Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/60"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 60 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(22 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018033.png ; $i = 0,1,2$ ; confidence 0.995
+
1. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090105.png ; $K \mathfrak { S } _ { r }$ ; confidence 0.475
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014010.png ; $x , y \in X$ ; confidence 0.733
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100803.png ; $X$ ; confidence 0.475
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018068.png ; $1 \omega$ ; confidence 0.099
+
3. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $\mathcal{E} \neq \emptyset$ ; confidence 0.475
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020046.png ; $\hat { r }$ ; confidence 0.348
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040503.png ; $F \in \mathcal{C}$ ; confidence 0.475
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023010.png ; $P _ { U } + V$ ; confidence 0.516
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055025.png ; $X / G$ ; confidence 0.474
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023071.png ; $b _ { Y , s }$ ; confidence 0.529
+
6. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h1100106.png ; $c \in \mathbf{C}$ ; confidence 0.474
  
7. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023044.png ; $\hat { D }$ ; confidence 0.522
+
7. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012047.png ; $p$ ; confidence 0.474
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202302.png ; $0 \Omega$ ; confidence 0.651
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104201.png ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023068.png ; $c _ { q }$ ; confidence 0.425
+
9. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n120020106.png ; $V _ { F } ( m ) = A m ^ { a }$ ; confidence 0.474
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025017.png ; $L _ { 0 } = D$ ; confidence 0.915
+
10. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020114.png ; $\mathcal{R} _ { n }$ ; confidence 0.474
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025018.png ; $L _ { 1 } = V$ ; confidence 0.991
+
11. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004011.png ; $I : \mathcal{A} \rightarrow \mathbf{R} \cup \{ + \infty \}$ ; confidence 0.474
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024026.png ; $\delta z$ ; confidence 0.865
+
12. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003037.png ; $ \rightarrow \operatorname{Hom}_{\mathcal{K}} ( H ^ { * } Y , H ^ { * } X \bigotimes H ^ { * } Z )$ ; confidence 0.474
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025071.png ; $PG ( n , q )$ ; confidence 0.865
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240470.png ; $n_i$ ; confidence 0.474
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a1202505.png ; $PG ( 2 , q )$ ; confidence 0.788
+
14. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070146.png ; $p ^ { - 1 } \prod _ { \substack{m > 0 \\ n \in \mathbf{Z} } } ( 1 - p ^ { m } q ^ { n } ) ^ { c_{m n} } = j ( w ) - j ( z ) , p = \operatorname { exp } ( 2 \pi i w ) , \quad q = \operatorname { exp } ( 2 \pi i z ).$ ; confidence 0.474
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025054.png ; $PG ( 3 , q )$ ; confidence 0.778
+
15. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016016.png ; $f _ { \mathfrak{A} }$ ; confidence 0.474
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025024.png ; $q \leq 32$ ; confidence 0.993
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $j$ ; confidence 0.474
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a120250106.png ; $PG ( 2 , q )$ ; confidence 0.934
+
17. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $t \in S$ ; confidence 0.474
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025045.png ; $d = k - n + 2$ ; confidence 0.999
+
18. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021065.png ; $w ( \mathbf{v} )$ ; confidence 0.474
  
19. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025057.png ; $PG ( 4,9 )$ ; confidence 0.917
+
19. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008028.png ; $\oint _ { A _ { j } } d \omega _ { 1 } = \oint _ { A _ { j } } d \omega _ { 3 } = 0 , j = 1 , \dots , g ,$ ; confidence 0.474
  
20. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302802.png ; $b = b _ { 0 }$ ; confidence 0.837
+
20. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230143.png ; $R - Z R Z ^ { * } = G J G ^ { * } , G \in \mathcal{C} ^ { n \times r },$ ; confidence 0.474
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026096.png ; $R \nmid a$ ; confidence 0.430
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240499.png ; $\mathbf{X} _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027094.png ; $N \nmid K$ ; confidence 0.364
+
22. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035160/e03516011.png ; $\overline{\omega}$ ; confidence 0.474
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027034.png ; $W ( \rho )$ ; confidence 0.961
+
23. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b11092020.png ; $x^ { * } ( y - x ) \leq f ( y ) - f ( x )$ ; confidence 0.474
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270102.png ; $O _ { K } [ G$ ; confidence 0.883
+
24. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120040/e1200405.png ; $\left\{ \begin{array} { l } { L _ { x } ^ { 2 } L _ { x x } + 2 L _ { x } L _ { y } L _ { x y } + L _ { y } ^ { 2 } L _ { y y } = 0, } \\ { L _ { x } ^ { 3 } L _ { x x x } + 3 L _ { x } ^ { 2 } L _ { y } L _ { x x y } + 3 L _ { x } L _ { y } ^ { 2 } L _ { x y y }  + L _ { y } ^ { 3 } L _ { y y y } < 0. } \end{array} \right.$ ; confidence 0.474
  
25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027067.png ; $( x ^ { 2 } )$ ; confidence 0.983
+
25. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007056.png ; $\sigma \mapsto \sigma (\mathcal{D} , \mathcal{X} )$ ; confidence 0.474
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027050.png ; $_ { \rho }$ ; confidence 0.856
+
26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023091.png ; $U \sim \mathcal{U} _ { p , n }$ ; confidence 0.473
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139028.png ; $\vec { C }$ ; confidence 0.077
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052040.png ; $s = x _ { + } - x _ { c }$ ; confidence 0.473
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028062.png ; $U _ { \mu }$ ; confidence 0.935
+
28. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008015.png ; $\operatorname { det } [ I _ { n } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { m } a _ { i } \lambda ^ { i } ( a _ { m } = 1 ).$ ; confidence 0.473
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120290/a12029013.png ; $X \nmid Y$ ; confidence 0.450
+
29. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025072.png ; $\widehat { \beta }$ ; confidence 0.473
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200126.png ; $\hat { f }$ ; confidence 0.446
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $z_i$ ; confidence 0.473
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029014.png ; $A ^ { \pm }$ ; confidence 0.958
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053026.png ; $h _ { n} \rightarrow f$ ; confidence 0.473
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029056.png ; $\phi = id$ ; confidence 0.897
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027060.png ; $\| T _ { n } ( x ) - T _ { n } ( y ) \| \geq \phi ( \| x - y \| )$ ; confidence 0.473
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030053.png ; $E _ { 0 } = E$ ; confidence 0.996
+
33. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002019.png ; $p = \| P | \phi \rangle \| ^ { 2 }$ ; confidence 0.473
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030039.png ; $( x _ { n } )$ ; confidence 0.722
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301807.png ; $\operatorname{Mod}$ ; confidence 0.473
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031030.png ; $\mu _ { y }$ ; confidence 0.542
+
35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021037.png ; $v ( G )$ ; confidence 0.473
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031083.png ; $( Q , \mu )$ ; confidence 0.834
+
36. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009043.png ; $[ . ,. ]_P$ ; confidence 0.473
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310100.png ; $P \neq N P$ ; confidence 0.981
+
37. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003027.png ; $\dim M \geq 3$ ; confidence 0.473
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032032.png ; $S _ { y } = K$ ; confidence 0.318
+
38. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022013.png ; $\partial _ { t } \int f \operatorname { ln } f d v + \operatorname { div } _ { x } \int v f \operatorname { ln } f d v \leq 0.$ ; confidence 0.472
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032011.png ; $X _ { k } = 1$ ; confidence 0.997
+
39. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013018.png ; $A _ { \phi } ^ { \pm } = \frac { g } { r \operatorname { sin } \theta } ( \pm 1 - \operatorname { cos } \theta ).$ ; confidence 0.472
  
40. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501013.png ; $\xi ^ { x }$ ; confidence 0.444
+
40. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002028.png ; $c ^ { a } ( x ) c ^ { b } ( x ) = - c ^ { b } ( x ) c ^ { a } ( x )$ ; confidence 0.472
  
41. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501039.png ; $R ^ { n + r }$ ; confidence 0.351
+
41. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032240/d03224022.png ; $k + l$ ; confidence 0.472
  
42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021092.png ; $W ^ { ( i ) }$ ; confidence 0.737
+
42. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010157.png ; $\sigma = - s / \langle s , \zeta \rangle$ ; confidence 0.472
  
43. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002060.png ; $u , v \in U$ ; confidence 0.940
+
43. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014029.png ; $\| x \| = \operatorname { dist } ( x , \mathbf{Z} ) = | x - N ( x ) |$ ; confidence 0.472
  
44. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001097.png ; $X = H _ { N }$ ; confidence 0.395
+
44. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015015.png ; $N \in \mathbf{N}$ ; confidence 0.472
  
45. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001065.png ; $V _ { 0 } = V$ ; confidence 0.998
+
45. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220107.png ; $0 \rightarrow F ^ { i + 1 - m } H _ { \text{DR} } ^ { i } ( X _{/ \mathbf{R}} ) \rightarrow H _ { \text{B} } ^ { i } ( X _{/ \mathbf{R}} , \mathbf{R} ( i - m ) ) \rightarrow $ ; confidence 0.472
  
46. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001084.png ; $SL ( 2 , R )$ ; confidence 0.650
+
46. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160139.png ; $\operatorname { ASPACE } [ s ( n ) ] = \operatorname { DTIME } [ 2 ^ { O ( s ( n ) ) } ].$ ; confidence 0.472
  
47. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010118.png ; $SU ( n , 1 )$ ; confidence 0.973
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $\mathcal{P} _ { V } ^ { \# } ( n )$ ; confidence 0.472
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193041.png ; $sL ( m , C )$ ; confidence 0.160
+
48. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016033.png ; $\operatorname{Diff}( S ^ { 1 } )$ ; confidence 0.472
  
49. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002056.png ; $x \in J$ ; confidence 0.908
+
49. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010036.png ; $W - O _ { n }$ ; confidence 0.472
  
50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002019.png ; $x , y \in J$ ; confidence 0.971
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018019.png ; $a _ { 1 } + a _ { 2 } \neq 0$ ; confidence 0.472
  
51. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300308.png ; $V ^ { \pm }$ ; confidence 0.806
+
51. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001067.png ; $\mathbf{Q} [ x ]$ ; confidence 0.472
  
52. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003026.png ; $JBW ^ { * }$ ; confidence 0.591
+
52. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007041.png ; $\mathbf{e}_j$ ; confidence 0.472
  
53. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300309.png ; $\{ x y z \}$ ; confidence 0.997
+
53. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005040.png ; $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k > 0 \}$ ; confidence 0.472
  
54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004031.png ; $( f _ { n } )$ ; confidence 0.988
+
54. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005037.png ; $T \subset \mathcal{A}$ ; confidence 0.472
  
55. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006060.png ; $b _ { i }$ ; confidence 0.854
+
55. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001037.png ; $\mathcal{M} _ { n } ( \mathbf{R} )$ ; confidence 0.472
  
56. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007082.png ; $BS ( 1 , m )$ ; confidence 0.944
+
56. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150194.png ; $\| x \| _ { A } = \| x \| + \| A x \|$ ; confidence 0.472
  
57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007026.png ; $BS ( m , n )$ ; confidence 0.886
+
57. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012072.png ; $L ( \mu , \Sigma | Y _ { \text{obs} } ) = \prod _ { i = 1 } ^ { n } f ( y _ { i } | \mu , \Sigma , \nu )$ ; confidence 0.472
  
58. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007085.png ; $BS ( 1 , n )$ ; confidence 0.944
+
58. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009061.png ; $\| ( f _ { 0 } , f _ { 1 } , \ldots ) \| _ { \Gamma ( H ) } = \left( \sum _ { n = 0 } ^ { \infty } n ! |f _ { n } | _ { H^{\bigotimes n}  } ^ { 2 }  \right) ^ { 1 / 2 }.$ ; confidence 0.471
  
59. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007048.png ; $BS ( 2,3 )$ ; confidence 0.950
+
59. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013027.png ; $\sigma ( A | _ { M } ) = \sigma$ ; confidence 0.471
  
60. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007061.png ; $BS ( 1,2 )$ ; confidence 0.942
+
60. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110131.png ; $\mathbf{R} _ { x } ^ { n } \times \mathbf{R} _ { \xi } ^ { n } \times ( 0,1 ]$ ; confidence 0.471
  
61. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007052.png ; $BS ( 2,4 )$ ; confidence 0.956
+
61. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021019.png ; $0 \neq \nu _ { 2 } \in E ( 0 , \Delta _ { S^2 } ^ { 2 } )$ ; confidence 0.471
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018052.png ; $\beta > 0$ ; confidence 0.976
+
62. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004023.png ; $G _ { 0 } ^ { S } ( \Omega )$ ; confidence 0.471
  
63. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220164.png ; $s = 1 + i / 2$ ; confidence 0.966
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024028.png ; $d d ^ { c } g + \delta _ { Z } = \omega,$ ; confidence 0.471
  
64. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220249.png ; $i , j \in Z$ ; confidence 0.971
+
64. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033033.png ; $k = q ^ { d - 1 } + \ldots + q + 1$ ; confidence 0.471
  
65. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220244.png ; $X \nmid C$ ; confidence 0.461
+
65. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004061.png ; $M < \text{cr} ( K )$ ; confidence 0.471
  
66. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026014.png ; $X _ { H } , X$ ; confidence 0.374
+
66. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090225.png ; $\Delta = \text { Gal } ( k _ { \infty } ^ { \prime } / k _ { \infty } ) \cong \text { Gal } ( k ^ { \prime } / k )$ ; confidence 0.471
  
67. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009033.png ; $\vec { D }$ ; confidence 0.243
+
67. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008030.png ; $A _ { f } ( x ) = A ( f _ { x } )$ ; confidence 0.471
  
68. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201201.png ; $M = M ^ { X }$ ; confidence 0.260
+
68. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101104.png ; $= \frac { 1 } { 2 \pi i } \int _ { L } \frac { \prod _ { j = 1 } ^ { m } \Gamma ( b _ { j } - s ) \prod _ { j = 1 } ^ { n } \Gamma ( 1 - a _ { j } + s ) } { \prod _ { j = m + 1 } ^ { q } \Gamma ( 1 - b _ { j } + s ) \prod _ { j = n + 1 } ^ { p } \Gamma ( a _ { j } - s ) } x ^ { s } d s,$ ; confidence 0.471
  
69. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { x }$ ; confidence 0.785
+
69. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z1300405.png ; $\text{cr} ( G )$ ; confidence 0.471
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329045.png ; $\Pi _ { y }$ ; confidence 0.769
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600210.png ; $A_f$ ; confidence 0.471
  
71. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110340/b11034029.png ; $V ^ { 2 } = V$ ; confidence 0.999
+
71. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005054.png ; $A ( \xi , \tau ) = \rho e ^ { i \langle \langle K , \xi \rangle + W \tau \rangle }$ ; confidence 0.471
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016070.png ; $n = 4,5,6$ ; confidence 0.999
+
72. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014022.png ; $\ker T = \{ x \in X : T x = 0 \} \neq \{ 0 \},$ ; confidence 0.471
  
73. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016037.png ; $( A A , a a )$ ; confidence 0.649
+
73. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012020.png ; $d _ { \text{H} }$ ; confidence 0.471
  
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016068.png ; $v = x 3 - x 2$ ; confidence 0.469
+
74. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005039.png ; $\langle \operatorname { grad } _ { R } f ( x ) , v \rangle _ { R } = D f ( x ) . v$ ; confidence 0.471
  
75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012067.png ; $2 \pi k / N$ ; confidence 0.843
+
75. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091180/s0911804.png ; $\mathcal{O} _ { M }$ ; confidence 0.470
  
76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b120220100.png ; $u ^ { x + 1 }$ ; confidence 0.554
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052074.png ; $B _ { n + 1 } = B _ { n } + u _ { n } v _ { n } ^ { T },$ ; confidence 0.470
  
77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022042.png ; $\xi \in E$ ; confidence 0.799
+
77. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120060/n12006025.png ; $G_m ^ { r }$ ; confidence 0.470
  
78. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016360/b0163604.png ; $a , b , c , d$ ; confidence 0.995
+
78. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520134.png ; $\mathcal{E} _ { A , K [ \lambda ] }$ ; confidence 0.470
  
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b1202404.png ; $f _ { \pm }$ ; confidence 0.741
+
79. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051078.png ; $u_i = v_i$ ; confidence 0.470
  
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120250/b1202507.png ; $GL ( n , C )$ ; confidence 0.729
+
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040147.png ; $X _ { \theta }$ ; confidence 0.470
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017045.png ; $S _ { T }$ ; confidence 0.992
+
81. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032068.png ; $\Pi ( M ) _ { \overline{1} } = M _ { \overline{0} }$ ; confidence 0.470
  
82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b1202702.png ; $( t , t + h ]$ ; confidence 0.998
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002018.png ; $\limsup _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } \| \alpha _ { n } + \beta _ { n } \| = 2 ^ { - 1 / 4 } \text{ a.s.}$ ; confidence 0.470
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027010.png ; $S _ { 0 } = 0$ ; confidence 0.986
+
83. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023016.png ; $- X := X$ ; confidence 0.470
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027051.png ; $F ^ { ( k ) }$ ; confidence 0.967
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180230.png ; $W ( g )$ ; confidence 0.470
  
85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027060.png ; $p _ { 0 } = 0$ ; confidence 0.962
+
85. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g130050102.png ; $\mathbf{R} ^ { d-1 } $ ; confidence 0.470
  
86. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029040.png ; $R ^ { n + 1 }$ ; confidence 0.720
+
86. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019050.png ; $| X _ { A } ( t , z ) | \leq \beta  e ^ { - \alpha ( t - z ) }$ ; confidence 0.470
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030057.png ; $A ( \eta )$ ; confidence 0.995
+
87. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005054.png ; $F _ { i } \subset G _ { n } ( \mathbf{R} ^ { n } \times \mathbf{R} ^ { p } )$ ; confidence 0.470
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032037.png ; $x , y \in E$ ; confidence 0.944
+
88. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w1300601.png ; $T _ { g , n }$ ; confidence 0.470
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032010.png ; $u \perp v$ ; confidence 0.986
+
89. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011023.png ; $= \int \int e ^ { 2 i \pi ( x - y ) . \xi } a ( ( 1 - t ) x + t y , \xi ) u ( y ) d y d \xi.$ ; confidence 0.470
  
90. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032019.png ; $x \perp y$ ; confidence 0.725
+
90. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015078.png ; $d _ { s } ( x _ { 1 } , \ldots , x _ { n } ) =$ ; confidence 0.470
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032082.png ; $a _ { 2 } > 1$ ; confidence 0.404
+
91. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017010.png ; $V = K ^ { n }$ ; confidence 0.470
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034067.png ; $z _ { 0 } = 0$ ; confidence 0.970
+
92. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022087.png ; $H _ { \mathcal{D} } ^ { i } ( X , A ( j ) ) = \mathbf{H} ^ { i } ( X , A ( j ) _ { \mathcal{D} } ),$ ; confidence 0.470
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034034.png ; $D = U _ { 1 }$ ; confidence 1.000
+
93. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009072.png ; $\mu ^ { * }$ ; confidence 0.470
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036029.png ; $i , j , k , l$ ; confidence 0.982
+
94. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004038.png ; $f ^ { b ( \varphi ) }$ ; confidence 0.470
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036035.png ; $a , b , c , d$ ; confidence 0.787
+
95. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025092.png ; $\partial _ { t } u ( x , t ) + \partial _ { x } ( u ^ { m } ( x , t ) ) = 0$ ; confidence 0.469
  
96. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019083.png ; $2 / 5 = 0.4$ ; confidence 0.995
+
96. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010582.png ; $\sigma _ { t }$ ; confidence 0.469
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019037.png ; $x = M _ { 2 }$ ; confidence 0.865
+
97. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024075.png ; $[ \overline { t_0 } , t _ { 0 } )$ ; confidence 0.469
  
98. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019066.png ; $v = [ a , q ]$ ; confidence 0.860
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050116.png ; $u _ { 0 } \in Y$ ; confidence 0.469
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019035.png ; $x = M _ { 1 }$ ; confidence 0.831
+
99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016068.png ; $v = x_3 - x_2$ ; confidence 0.469
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037026.png ; $g _ { k } = f$ ; confidence 0.845
+
100. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001031.png ; $M _ { \operatorname{Q} }$ ; confidence 0.469
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011830/a01183015.png ; $\{ 0,1 \}$ ; confidence 1.000
+
101. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030015.png ; $x ^ { n } \equiv 1$ ; confidence 0.469
  
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200146.png ; $\hat { q }$ ; confidence 0.176
+
102. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012075.png ; $t = \mu + \frac { \Sigma ^ { 1 / 2 } Z } { \sqrt { q } },$ ; confidence 0.469
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020082.png ; $- \alpha$ ; confidence 0.564
+
103. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029019.png ; $\mathcal{C} U : = \mathbf{R} ^ { n } \backslash U$ ; confidence 0.469
  
104. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200139.png ; $i \neq - j$ ; confidence 0.943
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040263.png ; $\mathbf{\dashv} \mathsf{A}$ ; confidence 0.469
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200168.png ; $\lambda$ ; confidence 0.937
+
105. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016048.png ; $\mathsf{E} ( X ) = M$ ; confidence 0.469
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b1101309.png ; $E _ { 2 }$ ; confidence 0.994
+
106. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008029.png ; $\# A / n$ ; confidence 0.469
  
107. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b1302106.png ; $d _ { w } > 0$ ; confidence 0.407
+
107. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040161.png ; $\nu _ { i } \rightarrow \nu$ ; confidence 0.469
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021034.png ; $g + g ^ { T }$ ; confidence 1.000
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201809.png ; $\Delta S _ { n } = S _ { n + 1 }  - S _ { n }$ ; confidence 0.469
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021028.png ; $H _ { S } = 0$ ; confidence 0.906
+
109. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060160.png ; $ \left| F ^ { \prime } ( 2 x ) - \frac { q ( x ) } { 4 } + \frac { 1 } { 4 } \left( \int _ { x } ^ { \infty } q ( t ) d t  \right)^2 \right| \leq c \sigma ^ { 2 } ( x ),$ ; confidence 0.469
  
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042016.png ; $( V , W , Z )$ ; confidence 0.994
+
110. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140160.png ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } \bar{z}_j \frac { \partial f ( z ) } { \partial \bar{z} _ { j } }.$ ; confidence 0.469
  
111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042059.png ; $( i , i + 1 )$ ; confidence 1.000
+
111. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000109.png ; $I _ { \epsilon } = \operatorname { inf } _ { \rho \in R _ { \epsilon } ( X ) } I ( \rho ),$ ; confidence 0.469
  
112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042046.png ; $H _ { V , W }$ ; confidence 0.122
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490103.png ; $a_i$ ; confidence 0.469
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209048.png ; $x ^ { x } = 0$ ; confidence 0.713
+
113. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230139.png ; $\pi _ { r } ^ { k * } ( \theta )$ ; confidence 0.469
  
114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043014.png ; $a , b \in B$ ; confidence 0.337
+
114. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002098.png ; $k \in P$ ; confidence 0.469
  
115. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043015.png ; $c , d \in C$ ; confidence 0.560
+
115. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021051.png ; $( 1,1,1,1 , I _ { m } ) = ( 1,4 , I _ { m } )$ ; confidence 0.469
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302202.png ; $P _ { t } - 1$ ; confidence 0.075
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023041.png ; $\operatorname { rist } _ { G } ( n ) = \langle \operatorname { rist } _ { G } ( u ) : | u | = n \rangle$ ; confidence 0.469
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b1302309.png ; $H _ { x } + 1$ ; confidence 0.233
+
117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014041.png ; $q_i( z )$ ; confidence 0.469
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440106.png ; $B = b ^ { G }$ ; confidence 0.997
+
118. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007010.png ; $\overline { \mathcal{R} }$ ; confidence 0.469
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420122.png ; $y \in H$ ; confidence 0.503
+
119. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002031.png ; $w \in \mathbf{C}$ ; confidence 0.468
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042060.png ; $K _ { 1 }$ ; confidence 0.970
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012960/a01296022.png ; $U _ { n }$ ; confidence 0.468
  
121. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026084.png ; $x \in B [ R$ ; confidence 0.542
+
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025019.png ; $[ a _ { 1 } , a _ { 2 } ] = L ( a _ { 1 } , a _ { 2 } ) \in L ( V , V )$ ; confidence 0.468
  
122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b1302701.png ; $T = T ^ { * }$ ; confidence 0.992
+
122. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030043.png ; $\mathcal{A} \psi (. ; \eta ) = \lambda \psi (. ; \eta ) \text{ in }\mathbf{R} ^ { N },$ ; confidence 0.468
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013610/a0136105.png ; $- \infty$ ; confidence 1.000
+
123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019014.png ; $n ( x , t ) = \int _ { \mathbf{R} ^ { 3 N } } f _ { \text{w} } d p$ ; confidence 0.468
  
124. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051024.png ; $10 ^ { - 4 }$ ; confidence 1.000
+
124. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003055.png ; $G ( x ) \partial ^ { 5 } /\partial x ^ { 4 } \partial t$ ; confidence 0.468
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089042.png ; $\nabla f$ ; confidence 0.998
+
125. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010151.png ; $T ^ { 4 }$ ; confidence 0.468
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051080.png ; $H _ { k } - 1$ ; confidence 0.547
+
126. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520312.png ; $a ( x ) , a ^ { * } ( x )$ ; confidence 0.468
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052088.png ; $w _ { x } - 1$ ; confidence 0.411
+
127. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f1301308.png ; $S \subset E$ ; confidence 0.468
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052062.png ; $B _ { 0 } = I$ ; confidence 0.861
+
128. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025011.png ; $H _ { 0 } | _ { U ^ { \prime } } = \operatorname{id}$ ; confidence 0.468
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029096.png ; $h _ { 0 } = 0$ ; confidence 0.958
+
129. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014010.png ; $\sum _ { i = 0 } ^ { n } ( - 1 ) ^ { i } q _ { i } q _ { n - i }  = 0$ ; confidence 0.468
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290190.png ; $k = R _ { 0 }$ ; confidence 0.645
+
130. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004025.png ; $L ( A ) / \operatorname { Inn } \operatorname { Der } A$ ; confidence 0.468
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148042.png ; $x ^ { 2 } + 1$ ; confidence 1.000
+
131. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002029.png ; $| T _ { 1, \dots, k } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.468
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300112.png ; $F _ { m }$ ; confidence 0.945
+
132. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290165.png ; $A /_{ \mathfrak{m}}$ ; confidence 0.468
  
133. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030056.png ; $n = p ^ { 1 }$ ; confidence 0.879
+
133. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700078.png ; $\mathbf{c} _ { k } \equiv \lambda f x . f ^ { k } x$ ; confidence 0.468
  
134. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030066.png ; $\geq 665$ ; confidence 0.994
+
134. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007043.png ; $k ^ { l - r }$ ; confidence 0.468
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042091.png ; $x \in G$ ; confidence 0.737
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a01184034.png ; $\omega _ { n }$ ; confidence 0.468
  
136. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001014.png ; $\vec { C }$ ; confidence 0.180
+
136. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b1204907.png ; $\{ m_i \}$ ; confidence 0.467
  
137. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002038.png ; $A ^ { 0 } = I$ ; confidence 0.565
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022016.png ; $r f = \operatorname{id}$ ; confidence 0.467
  
138. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015120/b01512014.png ; $S ^ { n - 1 }$ ; confidence 0.496
+
138. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051062.png ; $\{ G _ { 1 } = ( V _ { 1 } , E _ { 1 } ) , \dots , G _ { m } = ( V _ { m } , E _ { m } ) \}$ ; confidence 0.467
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007047.png ; $Z C ( C , C )$ ; confidence 0.666
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051054.png ; $H _ { c }$ ; confidence 0.467
  
140. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007071.png ; $A b ^ { Z C }$ ; confidence 0.633
+
140. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037170/e03717032.png ; $P _ { L }$ ; confidence 0.467
  
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008095.png ; $E = I _ { y }$ ; confidence 0.918
+
141. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024020.png ; $\operatorname{varprojlim}_kh * ( X _ { k } ) = h * ( \text { varprojlim } _ { k } X _ { k } ),$ ; confidence 0.467
  
142. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008096.png ; $n = n / + n 2$ ; confidence 0.435
+
142. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011068.png ; $\mathcal{Q} ( D ^ { n } )$ ; confidence 0.467
  
143. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008090.png ; $T _ { p , q }$ ; confidence 0.987
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220049.png ; $D _ { 0 }$ ; confidence 0.467
  
144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005022.png ; $V \Gamma$ ; confidence 0.995
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020073.png ; $\mathfrak{g}_{-}$ ; confidence 0.467
  
145. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006038.png ; $( A _ { i } )$ ; confidence 0.764
+
145. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020015.png ; $R [ K ( x _ { \nu } , . ) ] = 0 , \quad \nu = 1 , \dots , n,$ ; confidence 0.467
  
146. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070261.png ; $( V , E , F )$ ; confidence 0.999
+
146. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037010.png ; $2 ^ { 2 ^ { n } }$ ; confidence 0.467
  
147. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007014.png ; $Y = t ^ { 3 }$ ; confidence 0.999
+
147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003027.png ; $f ( x ) = \frac { 1 } { C _ { \psi } } \int _ { 0 } ^ { \infty } \int _ { - \infty } ^ { \infty } W _ { \psi } [ f ] ( a , b ) \psi ( \frac { x - b } { a } ) d b \frac { d a } { a \sqrt { a } }.$ ; confidence 0.467
  
148. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007056.png ; $> n ( n - 2 )$ ; confidence 0.999
+
148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022044.png ; $\operatorname{Vol}( M , g )$ ; confidence 0.467
  
149. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007013.png ; $X = t ^ { 2 }$ ; confidence 0.974
+
149. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040270/f0402708.png ; $S _ { m }$ ; confidence 0.467
  
150. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070161.png ; $M ( R ( P ) )$ ; confidence 0.999
+
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027043.png ; $u _ { n } \equiv \mathsf{P} ( S _ { k } = n \text{ for some } k \geq 0 ),$ ; confidence 0.467
  
151. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008030.png ; $n = [ L : K ]$ ; confidence 0.973
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022060.png ; $u ^ { 0 }$ ; confidence 0.466
  
152. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008016.png ; $A _ { K } / p$ ; confidence 0.358
+
152. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110204.png ; $G _ { X } = \sum _ { 1 \leq j \leq n } h _ { j } ( | d q _ { j } | ^ { 2 } + | d p _ { j } | ^ { 2 } ),$ ; confidence 0.466
  
153. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009034.png ; $b _ { N } = 0$ ; confidence 0.505
+
153. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w1200602.png ; $\varphi \in \operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A )$ ; confidence 0.466
  
154. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c1201403.png ; $R / 2 \pi Z$ ; confidence 0.680
+
154. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009019.png ; $P _ { N } u ( x ) = \sum _ { n = 0 } ^ { N } a _ { n } T _ { n } ( x )$ ; confidence 0.466
  
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014011.png ; $G = SU ( N )$ ; confidence 0.775
+
155. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023066.png ; $\operatorname{Aut}T$ ; confidence 0.466
  
156. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c1201603.png ; $x ^ { T } A x$ ; confidence 0.912
+
156. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017017.png ; $e _ { 2 } , \dots , e _ { n }$ ; confidence 0.466
  
157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016016.png ; $j = 1 : n$ ; confidence 0.980
+
157. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023045.png ; $v \in \overline { N E } ( X / S )$ ; confidence 0.466
  
158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016017.png ; $i = 1 : j - 1$ ; confidence 0.990
+
158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007033.png ; $w = \frac { 1 } { s } \left( \begin{array} { c } { 1 } \\ { p _ { 1 } / r } \\ { p _ { 1 } p _ { 2 } / r ^ { 2 } } \\ { \vdots } \\ { p _ { 1 } \dots p _ { k - 1}  / r ^ { k - 1 } } \end{array} \right),$ ; confidence 0.466
  
159. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010039.png ; $( X , A , m )$ ; confidence 0.995
+
159. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002017.png ; $K \subseteq L$ ; confidence 0.466
  
160. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014054.png ; $A _ { 1 } = I$ ; confidence 0.881
+
160. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027063.png ; $0 \rightarrow \operatorname { Ext } _ { \mathbf{Z} } ^ { 1 } ( K _ { 0 } ( A ) , \mathbf{Z} ) \rightarrow \operatorname { Ext } ( A ) \rightarrow$ ; confidence 0.466
  
161. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014019.png ; $A , B \in W$ ; confidence 1.000
+
161. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003096.png ; $\operatorname { IF } ( ( \overset{\rightharpoonup} { x } _ { 0 } , y _ { 0 } ) ; T , H _ { \overset{\rightharpoonup}{ \theta } } ) = \eta ( \overset{\rightharpoonup} { x } _ { 0 } , e _ { 0 } ) M ^ { - 1 } \overset{\rightharpoonup} { x } _ { 0 },$ ; confidence 0.466
  
162. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327013.png ; $p , q \in S$ ; confidence 0.804
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012094.png ; $y _ { 0 }$ ; confidence 0.466
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $t \in S$ ; confidence 0.474
+
163. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448032.png ; $U \subset \mathbf{R} ^ { n }$ ; confidence 0.466
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540030.png ; $\hat { P }$ ; confidence 0.096
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050262.png ; $N _ { \mathcal{C} } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { \mathcal{C} } ^ { \# } ( n )$ ; confidence 0.466
  
165. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160166.png ; $\geq 2 / 3$ ; confidence 0.989
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110480/b11048028.png ; $\mathbf{s}$ ; confidence 0.466
  
166. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016019.png ; $O ( t ( n ) )$ ; confidence 0.997
+
166. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005011.png ; $\operatorname { Cay } ( G , S )$ ; confidence 0.466
  
167. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016041.png ; $O ( s ( n ) )$ ; confidence 0.999
+
167. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236018.png ; $l - 1$ ; confidence 0.466
  
168. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160168.png ; $\leq 1 / 3$ ; confidence 0.996
+
168. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004035.png ; $f ^ { b ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \{ - [ - \varphi ( x , w ) \odot f ( x ) ] \} ( w \in W );$ ; confidence 0.466
  
169. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160178.png ; $P \neq NP$ ; confidence 0.859
+
169. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520162.png ; $M _ { s \times s } ( K )$ ; confidence 0.466
  
170. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016085.png ; $[ n ] \neq$ ; confidence 0.936
+
170. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001093.png ; $\mathcal{R} _ { V } ( u \otimes v ) = u ^ { \{ 1 \} } \otimes u ^ { ( 2 ) } . v$ ; confidence 0.465
  
171. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016064.png ; $g ( t ( n ) )$ ; confidence 0.529
+
171. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004069.png ; $s _ { r } ( \zeta , z ) = ( \partial r / \partial \zeta _ { 1 } ( \zeta ) , \ldots , \partial r / \partial \zeta _ { n } ( \zeta ) )$ ; confidence 0.465
  
172. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160165.png ; $( w \in S )$ ; confidence 0.752
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050169.png ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z },$ ; confidence 0.465
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033032.png ; $\hat { N }$ ; confidence 0.399
+
173. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290165.png ; $\mathcal{T} \circ ( f , \phi ) ^ { \leftarrow } \geq \phi ^ { \operatorname{op} } \circ \mathcal{S}$ ; confidence 0.465
  
174. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180386.png ; $\hat { g }$ ; confidence 0.247
+
174. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020660/c020660169.png ; $c = \text{const} > 0$ ; confidence 0.465
  
175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180175.png ; $\{ p , q \}$ ; confidence 1.000
+
175. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009018.png ; $ k  = k ( t )$ ; confidence 0.465
  
176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180344.png ; $\{ M , g \}$ ; confidence 0.994
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013012.png ; $1 / n$ ; confidence 0.465
  
177. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019051.png ; $S = \{ 0 \}$ ; confidence 0.765
+
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027071.png ; $a ( t ) = \int _ { ( 0 , t ] } b ( t - s ) U ( d s ),$ ; confidence 0.465
  
178. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019061.png ; $S ^ { j - 1 }$ ; confidence 0.269
+
178. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d1302101.png ; $\dot { x } = G ( x , \alpha ),$ ; confidence 0.465
  
179. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019062.png ; $B ^ { x - k }$ ; confidence 0.623
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032085.png ; $k  =  k  ( i ) \in \mathbf{N}$ ; confidence 0.465
  
180. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020017.png ; $( M , \xi )$ ; confidence 0.996
+
180. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008099.png ; $K _ { \mathcal{D} }$ ; confidence 0.465
  
181. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020048.png ; $\angle D$ ; confidence 0.199
+
181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021089.png ; $\mathfrak{h} ^ { * }$ ; confidence 0.465
  
182. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c0258305.png ; $H = H _ { 1 }$ ; confidence 0.998
+
182. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001041.png ; $a _ { i j } \preceq b _ { i j }$ ; confidence 0.465
  
183. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024680/c02468023.png ; $X ^ { ( 1 ) }$ ; confidence 0.972
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610114.png ; $n_-$ ; confidence 0.465
  
184. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c1302509.png ; $\beta = 0$ ; confidence 0.998
+
184. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022055.png ; $C _ { \mathbf{M} } ( g )$ ; confidence 0.465
  
185. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020850/c02085017.png ; $X _ { \mu }$ ; confidence 0.085
+
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010037.png ; $S ^ { n } ( - t , x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.465
  
186. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025045.png ; $] t , t + h ]$ ; confidence 0.733
+
186. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007014.png ; $\{ M ( \alpha _ { n +1}  ) \text { pr }_{ ( \alpha _ { 1 } , \dots , \alpha _ { n } )}+$ ; confidence 0.465
  
187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028051.png ; $\pi ( X * )$ ; confidence 0.946
+
187. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270100.png ; $a ( t ) \equiv \mathsf{E} h ( Z ( t ) )$ ; confidence 0.465
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329090.png ; $\Pi _ { 2 }$ ; confidence 0.904
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018026.png ; $\frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda \neq 0,1.$ ; confidence 0.465
  
189. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029051.png ; $\{ S : R \}$ ; confidence 0.962
+
189. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028033.png ; $\overline { S } ( X )$ ; confidence 0.465
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030096.png ; $K _ { i } = K$ ; confidence 0.981
+
190. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007045.png ; $V _ { x } - i V _ { y }$ ; confidence 0.465
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279013.png ; $F _ { \nu }$ ; confidence 0.831
+
191. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013089.png ; $\operatorname{Hom}_{\mathcal{H}}( T , X ) = 0 = \operatorname { Ext } _ { \mathcal{H}} ^ { 1 } ( T , X )$ ; confidence 0.465
  
192. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300902.png ; $R _ { \nu }$ ; confidence 0.379
+
192. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004086.png ; $P _ { L } ( v , z ) = \sum a _ { i ,j} v ^ { i } z ^ { j }$ ; confidence 0.464
  
193. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020135.png ; $\lambda$ ; confidence 0.561
+
193. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009013.png ; $P ( x , \xi ) = \frac { r ^ { 2 } - | x - x _ { 0 } | ^ { 2 } } { \omega _ { n } r | x - \xi | ^ { n } },$ ; confidence 0.464
  
194. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $V _ { V }$ ; confidence 0.082
+
194. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005078.png ; $\beta ( m , \alpha _ { n } , \theta _ { n } ; T )$ ; confidence 0.464
  
195. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002021.png ; $x = x ^ { x }$ ; confidence 0.871
+
195. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020017.png ; $\int _ { 0 } ^ { 1 } | p _ { n } ( i t ) | ^ { 2 } d t = \sum _ { m = 1 } ^ { n } | a _ { m } | ^ { 2 } ( T + O ( m ) ).$ ; confidence 0.464
  
196. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020197.png ; $x ^ { ( k ) }$ ; confidence 0.995
+
196. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026077.png ; $\mathbf{R} ^ { n } \backslash K _ { 1 }$ ; confidence 0.464
  
197. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020180.png ; $g ^ { ( k ) }$ ; confidence 0.737
+
197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005089.png ; $\sigma _ { \text{T} } ( L _ { a } , \mathcal{B} ) = \sigma _ { \mathcal{B} } ( a )$ ; confidence 0.464
  
198. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020119.png ; $x ^ { ( 1 ) }$ ; confidence 0.414
+
198. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008062.png ; $P _ { n } ( C )$ ; confidence 0.464
  
199. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002051.png ; $q = v ^ { * }$ ; confidence 0.873
+
199. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178016.png ; $T _ { \lambda }$ ; confidence 0.464
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593052.png ; $\mu _ { k }$ ; confidence 0.504
+
200. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004013.png ; $\Delta ^ { 2 } a _ { k } = \Delta ( \Delta a _ { k } ) \geq 0$ ; confidence 0.464
  
201. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020115.png ; $x ^ { ( b ) }$ ; confidence 0.356
+
201. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110156.png ; $.\operatorname { exp } 4 i \pi \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } [ X - Y _ { j } , X - Y _ { l } ] .. d Y _ { 1 } \ldots d Y _ { 2 k }.$ ; confidence 0.464
  
202. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003022.png ; $b \Delta$ ; confidence 0.786
+
202. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200128.png ; $| 1 - z _ { h } | < \delta _ { 1 }$ ; confidence 0.464
  
203. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005032.png ; $C = C _ { f }$ ; confidence 0.993
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022078.png ; $M ( \underline { u } , \xi ) = ( 1 , \xi _ { 1 } , \ldots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) M _ { 0 } ( \underline { u } , \xi )$ ; confidence 0.464
  
204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006024.png ; $Q ^ { \pm }$ ; confidence 0.876
+
204. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029017.png ; $\geq \operatorname { min } _ { 0 \leq i \leq n + 1 } | f ( x _ { i } ) - P _ { n } ( x _ { i } ) |$ ; confidence 0.464
  
205. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200607.png ; $\psi [ 1 ]$ ; confidence 0.610
+
205. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007055.png ; $u \in H _ { + }$ ; confidence 0.464
  
206. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006021.png ; $H ^ { ( i ) }$ ; confidence 0.975
+
206. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180170.png ; $M / a$ ; confidence 0.463
  
207. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016160/b01616036.png ; $0 < c < 1$ ; confidence 0.979
+
207. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021023.png ; $= a _ { 0 } ^ { N } \prod _ { i = 1 } ^ { \nu } ( \lambda - \lambda _ { i } ) ^ { n _ { i } }.$ ; confidence 0.463
  
208. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005017.png ; $r = m / 2 - 1$ ; confidence 0.997
+
208. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001011.png ; $( c > 0 ) \& ( a \preceq b ) \Rightarrow ( a c \preceq b c ) \& ( c a \preceq c b ),$ ; confidence 0.463
  
209. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; $Z \in X$ ; confidence 0.820
+
209. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032030.png ; $a \otimes b \rightarrow a b$ ; confidence 0.463
  
210. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008081.png ; $D ( a , R ) =$ ; confidence 0.923
+
210. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140144.png ; $z = ( z _ { 1 } , \dots , z _ { n } ) \in \mathbf{C} ^ { n }$ ; confidence 0.463
  
211. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011024.png ; $\| 0 \| = 0$ ; confidence 0.904
+
211. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025016.png ; $( f , g ) \rightarrow f g : L ^ { p } ( \Omega ) \times L ^ { q } ( \Omega ) \rightarrow L ^ { 1 } ( \Omega )$ ; confidence 0.463
  
212. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101803.png ; $\rho ( u )$ ; confidence 0.946
+
212. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005075.png ; $B _ { \operatorname{new} } = B - \frac { B s s ^ { T } B } { s ^ { T } B s } + \frac { y y ^ { T } } { y ^ { T } s } + \theta . w w ^ { T },$ ; confidence 0.463
  
213. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013040.png ; $c _ { x , 2 }$ ; confidence 0.318
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png ; $S ^ { * } = S$ ; confidence 0.463
  
214. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014059.png ; $( n , 6 ) = 1$ ; confidence 1.000
+
214. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008039.png ; $q_1 , q _ { 2 } \in L _ { 1 ,1} $ ; confidence 0.463
  
215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014034.png ; $q ^ { 2 } - 1$ ; confidence 0.996
+
215. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021057.png ; $l = 0 , \dots , n _ { i } - 1$ ; confidence 0.463
  
216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014011.png ; $x = u + a / u$ ; confidence 0.886
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013064.png ; $B _ { 0 } ^ { * } \cong L _ { a } ^ { 1 }$ ; confidence 0.463
  
217. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014054.png ; $( n , 2 ) = 1$ ; confidence 1.000
+
217. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040115.png ; $\frac { P _ { 2_1 } ( v , z ) - \frac { v ^ { - 1 } - v } { z } } { z \left( \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { 2 } - 1 \right) } = - v.$ ; confidence 0.463
  
218. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167019.png ; $\xi _ { 4 }$ ; confidence 0.204
+
218. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170108.png ; $\mathcal{A} x = 0 = \mathcal{B} x$ ; confidence 0.463
  
219. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015037.png ; $( v , n ) > 1$ ; confidence 0.999
+
219. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004035.png ; $\partial _ { t } ^ { ( k ) } u ( x , t ) = ( - a ) ^ { k } \partial _ { x } ^ { ( k ) }$ ; confidence 0.463
  
220. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015020.png ; $P G ( d , q )$ ; confidence 0.997
+
220. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002038.png ; $k \in R$ ; confidence 0.463
  
221. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d1201506.png ; $d e ^ { - 1 }$ ; confidence 0.972
+
221. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780520.png ; $v_i$ ; confidence 0.463
  
222. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d1201507.png ; $d , e \in D$ ; confidence 0.761
+
222. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016022.png ; $( U ^ { i _ { 1 } } \bigotimes \ldots \bigotimes U ^ { i _ { d } } ) ( f ) =$ ; confidence 0.462
  
223. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015031.png ; $q = p ^ { t }$ ; confidence 0.913
+
223. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006034.png ; $\Delta ( \mathcal{F} ) : = \left\{ Y \in \left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right) : Y \subset X \text { for some } X \in \mathcal{F} \right\}.$ ; confidence 0.462
  
224. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031650/d03165025.png ; $f _ { 1 } = f$ ; confidence 1.000
+
224. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010091.png ; $\mathbf{ZD}_n$ ; confidence 0.462
  
225. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016058.png ; $f _ { x } = f$ ; confidence 0.432
+
225. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002080.png ; $\beta = \mathsf{P} [ ( X - \tilde { X } ) ( Y - \tilde { Y } ) > 0 ] +$ ; confidence 0.462
  
226. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016051.png ; $\pi 0 ( S )$ ; confidence 0.864
+
226. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010051.png ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \exists y ( y \in x \bigwedge v \in y ) ).$ ; confidence 0.462
  
227. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016024.png ; $f ^ { * } - f$ ; confidence 1.000
+
227. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110350/b11035023.png ; $k = 1,2 , \dots$ ; confidence 0.462
  
228. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301103.png ; $\alpha y$ ; confidence 0.998
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201708.png ; $\beta ( a )$ ; confidence 0.462
  
229. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011013.png ; $\vec { B }$ ; confidence 0.938
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P_0$ ; confidence 0.462
  
230. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011021.png ; $\sigma y$ ; confidence 0.910
+
230. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408029.png ; $\pi _ { n-1 }  ( \Omega ( X ; A , * ) , * )$ ; confidence 0.462
  
231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013079.png ; $H _ { \pm }$ ; confidence 0.378
+
231. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180270.png ; $\tau _ { p + 1 } : \otimes ^ { p + q + 1 } \mathcal{E} \rightarrow \otimes ^ { p + q + 1 } \mathcal{E}$ ; confidence 0.462
  
232. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019012.png ; $\hat { r }$ ; confidence 0.144
+
232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030076.png ; $\mathcal{O} _ { n } \simeq \mathcal{O} _ { m }$ ; confidence 0.462
  
233. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018045.png ; $( X , B , m )$ ; confidence 0.993
+
233. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004040.png ; $L^-$ ; confidence 0.462
  
234. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020021.png ; $B ( H ( G ) )$ ; confidence 0.989
+
234. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060116.png ; $r _ { i } ( A )$ ; confidence 0.462
  
235. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022013.png ; $\eta ( a )$ ; confidence 0.575
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018067.png ; $\textbf{Alg}_{ \vdash } ( L _ { \omega } )$ ; confidence 0.462
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566047.png ; $+ \infty$ ; confidence 0.857
+
236. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024047.png ; $I ( f , \mathfrak{h} )$ ; confidence 0.462
  
237. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022023.png ; $I = [ a , b ]$ ; confidence 0.691
+
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200307.png ; $\{ c _ { n ,m}  ( f ) : n , m \in \mathbf{Z} \}$ ; confidence 0.462
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025890/c02589041.png ; $\vec { H }$ ; confidence 0.160
+
238. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002049.png ; $e ^ { \beta _ { 1 } } , \ldots , e ^ { \beta _ { n } }$ ; confidence 0.462
  
239. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023047.png ; $G \Theta$ ; confidence 0.994
+
239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001029.png ; $u : Y \rightarrow X$ ; confidence 0.462
  
240. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230173.png ; $G _ { i } + 1$ ; confidence 0.637
+
240. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067088.png ; $\theta = j _ { x } ^ { 1 } ( u ) = ( d u ^ { 1 } , \dots , d u ^ { n } )$ ; confidence 0.462
  
241. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023089.png ; $\{ x , y \}$ ; confidence 1.000
+
241. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003029.png ; $\operatorname { IF } ( x ; T , G ) = \frac { \partial } { \partial \varepsilon } [ T ( ( 1 - \varepsilon ) G + \varepsilon \Delta _ { x } ) ]_{\varepsilon = 0 +},$ ; confidence 0.462
  
242. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023076.png ; $Z ^ { * }$ ; confidence 0.508
+
242. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004026.png ; $\lambda _ { 1 } ( \Omega ) = \operatorname { inf } _ { u \in H _ { 0 } ^ { 1 } ( \Omega ) } \frac { \int_{\Omega} ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }.$ ; confidence 0.462
  
243. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023055.png ; $\{ Z , J \}$ ; confidence 0.668
+
243. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200101.png ; $O _ { 1 } ( m ) = \left\{ x ^ { ( i ) } : x ^ { ( i ) } x ^ { ( j ) } = \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right) x ^ { ( i + j ) } , 0 \leq i , j < p ^ { m } \right\}$ ; confidence 0.461
  
244. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023066.png ; $x ^ { * } R y$ ; confidence 0.923
+
244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180172.png ; $g ^ { - 1 } \{ p , q \} : \otimes ^ { r + 2 } \mathcal{E} \rightarrow \otimes ^ { r } \mathcal{E}$ ; confidence 0.461
  
245. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230135.png ; $F = Z \gg Z$ ; confidence 0.278
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027035.png ; $X _ { n } = \operatorname { span } \{ \phi _ { 1 } , \dots , \phi _ { n } \}$ ; confidence 0.461
  
246. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230159.png ; $G _ { 0 } = G$ ; confidence 0.979
+
246. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090135.png ; $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } },$ ; confidence 0.461
  
247. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018028.png ; $f J ^ { O } E$ ; confidence 0.741
+
247. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002063.png ; $\widetilde{ M } _ { k } \times S ^ { 1 } \times \mathbf{R} ^ { 3 }$ ; confidence 0.461
  
248. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016720/b01672047.png ; $\hat { f }$ ; confidence 0.661
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030020.png ; $\mathbf{Z}$ ; confidence 0.461
  
249. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024043.png ; $f + 1 / 2 tr$ ; confidence 0.868
+
249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027036.png ; $( X _ { 1 } - a ) / h$ ; confidence 0.461
  
250. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024091.png ; $sl ( n , C )$ ; confidence 0.213
+
250. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019029.png ; $m _ { i -j } = \langle x ^ { i } , x ^ { j } \rangle$ ; confidence 0.461
  
251. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024092.png ; $gl ( n , C )$ ; confidence 0.187
+
251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063017.png ; $M / ( y _ { 1 } , \ldots , y _ { s } ) M$ ; confidence 0.461
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480112.png ; $p \nmid q$ ; confidence 0.681
+
252. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200176.png ; $\operatorname { ch } _ { V } : = \sum _ { \lambda \in \mathfrak{h} ^ {e* } } ( \operatorname { dim } V ^ { \lambda } ) e ^ { \lambda }.$ ; confidence 0.461
  
253. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $e \in E$ ; confidence 0.839
+
253. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220244.png ; $X / \mathbf{C}$ ; confidence 0.461
  
254. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012036.png ; $h j \geq 0$ ; confidence 0.586
+
254. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010084.png ; $f ( \Delta ) \subset \hat { K }$ ; confidence 0.461
  
255. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012025.png ; $Y _ { 0 } b s$ ; confidence 0.601
+
255. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017064.png ; $r _ { \Omega }$ ; confidence 0.461
  
256. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012023.png ; $Y _ { mis }$ ; confidence 0.730
+
256. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007040.png ; $\theta . w : = \sum _ { j = 1 } ^ { 3 } \theta _ { j } .w _ { j }$ ; confidence 0.461
  
257. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012038.png ; $f _ { i } > 0$ ; confidence 0.999
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030099.png ; $KMS$ ; confidence 0.461
  
258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012035.png ; $g _ { j } > 0$ ; confidence 0.933
+
258. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002047.png ; $\operatorname{ad} _ { q }$ ; confidence 0.460
  
259. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002047.png ; $Z = [ 0,1 ]$ ; confidence 0.993
+
259. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006086.png ; $\mathcal{H}^{  ( 2 )}$ ; confidence 0.460
  
260. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006055.png ; $C \Gamma$ ; confidence 0.988
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a01301058.png ; $\mathbf{R} ^ { m }$ ; confidence 0.460
  
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006022.png ; $\Gamma X$ ; confidence 0.591
+
261. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b1300605.png ; $x \equiv 0$ ; confidence 0.460
  
262. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007019.png ; $v ( M ) | = 1$ ; confidence 0.813
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040285.png ; $\mathbf{S} 4$ ; confidence 0.460
  
263. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009011.png ; $\nabla x$ ; confidence 0.698
+
263. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004041.png ; $K _ { \operatorname{BM} } $ ; confidence 0.460
  
264. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003012.png ; $\vec { M }$ ; confidence 0.275
+
264. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110146.png ; $\alpha = a / ( 1 - a )$ ; confidence 0.460
  
265. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011022.png ; $P = M = I = 0$ ; confidence 0.559
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050170.png ; $K ( n )$ ; confidence 0.460
  
266. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004018.png ; $\psi ( 0 )$ ; confidence 0.728
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019071.png ; $\mathbf{y} ( a / q )$ ; confidence 0.460
  
267. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004058.png ; $P _ { \pm }$ ; confidence 0.739
+
267. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008020.png ; $R _ { g } ( \lambda ) = \prod _ { i = 0 } ^ { 2 g } ( \lambda - \lambda _ { i } )$ ; confidence 0.460
  
268. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500087.png ; $( X , \mu )$ ; confidence 0.996
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138307.png ; $R_n$ ; confidence 0.460
  
269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e1201407.png ; $\rho ( f )$ ; confidence 0.991
+
269. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020057.png ; $\sigma \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 5 } & { \square } & { \square } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 8 } & { 4 } & { 1 } & { 3 } \\ { 7 } & { 6 } & { 5 } & { \square } \\ { 2 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right).$ ; confidence 0.460
  
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014041.png ; $s , t \in T$ ; confidence 0.650
+
270. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070157.png ; $r ( x , y ) / s ( x , y )$ ; confidence 0.460
  
271. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597037.png ; $\vec { t }$ ; confidence 0.589
+
271. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090387.png ; $\mathbf{Z} v^{+}$ ; confidence 0.460
  
272. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661029.png ; $R _ { n - k }$ ; confidence 0.172
+
272. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040110.png ; $\frac { P _ { L } ( v , z ) - P _ { T_{\operatorname{ com } ( L )}}  ( v , z ) } { z \left( \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { 2 } - 1 \right) } \equiv$ ; confidence 0.460
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a0117807.png ; $\{ a , b \}$ ; confidence 0.962
+
273. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001022.png ; $\{ \langle x _ { 1 } , d _ { 1 } \rangle , \ldots , \langle x _ { n } , d _ { n } \rangle \}$ ; confidence 0.460
  
274. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196
+
274. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017035.png ; $wx_{n+1}$ ; confidence 0.460
  
275. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019021.png ; $X = R ^ { 2 }$ ; confidence 0.943
+
275. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008035.png ; $\mathsf{E} [ W _ { p } ] _ { \operatorname{NP} } < \mathsf{E} [ W _ { q } ] _ { \operatorname{NP} }$ ; confidence 0.460
  
276. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190185.png ; $W = W ^ { + }$ ; confidence 0.997
+
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020082.png ; $R _ { n } < 1 - 1 / ( 250 n )$ ; confidence 0.460
  
277. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019010.png ; $p , v \in X$ ; confidence 0.819
+
277. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010144.png ; $\rho = \operatorname { sup } _ { x \in S _ { 1 } } \text { inf }_{ y \in S _ { 2 } } | x - y |$ ; confidence 0.460
  
278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190131.png ; $a , b \in T$ ; confidence 0.853
+
278. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280173.png ; $a \in M ^ { \alpha } ( [ s , \infty ) )$ ; confidence 0.459
  
279. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697047.png ; $0 < | z | < 1$ ; confidence 0.998
+
279. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008037.png ; $\Delta ( A _ { 1 } ) = \sum _ { i = 0 } ^ { m } ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ).$ ; confidence 0.459
  
280. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005019.png ; $u ( x , y ) =$ ; confidence 0.995
+
280. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002013.png ; $x _ { j } > x _ { k }$ ; confidence 0.459
  
281. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230184.png ; $E ^ { k + 1 }$ ; confidence 0.623
+
281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a1302903.png ; $( Y , P _ { Y } )$ ; confidence 0.459
  
282. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230158.png ; $L \Delta$ ; confidence 0.905
+
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040040.png ; $\pi : G \times^\varrho F \rightarrow G / H$ ; confidence 0.459
  
283. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023038.png ; $M = [ a , b ]$ ; confidence 0.904
+
283. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040017.png ; $X \cong D ^ { n}$ ; confidence 0.459
  
284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230186.png ; $S ( \phi )$ ; confidence 0.831
+
284. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030111.png ; $D : = \sum c ( e _ { i } ) \nabla _ { e_i }$ ; confidence 0.459
  
285. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032630/d03263073.png ; $\square$ ; confidence 0.982
+
285. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752064.png ; $d j = \Delta_j / \Delta_{ j - 1}$ ; confidence 0.459
  
286. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024012.png ; $Z / p ^ { m }$ ; confidence 0.389
+
286. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013081.png ; $\gamma F ^ { p }$ ; confidence 0.459
  
287. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240116.png ; $\xi _ { I }$ ; confidence 0.429
+
287. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015016.png ; $X = \mathbf{R} ^ { n }$ ; confidence 0.459
  
288. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026090.png ; $\mu _ { p }$ ; confidence 0.584
+
288. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s1300207.png ; $g _ { t } : U M \rightarrow U M$ ; confidence 0.459
  
289. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026050.png ; $( t , \nu )$ ; confidence 0.970
+
289. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101037.png ; $\mod p _ { i }$ ; confidence 0.459
  
290. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006023.png ; $z \in Z$ ; confidence 0.973
+
290. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006034.png ; $\Phi ( x ) = V ( x ) - \int _ { \mathbf{R} ^ { 3 } } | x - y | ^ { - 1 } \rho ( y ) d y.$ ; confidence 0.459
  
291. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007017.png ; $I = ( 0 , q ]$ ; confidence 0.982
+
291. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003043.png ; $\dots \rightarrow H ^ { \bullet - 1 } ( \partial ( \Gamma \backslash X ) , \tilde { \mathcal{M} } ) \rightarrow H _ { c } ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } ) \rightarrow$ ; confidence 0.459
  
292. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007079.png ; $q = p + 1 / 2$ ; confidence 0.999
+
292. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001064.png ; $\{ v _ { 1 } , \dots , v _ { n } \}$ ; confidence 0.459
  
293. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007071.png ; $[ N , N + M ]$ ; confidence 0.997
+
293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004046.png ; $| g |$ ; confidence 0.459
  
294. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027033.png ; $E _ { m } + 1$ ; confidence 0.943
+
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210115.png ; $\operatorname{Ext}_{\mathfrak{a}}^i( \mathbf{C} , M)$ ; confidence 0.459
  
295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027030.png ; $P _ { m } + 1$ ; confidence 0.424
+
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054015.png ; $a , b \in F$ ; confidence 0.459
  
296. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004016.png ; $W = X ^ { * }$ ; confidence 0.998
+
296. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021020.png ; $\pi ^ { * } \nu _ { 2 } \in E ( \mu , \Delta _ { S^3 } ^ { 2 } )$ ; confidence 0.459
  
297. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004025.png ; $- \infty$ ; confidence 0.809
+
297. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012073.png ; $L ( \mu , \Sigma | Y _ { \operatorname{obs} } )$ ; confidence 0.459
  
298. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005024.png ; $X ^ { p } - a$ ; confidence 0.785
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040346.png ; $= \{ \langle a , b \rangle \in A ^ { 2 } : \epsilon ^ { \mathbf{A} } ( a , b ) \in F \text {  for all } \epsilon ( x , y ) \in E ( x , y ) \}.$ ; confidence 0.459
  
299. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005027.png ; $q = p ^ { m }$ ; confidence 0.842
+
299. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060119.png ; $S ( \lambda ) = I _ { \mathcal{E} } - i \Phi ( \xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 } - \xi _ { 1 } \lambda _ { 1 } - \xi _ { 2 } \lambda _ { 2 } ) ^ { - 1 }.$ ; confidence 0.459
  
300. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005060.png ; $( 1,1,1 )$ ; confidence 1.000
+
300. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696013.png ; $X _ { 1 } ^ { 2 } + \ldots X _ { n } ^ { 2 }$ ; confidence 0.458

Latest revision as of 18:30, 10 May 2020

List

1. w120090105.png ; $K \mathfrak { S } _ { r }$ ; confidence 0.475

2. a0100803.png ; $X$ ; confidence 0.475

3. k12003033.png ; $\mathcal{E} \neq \emptyset$ ; confidence 0.475

4. a130040503.png ; $F \in \mathcal{C}$ ; confidence 0.475

5. a01055025.png ; $X / G$ ; confidence 0.474

6. h1100106.png ; $c \in \mathbf{C}$ ; confidence 0.474

7. p12012047.png ; $p$ ; confidence 0.474

8. a0104201.png ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474

9. n120020106.png ; $V _ { F } ( m ) = A m ^ { a }$ ; confidence 0.474

10. h120020114.png ; $\mathcal{R} _ { n }$ ; confidence 0.474

11. y12004011.png ; $I : \mathcal{A} \rightarrow \mathbf{R} \cup \{ + \infty \}$ ; confidence 0.474

12. l12003037.png ; $ \rightarrow \operatorname{Hom}_{\mathcal{K}} ( H ^ { * } Y , H ^ { * } X \bigotimes H ^ { * } Z )$ ; confidence 0.474

13. a130240470.png ; $n_i$ ; confidence 0.474

14. t120070146.png ; $p ^ { - 1 } \prod _ { \substack{m > 0 \\ n \in \mathbf{Z} } } ( 1 - p ^ { m } q ^ { n } ) ^ { c_{m n} } = j ( w ) - j ( z ) , p = \operatorname { exp } ( 2 \pi i w ) , \quad q = \operatorname { exp } ( 2 \pi i z ).$ ; confidence 0.474

15. f11016016.png ; $f _ { \mathfrak{A} }$ ; confidence 0.474

16. a13013048.png ; $j$ ; confidence 0.474

17. b01738068.png ; $t \in S$ ; confidence 0.474

18. t12021065.png ; $w ( \mathbf{v} )$ ; confidence 0.474

19. w13008028.png ; $\oint _ { A _ { j } } d \omega _ { 1 } = \oint _ { A _ { j } } d \omega _ { 3 } = 0 , j = 1 , \dots , g ,$ ; confidence 0.474

20. d120230143.png ; $R - Z R Z ^ { * } = G J G ^ { * } , G \in \mathcal{C} ^ { n \times r },$ ; confidence 0.474

21. a130240499.png ; $\mathbf{X} _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474

22. e03516011.png ; $\overline{\omega}$ ; confidence 0.474

23. b11092020.png ; $x^ { * } ( y - x ) \leq f ( y ) - f ( x )$ ; confidence 0.474

24. e1200405.png ; $\left\{ \begin{array} { l } { L _ { x } ^ { 2 } L _ { x x } + 2 L _ { x } L _ { y } L _ { x y } + L _ { y } ^ { 2 } L _ { y y } = 0, } \\ { L _ { x } ^ { 3 } L _ { x x x } + 3 L _ { x } ^ { 2 } L _ { y } L _ { x x y } + 3 L _ { x } L _ { y } ^ { 2 } L _ { x y y } + L _ { y } ^ { 3 } L _ { y y y } < 0. } \end{array} \right.$ ; confidence 0.474

25. w12007056.png ; $\sigma \mapsto \sigma (\mathcal{D} , \mathcal{X} )$ ; confidence 0.474

26. s12023091.png ; $U \sim \mathcal{U} _ { p , n }$ ; confidence 0.473

27. b12052040.png ; $s = x _ { + } - x _ { c }$ ; confidence 0.473

28. c12008015.png ; $\operatorname { det } [ I _ { n } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { m } a _ { i } \lambda ^ { i } ( a _ { m } = 1 ).$ ; confidence 0.473

29. c13025072.png ; $\widehat { \beta }$ ; confidence 0.473

30. a130240343.png ; $z_i$ ; confidence 0.473

31. b12053026.png ; $h _ { n} \rightarrow f$ ; confidence 0.473

32. a13027060.png ; $\| T _ { n } ( x ) - T _ { n } ( y ) \| \geq \phi ( \| x - y \| )$ ; confidence 0.473

33. q13002019.png ; $p = \| P | \phi \rangle \| ^ { 2 }$ ; confidence 0.473

34. a1301807.png ; $\operatorname{Mod}$ ; confidence 0.473

35. t12021037.png ; $v ( G )$ ; confidence 0.473

36. l12009043.png ; $[ . ,. ]_P$ ; confidence 0.473

37. h12003027.png ; $\dim M \geq 3$ ; confidence 0.473

38. b12022013.png ; $\partial _ { t } \int f \operatorname { ln } f d v + \operatorname { div } _ { x } \int v f \operatorname { ln } f d v \leq 0.$ ; confidence 0.472

39. d13013018.png ; $A _ { \phi } ^ { \pm } = \frac { g } { r \operatorname { sin } \theta } ( \pm 1 - \operatorname { cos } \theta ).$ ; confidence 0.472

40. f13002028.png ; $c ^ { a } ( x ) c ^ { b } ( x ) = - c ^ { b } ( x ) c ^ { a } ( x )$ ; confidence 0.472

41. d03224022.png ; $k + l$ ; confidence 0.472

42. c120010157.png ; $\sigma = - s / \langle s , \zeta \rangle$ ; confidence 0.472

43. p12014029.png ; $\| x \| = \operatorname { dist } ( x , \mathbf{Z} ) = | x - N ( x ) |$ ; confidence 0.472

44. c13015015.png ; $N \in \mathbf{N}$ ; confidence 0.472

45. b110220107.png ; $0 \rightarrow F ^ { i + 1 - m } H _ { \text{DR} } ^ { i } ( X _{/ \mathbf{R}} ) \rightarrow H _ { \text{B} } ^ { i } ( X _{/ \mathbf{R}} , \mathbf{R} ( i - m ) ) \rightarrow $ ; confidence 0.472

46. c130160139.png ; $\operatorname { ASPACE } [ s ( n ) ] = \operatorname { DTIME } [ 2 ^ { O ( s ( n ) ) } ].$ ; confidence 0.472

47. a130060150.png ; $\mathcal{P} _ { V } ^ { \# } ( n )$ ; confidence 0.472

48. l12016033.png ; $\operatorname{Diff}( S ^ { 1 } )$ ; confidence 0.472

49. w12010036.png ; $W - O _ { n }$ ; confidence 0.472

50. a12018019.png ; $a _ { 1 } + a _ { 2 } \neq 0$ ; confidence 0.472

51. f13001067.png ; $\mathbf{Q} [ x ]$ ; confidence 0.472

52. h13007041.png ; $\mathbf{e}_j$ ; confidence 0.472

53. i13005040.png ; $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k > 0 \}$ ; confidence 0.472

54. o13005037.png ; $T \subset \mathcal{A}$ ; confidence 0.472

55. l11001037.png ; $\mathcal{M} _ { n } ( \mathbf{R} )$ ; confidence 0.472

56. f120150194.png ; $\| x \| _ { A } = \| x \| + \| A x \|$ ; confidence 0.472

57. e12012072.png ; $L ( \mu , \Sigma | Y _ { \text{obs} } ) = \prod _ { i = 1 } ^ { n } f ( y _ { i } | \mu , \Sigma , \nu )$ ; confidence 0.472

58. w13009061.png ; $\| ( f _ { 0 } , f _ { 1 } , \ldots ) \| _ { \Gamma ( H ) } = \left( \sum _ { n = 0 } ^ { \infty } n ! |f _ { n } | _ { H^{\bigotimes n} } ^ { 2 } \right) ^ { 1 / 2 }.$ ; confidence 0.471

59. r13013027.png ; $\sigma ( A | _ { M } ) = \sigma$ ; confidence 0.471

60. w120110131.png ; $\mathbf{R} _ { x } ^ { n } \times \mathbf{R} _ { \xi } ^ { n } \times ( 0,1 ]$ ; confidence 0.471

61. s12021019.png ; $0 \neq \nu _ { 2 } \in E ( 0 , \Delta _ { S^2 } ^ { 2 } )$ ; confidence 0.471

62. g12004023.png ; $G _ { 0 } ^ { S } ( \Omega )$ ; confidence 0.471

63. a12024028.png ; $d d ^ { c } g + \delta _ { Z } = \omega,$ ; confidence 0.471

64. s12033033.png ; $k = q ^ { d - 1 } + \ldots + q + 1$ ; confidence 0.471

65. j13004061.png ; $M < \text{cr} ( K )$ ; confidence 0.471

66. i130090225.png ; $\Delta = \text { Gal } ( k _ { \infty } ^ { \prime } / k _ { \infty } ) \cong \text { Gal } ( k ^ { \prime } / k )$ ; confidence 0.471

67. m13008030.png ; $A _ { f } ( x ) = A ( f _ { x } )$ ; confidence 0.471

68. m1101104.png ; $= \frac { 1 } { 2 \pi i } \int _ { L } \frac { \prod _ { j = 1 } ^ { m } \Gamma ( b _ { j } - s ) \prod _ { j = 1 } ^ { n } \Gamma ( 1 - a _ { j } + s ) } { \prod _ { j = m + 1 } ^ { q } \Gamma ( 1 - b _ { j } + s ) \prod _ { j = n + 1 } ^ { p } \Gamma ( a _ { j } - s ) } x ^ { s } d s,$ ; confidence 0.471

69. z1300405.png ; $\text{cr} ( G )$ ; confidence 0.471

70. a011600210.png ; $A_f$ ; confidence 0.471

71. g12005054.png ; $A ( \xi , \tau ) = \rho e ^ { i \langle \langle K , \xi \rangle + W \tau \rangle }$ ; confidence 0.471

72. l12014022.png ; $\ker T = \{ x \in X : T x = 0 \} \neq \{ 0 \},$ ; confidence 0.471

73. w13012020.png ; $d _ { \text{H} }$ ; confidence 0.471

74. q12005039.png ; $\langle \operatorname { grad } _ { R } f ( x ) , v \rangle _ { R } = D f ( x ) . v$ ; confidence 0.471

75. s0911804.png ; $\mathcal{O} _ { M }$ ; confidence 0.470

76. b12052074.png ; $B _ { n + 1 } = B _ { n } + u _ { n } v _ { n } ^ { T },$ ; confidence 0.470

77. n12006025.png ; $G_m ^ { r }$ ; confidence 0.470

78. n067520134.png ; $\mathcal{E} _ { A , K [ \lambda ] }$ ; confidence 0.470

79. s13051078.png ; $u_i = v_i$ ; confidence 0.470

80. b120040147.png ; $X _ { \theta }$ ; confidence 0.470

81. s12032068.png ; $\Pi ( M ) _ { \overline{1} } = M _ { \overline{0} }$ ; confidence 0.470

82. b12002018.png ; $\limsup _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } \| \alpha _ { n } + \beta _ { n } \| = 2 ^ { - 1 / 4 } \text{ a.s.}$ ; confidence 0.470

83. s12023016.png ; $- X := X$ ; confidence 0.470

84. c120180230.png ; $W ( g )$ ; confidence 0.470

85. g130050102.png ; $\mathbf{R} ^ { d-1 } $ ; confidence 0.470

86. l12019050.png ; $| X _ { A } ( t , z ) | \leq \beta e ^ { - \alpha ( t - z ) }$ ; confidence 0.470

87. t12005054.png ; $F _ { i } \subset G _ { n } ( \mathbf{R} ^ { n } \times \mathbf{R} ^ { p } )$ ; confidence 0.470

88. w1300601.png ; $T _ { g , n }$ ; confidence 0.470

89. w12011023.png ; $= \int \int e ^ { 2 i \pi ( x - y ) . \xi } a ( ( 1 - t ) x + t y , \xi ) u ( y ) d y d \xi.$ ; confidence 0.470

90. b12015078.png ; $d _ { s } ( x _ { 1 } , \ldots , x _ { n } ) =$ ; confidence 0.470

91. f12017010.png ; $V = K ^ { n }$ ; confidence 0.470

92. b11022087.png ; $H _ { \mathcal{D} } ^ { i } ( X , A ( j ) ) = \mathbf{H} ^ { i } ( X , A ( j ) _ { \mathcal{D} } ),$ ; confidence 0.470

93. f12009072.png ; $\mu ^ { * }$ ; confidence 0.470

94. f12004038.png ; $f ^ { b ( \varphi ) }$ ; confidence 0.470

95. m13025092.png ; $\partial _ { t } u ( x , t ) + \partial _ { x } ( u ^ { m } ( x , t ) ) = 0$ ; confidence 0.469

96. c026010582.png ; $\sigma _ { t }$ ; confidence 0.469

97. f12024075.png ; $[ \overline { t_0 } , t _ { 0 } )$ ; confidence 0.469

98. a120050116.png ; $u _ { 0 } \in Y$ ; confidence 0.469

99. b12016068.png ; $v = x_3 - x_2$ ; confidence 0.469

100. s13001031.png ; $M _ { \operatorname{Q} }$ ; confidence 0.469

101. b13030015.png ; $x ^ { n } \equiv 1$ ; confidence 0.469

102. e12012075.png ; $t = \mu + \frac { \Sigma ^ { 1 / 2 } Z } { \sqrt { q } },$ ; confidence 0.469

103. b12029019.png ; $\mathcal{C} U : = \mathbf{R} ^ { n } \backslash U$ ; confidence 0.469

104. a130040263.png ; $\mathbf{\dashv} \mathsf{A}$ ; confidence 0.469

105. m12016048.png ; $\mathsf{E} ( X ) = M$ ; confidence 0.469

106. c13008029.png ; $\# A / n$ ; confidence 0.469

107. g130040161.png ; $\nu _ { i } \rightarrow \nu$ ; confidence 0.469

108. a1201809.png ; $\Delta S _ { n } = S _ { n + 1 } - S _ { n }$ ; confidence 0.469

109. i130060160.png ; $ \left| F ^ { \prime } ( 2 x ) - \frac { q ( x ) } { 4 } + \frac { 1 } { 4 } \left( \int _ { x } ^ { \infty } q ( t ) d t \right)^2 \right| \leq c \sigma ^ { 2 } ( x ),$ ; confidence 0.469

110. m130140160.png ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } \bar{z}_j \frac { \partial f ( z ) } { \partial \bar{z} _ { j } }.$ ; confidence 0.469

111. e035000109.png ; $I _ { \epsilon } = \operatorname { inf } _ { \rho \in R _ { \epsilon } ( X ) } I ( \rho ),$ ; confidence 0.469

112. a011490103.png ; $a_i$ ; confidence 0.469

113. e120230139.png ; $\pi _ { r } ^ { k * } ( \theta )$ ; confidence 0.469

114. d12002098.png ; $k \in P$ ; confidence 0.469

115. w12021051.png ; $( 1,1,1,1 , I _ { m } ) = ( 1,4 , I _ { m } )$ ; confidence 0.469

116. b13023041.png ; $\operatorname { rist } _ { G } ( n ) = \langle \operatorname { rist } _ { G } ( u ) : | u | = n \rangle$ ; confidence 0.469

117. b12014041.png ; $q_i( z )$ ; confidence 0.469

118. e12007010.png ; $\overline { \mathcal{R} }$ ; confidence 0.469

119. g13002031.png ; $w \in \mathbf{C}$ ; confidence 0.468

120. a01296022.png ; $U _ { n }$ ; confidence 0.468

121. a13025019.png ; $[ a _ { 1 } , a _ { 2 } ] = L ( a _ { 1 } , a _ { 2 } ) \in L ( V , V )$ ; confidence 0.468

122. b12030043.png ; $\mathcal{A} \psi (. ; \eta ) = \lambda \psi (. ; \eta ) \text{ in }\mathbf{R} ^ { N },$ ; confidence 0.468

123. w12019014.png ; $n ( x , t ) = \int _ { \mathbf{R} ^ { 3 N } } f _ { \text{w} } d p$ ; confidence 0.468

124. n13003055.png ; $G ( x ) \partial ^ { 5 } /\partial x ^ { 4 } \partial t$ ; confidence 0.468

125. h046010151.png ; $T ^ { 4 }$ ; confidence 0.468

126. n067520312.png ; $a ( x ) , a ^ { * } ( x )$ ; confidence 0.468

127. f1301308.png ; $S \subset E$ ; confidence 0.468

128. m12025011.png ; $H _ { 0 } | _ { U ^ { \prime } } = \operatorname{id}$ ; confidence 0.468

129. s13014010.png ; $\sum _ { i = 0 } ^ { n } ( - 1 ) ^ { i } q _ { i } q _ { n - i } = 0$ ; confidence 0.468

130. l13004025.png ; $L ( A ) / \operatorname { Inn } \operatorname { Der } A$ ; confidence 0.468

131. q12002029.png ; $| T _ { 1, \dots, k } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.468

132. b130290165.png ; $A /_{ \mathfrak{m}}$ ; confidence 0.468

133. l05700078.png ; $\mathbf{c} _ { k } \equiv \lambda f x . f ^ { k } x$ ; confidence 0.468

134. h13007043.png ; $k ^ { l - r }$ ; confidence 0.468

135. a01184034.png ; $\omega _ { n }$ ; confidence 0.468

136. b1204907.png ; $\{ m_i \}$ ; confidence 0.467

137. a13022016.png ; $r f = \operatorname{id}$ ; confidence 0.467

138. s13051062.png ; $\{ G _ { 1 } = ( V _ { 1 } , E _ { 1 } ) , \dots , G _ { m } = ( V _ { m } , E _ { m } ) \}$ ; confidence 0.467

139. b12051054.png ; $H _ { c }$ ; confidence 0.467

140. e03717032.png ; $P _ { L }$ ; confidence 0.467

141. s12024020.png ; $\operatorname{varprojlim}_kh * ( X _ { k } ) = h * ( \text { varprojlim } _ { k } X _ { k } ),$ ; confidence 0.467

142. f12011068.png ; $\mathcal{Q} ( D ^ { n } )$ ; confidence 0.467

143. a01220049.png ; $D _ { 0 }$ ; confidence 0.467

144. b13020073.png ; $\mathfrak{g}_{-}$ ; confidence 0.467

145. w12020015.png ; $R [ K ( x _ { \nu } , . ) ] = 0 , \quad \nu = 1 , \dots , n,$ ; confidence 0.467

146. b12037010.png ; $2 ^ { 2 ^ { n } }$ ; confidence 0.467

147. d13003027.png ; $f ( x ) = \frac { 1 } { C _ { \psi } } \int _ { 0 } ^ { \infty } \int _ { - \infty } ^ { \infty } W _ { \psi } [ f ] ( a , b ) \psi ( \frac { x - b } { a } ) d b \frac { d a } { a \sqrt { a } }.$ ; confidence 0.467

148. s12022044.png ; $\operatorname{Vol}( M , g )$ ; confidence 0.467

149. f0402708.png ; $S _ { m }$ ; confidence 0.467

150. b12027043.png ; $u _ { n } \equiv \mathsf{P} ( S _ { k } = n \text{ for some } k \geq 0 ),$ ; confidence 0.467

151. b12022060.png ; $u ^ { 0 }$ ; confidence 0.466

152. w120110204.png ; $G _ { X } = \sum _ { 1 \leq j \leq n } h _ { j } ( | d q _ { j } | ^ { 2 } + | d p _ { j } | ^ { 2 } ),$ ; confidence 0.466

153. w1200602.png ; $\varphi \in \operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A )$ ; confidence 0.466

154. c13009019.png ; $P _ { N } u ( x ) = \sum _ { n = 0 } ^ { N } a _ { n } T _ { n } ( x )$ ; confidence 0.466

155. b13023066.png ; $\operatorname{Aut}T$ ; confidence 0.466

156. f12017017.png ; $e _ { 2 } , \dots , e _ { n }$ ; confidence 0.466

157. m13023045.png ; $v \in \overline { N E } ( X / S )$ ; confidence 0.466

158. l12007033.png ; $w = \frac { 1 } { s } \left( \begin{array} { c } { 1 } \\ { p _ { 1 } / r } \\ { p _ { 1 } p _ { 2 } / r ^ { 2 } } \\ { \vdots } \\ { p _ { 1 } \dots p _ { k - 1} / r ^ { k - 1 } } \end{array} \right),$ ; confidence 0.466

159. f12002017.png ; $K \subseteq L$ ; confidence 0.466

160. b13027063.png ; $0 \rightarrow \operatorname { Ext } _ { \mathbf{Z} } ^ { 1 } ( K _ { 0 } ( A ) , \mathbf{Z} ) \rightarrow \operatorname { Ext } ( A ) \rightarrow$ ; confidence 0.466

161. m12003096.png ; $\operatorname { IF } ( ( \overset{\rightharpoonup} { x } _ { 0 } , y _ { 0 } ) ; T , H _ { \overset{\rightharpoonup}{ \theta } } ) = \eta ( \overset{\rightharpoonup} { x } _ { 0 } , e _ { 0 } ) M ^ { - 1 } \overset{\rightharpoonup} { x } _ { 0 },$ ; confidence 0.466

162. a12012094.png ; $y _ { 0 }$ ; confidence 0.466

163. g04448032.png ; $U \subset \mathbf{R} ^ { n }$ ; confidence 0.466

164. a130050262.png ; $N _ { \mathcal{C} } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { \mathcal{C} } ^ { \# } ( n )$ ; confidence 0.466

165. b11048028.png ; $\mathbf{s}$ ; confidence 0.466

166. c13005011.png ; $\operatorname { Cay } ( G , S )$ ; confidence 0.466

167. c02236018.png ; $l - 1$ ; confidence 0.466

168. f12004035.png ; $f ^ { b ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \{ - [ - \varphi ( x , w ) \odot f ( x ) ] \} ( w \in W );$ ; confidence 0.466

169. n067520162.png ; $M _ { s \times s } ( K )$ ; confidence 0.466

170. y12001093.png ; $\mathcal{R} _ { V } ( u \otimes v ) = u ^ { \{ 1 \} } \otimes u ^ { ( 2 ) } . v$ ; confidence 0.465

171. i12004069.png ; $s _ { r } ( \zeta , z ) = ( \partial r / \partial \zeta _ { 1 } ( \zeta ) , \ldots , \partial r / \partial \zeta _ { n } ( \zeta ) )$ ; confidence 0.465

172. a130050169.png ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z },$ ; confidence 0.465

173. f130290165.png ; $\mathcal{T} \circ ( f , \phi ) ^ { \leftarrow } \geq \phi ^ { \operatorname{op} } \circ \mathcal{S}$ ; confidence 0.465

174. c020660169.png ; $c = \text{const} > 0$ ; confidence 0.465

175. b12009018.png ; $ k = k ( t )$ ; confidence 0.465

176. a12013012.png ; $1 / n$ ; confidence 0.465

177. b12027071.png ; $a ( t ) = \int _ { ( 0 , t ] } b ( t - s ) U ( d s ),$ ; confidence 0.465

178. d1302101.png ; $\dot { x } = G ( x , \alpha ),$ ; confidence 0.465

179. b12032085.png ; $k = k ( i ) \in \mathbf{N}$ ; confidence 0.465

180. d13008099.png ; $K _ { \mathcal{D} }$ ; confidence 0.465

181. b12021089.png ; $\mathfrak{h} ^ { * }$ ; confidence 0.465

182. l11001041.png ; $a _ { i j } \preceq b _ { i j }$ ; confidence 0.465

183. a110610114.png ; $n_-$ ; confidence 0.465

184. m13022055.png ; $C _ { \mathbf{M} } ( g )$ ; confidence 0.465

185. b12010037.png ; $S ^ { n } ( - t , x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.465

186. c12007014.png ; $\{ M ( \alpha _ { n +1} ) \text { pr }_{ ( \alpha _ { 1 } , \dots , \alpha _ { n } )}+$ ; confidence 0.465

187. b120270100.png ; $a ( t ) \equiv \mathsf{E} h ( Z ( t ) )$ ; confidence 0.465

188. a12018026.png ; $\frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda \neq 0,1.$ ; confidence 0.465

189. s12028033.png ; $\overline { S } ( X )$ ; confidence 0.465

190. v13007045.png ; $V _ { x } - i V _ { y }$ ; confidence 0.465

191. t13013089.png ; $\operatorname{Hom}_{\mathcal{H}}( T , X ) = 0 = \operatorname { Ext } _ { \mathcal{H}} ^ { 1 } ( T , X )$ ; confidence 0.465

192. j13004086.png ; $P _ { L } ( v , z ) = \sum a _ { i ,j} v ^ { i } z ^ { j }$ ; confidence 0.464

193. p13009013.png ; $P ( x , \xi ) = \frac { r ^ { 2 } - | x - x _ { 0 } | ^ { 2 } } { \omega _ { n } r | x - \xi | ^ { n } },$ ; confidence 0.464

194. i12005078.png ; $\beta ( m , \alpha _ { n } , \theta _ { n } ; T )$ ; confidence 0.464

195. d12020017.png ; $\int _ { 0 } ^ { 1 } | p _ { n } ( i t ) | ^ { 2 } d t = \sum _ { m = 1 } ^ { n } | a _ { m } | ^ { 2 } ( T + O ( m ) ).$ ; confidence 0.464

196. b13026077.png ; $\mathbf{R} ^ { n } \backslash K _ { 1 }$ ; confidence 0.464

197. t13005089.png ; $\sigma _ { \text{T} } ( L _ { a } , \mathcal{B} ) = \sigma _ { \mathcal{B} } ( a )$ ; confidence 0.464

198. c12008062.png ; $P _ { n } ( C )$ ; confidence 0.464

199. f04178016.png ; $T _ { \lambda }$ ; confidence 0.464

200. i13004013.png ; $\Delta ^ { 2 } a _ { k } = \Delta ( \Delta a _ { k } ) \geq 0$ ; confidence 0.464

201. w120110156.png ; $.\operatorname { exp } 4 i \pi \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } [ X - Y _ { j } , X - Y _ { l } ] .. d Y _ { 1 } \ldots d Y _ { 2 k }.$ ; confidence 0.464

202. t120200128.png ; $| 1 - z _ { h } | < \delta _ { 1 }$ ; confidence 0.464

203. b12022078.png ; $M ( \underline { u } , \xi ) = ( 1 , \xi _ { 1 } , \ldots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) M _ { 0 } ( \underline { u } , \xi )$ ; confidence 0.464

204. d03029017.png ; $\geq \operatorname { min } _ { 0 \leq i \leq n + 1 } | f ( x _ { i } ) - P _ { n } ( x _ { i } ) |$ ; confidence 0.464

205. r13007055.png ; $u \in H _ { + }$ ; confidence 0.464

206. m130180170.png ; $M / a$ ; confidence 0.463

207. f12021023.png ; $= a _ { 0 } ^ { N } \prod _ { i = 1 } ^ { \nu } ( \lambda - \lambda _ { i } ) ^ { n _ { i } }.$ ; confidence 0.463

208. l11001011.png ; $( c > 0 ) \& ( a \preceq b ) \Rightarrow ( a c \preceq b c ) \& ( c a \preceq c b ),$ ; confidence 0.463

209. s12032030.png ; $a \otimes b \rightarrow a b$ ; confidence 0.463

210. m130140144.png ; $z = ( z _ { 1 } , \dots , z _ { n } ) \in \mathbf{C} ^ { n }$ ; confidence 0.463

211. m13025016.png ; $( f , g ) \rightarrow f g : L ^ { p } ( \Omega ) \times L ^ { q } ( \Omega ) \rightarrow L ^ { 1 } ( \Omega )$ ; confidence 0.463

212. q12005075.png ; $B _ { \operatorname{new} } = B - \frac { B s s ^ { T } B } { s ^ { T } B s } + \frac { y y ^ { T } } { y ^ { T } s } + \theta . w w ^ { T },$ ; confidence 0.463

213. a13001015.png ; $S ^ { * } = S$ ; confidence 0.463

214. o13008039.png ; $q_1 , q _ { 2 } \in L _ { 1 ,1} $ ; confidence 0.463

215. f12021057.png ; $l = 0 , \dots , n _ { i } - 1$ ; confidence 0.463

216. b12013064.png ; $B _ { 0 } ^ { * } \cong L _ { a } ^ { 1 }$ ; confidence 0.463

217. j130040115.png ; $\frac { P _ { 2_1 } ( v , z ) - \frac { v ^ { - 1 } - v } { z } } { z \left( \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { 2 } - 1 \right) } = - v.$ ; confidence 0.463

218. p120170108.png ; $\mathcal{A} x = 0 = \mathcal{B} x$ ; confidence 0.463

219. l12004035.png ; $\partial _ { t } ^ { ( k ) } u ( x , t ) = ( - a ) ^ { k } \partial _ { x } ^ { ( k ) }$ ; confidence 0.463

220. d12002038.png ; $k \in R$ ; confidence 0.463

221. c022780520.png ; $v_i$ ; confidence 0.463

222. s12016022.png ; $( U ^ { i _ { 1 } } \bigotimes \ldots \bigotimes U ^ { i _ { d } } ) ( f ) =$ ; confidence 0.462

223. k13006034.png ; $\Delta ( \mathcal{F} ) : = \left\{ Y \in \left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right) : Y \subset X \text { for some } X \in \mathcal{F} \right\}.$ ; confidence 0.462

224. r13010091.png ; $\mathbf{ZD}_n$ ; confidence 0.462

225. k13002080.png ; $\beta = \mathsf{P} [ ( X - \tilde { X } ) ( Y - \tilde { Y } ) > 0 ] +$ ; confidence 0.462

226. z13010051.png ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \exists y ( y \in x \bigwedge v \in y ) ).$ ; confidence 0.462

227. b11035023.png ; $k = 1,2 , \dots$ ; confidence 0.462

228. a1201708.png ; $\beta ( a )$ ; confidence 0.462

229. a13013017.png ; $P_0$ ; confidence 0.462

230. t09408029.png ; $\pi _ { n-1 } ( \Omega ( X ; A , * ) , * )$ ; confidence 0.462

231. c120180270.png ; $\tau _ { p + 1 } : \otimes ^ { p + q + 1 } \mathcal{E} \rightarrow \otimes ^ { p + q + 1 } \mathcal{E}$ ; confidence 0.462

232. c12030076.png ; $\mathcal{O} _ { n } \simeq \mathcal{O} _ { m }$ ; confidence 0.462

233. j13004040.png ; $L^-$ ; confidence 0.462

234. g130060116.png ; $r _ { i } ( A )$ ; confidence 0.462

235. a13018067.png ; $\textbf{Alg}_{ \vdash } ( L _ { \omega } )$ ; confidence 0.462

236. d12024047.png ; $I ( f , \mathfrak{h} )$ ; confidence 0.462

237. b1200307.png ; $\{ c _ { n ,m} ( f ) : n , m \in \mathbf{Z} \}$ ; confidence 0.462

238. g13002049.png ; $e ^ { \beta _ { 1 } } , \ldots , e ^ { \beta _ { n } }$ ; confidence 0.462

239. f12001029.png ; $u : Y \rightarrow X$ ; confidence 0.462

240. s09067088.png ; $\theta = j _ { x } ^ { 1 } ( u ) = ( d u ^ { 1 } , \dots , d u ^ { n } )$ ; confidence 0.462

241. m12003029.png ; $\operatorname { IF } ( x ; T , G ) = \frac { \partial } { \partial \varepsilon } [ T ( ( 1 - \varepsilon ) G + \varepsilon \Delta _ { x } ) ]_{\varepsilon = 0 +},$ ; confidence 0.462

242. r13004026.png ; $\lambda _ { 1 } ( \Omega ) = \operatorname { inf } _ { u \in H _ { 0 } ^ { 1 } ( \Omega ) } \frac { \int_{\Omega} ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }.$ ; confidence 0.462

243. z1200101.png ; $O _ { 1 } ( m ) = \left\{ x ^ { ( i ) } : x ^ { ( i ) } x ^ { ( j ) } = \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right) x ^ { ( i + j ) } , 0 \leq i , j < p ^ { m } \right\}$ ; confidence 0.461

244. c120180172.png ; $g ^ { - 1 } \{ p , q \} : \otimes ^ { r + 2 } \mathcal{E} \rightarrow \otimes ^ { r } \mathcal{E}$ ; confidence 0.461

245. a13027035.png ; $X _ { n } = \operatorname { span } \{ \phi _ { 1 } , \dots , \phi _ { n } \}$ ; confidence 0.461

246. w120090135.png ; $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } },$ ; confidence 0.461

247. m13002063.png ; $\widetilde{ M } _ { k } \times S ^ { 1 } \times \mathbf{R} ^ { 3 }$ ; confidence 0.461

248. a11030020.png ; $\mathbf{Z}$ ; confidence 0.461

249. b12027036.png ; $( X _ { 1 } - a ) / h$ ; confidence 0.461

250. m13019029.png ; $m _ { i -j } = \langle x ^ { i } , x ^ { j } \rangle$ ; confidence 0.461

251. s13063017.png ; $M / ( y _ { 1 } , \ldots , y _ { s } ) M$ ; confidence 0.461

252. b130200176.png ; $\operatorname { ch } _ { V } : = \sum _ { \lambda \in \mathfrak{h} ^ {e* } } ( \operatorname { dim } V ^ { \lambda } ) e ^ { \lambda }.$ ; confidence 0.461

253. b110220244.png ; $X / \mathbf{C}$ ; confidence 0.461

254. p13010084.png ; $f ( \Delta ) \subset \hat { K }$ ; confidence 0.461

255. d13017064.png ; $r _ { \Omega }$ ; confidence 0.461

256. i13007040.png ; $\theta . w : = \sum _ { j = 1 } ^ { 3 } \theta _ { j } .w _ { j }$ ; confidence 0.461

257. c12030099.png ; $KMS$ ; confidence 0.461

258. x12002047.png ; $\operatorname{ad} _ { q }$ ; confidence 0.460

259. o13006086.png ; $\mathcal{H}^{ ( 2 )}$ ; confidence 0.460

260. a01301058.png ; $\mathbf{R} ^ { m }$ ; confidence 0.460

261. b1300605.png ; $x \equiv 0$ ; confidence 0.460

262. a130040285.png ; $\mathbf{S} 4$ ; confidence 0.460

263. i12004041.png ; $K _ { \operatorname{BM} } $ ; confidence 0.460

264. z130110146.png ; $\alpha = a / ( 1 - a )$ ; confidence 0.460

265. a130050170.png ; $K ( n )$ ; confidence 0.460

266. b13019071.png ; $\mathbf{y} ( a / q )$ ; confidence 0.460

267. w13008020.png ; $R _ { g } ( \lambda ) = \prod _ { i = 0 } ^ { 2 g } ( \lambda - \lambda _ { i } )$ ; confidence 0.460

268. a0138307.png ; $R_n$ ; confidence 0.460

269. s12020057.png ; $\sigma \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 5 } & { \square } & { \square } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 8 } & { 4 } & { 1 } & { 3 } \\ { 7 } & { 6 } & { 5 } & { \square } \\ { 2 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right).$ ; confidence 0.460

270. c130070157.png ; $r ( x , y ) / s ( x , y )$ ; confidence 0.460

271. w120090387.png ; $\mathbf{Z} v^{+}$ ; confidence 0.460

272. j130040110.png ; $\frac { P _ { L } ( v , z ) - P _ { T_{\operatorname{ com } ( L )}} ( v , z ) } { z \left( \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { 2 } - 1 \right) } \equiv$ ; confidence 0.460

273. m13001022.png ; $\{ \langle x _ { 1 } , d _ { 1 } \rangle , \ldots , \langle x _ { n } , d _ { n } \rangle \}$ ; confidence 0.460

274. l12017035.png ; $wx_{n+1}$ ; confidence 0.460

275. q12008035.png ; $\mathsf{E} [ W _ { p } ] _ { \operatorname{NP} } < \mathsf{E} [ W _ { q } ] _ { \operatorname{NP} }$ ; confidence 0.460

276. t12020082.png ; $R _ { n } < 1 - 1 / ( 250 n )$ ; confidence 0.460

277. o130010144.png ; $\rho = \operatorname { sup } _ { x \in S _ { 1 } } \text { inf }_{ y \in S _ { 2 } } | x - y |$ ; confidence 0.460

278. a120280173.png ; $a \in M ^ { \alpha } ( [ s , \infty ) )$ ; confidence 0.459

279. c12008037.png ; $\Delta ( A _ { 1 } ) = \sum _ { i = 0 } ^ { m } ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ).$ ; confidence 0.459

280. k13002013.png ; $x _ { j } > x _ { k }$ ; confidence 0.459

281. a1302903.png ; $( Y , P _ { Y } )$ ; confidence 0.459

282. b12040040.png ; $\pi : G \times^\varrho F \rightarrow G / H$ ; confidence 0.459

283. s13040017.png ; $X \cong D ^ { n}$ ; confidence 0.459

284. i130030111.png ; $D : = \sum c ( e _ { i } ) \nabla _ { e_i }$ ; confidence 0.459

285. n06752064.png ; $d j = \Delta_j / \Delta_{ j - 1}$ ; confidence 0.459

286. m12013081.png ; $\gamma F ^ { p }$ ; confidence 0.459

287. p12015016.png ; $X = \mathbf{R} ^ { n }$ ; confidence 0.459

288. s1300207.png ; $g _ { t } : U M \rightarrow U M$ ; confidence 0.459

289. p07101037.png ; $\mod p _ { i }$ ; confidence 0.459

290. t12006034.png ; $\Phi ( x ) = V ( x ) - \int _ { \mathbf{R} ^ { 3 } } | x - y | ^ { - 1 } \rho ( y ) d y.$ ; confidence 0.459

291. e13003043.png ; $\dots \rightarrow H ^ { \bullet - 1 } ( \partial ( \Gamma \backslash X ) , \tilde { \mathcal{M} } ) \rightarrow H _ { c } ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } ) \rightarrow$ ; confidence 0.459

292. i13001064.png ; $\{ v _ { 1 } , \dots , v _ { n } \}$ ; confidence 0.459

293. b12004046.png ; $| g |$ ; confidence 0.459

294. b120210115.png ; $\operatorname{Ext}_{\mathfrak{a}}^i( \mathbf{C} , M)$ ; confidence 0.459

295. s13054015.png ; $a , b \in F$ ; confidence 0.459

296. s12021020.png ; $\pi ^ { * } \nu _ { 2 } \in E ( \mu , \Delta _ { S^3 } ^ { 2 } )$ ; confidence 0.459

297. e12012073.png ; $L ( \mu , \Sigma | Y _ { \operatorname{obs} } )$ ; confidence 0.459

298. a130040346.png ; $= \{ \langle a , b \rangle \in A ^ { 2 } : \epsilon ^ { \mathbf{A} } ( a , b ) \in F \text { for all } \epsilon ( x , y ) \in E ( x , y ) \}.$ ; confidence 0.459

299. o130060119.png ; $S ( \lambda ) = I _ { \mathcal{E} } - i \Phi ( \xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 } - \xi _ { 1 } \lambda _ { 1 } - \xi _ { 2 } \lambda _ { 2 } ) ^ { - 1 }.$ ; confidence 0.459

300. n06696013.png ; $X _ { 1 } ^ { 2 } + \ldots X _ { n } ^ { 2 }$ ; confidence 0.458

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/60. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/60&oldid=44470