x x ^ { \prime } d \mu | : x ^ { \prime } \in X ^ { \prime } , \| x ^ { \prime } \| _ { X ^ { \prime } } \leq 1 \}$ ; confidence 0.322 | + | 166. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040123.png ; $\| x \| _ { X } = \operatorname { sup } \left\{ \left| \int _ { \Omega } x x ^ { \prime } d \mu \right| : x ^ { \prime } \in X ^ { \prime } , \| x ^ { \prime } \| _ { X ^ { \prime } } \leq 1 \right\},$ ; confidence 0.322 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302204.png ; $P _ { | + | 167. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302204.png ; $P _ { k }$ ; confidence 0.322 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002018.png ; $D = \ | + | 168. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002018.png ; $D = \liminf _ { n \rightarrow \infty } M ( r _ { 1 } , r _ { 2 } ) ^ { 1 / n } \geq 22.$ ; confidence 0.322 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004030.png ; $D y _ { n } ^ { * } ( x )$ ; confidence 0.322 | + | 169. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004030.png ; $\mathbf{D} y _ { n } ^ { * } ( x )$ ; confidence 0.322 |
170. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002027.png ; $G ( v , t ) = g _ { t } ( v )$ ; confidence 0.322 | 170. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002027.png ; $G ( v , t ) = g _ { t } ( v )$ ; confidence 0.322 | ||
− | 171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322 | + | 171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = \mathbf{X} _ { 4 } ^ { \prime } \Sigma \mathbf{X} _ { 4 }$ ; confidence 0.322 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140143.png ; $S = \{ \zeta : | \zeta _ { j } | = 1 , j = 2 , \dots , n \}$ ; confidence 0.322 | + | 172. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140143.png ; $S = \{ \zeta : | \zeta _ { j } | = 1 ,\; j = 2 , \dots , n \}$ ; confidence 0.322 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023097.png ; $\{ | + | 173. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023097.png ; $\{ u_ { i } , v _ { i } \}$ ; confidence 0.322 |
174. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020130.png ; $X ^ { 1 }$ ; confidence 0.322 | 174. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020130.png ; $X ^ { 1 }$ ; confidence 0.322 | ||
− | 175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { | + | 175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ {a } , \xi ^ { b } ] = 2 \epsilon _ { a b c } \xi ^ { c }$ ; confidence 0.322 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450184.png ; $ | + | 176. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450184.png ; $\tilde{X}$ ; confidence 0.322 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101108.png ; $ | + | 177. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101108.png ; $b_{r}$ ; confidence 0.322 |
178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150180.png ; $\| T \| < \Gamma ( A )$ ; confidence 0.322 | 178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150180.png ; $\| T \| < \Gamma ( A )$ ; confidence 0.322 | ||
− | 179. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010051.png ; $L _ { \gamma , n } ^ { 1 } \leq L _ { \gamma , | + | 179. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010051.png ; $L _ { \gamma , n } ^ { 1 } \leq L _ { \gamma ,n }$ ; confidence 0.322 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003015.png ; $ | + | 180. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003015.png ; $\mathbf{CP} ^ { 2 }$ ; confidence 0.322 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040018.png ; $ | + | 181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040018.png ; $ \operatorname { stab}_{G} (m)$ ; confidence 0.322 |
182. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007057.png ; $= e ^ { - i \pi / 4 } \sum _ { A < m \leq A + B } | f ^ { \prime } ( x _ { m } ) | ^ { - 1 / 2 } e ^ { 2 \pi i ( f ( x _ { m } ) - m x _ { m } ) } +$ ; confidence 0.321 | 182. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007057.png ; $= e ^ { - i \pi / 4 } \sum _ { A < m \leq A + B } | f ^ { \prime } ( x _ { m } ) | ^ { - 1 / 2 } e ^ { 2 \pi i ( f ( x _ { m } ) - m x _ { m } ) } +$ ; confidence 0.321 | ||
− | 183. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029055.png ; $T ( \underline { | + | 183. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029055.png ; $\mathcal{T} ( \underline { \top } ) = \top $ ; confidence 0.321 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001095.png ; $G = \operatorname { Sp } ( 2 n , Q )$ ; confidence 0.321 | + | 184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001095.png ; $G = \operatorname { Sp } ( 2 n , \mathbf{Q} )$ ; confidence 0.321 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007093.png ; $\Gamma _ { | + | 185. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007093.png ; $\Gamma _ { h }$ ; confidence 0.321 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015072.png ; $E _ { P _ { p } } ( | + | 186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015072.png ; $\mathsf{E} _ { \text{P} _ { p } } ( d ) = f ( p )$ ; confidence 0.321 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014012.png ; $CS ( A ) = \frac { 1 } { 4 \pi } \int _ { M } \operatorname { Tr } ( A \ | + | 187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014012.png ; $\operatorname {CS} ( A ) = \frac { 1 } { 4 \pi } \int _ { M } \operatorname { Tr } ( A \bigwedge d A + \frac { 2 } { 3 } A \bigwedge A \bigwedge A ) \operatorname { mod } 2 \pi ,$ ; confidence 0.321 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012085.png ; $Y _ { aug } = \{ ( y _ { i } , q _ { i } ) : i = 1 , \ldots , n \}$ ; confidence 0.321 | + | 188. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012085.png ; $Y _ { \text{aug} } = \{ ( y _ { i } , q _ { i } ) : i = 1 , \ldots , n \}$ ; confidence 0.321 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300802.png ; $u _ { t } - 6 u u _ { x } + u _ { | + | 189. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300802.png ; $u _ { t } - 6 u u _ { x } + u _ { xxx } = 0.$ ; confidence 0.321 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301404.png ; $ | + | 190. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301404.png ; $q_{Q} : \mathbf{Z} ^ { Q _ { 0 } } \rightarrow \mathbf{Z} $ ; confidence 0.321 |
191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200140.png ; $\operatorname { max } _ { r = m + 1 , \ldots , m + n } | g ( r ) | \geq$ ; confidence 0.321 | 191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200140.png ; $\operatorname { max } _ { r = m + 1 , \ldots , m + n } | g ( r ) | \geq$ ; confidence 0.321 | ||
− | 192. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002024.png ; $\operatorname { sup } _ { | + | 192. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002024.png ; $\operatorname { sup } _ { u \in U } | b ( u , v ) | > 0 , \forall v \in V \backslash \{ 0 \} ),$ ; confidence 0.321 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v1300605.png ; $\operatorname { exp } ( \sum _ { n \in N + 1 / 2 } \frac { y _ { n } } { n } x ^ { n } ) \operatorname { exp } ( - 2 \sum _ { n \in N + 1 / 2 } \frac { \partial } { \partial y _ { n } } x ^ { - n } )$ ; confidence 0.321 | + | 193. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v1300605.png ; $\operatorname { exp } \left( \sum _ { n \in \mathbf{N} + 1 / 2 } \frac { y _ { n } } { n } x ^ { n } \right) \operatorname { exp } \left( - 2 \sum _ { n \in \mathbf{N} + 1 / 2 } \frac { \partial } { \partial y _ { n } } x ^ { - n } \right),$ ; confidence 0.321 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017026.png ; $\{ x _ { s } ^ { ( | + | 194. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017026.png ; $\left\{ x _ { s } ^ { ( i ) } : s \leq t ,\, i = 1 , \dots , n \right\}$ ; confidence 0.320 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702085.png ; $H _ { l } ^ { i } = H ^ { i } ( X , Q ) \otimes Q$ ; confidence 0.320 | + | 195. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702085.png ; $H _ { l } ^ { i } = H ^ { i } ( X , \mathbf{Q} ) \otimes \mathbf{Q} _ { l }$ ; confidence 0.320 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009036.png ; $\ | + | 196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009036.png ; $\overline{c} _ { n } b _ { n } = b _ { n + 2 } + 2 ( n + 1 ) a _ { n + 1 }$ ; confidence 0.320 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200143.png ; $ | + | 197. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200143.png ; $\operatorname {min}_{ \mu \neq \nu} | z _ { \mu } - z _ { \nu } | \geq \delta \operatorname { max } _ { j } | z _ { j }|$ ; confidence 0.320 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017044.png ; $\langle | + | 198. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017044.png ; $\langle a , b | a = [ a ^ { p } , b ^ { q } ] , b = [ a ^ { r } , b ^ { s } ] \rangle$ ; confidence 0.320 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180109.png ; $\varphi ( | + | 199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180109.png ; $\varphi ( v_ { 0 } , \dots , v _ { n - 1} )$ ; confidence 0.320 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200306.png ; $T _ { | + | 200. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200306.png ; $T _ { n } = T _ { n } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.320 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001049.png ; $ | + | 201. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001049.png ; $\chi_{ ( 1 ^ { n } )}$ ; confidence 0.320 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003017.png ; $c _ { 1 } ( S ) ^ { 2 } \leq 3 | + | 202. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003017.png ; $c _ { 1 } ( S ) ^ { 2 } \leq 3 c_ { 2 } ( S )$ ; confidence 0.319 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030034.png ; $K _ { | + | 203. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030034.png ; $\mathcal{K} _ { n_{\alpha} }$ ; confidence 0.319 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002012.png ; $P ( A _ { 1 } \cap \ldots \cap A _ { n } ) = 1 - P ( \overline { A } _ { 1 } \cup \ldots \cup \overline { A } _ { n } )$ ; confidence 0.319 | + | 204. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002012.png ; $\mathsf{P} ( A _ { 1 } \cap \ldots \cap A _ { n } ) = 1 - \mathsf{P} ( \overline { A } _ { 1 } \cup \ldots \cup \overline { A } _ { n } )$ ; confidence 0.319 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004033.png ; $\ | + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004033.png ; $\vdash_{\mathcal{D}} \varphi$ ; confidence 0.319 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300302.png ; $ | + | 206. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300302.png ; $s _ { 1 } , s_{ 2} , \ldots$ ; confidence 0.319 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180152.png ; $ | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180152.png ; $\operatorname{Id}$ ; confidence 0.319 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021024.png ; $\ldots \rightarrow D _ { 2 } \stackrel { \delta _ { 2 } } { \rightarrow } D _ { 1 } \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } M \rightarrow 0$ ; confidence 0.319 | + | 208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021024.png ; $\ldots \rightarrow D _ { 2 } \stackrel { \delta _ { 2 } } { \rightarrow } D _ { 1 } \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } M \rightarrow 0.$ ; confidence 0.319 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004072.png ; $p _ { \lambda _ { | + | 209. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004072.png ; $p _ { \lambda _ { i } } = x _ { 1 } ^ { \lambda _ { i } } + \ldots + x _ { l } ^ { \lambda _ { i } }$ ; confidence 0.319 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023034.png ; $A ( \sigma ) = \int _ { M } L ( \sigma ^ { 1 } ( x ) ) d x = \int _ { M } L ( x , y ( x ) , y ^ { \prime } ( x ) ) d x$ ; confidence 0.319 | + | 210. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023034.png ; $\mathcal{A} ( \sigma ) = \int _ { M } L ( \sigma ^ { 1 } ( x ) ) d x = \int _ { M } L ( x , y ( x ) , y ^ { \prime } ( x ) ) d x.$ ; confidence 0.319 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006039.png ; $Z \ | + | 211. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006039.png ; $Z \times_{ S } Y$ ; confidence 0.319 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010158.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { | + | 212. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010158.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) \sigma \wedge ( \overline { \partial } \sigma ) ^ { n - 1 } } { ( 1 + \langle z , \sigma \rangle ) ^ { n } } ,\, z \in E.$ ; confidence 0.319 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005011.png ; $( C ^ { \infty } ( R ^ { m } , R ) , A )$ ; confidence 0.319 | + | 213. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005011.png ; $\operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A )$ ; confidence 0.319 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010121.png ; $( a \ | + | 214. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010121.png ; $( a \bigwedge b = 0 ) \& ( c \succeq 0 ) \Rightarrow ( c a \bigwedge b = 0 ) \& ( a c \bigwedge b = 0 ).$ ; confidence 0.318 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028014.png ; $f _ { m } , f \in A ( U )$ ; confidence 0.318 | + | 215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028014.png ; $f _ { m } ,\, f \in A ( U )$ ; confidence 0.318 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009092.png ; $H _ { | + | 216. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009092.png ; $H _ { n } ^ { ( k ) } ( \mathbf{x} ) = U _ { n } ^ { ( k ) } ( \mathbf{x} )$ ; confidence 0.318 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001027.png ; $[ z _ { 1 } , \dots , z _ { | + | 217. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001027.png ; $\mathbf{Q}[ z _ { 1 } , \dots , z _ { n } ]$ ; confidence 0.318 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006020.png ; $D _ { g , n }$ ; confidence 0.318 | + | 218. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006020.png ; $\mathcal{D} _ { g , n }$ ; confidence 0.318 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029058.png ; $HF _ { * } ^ { symp } ( M , \text { id } ) \cong QH ^ { * } ( M )$ ; confidence 0.318 | + | 219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029058.png ; $\operatorname{HF} _ { * } ^ { \text{symp} } ( M , \text { id } ) \cong \operatorname{QH} ^ { * } ( M )$ ; confidence 0.318 |
220. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005036.png ; $R = R _ { c } + \varepsilon ^ { 2 }$ ; confidence 0.318 | 220. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005036.png ; $R = R _ { c } + \varepsilon ^ { 2 }$ ; confidence 0.318 | ||
Line 442: | Line 442: | ||
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022043.png ; $g : X \rightarrow C$ ; confidence 0.318 | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022043.png ; $g : X \rightarrow C$ ; confidence 0.318 | ||
− | 222. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013040.png ; $c _ { | + | 222. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013040.png ; $c _ { n , i }$ ; confidence 0.318 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301307.png ; $[ \partial _ { r r } + \frac { 2 } { r } \partial _ { r } + \frac { 1 } { r ^ { 2 } } \partial _ { \theta \theta } + \frac { \operatorname { ctan } \theta } { r ^ { 2 } } \partial _ { \theta } + \frac { 1 } { r ^ { 2 } \operatorname { sin } ^ { 2 } \theta } \partial _ { \varphi \varphi } ] H = 0$ ; confidence 0.318 | + | 223. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301307.png ; $\left[ \partial _ { r r } + \frac { 2 } { r } \partial _ { r } + \frac { 1 } { r ^ { 2 } } \partial _ { \theta \theta } + \frac { \operatorname { ctan } \theta } { r ^ { 2 } } \partial _ { \theta } + \frac { 1 } { r ^ { 2 } \operatorname { sin } ^ { 2 } \theta } \partial _ { \varphi \varphi } \right] H = 0$ ; confidence 0.318 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032032.png ; $S _ { | + | 224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032032.png ; $S _ { n } = K$ ; confidence 0.318 |
225. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006091.png ; $T _ { A } M$ ; confidence 0.318 | 225. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006091.png ; $T _ { A } M$ ; confidence 0.318 | ||
− | 226. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009070.png ; $R _ { c } ( p ; k , n ) = p q ^ { n - 1 } \sum _ { j = 1 } ^ { k } j F _ { n - j + 1 } ^ { ( k ) } | + | 226. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009070.png ; $R _ { c } ( p ; k , n ) = p q ^ { n - 1 } \sum _ { j = 1 } ^ { k } j F _ { n - j + 1 } ^ { ( k ) } ( \frac { p } { q } ),$ ; confidence 0.318 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100114.png ; $\ | + | 227. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100114.png ; $\hat{\gamma} = \gamma$ ; confidence 0.318 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002069.png ; $( x \vee y ) ^ { - 1 } = x ^ { - 1 } | + | 228. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002069.png ; $( x \vee y ) ^ { - 1 } = x ^ { - 1 } \bigwedge y ^ { - 1 }.$ ; confidence 0.318 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015035.png ; $J _ { | + | 229. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015035.png ; $J _ { n / 2}$ ; confidence 0.318 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022079.png ; $F ( u ) = u ( x ) - q | + | 230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022079.png ; $F ( u ) = u ( x ) - q _{I} ( x )$ ; confidence 0.318 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007038.png ; $y _ { j } = \sum _ { i = j } ^ { k } p _ { j } \ldots p _ { i - 1 } m _ { i } r ^ { j - i - 1 }$ ; confidence 0.318 | + | 231. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007038.png ; $y _ { j } = \sum _ { i = j } ^ { k } p _ { j } \ldots p _ { i - 1 } m _ { i } r ^ { j - i - 1 }.$ ; confidence 0.318 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005025.png ; $\varphi _ { + } \in E$ ; confidence 0.318 | + | 232. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005025.png ; $\varphi _ { + } \in \mathfrak{E}$ ; confidence 0.318 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170198.png ; $\pi _ { | + | 233. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170198.png ; $\pi _ { n } ( K )$ ; confidence 0.317 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013035.png ; $\rho : W \rightarrow | + | 234. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013035.png ; $\rho : W \rightarrow O _ { 2^{n} } ( \mathbf{R} )$ ; confidence 0.317 |
235. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024049.png ; $+ \operatorname { dim } _ { \Phi } \{ L ( x , y ) \} _ { \operatorname { span } } =$ ; confidence 0.317 | 235. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024049.png ; $+ \operatorname { dim } _ { \Phi } \{ L ( x , y ) \} _ { \operatorname { span } } =$ ; confidence 0.317 | ||
− | 236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043060.png ; $k | + | 236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043060.png ; $k \langle x , y \rangle$ ; confidence 0.317 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520390.png ; $ | + | 237. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520390.png ; $gi_{Q}$ ; confidence 0.317 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b1204903.png ; $\operatorname { lim } _ { | + | 238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b1204903.png ; $\operatorname { lim } _ { n \rightarrow \infty } m ( E _ { n } ) = 0$ ; confidence 0.317 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020091.png ; $M _ { 3 } = \operatorname { min } _ { z _ { j } } \operatorname { max } _ { k = 3 , \ldots , n + 2 } | s _ { k } | < \frac { 1 } { 1.473 ^ { n } } \text { for } n > n _ { 0 }$ ; confidence 0.317 | + | 239. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020091.png ; $M _ { 3 } = \operatorname { min } _ { z _ { j } } \operatorname { max } _ { k = 3 , \ldots , n + 2 } | s _ { k } | < \frac { 1 } { 1.473 ^ { n } } \text { for } n > n _ { 0 }.$ ; confidence 0.317 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020054.png ; $\varepsilon _ { | + | 240. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020054.png ; $\varepsilon _ { t }$ ; confidence 0.317 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002013.png ; $\ | + | 241. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002013.png ; $\zeta_{ K } ( s _ { 0 } ) \neq 0$ ; confidence 0.317 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019015.png ; $S ^ { * } ( \frac { | + | 242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019015.png ; $S ^ { * } \left( \frac { a } { q } \right) = \sum _ { h } e \left( \mathbf{x} ( h ) \mathbf{y} \left( \frac { a } { q } \right) \right) \gamma ( h ) \delta \left( \frac { a } { q } \right)$ ; confidence 0.317 |
243. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001023.png ; $\operatorname { deg } f _ { i } \leq c _ { n } d ^ { n }$ ; confidence 0.317 | 243. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001023.png ; $\operatorname { deg } f _ { i } \leq c _ { n } d ^ { n }$ ; confidence 0.317 | ||
− | 244. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080156.png ; $\mu _ { | + | 244. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080156.png ; $\mu _ { a } ^ { 0 }$ ; confidence 0.317 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010037.png ; $\operatorname { exp } [ - \frac { 1 } { 2 } \lambda _ { d } \frac { t } { f ( t ) ^ { 2 / d | + | 245. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010037.png ; $\operatorname { exp } \left[ - \frac { 1 } { 2 } \lambda _ { d } \frac { t } { f ( t ) ^ { 2 / d } } \right]$ ; confidence 0.317 |
246. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010027.png ; $z \in \hat { K }$ ; confidence 0.316 | 246. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010027.png ; $z \in \hat { K }$ ; confidence 0.316 | ||
− | 247. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180253.png ; $B ( g ) \in \otimes ^ { 2 } E$ ; confidence 0.316 | + | 247. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180253.png ; $B ( g ) \in \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.316 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290194.png ; $H _ { | + | 248. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290194.png ; $H _ { \mathfrak{M} } ^ { i } ( R )$ ; confidence 0.316 |
249. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003011.png ; $\{ \alpha , \alpha ^ { d } , \ldots , \alpha ^ { d ^ { n } } , \ldots \}$ ; confidence 0.316 | 249. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003011.png ; $\{ \alpha , \alpha ^ { d } , \ldots , \alpha ^ { d ^ { n } } , \ldots \}$ ; confidence 0.316 | ||
Line 500: | Line 500: | ||
250. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002034.png ; $k _ { t } ^ { * } f$ ; confidence 0.316 | 250. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002034.png ; $k _ { t } ^ { * } f$ ; confidence 0.316 | ||
− | 251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304507.png ; $r | + | 251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304507.png ; $r _{S} = \frac { \sum _ { i = 1 } ^ { n } ( R _ { i } - \overline { R } ) ( S _ { i } - \overline{S} ) } { \sqrt { \sum _ { i = 1 } ^ { n } ( R _ { i } - \overline { R } ) ^ { 2 }\cdot \sum _ { i = 1 } ^ { n } ( S _ { i } - \overline { S } ) ^ { 2 } } } =$ ; confidence 0.316 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001037.png ; $\left | + | 252. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001037.png ; $\left\{ \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0, } \\ { \frac { \partial \mathbf{v} _ { 0 } } { \partial t } + [ \nabla \mathbf{v} _ { 0 } ] \mathbf{v} _ { 0 } = \frac { 1 } { Re } \Delta \mathbf{v} _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } \mathbf{b}. } \end{array} \right.$ ; confidence 0.316 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548021.png ; $\& ^ { | + | 253. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548021.png ; $\& ^ { * } , \vee ^ {* } , \supset ^ { * } , \neg ^ { * }$ ; confidence 0.316 |
254. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008044.png ; $\int _ { A _ { i } } d \Omega _ { n } = 0$ ; confidence 0.316 | 254. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008044.png ; $\int _ { A _ { i } } d \Omega _ { n } = 0$ ; confidence 0.316 | ||
− | 255. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080201.png ; $A ( \hat { | + | 255. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080201.png ; $A ( \hat { K } ) = L _ { 1 } ( G )$ ; confidence 0.316 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009010.png ; $a ^ { i }$ ; confidence 0.315 | + | 256. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009010.png ; $\mathbf{a} ^ { i }$ ; confidence 0.315 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026012.png ; $\frac { U _ { | + | 257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026012.png ; $\frac { U _ { j } ^ { n + 1 } - U _ { j } ^ { n } } { k } = \delta ^ { 2 } \left( \frac { U _ { j } ^ { n + 1 } + U _ { j } ^ { n } } { 2 } \right),$ ; confidence 0.315 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005073.png ; $O _ { X } ( m q ( H + \lambda ( K _ { X } + B ) ) )$ ; confidence 0.315 | + | 258. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005073.png ; $\rightarrow \mathcal{O} _ { X } ( m q ( H + \lambda ( K _ { X } + B ) ) )$ ; confidence 0.315 |
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032067.png ; $= \| r x + s y + t z \| = F ( F ( r , s ) , t )$ ; confidence 0.315 | 259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032067.png ; $= \| r x + s y + t z \| = F ( F ( r , s ) , t )$ ; confidence 0.315 | ||
− | 260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034073.png ; $\| f g \| \leq \| f \| | + | 260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034073.png ; $\| f \cdot g \| \leq \| f \| \cdot \| g \|$ ; confidence 0.315 |
261. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h1300704.png ; $R : = k [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.315 | 261. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h1300704.png ; $R : = k [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.315 | ||
− | 262. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013026.png ; $N | + | 262. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013026.png ; $N _{*}$ ; confidence 0.315 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l | + | 263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l + 1 }} { \tau _ { l } } ,\, r ^ { ( l ) } = - 2 i \frac { \tau _ { l - 1} } { \tau _ { l } }.$ ; confidence 0.315 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005068.png ; $w _ { 1 } , \dots , w _ { | + | 264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005068.png ; $w _ { 1 } , \dots , w _ { n } \in \mathbf{D}$ ; confidence 0.315 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } | + | 265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $\overline{x} = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x_{j}$ ; confidence 0.315 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i | + | 266. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i g j k }$ ; confidence 0.315 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510137.png ; $k \ | + | 267. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510137.png ; $k \bigoplus \infty ( L ) = \infty ( L ) \bigoplus k = \infty ( L \bigoplus k ),$ ; confidence 0.315 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016044.png ; $\leq \operatorname { max } \{ \mu ( M , P ) + | + | 268. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016044.png ; $\leq \operatorname { max } \{ \mu ( M , P ) + K\operatorname {dim} ( R / P ) : P \in j - \operatorname { Spec } ( R ) \}.$ ; confidence 0.315 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008042.png ; $\left | + | 269. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008042.png ; $\left\{ \begin{array} { l } { \frac { d } { d t } \left( \begin{array} { c } { u } \\ { v } \end{array} \right) + \left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right) \left( \begin{array} { c } { u } \\ { v } \end{array} \right) = \left( \begin{array} { c } { 0 } \\ { f ( t ) } \end{array} \right) , \quad t \in [ 0 , T ], } \\ { \left( \begin{array} { c } { u ( 0 ) } \\ { v ( 0 ) } \end{array} \right) = \left( \begin{array} { c } { u _ { 0 } } \\ { u _ { 1 } } \end{array} \right), } \end{array} \right.$ ; confidence 0.315 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060312.png ; $x _ { | + | 270. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060312.png ; $x _ { r }$ ; confidence 0.315 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520311.png ; $\times a ^ { * } ( x _ { 1 } ) \ldots a ^ { * } ( x _ { n } ) a ( y _ { 1 } ) \ldots a ( y _ { m } ) \prod _ { i = 1 } ^ { n } d \sigma ( x _ { i } ) \prod _ { j = 1 } ^ { m } d \sigma ( y _ { j } )$ ; confidence 0.315 | + | 271. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520311.png ; $\times a ^ { * } ( x _ { 1 } ) \ldots a ^ { * } ( x _ { n } ) a ( y _ { 1 } ) \ldots a ( y _ { m } ) \prod _ { i = 1 } ^ { n } d \sigma ( x _ { i } ) \prod _ { j = 1 } ^ { m } d \sigma ( y _ { j } ),$ ; confidence 0.315 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003097.png ; $H _ { E } ^ { * } X = H ^ { * } B E \otimes _ { F p } H ^ { * } X ^ { E }$ ; confidence 0.315 | + | 272. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003097.png ; $T_{E, \text{id}} H _ { E } ^ { * } X = H ^ { * } B E \otimes _ { \text{F}_ p } H ^ { * } X ^ { E }$ ; confidence 0.315 |
273. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i1300306.png ; $( P _ { b } ) _ { b \in B }$ ; confidence 0.315 | 273. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i1300306.png ; $( P _ { b } ) _ { b \in B }$ ; confidence 0.315 | ||
− | 274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040599.png ; $ | + | 274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040599.png ; $\models _ { \mathcal{S} _ { P } }$ ; confidence 0.315 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667011.png ; $ | + | 275. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667011.png ; $ k_{j }$ ; confidence 0.314 |
276. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200189.png ; $S _ { \Lambda } = e ^ { \Lambda + \rho } \sum _ { s } \epsilon ( s ) e ^ { s }$ ; confidence 0.314 | 276. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200189.png ; $S _ { \Lambda } = e ^ { \Lambda + \rho } \sum _ { s } \epsilon ( s ) e ^ { s }$ ; confidence 0.314 | ||
− | 277. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021034.png ; $\dot { x } = D _ { | + | 277. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021034.png ; $\dot { x } = D _ { x _ { ss } } + G ( x , \alpha ),$ ; confidence 0.314 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012037.png ; $K _ { p } = K _ { s } \cap \hat { K } _ { p }$ ; confidence 0.314 | + | 278. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012037.png ; $K _ { \text{p} } = K _ { s } \cap \hat { K } _ { \text{p} }$ ; confidence 0.314 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007085.png ; $u \in \operatorname { PSH } ( C ^ { n } )$ ; confidence 0.314 | + | 279. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007085.png ; $u \in \operatorname { PSH } ( \mathbf{C} ^ { n } )$ ; confidence 0.314 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $ | + | 280. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $\in$ ; confidence 0.314 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004036.png ; $3 ^ { - | + | 281. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004036.png ; $3 ^ { - k }$ ; confidence 0.314 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053097.png ; $S _ { | + | 282. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053097.png ; $S _ { Q }$ ; confidence 0.314 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008067.png ; $\psi = \frac { \operatorname { exp } ( \sum t _ { n } \lambda ^ { n } ) \tau ( | + | 283. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008067.png ; $\psi = \frac { \operatorname { exp } \left( \sum t _ { n } \lambda ^ { n } \right) \tau ( t_{ j} - ( 1 / j \lambda ^ { j } ) ) } { \tau ( t _ { j } ) }.$ ; confidence 0.314 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009052.png ; $P ( N _ { k } = n + k ) = \frac { U _ { n + 1 } ^ { ( k ) } } { 2 ^ { n + k } } , n = 0,1$ ; confidence 0.314 | + | 284. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009052.png ; $\mathsf{P} ( N _ { k } = n + k ) = \frac { U _ { n + 1 } ^ { ( k ) } } { 2 ^ { n + k } } ,\, n = 0,1, \dots .$ ; confidence 0.314 |
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022028.png ; $\tilde { j } : B \rightarrow X$ ; confidence 0.314 | 285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022028.png ; $\tilde { j } : B \rightarrow X$ ; confidence 0.314 | ||
− | 286. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012095.png ; $V ( O _ { M } ) \neq | + | 286. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012095.png ; $V ( O _ { M } ) \neq \emptyset$ ; confidence 0.314 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007028.png ; $\operatorname { lim } _ { | + | 287. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007028.png ; $\operatorname { lim } _ { n \rightarrow \infty } M ( u _ { n } ) = M ( u )$ ; confidence 0.314 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010085.png ; $v , v _ { 1 } , \dots , v _ { | + | 288. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010085.png ; $v , v _ { 1 } , \dots , v _ { n }$ ; confidence 0.314 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050108.png ; $P _ { \theta } ( | X - \theta | > \epsilon _ { | + | 289. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050108.png ; $P _ { \theta } ( | \overline{X} - \theta | > \epsilon _ { n } )$ ; confidence 0.314 |
290. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e1201501.png ; $( x ^ { 1 } , \ldots , x ^ { n } ) = ( x )$ ; confidence 0.313 | 290. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e1201501.png ; $( x ^ { 1 } , \ldots , x ^ { n } ) = ( x )$ ; confidence 0.313 | ||
− | 291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027080.png ; $\overline { m } _ { | + | 291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027080.png ; $\overline { m } _ { n} ( h )$ ; confidence 0.313 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020151.png ; $\operatorname { rd } | + | 292. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020151.png ; $\operatorname { rd }_{X} ( N _ { K } ( F ) ) \leq n - k - 2$ ; confidence 0.313 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018098.png ; $ | + | 293. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018098.png ; $u_{0},u_{1}$ ; confidence 0.313 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010069.png ; $\{ | + | 294. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010069.png ; $\{ \emptyset , \{ \emptyset \} \}$ ; confidence 0.313 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $ | + | 295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $z: M \rightarrow F$ ; confidence 0.313 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009021.png ; $u _ { t } + | + | 296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009021.png ; $u _ { t } + a ( u ) _ { x } - u _ { x x t } = 0,$ ; confidence 0.313 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210143.png ; $0 < \tau _ { | + | 297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210143.png ; $0 < \tau _ { n }$ ; confidence 0.313 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001090.png ; $\Gamma u = u _ { N } + h u , k a \ll 1 , h =$ ; confidence 0.313 | + | 298. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001090.png ; $\text{if} \ \Gamma u = u _ { N } + h u , k a \ll 1 , h =\text{const},$ ; confidence 0.313 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027048.png ; $( | + | 299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027048.png ; $\mathbf{Z}[ \text{Gal} (N/K)]$ ; confidence 0.312 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170178.png ; $K _ { R } \equiv \{ z : r _ { j } ( z , z ) \geq 0 , j = 1 , \ldots , m \}$ ; confidence 0.312 | + | 300. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170178.png ; $K _ { R } \equiv \{ z : r _ { j } ( z , \overline{z} ) \geq 0 ,\; j = 1 , \ldots , m \}$ ; confidence 0.312 |
Latest revision as of 15:26, 22 June 2020
List
1. ; $p _ { m } ( t , x ; \tau , \xi ) = 0$ ; confidence 0.334
2. ; $\zeta _ { G } ( z ) = \sum _ { n = 1 } ^ { \infty } G ( n ) n ^ { - z } = \sum _ { a \in G } | a | ^ { - z } =$ ; confidence 0.334
3. ; $D \in \operatorname{WC} ( A , k )$ ; confidence 0.334
4. ; $L ( \theta | Y _ { \text{obs} } ) = \int L ( \theta | Y _ { \text{com} } ) d Y_{\text{mis}}$ ; confidence 0.334
5. ; $a R b \subseteq P \Rightarrow a \in P \text { or } b \in P,$ ; confidence 0.334
6. ; $a , b \in P$ ; confidence 0.334
7. ; $H _ { n } = \sum _ { i = 1 } ^ { n } p _ { i } ^ { 2 } / 2 + \sum _ { 1 = i < j } ^ { n } \Phi ( q _ { i } - q _ { j } )$ ; confidence 0.334
8. ; $a _ { 0 } x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n } = 0.$ ; confidence 0.333
9. ; $\mathbf{l}_{1}$ ; confidence 0.333
10. ; $D _ { j } = \partial / \partial x_ { j } $ ; confidence 0.333
11. ; $\vdash _ { \tau }$ ; confidence 0.333
12. ; $x _ { n } \rightarrow x$ ; confidence 0.333
13. ; $G _ { \delta }$ ; confidence 0.333
14. ; $c a = q a c ,\; b a = q a b ,\; d b = q b d ,\; d c = q c b,$ ; confidence 0.333
15. ; $\mathbf{R} ^ { l }$ ; confidence 0.333
16. ; $\operatorname { inf } _ { z _ { j } \in U } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } } { M _ { d } ( k ) }$ ; confidence 0.333
17. ; $\Re ( C )$ ; confidence 0.333
18. ; $\delta _ { k } ( X \bigotimes X _ { 1 } \bigwedge \ldots \bigwedge X _ { k } ) =$ ; confidence 0.333
19. ; $K _ { s } [ \overline { \sigma } ] \cap K _ { \text{tot }S }$ ; confidence 0.333
20. ; $a = ( a _ { 1 } , \dots , a _ { k } )$ ; confidence 0.333
21. ; $S _ { P }$ ; confidence 0.333
22. ; $u \in \mathbf{Z} _ { p } ^ { \times }$ ; confidence 0.333
23. ; $\models_{\tau} $ ; confidence 0.333
24. ; $M _ { n } = [ m _ { i - j} ] _ { i ,\, j = 0 } ^ { n }$ ; confidence 0.333
25. ; $c _ { 1 } \lambda ^ { 2 }$ ; confidence 0.333
26. ; $B _ { \alpha } ( \underline{x} ^ { * } ) = \{ \underline{x} \in \mathbf{R} ^ { n } : \xi _ { \underline{x} ^ { * } } ( \underline{x} ) \geq \alpha \}$ ; confidence 0.332
27. ; $F _ { m } F _ { n }$ ; confidence 0.332
28. ; $\mathbf{Z} G \simeq \mathbf{Z} H \Rightarrow G \simeq H.$ ; confidence 0.332
29. ; $( L _ { + } ^ { \prime } , L ^ { \prime }_{ -} , L _ { 0 } ^ { \prime } )$ ; confidence 0.332
30. ; $c _ { 1 } \stackrel { \phi _ { 1 } } { \rightarrow } \ldots \stackrel { \phi _ { n - 1 } } { \rightarrow } c _ { n },$ ; confidence 0.332
31. ; $| u | _ { p , m , T } = \sum _ { | \alpha | = m } \| D ^ { \alpha } u \| _ { p , T }.$ ; confidence 0.332
32. ; $\lambda ( X ) = \sum _ { i = 1 } ^ { s } \operatorname { deg } ( f _ { i } ( T ) ^ { l _ { i } } ) , \ \mu ( X ) = \sum _ { j = 1 } ^ { t } m _ { j }.$ ; confidence 0.332
33. ; $\mathcal{FT} \operatorname {op}$ ; confidence 0.332
34. ; $E ^ { n + 1}$ ; confidence 0.332
35. ; $\mathbf{u} = ( u _ { 1 } , \dots , u _ { m } ) , \mathbf{v} = ( v _ { 1 } , \dots , v _ { m } ) \in \mathbf{V}$ ; confidence 0.332
36. ; $e ^ { s } ( T , V ) = e \Rightarrow e ( T , V ) = e \Rightarrow e ^ { w } ( T , V ) = e.$ ; confidence 0.332
37. ; $a _ { i i } \leq 0$ ; confidence 0.332
38. ; $( \pi ( M ) , \pi_{*} g )$ ; confidence 0.332
39. ; $n = 1,2 , \dots,$ ; confidence 0.331
40. ; $\sum _ { n \leq x } a ( n ) = A _ { 1 } x + O ( \sqrt { x } ) \quad \text { as } x \rightarrow \infty,$ ; confidence 0.331
41. ; $e \leq c$ ; confidence 0.331
42. ; $x _ { 1 } \in X _ { 1 }$ ; confidence 0.331
43. ; $H = \bigoplus _ { n } \mathcal{H} _ { n }.$ ; confidence 0.331
44. ; $g ( X , Y ) = g (J X , J Y ) + \alpha ( X ) \alpha ( Y )$ ; confidence 0.331
45. ; $( u , v ) \mapsto u _ { n } v$ ; confidence 0.331
46. ; $\mu _ { \chi } \in \mathbf{Z} _ { \geq 0 }$ ; confidence 0.331
47. ; $\operatorname { Aut } ( G , S ) = \{ \sigma \in \operatorname { Aut } ( G ) : S ^ { \sigma } = S \}$ ; confidence 0.331
48. ; $g$ ; confidence 0.331
49. ; $\operatorname { lim } _ { n \rightarrow \infty } \| \alpha _ { n } + \beta _ { n } \| = 0$ ; confidence 0.331
50. ; $\operatorname { max } _ { 1 \leq k \leq 4 \left( \begin{array} { c } { n + r - 1 } \\ { r } \end{array} \right)} | g ( k ) | \geq | g ( 0 ) | \left( 2 e \left( \begin{array} { c } { n + r - 1 } \\ { r } \end{array} \right) \right) ^ { - 1 / r }.$ ; confidence 0.330
51. ; $T , \psi \vdash_{\text{S}5}$ ; confidence 0.330
52. ; $J _ { m }$ ; confidence 0.330
53. ; $.\mathcal{H} _ { n _ { 1 } } \left( \int _ { 0 } ^ { 1 } e _ { 1 } ( t ) d B ( t ) \right) \mathcal{H} _ { n _ { 2 } } \left( \int _ { 0 } ^ { 1 } e _ { 2 } ( t ) d B ( t ) \right) \ldots ,\; n _ { j } \geq 0 ,\; n _ { 1 } + n _ { 2 } + \ldots = n ,\; n \geq 0,$ ; confidence 0.330
54. ; $( f , g ) = \operatorname { lim } _ { \eta \rightarrow \rho - 0 } \int _ { | z | = \eta } f ( z ) \overline { g ( z ) } d s.$ ; confidence 0.330
55. ; $\varphi_{ * } : K _ { 0 } ^ { \text{alg} } ( A ) \rightarrow \mathbf{C}$ ; confidence 0.330
56. ; $\psi _ { \text{w} } = \sum \lambda _ { i } \int _ { \mathbf{R} ^ { 3 N } } e ^ { i p z / \hbar } \overline { \psi } _ { i } \left( x + \frac { z } { 2 } \right) \psi _ { i } \left( x - \frac { z } { 2 } \right) d z.$ ; confidence 0.330
57. ; $B \Gamma$ ; confidence 0.330
58. ; $\mathbf{a} \cdot \mathbf{x} = c$ ; confidence 0.330
59. ; $f \in L _ { 2 }$ ; confidence 0.330
60. ; $\{ E , \mathcal{K} , \langle \cdot , \cdot \rangle \}$ ; confidence 0.330
61. ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
62. ; $\leftrightarrow$ ; confidence 0.330
63. ; $H _ { p } ^ { r } ( \Omega )$ ; confidence 0.330
64. ; $\operatorname { lnt } C ^ { * }$ ; confidence 0.330
65. ; $R H = ( \oplus _ { b ^{ G} = B } b ) \oplus (\oplus_{ b ^{ G} \neq B } b )$ ; confidence 0.330
66. ; $\sigma _ { \text{Te} } ( ( L _ { A } , R _ { B } ) , \mathcal{L} ( \mathcal{H} ) ) =$ ; confidence 0.330
67. ; $\alpha : G ( K _ { \operatorname { tot } S } ) \rightarrow G$ ; confidence 0.330
68. ; $N _ { 1 } = \left\| \begin{array} { c c c c c } { L ( d _ { q + 1 } ) } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { . } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { L ( d _ { n } ) } \end{array} \right\|,$ ; confidence 0.330
69. ; $\psi ( \underline{x} )$ ; confidence 0.330
70. ; $\mathcal{T} _ { \text{H}d }$ ; confidence 0.330
71. ; $ \operatorname {ln} ( d w / d Z )$ ; confidence 0.330
72. ; $A = ( a_{i ,\, j} )$ ; confidence 0.330
73. ; $L_{j}$ ; confidence 0.330
74. ; $\tilde { \Phi }$ ; confidence 0.329
75. ; $\mathfrak { m } \cdot H _ { \mathfrak { m } } ^ { i } ( M ) = ( 0 )$ ; confidence 0.329
76. ; $x_{i}$ ; confidence 0.329
77. ; $\Delta \lambda _ { i } ^ { a }$ ; confidence 0.329
78. ; $U _ { n } ^ { ( k ) } ( x ) = x ^ { 1 - n } F _ { n } ^ { ( k ) } ( x ^ { k } ) ,\; n = 1,2 , \ldots .$ ; confidence 0.329
79. ; $\operatorname{HP} ^ { q } ( \mathbf{C} [ \Gamma ] )$ ; confidence 0.329
80. ; $K _ { cr } = K _ { + } - K _ { - }$ ; confidence 0.329
81. ; $U _ { z } \hat { x } ( n ) = z ^ { n } \hat { x } ( n )$ ; confidence 0.329
82. ; $\left( \begin{array} { l } { \mathbf{v} } \\ { \theta } \\ { p } \end{array} \right) = \sum _ { n = 0 } ^ { \infty } \varepsilon ^ { n } \left( \begin{array} { c } { \mathbf{v} _ { n } } \\ { \theta _ { n } } \\ { p _ { n } } \end{array} \right),$ ; confidence 0.329
83. ; $\odot = +$ ; confidence 0.329
84. ; $\mathfrak { D } _ {\text{p} }$ ; confidence 0.329
85. ; $\tilde{x} ( z ) z ^ { n - 1 }$ ; confidence 0.329
86. ; $a _{p}$ ; confidence 0.329
87. ; $\{ \mu _ { n } ( x ) : x = 1,2 , \ldots \}$ ; confidence 0.329
88. ; $b _ { n ,\, n - k} \neq 0$ ; confidence 0.328
89. ; $\operatorname {mod} \Lambda$ ; confidence 0.328
90. ; $\| \phi - f \| _ { L ^{\infty} ( \mathbf{T} )} = \| H _ { \phi } \|$ ; confidence 0.328
91. ; $1 / ( P _ { m ,\, n } - \epsilon )$ ; confidence 0.328
92. ; $r \in \operatorname { sl} _ { 2 } \otimes \operatorname { sl} _ { 2 }$ ; confidence 0.328
93. ; $\mathbf{C}^{m}$ ; confidence 0.328
94. ; $\mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E} \subset \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.327
95. ; $a \in A$ ; confidence 0.327
96. ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { a } ^ { b } f ( x ) d g _ { n } ( x ) = \int _ { a } ^ { b } f ( x ) d g ( x ),$ ; confidence 0.327
97. ; $\overset{\rightharpoonup }{ v }$ ; confidence 0.327
98. ; $d = ( d _ { 1 } , \dots , d _ { n } )$ ; confidence 0.327
99. ; $H ( r _ { 0 } , \theta )$ ; confidence 0.327
100. ; $\hat{y} ( t | t - 1 ) = f ( Z ^ { t - 1 } , t ).$ ; confidence 0.327
101. ; $\zeta_{e}$ ; confidence 0.327
102. ; $\forall x \in P$ ; confidence 0.327
103. ; $L _ { 0 } \sim _ { c } L _ { 0 } ^ { \prime }$ ; confidence 0.327
104. ; $\sum e_{ n}$ ; confidence 0.327
105. ; $P^{1}$ ; confidence 0.327
106. ; $\sigma ( A | _ { ( I - E ( \Delta ) ) \mathcal{K} } ) \subset \overline { ( \mathbf{R} \backslash \Delta ) } \cup \sigma _ { 0 } ( A )$ ; confidence 0.327
107. ; $x _ { i j }( \cdot )$ ; confidence 0.327
108. ; $A _ { \text{w} } ( x , p ) =$ ; confidence 0.327
109. ; $| v | , | w | , | z | \in G$ ; confidence 0.326
110. ; $\operatorname{Mod} ^ { * \text{L}} \mathcal{D} = \mathbf{P} _ { \text{SD} } \operatorname{Mod} ^ { * \text{L}} \mathcal{D}$ ; confidence 0.326
111. ; $\mathbf{Z} / l ^ { n } \mathbf{Z}$ ; confidence 0.326
112. ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } \prod _ { i = 1 } ^ { H } f _ { i } \circ T ^ { i n }$ ; confidence 0.326
113. ; $D _ { n } ( x , 0 ) = x ^ { n }$ ; confidence 0.326
114. ; $\mathfrak { H } _ { + }$ ; confidence 0.326
115. ; $K f : = ( K f ) ( \cdot ) = ( f , K ( x , ) ) = f ( \cdot )$ ; confidence 0.326
116. ; $M _ { r_{j} } ( n + k _ { j } ) \geq 0$ ; confidence 0.326
117. ; $^{ \bigtriangleup } _ { \bigtriangledown } ( G / K )$ ; confidence 0.326
118. ; $o$ ; confidence 0.326
119. ; $e ^ { a }$ ; confidence 0.326
120. ; $| k | ^ { 2 } = k _ { 1 } ^ { 2 } + \ldots + k _ { n } ^ { 2 }$ ; confidence 0.326
121. ; $F ( t ) = ( F _ { 1 } ( t , x _ { 1 } ) , \ldots , F _ { n } ( t , x _ { 1 } , \ldots , x _ { n } ) , \ldots )$ ; confidence 0.326
122. ; $\operatorname{dim} W \geq 6$ ; confidence 0.326
123. ; $S ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.326
124. ; $\Gamma \subset \operatorname{GL} _ { 2 } ( \mathbf{Z} )$ ; confidence 0.325
125. ; $a _ { 0 } , \dots , a _ { n }$ ; confidence 0.325
126. ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n \}$ ; confidence 0.325
127. ; $\mathsf{P} ( A _ { i_{1} } \bigcap \ldots \bigcap A _ { i_{k} } ) = \frac { ( n - k ) ! } { n ! },$ ; confidence 0.325
128. ; $\operatorname{log} | d ( K ) |$ ; confidence 0.325
129. ; $r _ { 2 } ( t , s ) = \prod _ { i = 1 } ^ { N } t _ { i } \wedge s _ { i } - \prod _ { i = 1 } ^ { N } t _ { i } s _ { i } ,$ ; confidence 0.325
130. ; $\phi ( \sigma , \tau ) = \int _ { \mathbf{R} ^ { 3 N } \times \mathbf{R} ^ { 3 N } } e ^ { i ( \sigma x + r \cdot p ) / \hbar } f ( x , p ) d x d p.$ ; confidence 0.325
131. ; $\mathcal{I} _ { \text{nd} } = \{ ( u _{j} )_{ j \in \mathbf{N}}$ ; confidence 0.325
132. ; $\mathbf{B} = g \frac { \mathbf{r} } { r^{3} },$ ; confidence 0.325
133. ; $\mathsf{P} ( X = n ) = p ^ { r } H _ { n + 1 , r } ^ { ( k ) } ( q _ { 1 } , \dots , q _ { k } ),$ ; confidence 0.325
134. ; $\sigma _ { T } ( L _ { a } , \mathcal{B} ) = \sigma _ { T } ( a , \mathcal{H} )$ ; confidence 0.325
135. ; $h ( \psi ^ { i } ) \in C ( \{ h ( \varphi _ { 0 } ^ { i } ) , \ldots , h ( \varphi _ { n _ { i } - 1 } ^ { i } ) \} )$ ; confidence 0.325
136. ; $\lambda _ { 1 } \geq \frac { 4 \pi ^ { 2 } j _ { 0,1 } ^ { 2 } } { L ^ { 2 } },$ ; confidence 0.325
137. ; $H _ { p } ^ { r } ( \Omega ) = H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( \Omega )$ ; confidence 0.325
138. ; $M$ ; confidence 0.325
139. ; $( \partial , \circ )$ ; confidence 0.325
140. ; $A \rightarrow \overline { A } = \operatorname { sp } ( A ) \bigcap S,$ ; confidence 0.324
141. ; $f ^ { c ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \{ \varphi ( x , w ) - f ( x ) \} ( w \in W ),$ ; confidence 0.324
142. ; $\mathbf{c}$ ; confidence 0.324
143. ; $\chi _ { n } ^ { 2 } = X _ { 1 } ^ { 2 } + \ldots + X _ { n } ^ { 2 }$ ; confidence 0.324
144. ; $G _ { n } ( x ) x \approx \mu _ { n } ,\; x = f _{( 1 , n )} , f _{( 2 , n )}, \dots .$ ; confidence 0.324
145. ; $\operatorname { p} \in P _ { L }$ ; confidence 0.324
146. ; $C H ^ { r } ( X \otimes _ { K } K _ { n } )$ ; confidence 0.324
147. ; $\mathbf{TOP}$ ; confidence 0.324
148. ; $y \succsim _{i} x $ ; confidence 0.324
149. ; $\psi \left( a ( z ) \left( \frac { d } { d z } \right) ^ { n } , b ( z ) \left( \frac { d } { d z } \right) ^ { m } \right) =$ ; confidence 0.324
150. ; $c_{j}$ ; confidence 0.323
151. ; $v ^ { * } = \sum _ { k \in P } \lambda _ { k } x ^ { ( k ) } + \sum _ { k \in R } \mu _ { k } \tilde{x} ^ { ( k ) },$ ; confidence 0.323
152. ; $L_{\overline{0}}$ ; confidence 0.323
153. ; $\hat { u } _ { i } ^ { + } = u _ { i } ^ { n } + \frac { \Delta t } { \Delta x } ( f _ { i } ^ { n } - f _ { i + 1 } ^ { n } );$ ; confidence 0.323
154. ; $\| x _ { n } \| _ { \rightarrow } \| x \|$ ; confidence 0.323
155. ; $\aleph_{0}$ ; confidence 0.323
156. ; $N _ { 2 } = \left\| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right\|.$ ; confidence 0.323
157. ; $L \in \operatorname { PSH } ( \mathbf{C} ^ { n } )$ ; confidence 0.323
158. ; $\triangleright$ ; confidence 0.323
159. ; $r _ { j , 1 }$ ; confidence 0.323
160. ; $\times \int _ { \Gamma } f ( \zeta ) \left( \frac { \operatorname { grad } \psi } { ( \operatorname { grad } \psi , \zeta ) } \right) ^ { q } \operatorname {CF} ( \zeta , \operatorname { grad } \psi ),$ ; confidence 0.323
161. ; $( a _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.323
162. ; $A _ { 2 } \in C ^ { p \times m n }$ ; confidence 0.322
163. ; $\underline { v } = - \infty$ ; confidence 0.322
164. ; $B ( \hat { K } ) = M ( G )$ ; confidence 0.322
165. ; $\mathcal{P} _ { E } ^ { \# } ( n )$ ; confidence 0.322
166. ; $\| x \| _ { X } = \operatorname { sup } \left\{ \left| \int _ { \Omega } x x ^ { \prime } d \mu \right| : x ^ { \prime } \in X ^ { \prime } , \| x ^ { \prime } \| _ { X ^ { \prime } } \leq 1 \right\},$ ; confidence 0.322
167. ; $P _ { k }$ ; confidence 0.322
168. ; $D = \liminf _ { n \rightarrow \infty } M ( r _ { 1 } , r _ { 2 } ) ^ { 1 / n } \geq 22.$ ; confidence 0.322
169. ; $\mathbf{D} y _ { n } ^ { * } ( x )$ ; confidence 0.322
170. ; $G ( v , t ) = g _ { t } ( v )$ ; confidence 0.322
171. ; $\Sigma _ { 1 } = \mathbf{X} _ { 4 } ^ { \prime } \Sigma \mathbf{X} _ { 4 }$ ; confidence 0.322
172. ; $S = \{ \zeta : | \zeta _ { j } | = 1 ,\; j = 2 , \dots , n \}$ ; confidence 0.322
173. ; $\{ u_ { i } , v _ { i } \}$ ; confidence 0.322
174. ; $X ^ { 1 }$ ; confidence 0.322
175. ; $[ \xi ^ {a } , \xi ^ { b } ] = 2 \epsilon _ { a b c } \xi ^ { c }$ ; confidence 0.322
176. ; $\tilde{X}$ ; confidence 0.322
177. ; $b_{r}$ ; confidence 0.322
178. ; $\| T \| < \Gamma ( A )$ ; confidence 0.322
179. ; $L _ { \gamma , n } ^ { 1 } \leq L _ { \gamma ,n }$ ; confidence 0.322
180. ; $\mathbf{CP} ^ { 2 }$ ; confidence 0.322
181. ; $ \operatorname { stab}_{G} (m)$ ; confidence 0.322
182. ; $= e ^ { - i \pi / 4 } \sum _ { A < m \leq A + B } | f ^ { \prime } ( x _ { m } ) | ^ { - 1 / 2 } e ^ { 2 \pi i ( f ( x _ { m } ) - m x _ { m } ) } +$ ; confidence 0.321
183. ; $\mathcal{T} ( \underline { \top } ) = \top $ ; confidence 0.321
184. ; $G = \operatorname { Sp } ( 2 n , \mathbf{Q} )$ ; confidence 0.321
185. ; $\Gamma _ { h }$ ; confidence 0.321
186. ; $\mathsf{E} _ { \text{P} _ { p } } ( d ) = f ( p )$ ; confidence 0.321
187. ; $\operatorname {CS} ( A ) = \frac { 1 } { 4 \pi } \int _ { M } \operatorname { Tr } ( A \bigwedge d A + \frac { 2 } { 3 } A \bigwedge A \bigwedge A ) \operatorname { mod } 2 \pi ,$ ; confidence 0.321
188. ; $Y _ { \text{aug} } = \{ ( y _ { i } , q _ { i } ) : i = 1 , \ldots , n \}$ ; confidence 0.321
189. ; $u _ { t } - 6 u u _ { x } + u _ { xxx } = 0.$ ; confidence 0.321
190. ; $q_{Q} : \mathbf{Z} ^ { Q _ { 0 } } \rightarrow \mathbf{Z} $ ; confidence 0.321
191. ; $\operatorname { max } _ { r = m + 1 , \ldots , m + n } | g ( r ) | \geq$ ; confidence 0.321
192. ; $\operatorname { sup } _ { u \in U } | b ( u , v ) | > 0 , \forall v \in V \backslash \{ 0 \} ),$ ; confidence 0.321
193. ; $\operatorname { exp } \left( \sum _ { n \in \mathbf{N} + 1 / 2 } \frac { y _ { n } } { n } x ^ { n } \right) \operatorname { exp } \left( - 2 \sum _ { n \in \mathbf{N} + 1 / 2 } \frac { \partial } { \partial y _ { n } } x ^ { - n } \right),$ ; confidence 0.321
194. ; $\left\{ x _ { s } ^ { ( i ) } : s \leq t ,\, i = 1 , \dots , n \right\}$ ; confidence 0.320
195. ; $H _ { l } ^ { i } = H ^ { i } ( X , \mathbf{Q} ) \otimes \mathbf{Q} _ { l }$ ; confidence 0.320
196. ; $\overline{c} _ { n } b _ { n } = b _ { n + 2 } + 2 ( n + 1 ) a _ { n + 1 }$ ; confidence 0.320
197. ; $\operatorname {min}_{ \mu \neq \nu} | z _ { \mu } - z _ { \nu } | \geq \delta \operatorname { max } _ { j } | z _ { j }|$ ; confidence 0.320
198. ; $\langle a , b | a = [ a ^ { p } , b ^ { q } ] , b = [ a ^ { r } , b ^ { s } ] \rangle$ ; confidence 0.320
199. ; $\varphi ( v_ { 0 } , \dots , v _ { n - 1} )$ ; confidence 0.320
200. ; $T _ { n } = T _ { n } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.320
201. ; $\chi_{ ( 1 ^ { n } )}$ ; confidence 0.320
202. ; $c _ { 1 } ( S ) ^ { 2 } \leq 3 c_ { 2 } ( S )$ ; confidence 0.319
203. ; $\mathcal{K} _ { n_{\alpha} }$ ; confidence 0.319
204. ; $\mathsf{P} ( A _ { 1 } \cap \ldots \cap A _ { n } ) = 1 - \mathsf{P} ( \overline { A } _ { 1 } \cup \ldots \cup \overline { A } _ { n } )$ ; confidence 0.319
205. ; $\vdash_{\mathcal{D}} \varphi$ ; confidence 0.319
206. ; $s _ { 1 } , s_{ 2} , \ldots$ ; confidence 0.319
207. ; $\operatorname{Id}$ ; confidence 0.319
208. ; $\ldots \rightarrow D _ { 2 } \stackrel { \delta _ { 2 } } { \rightarrow } D _ { 1 } \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } M \rightarrow 0.$ ; confidence 0.319
209. ; $p _ { \lambda _ { i } } = x _ { 1 } ^ { \lambda _ { i } } + \ldots + x _ { l } ^ { \lambda _ { i } }$ ; confidence 0.319
210. ; $\mathcal{A} ( \sigma ) = \int _ { M } L ( \sigma ^ { 1 } ( x ) ) d x = \int _ { M } L ( x , y ( x ) , y ^ { \prime } ( x ) ) d x.$ ; confidence 0.319
211. ; $Z \times_{ S } Y$ ; confidence 0.319
212. ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) \sigma \wedge ( \overline { \partial } \sigma ) ^ { n - 1 } } { ( 1 + \langle z , \sigma \rangle ) ^ { n } } ,\, z \in E.$ ; confidence 0.319
213. ; $\operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A )$ ; confidence 0.319
214. ; $( a \bigwedge b = 0 ) \& ( c \succeq 0 ) \Rightarrow ( c a \bigwedge b = 0 ) \& ( a c \bigwedge b = 0 ).$ ; confidence 0.318
215. ; $f _ { m } ,\, f \in A ( U )$ ; confidence 0.318
216. ; $H _ { n } ^ { ( k ) } ( \mathbf{x} ) = U _ { n } ^ { ( k ) } ( \mathbf{x} )$ ; confidence 0.318
217. ; $\mathbf{Q}[ z _ { 1 } , \dots , z _ { n } ]$ ; confidence 0.318
218. ; $\mathcal{D} _ { g , n }$ ; confidence 0.318
219. ; $\operatorname{HF} _ { * } ^ { \text{symp} } ( M , \text { id } ) \cong \operatorname{QH} ^ { * } ( M )$ ; confidence 0.318
220. ; $R = R _ { c } + \varepsilon ^ { 2 }$ ; confidence 0.318
221. ; $g : X \rightarrow C$ ; confidence 0.318
222. ; $c _ { n , i }$ ; confidence 0.318
223. ; $\left[ \partial _ { r r } + \frac { 2 } { r } \partial _ { r } + \frac { 1 } { r ^ { 2 } } \partial _ { \theta \theta } + \frac { \operatorname { ctan } \theta } { r ^ { 2 } } \partial _ { \theta } + \frac { 1 } { r ^ { 2 } \operatorname { sin } ^ { 2 } \theta } \partial _ { \varphi \varphi } \right] H = 0$ ; confidence 0.318
224. ; $S _ { n } = K$ ; confidence 0.318
225. ; $T _ { A } M$ ; confidence 0.318
226. ; $R _ { c } ( p ; k , n ) = p q ^ { n - 1 } \sum _ { j = 1 } ^ { k } j F _ { n - j + 1 } ^ { ( k ) } ( \frac { p } { q } ),$ ; confidence 0.318
227. ; $\hat{\gamma} = \gamma$ ; confidence 0.318
228. ; $( x \vee y ) ^ { - 1 } = x ^ { - 1 } \bigwedge y ^ { - 1 }.$ ; confidence 0.318
229. ; $J _ { n / 2}$ ; confidence 0.318
230. ; $F ( u ) = u ( x ) - q _{I} ( x )$ ; confidence 0.318
231. ; $y _ { j } = \sum _ { i = j } ^ { k } p _ { j } \ldots p _ { i - 1 } m _ { i } r ^ { j - i - 1 }.$ ; confidence 0.318
232. ; $\varphi _ { + } \in \mathfrak{E}$ ; confidence 0.318
233. ; $\pi _ { n } ( K )$ ; confidence 0.317
234. ; $\rho : W \rightarrow O _ { 2^{n} } ( \mathbf{R} )$ ; confidence 0.317
235. ; $+ \operatorname { dim } _ { \Phi } \{ L ( x , y ) \} _ { \operatorname { span } } =$ ; confidence 0.317
236. ; $k \langle x , y \rangle$ ; confidence 0.317
237. ; $gi_{Q}$ ; confidence 0.317
238. ; $\operatorname { lim } _ { n \rightarrow \infty } m ( E _ { n } ) = 0$ ; confidence 0.317
239. ; $M _ { 3 } = \operatorname { min } _ { z _ { j } } \operatorname { max } _ { k = 3 , \ldots , n + 2 } | s _ { k } | < \frac { 1 } { 1.473 ^ { n } } \text { for } n > n _ { 0 }.$ ; confidence 0.317
240. ; $\varepsilon _ { t }$ ; confidence 0.317
241. ; $\zeta_{ K } ( s _ { 0 } ) \neq 0$ ; confidence 0.317
242. ; $S ^ { * } \left( \frac { a } { q } \right) = \sum _ { h } e \left( \mathbf{x} ( h ) \mathbf{y} \left( \frac { a } { q } \right) \right) \gamma ( h ) \delta \left( \frac { a } { q } \right)$ ; confidence 0.317
243. ; $\operatorname { deg } f _ { i } \leq c _ { n } d ^ { n }$ ; confidence 0.317
244. ; $\mu _ { a } ^ { 0 }$ ; confidence 0.317
245. ; $\operatorname { exp } \left[ - \frac { 1 } { 2 } \lambda _ { d } \frac { t } { f ( t ) ^ { 2 / d } } \right]$ ; confidence 0.317
246. ; $z \in \hat { K }$ ; confidence 0.316
247. ; $B ( g ) \in \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.316
248. ; $H _ { \mathfrak{M} } ^ { i } ( R )$ ; confidence 0.316
249. ; $\{ \alpha , \alpha ^ { d } , \ldots , \alpha ^ { d ^ { n } } , \ldots \}$ ; confidence 0.316
250. ; $k _ { t } ^ { * } f$ ; confidence 0.316
251. ; $r _{S} = \frac { \sum _ { i = 1 } ^ { n } ( R _ { i } - \overline { R } ) ( S _ { i } - \overline{S} ) } { \sqrt { \sum _ { i = 1 } ^ { n } ( R _ { i } - \overline { R } ) ^ { 2 }\cdot \sum _ { i = 1 } ^ { n } ( S _ { i } - \overline { S } ) ^ { 2 } } } =$ ; confidence 0.316
252. ; $\left\{ \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0, } \\ { \frac { \partial \mathbf{v} _ { 0 } } { \partial t } + [ \nabla \mathbf{v} _ { 0 } ] \mathbf{v} _ { 0 } = \frac { 1 } { Re } \Delta \mathbf{v} _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } \mathbf{b}. } \end{array} \right.$ ; confidence 0.316
253. ; $\& ^ { * } , \vee ^ {* } , \supset ^ { * } , \neg ^ { * }$ ; confidence 0.316
254. ; $\int _ { A _ { i } } d \Omega _ { n } = 0$ ; confidence 0.316
255. ; $A ( \hat { K } ) = L _ { 1 } ( G )$ ; confidence 0.316
256. ; $\mathbf{a} ^ { i }$ ; confidence 0.315
257. ; $\frac { U _ { j } ^ { n + 1 } - U _ { j } ^ { n } } { k } = \delta ^ { 2 } \left( \frac { U _ { j } ^ { n + 1 } + U _ { j } ^ { n } } { 2 } \right),$ ; confidence 0.315
258. ; $\rightarrow \mathcal{O} _ { X } ( m q ( H + \lambda ( K _ { X } + B ) ) )$ ; confidence 0.315
259. ; $= \| r x + s y + t z \| = F ( F ( r , s ) , t )$ ; confidence 0.315
260. ; $\| f \cdot g \| \leq \| f \| \cdot \| g \|$ ; confidence 0.315
261. ; $R : = k [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.315
262. ; $N _{*}$ ; confidence 0.315
263. ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l + 1 }} { \tau _ { l } } ,\, r ^ { ( l ) } = - 2 i \frac { \tau _ { l - 1} } { \tau _ { l } }.$ ; confidence 0.315
264. ; $w _ { 1 } , \dots , w _ { n } \in \mathbf{D}$ ; confidence 0.315
265. ; $\overline{x} = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x_{j}$ ; confidence 0.315
266. ; $\nabla _ { i g j k } = \gamma _ { i g j k }$ ; confidence 0.315
267. ; $k \bigoplus \infty ( L ) = \infty ( L ) \bigoplus k = \infty ( L \bigoplus k ),$ ; confidence 0.315
268. ; $\leq \operatorname { max } \{ \mu ( M , P ) + K\operatorname {dim} ( R / P ) : P \in j - \operatorname { Spec } ( R ) \}.$ ; confidence 0.315
269. ; $\left\{ \begin{array} { l } { \frac { d } { d t } \left( \begin{array} { c } { u } \\ { v } \end{array} \right) + \left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right) \left( \begin{array} { c } { u } \\ { v } \end{array} \right) = \left( \begin{array} { c } { 0 } \\ { f ( t ) } \end{array} \right) , \quad t \in [ 0 , T ], } \\ { \left( \begin{array} { c } { u ( 0 ) } \\ { v ( 0 ) } \end{array} \right) = \left( \begin{array} { c } { u _ { 0 } } \\ { u _ { 1 } } \end{array} \right), } \end{array} \right.$ ; confidence 0.315
270. ; $x _ { r }$ ; confidence 0.315
271. ; $\times a ^ { * } ( x _ { 1 } ) \ldots a ^ { * } ( x _ { n } ) a ( y _ { 1 } ) \ldots a ( y _ { m } ) \prod _ { i = 1 } ^ { n } d \sigma ( x _ { i } ) \prod _ { j = 1 } ^ { m } d \sigma ( y _ { j } ),$ ; confidence 0.315
272. ; $T_{E, \text{id}} H _ { E } ^ { * } X = H ^ { * } B E \otimes _ { \text{F}_ p } H ^ { * } X ^ { E }$ ; confidence 0.315
273. ; $( P _ { b } ) _ { b \in B }$ ; confidence 0.315
274. ; $\models _ { \mathcal{S} _ { P } }$ ; confidence 0.315
275. ; $ k_{j }$ ; confidence 0.314
276. ; $S _ { \Lambda } = e ^ { \Lambda + \rho } \sum _ { s } \epsilon ( s ) e ^ { s }$ ; confidence 0.314
277. ; $\dot { x } = D _ { x _ { ss } } + G ( x , \alpha ),$ ; confidence 0.314
278. ; $K _ { \text{p} } = K _ { s } \cap \hat { K } _ { \text{p} }$ ; confidence 0.314
279. ; $u \in \operatorname { PSH } ( \mathbf{C} ^ { n } )$ ; confidence 0.314
280. ; $\in$ ; confidence 0.314
281. ; $3 ^ { - k }$ ; confidence 0.314
282. ; $S _ { Q }$ ; confidence 0.314
283. ; $\psi = \frac { \operatorname { exp } \left( \sum t _ { n } \lambda ^ { n } \right) \tau ( t_{ j} - ( 1 / j \lambda ^ { j } ) ) } { \tau ( t _ { j } ) }.$ ; confidence 0.314
284. ; $\mathsf{P} ( N _ { k } = n + k ) = \frac { U _ { n + 1 } ^ { ( k ) } } { 2 ^ { n + k } } ,\, n = 0,1, \dots .$ ; confidence 0.314
285. ; $\tilde { j } : B \rightarrow X$ ; confidence 0.314
286. ; $V ( O _ { M } ) \neq \emptyset$ ; confidence 0.314
287. ; $\operatorname { lim } _ { n \rightarrow \infty } M ( u _ { n } ) = M ( u )$ ; confidence 0.314
288. ; $v , v _ { 1 } , \dots , v _ { n }$ ; confidence 0.314
289. ; $P _ { \theta } ( | \overline{X} - \theta | > \epsilon _ { n } )$ ; confidence 0.314
290. ; $( x ^ { 1 } , \ldots , x ^ { n } ) = ( x )$ ; confidence 0.313
291. ; $\overline { m } _ { n} ( h )$ ; confidence 0.313
292. ; $\operatorname { rd }_{X} ( N _ { K } ( F ) ) \leq n - k - 2$ ; confidence 0.313
293. ; $u_{0},u_{1}$ ; confidence 0.313
294. ; $\{ \emptyset , \{ \emptyset \} \}$ ; confidence 0.313
295. ; $z: M \rightarrow F$ ; confidence 0.313
296. ; $u _ { t } + a ( u ) _ { x } - u _ { x x t } = 0,$ ; confidence 0.313
297. ; $0 < \tau _ { n }$ ; confidence 0.313
298. ; $\text{if} \ \Gamma u = u _ { N } + h u , k a \ll 1 , h =\text{const},$ ; confidence 0.313
299. ; $\mathbf{Z}[ \text{Gal} (N/K)]$ ; confidence 0.312
300. ; $K _ { R } \equiv \{ z : r _ { j } ( z , \overline{z} ) \geq 0 ,\; j = 1 , \ldots , m \}$ ; confidence 0.312
Maximilian Janisch/latexlist/latex/NoNroff/67. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/67&oldid=44555