Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/54"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 54 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011018.png ; $v ( x ) = v ( - x )$ ; confidence 0.489
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160135.png ; $r _ { 12 } ( X _ { 12 } )$ ; confidence 0.576
  
2. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011077.png ; $X , Y \in \Phi$ ; confidence 0.998
+
2. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840397.png ; $S _ { f } ( z , \overline { \rho } ) =\left. \frac { 1 - f ( z ) \overline { f ( \rho ) } } { 1 - z \overline { \rho } }\right)$ ; confidence 0.576
  
3. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011012.png ; $Op ( \alpha )$ ; confidence 0.605
+
3. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002089.png ; $\| Y \| _{*}$ ; confidence 0.576
  
4. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110187.png ; $G ^ { \sigma }$ ; confidence 0.990
+
4. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003039.png ; $f _ { j k l }$ ; confidence 0.576
  
5. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110130.png ; $a ( x , \xi , h )$ ; confidence 0.649
+
5. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001035.png ; $\operatorname { lim } _ { t \rightarrow \infty } \int e ^ { i q ( f ) } d \mu _ { t } ( q ) = \int e ^ { i q ( f ) } d \mu ( q ) = : S ( f )$ ; confidence 0.576
  
6. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110192.png ; $X \in \Phi$ ; confidence 0.895
+
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002048.png ; $\beta _ { n }$ ; confidence 0.575
  
7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110261.png ; $a \in S ( m , G )$ ; confidence 0.648
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103203.png ; $u_{m}$ ; confidence 0.575
  
8. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080145.png ; $\Sigma _ { g }$ ; confidence 0.519
+
8. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022013.png ; $\eta ( a )$ ; confidence 0.575
  
9. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033014.png ; $\omega _ { i }$ ; confidence 0.351
+
9. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201603.png ; $I _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x\; \text { or }\; I _ { d } ( f ) = f,$ ; confidence 0.575
  
10. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008079.png ; $u _ { k } \in M =$ ; confidence 0.993
+
10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006016.png ; $\operatorname { Pl } ( A ) = 1 - \operatorname { Bel } ( \Xi - A )$ ; confidence 0.575
  
11. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017058.png ; $d \leq l + n - 1$ ; confidence 0.988
+
11. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070132.png ; $k \langle t ^ { i } \square_j \rangle$ ; confidence 0.575
  
12. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018051.png ; $W ^ { ( 2 ) } ( t )$ ; confidence 0.976
+
12. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001079.png ; $C \subset \text{q}$ ; confidence 0.575
  
13. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018020.png ; $W ^ { ( N ) } ( t )$ ; confidence 0.963
+
13. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018037.png ; $\langle x , y \rangle ^ { * } = \langle y , x \rangle$ ; confidence 0.575
  
14. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892079.png ; $\alpha < 1 / 2$ ; confidence 0.999
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002018.png ; $H : A \times \mathbf{I} \rightarrow Z$ ; confidence 0.575
  
15. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010020.png ; $| w ^ { n } ( t ) |$ ; confidence 0.311
+
15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002028.png ; $\mathcal{T}^{-}$ ; confidence 0.575
  
16. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h0472108.png ; $T _ { \delta }$ ; confidence 0.290
+
16. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024033.png ; $\operatorname { dim } \mathfrak { g } - \operatorname { dim } \mathfrak { g } ( f )$ ; confidence 0.575
  
17. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202007.png ; $R [ f ] = ( r , f )$ ; confidence 0.999
+
17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200902.png ; $\nabla \times H = \frac { 1 } { c } \left( \frac { \partial E } { \partial t } + J \right)$ ; confidence 0.575
  
18. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020019.png ; $x _ { 1 } \neq a$ ; confidence 0.733
+
18. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o1200104.png ; $\operatorname { div } \mathbf{v} = \frac { f ^ { \prime } ( \theta ) } { f ( \theta ) } \left( \frac { \partial \theta } { \partial t } + \nabla \theta \cdot \mathbf{v} \right) = \alpha ( \theta ) \left( \frac { \partial \theta } { \partial t } + \nabla \theta \cdot \mathbf{v} \right),$ ; confidence 0.575
  
19. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020020.png ; $x _ { y } \neq b$ ; confidence 0.742
+
19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064047.png ; $\theta _ { 1 } , \dots , \theta _ { R } \in [ 0,2 \pi )$ ; confidence 0.575
  
20. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021077.png ; $x _ { i } \neq 0$ ; confidence 0.880
+
20. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016810/b01681024.png ; $\epsilon_{i}$ ; confidence 0.575
  
21. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021080.png ; $n = 33,35,39$ ; confidence 0.997
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212032.png ; $\tilde { G }$ ; confidence 0.574
  
22. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013053.png ; $W = 2 \pi ^ { 2 }$ ; confidence 1.000
+
22. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021016.png ; $\operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E ).$ ; confidence 0.574
  
23. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017032.png ; $H _ { y } ( t - 1 )$ ; confidence 0.996
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240107.png ; $i = 1 , \dots , n$ ; confidence 0.574
  
24. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017058.png ; $( k , \Sigma )$ ; confidence 0.919
+
24. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012011.png ; $C$ ; confidence 0.574
  
25. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x1200105.png ; $Q = Q _ { s } ( R )$ ; confidence 0.762
+
25. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006027.png ; $0 , \ldots , 2 ^ { E } - 1$ ; confidence 0.574
  
26. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x1200205.png ; $Q = Q _ { s } ( R )$ ; confidence 0.954
+
26. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010543.png ; $\mathcal{F} _ { t }$ ; confidence 0.574
  
27. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002045.png ; $ad _ { q } \in L$ ; confidence 0.449
+
27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s1303707.png ; $\| x \| = \operatorname { sup } _ { 0  \leq t \leq 1} | x ( t ) |$ ; confidence 0.574
  
28. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x1200309.png ; $( \theta , p )$ ; confidence 1.000
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310107.png ; $\delta > | 1 / n p - 1 / 2 n | - 1 / 2$ ; confidence 0.574
  
29. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010128.png ; $\vec { A } ( R )$ ; confidence 0.566
+
29. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022041.png ; $r _ { ess } ( S ) \leq r _ { ess } ( T )$ ; confidence 0.574
  
30. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001045.png ; $A = M _ { n } ( k )$ ; confidence 0.987
+
30. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060146.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } )$ ; confidence 0.574
  
31. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001065.png ; $n ^ { k } a ^ { n }$ ; confidence 0.152
+
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png ; $\xi $ ; confidence 0.574
  
32. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010066.png ; $y \cup \{ y \}$ ; confidence 0.997
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011035.png ; $\alpha ( m , n ) = \operatorname { min } \{ r \geq 1 : T ( r , 4 \lceil m / n ] ) > \operatorname { log } _ { 2 } n \}$ ; confidence 0.574
  
33. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003028.png ; $\theta _ { 3 }$ ; confidence 0.904
+
33. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013056.png ; $V ( \tilde{\mathbf{Z}} ) \neq \emptyset$ ; confidence 0.574
  
34. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003023.png ; $0 < b \leq 1 / 2$ ; confidence 0.993
+
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140160.png ; $\Phi = \Psi _ { 2 } ^ { * } \wedge \Psi _ { 1 },$ ; confidence 0.574
  
35. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003025.png ; $| t | \leq 1 / 2$ ; confidence 0.987
+
35. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125056.png ; $\xi_2$ ; confidence 0.574
  
36. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001037.png ; $U = O _ { 1 } ( m )$ ; confidence 0.990
+
36. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900169.png ; $g \in H$ ; confidence 0.574
  
37. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007055.png ; $GL _ { n } ( Q A )$ ; confidence 0.618
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c1302109.png ; $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$ ; confidence 0.574
  
38. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007048.png ; $1 \in Z ( G / A )$ ; confidence 0.509
+
38. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002014.png ; $L _ { 2 } ( \mathbf{R} _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 a } )$ ; confidence 0.574
  
39. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007029.png ; $x ^ { - 1 } H x = G$ ; confidence 0.988
+
39. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013032.png ; $P _ { \theta _ { n } } ( X _ { n - 1 } , d  x )$ ; confidence 0.574
  
40. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007051.png ; $GL _ { n } ( Z A )$ ; confidence 0.498
+
40. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020107.png ; $Y \ncong Z$ ; confidence 0.574
  
41. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002045.png ; $50 = 34 + 13 + 3$ ; confidence 0.607
+
41. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007058.png ; $= O ( 1 )$ ; confidence 0.573
  
42. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z1200209.png ; $71 = 55 + 13 + 3$ ; confidence 1.000
+
42. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022035.png ; $M ^ { \vee }$ ; confidence 0.573
  
43. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110114.png ; $z ^ { - ( 1 + q ) }$ ; confidence 0.820
+
43. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051022.png ; $b _ { i } \in \mathbf{Z} ^ { 0 }$ ; confidence 0.573
  
44. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012040.png ; $\sigma \in C$ ; confidence 0.986
+
44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018094.png ; $W ( g ) \in \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.573
  
45. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z1301201.png ; $\sigma \in R$ ; confidence 0.996
+
45. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050107.png ; $h \in \operatorname{QS} ( \mathbf{T} , \mathbf{C} )$ ; confidence 0.573
  
46. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660111.png ; $| \xi | \geq 1$ ; confidence 1.000
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015066.png ; $G = \operatorname{GL} ( n , \mathbf{C} )$ ; confidence 0.573
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png ; $A , B , C \in C$ ; confidence 0.982
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050017.png ; $M _ { t }$ ; confidence 0.573
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png ; $S ^ { * } = S$ ; confidence 0.463
+
48. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011023.png ; $x _ { 1 } ^ { * } , \ldots , x _ { n } ^ { * }$ ; confidence 0.573
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013044.png ; $F _ { j k } =$ ; confidence 0.626
+
49. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200301.png ; $\int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 n + 1 } ^ { G K } [ f ] =$ ; confidence 0.573
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869
+
50. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o1300206.png ; $2r_2$ ; confidence 0.573
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011980/a01198074.png ; $G = \mathbf{R} ^ { n }$ ; confidence 0.573
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024025.png ; $y , \beta , e$ ; confidence 0.936
+
52. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007011.png ; $a _ { i j } \in R$ ; confidence 0.573
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240408.png ; $y _ { i j k }$ ; confidence 0.873
+
53. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014047.png ; $\operatorname{Ker} T _ { \phi } = \{ 0 \}$ ; confidence 0.573
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240415.png ; $f ( \Theta )$ ; confidence 0.986
+
54. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006057.png ; $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ ; confidence 0.573
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240168.png ; $\alpha , = 0$ ; confidence 0.837
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027060.png ; $E / K$ ; confidence 0.573
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240164.png ; $\eta = E ( y )$ ; confidence 0.586
+
56. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024074.png ; $\overline { t _ { 0 } } = t _ { 0 }$ ; confidence 0.573
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031052.png ; $B ( K ) / M ( K )$ ; confidence 0.996
+
57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009083.png ; $r \rightarrow 1$ ; confidence 0.573
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002022.png ; $F _ { 0 } = f$ ; confidence 0.979
+
58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110260.png ; $H ( 1 , G ) = L ^ { 2 } (  \mathbf{R} ^ { n } )$ ; confidence 0.572
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002014.png ; $T ^ { - 1 } A = A$ ; confidence 0.999
+
59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040105.png ; $\chi \in R ^ { x }$ ; confidence 0.572
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200404.png ; $x _ { 0 } \in X$ ; confidence 0.722
+
60. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012074.png ; $L ( \mu , \Sigma | Y _ { \text{aug} } )$ ; confidence 0.572
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040659.png ; $^ { * } L _ { D }$ ; confidence 0.409
+
61. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001061.png ; $e _ { p - 2}$ ; confidence 0.572
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040802.png ; $g \circ h = f$ ; confidence 0.940
+
62. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001080.png ; $x \preceq y \Rightarrow y - x \in P$ ; confidence 0.572
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004054.png ; $F \subset A$ ; confidence 0.416
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006041.png ; $u = u ( t )$ ; confidence 0.572
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040372.png ; $F \subset G$ ; confidence 0.693
+
64. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032011.png ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040599.png ; $E _ { S _ { P } }$ ; confidence 0.315
+
65. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027025.png ; $f _ { j } = z _ { j } ^ { k _ { j } } + P _ { j } ( z ) , \quad j = 1 , \dots , n,$ ; confidence 0.572
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050279.png ; $G ^ { \# } ( n )$ ; confidence 0.993
+
66. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005018.png ; $D ^ { 2 } f ( x ^ { k } ) \cdot d = - D ^ { T } f ( x ^ { k } )$ ; confidence 0.572
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005014.png ; $t \in [ 0 , T ]$ ; confidence 0.814
+
67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201609.png ; $\chi _ { T } = \operatorname { dim } \operatorname { ker } T - \operatorname { dim } \text { coker } T;$ ; confidence 0.572
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005062.png ; $t \in ( 0 , T ]$ ; confidence 0.993
+
68. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540122.png ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050116.png ; $u _ { 0 } \in Y$ ; confidence 0.469
+
69. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034063.png ; $\sum _ { k = 0 } ^ { \infty } | c  _ { k } z ^ { k } | < 2 f ( 0 )$ ; confidence 0.572
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006082.png ; $W \subset Y$ ; confidence 0.647
+
70. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e1201509.png ; $g ^ { i }$ ; confidence 0.572
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060125.png ; $T ^ { \# } ( n )$ ; confidence 0.878
+
71. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007022.png ; $\| P \| _ { \infty } = \operatorname { max } _ { | z | = 1 } | P ( z ) |$ ; confidence 0.572
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060131.png ; $F ^ { \# } ( n )$ ; confidence 0.804
+
72. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840159.png ; $z _ { 0 } \neq \overline{z} _ { 0 }$ ; confidence 0.572
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008050.png ; $u _ { 1 } \in V$ ; confidence 0.738
+
73. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005035.png ; $\langle x , y \rangle _ { R } = x ^ { T } R y$ ; confidence 0.572
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070120.png ; $11 / \alpha$ ; confidence 0.210
+
74. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001017.png ; $S _ { f } ( a ) = \sum _ { p } 1 / p \cdot ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i a } ) )$ ; confidence 0.571
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300701.png ; $\sigma ( n )$ ; confidence 0.983
+
75. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009092.png ; $\operatorname {Coker} \varphi$ ; confidence 0.571
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080103.png ; $f ( L ) = f ( R )$ ; confidence 0.999
+
76. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007035.png ; $F ^ { k / l } ( 2 , m ) =$ ; confidence 0.571
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080106.png ; $U \leq b ( X )$ ; confidence 1.000
+
77. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h1200306.png ; $v _ { g }$ ; confidence 0.571
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010049.png ; $\lambda > 0$ ; confidence 1.000
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a1200307.png ; $( - 1 ) ^ { n } f ^ { ( n ) } ( x ) \geq 0 \text { on } I.$ ; confidence 0.571
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010058.png ; $A = - \Delta$ ; confidence 0.993
+
79. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004053.png ; $\operatorname {CF}$ ; confidence 0.571
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011025.png ; $T ( 0 , n ) = 2 n$ ; confidence 0.928
+
80. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170111.png ; $V$ ; confidence 0.571
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012048.png ; $( x , y ) \in J$ ; confidence 0.998
+
81. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004044.png ; $w \in C _ { \zeta } ^ { 1 } ( \Gamma )$ ; confidence 0.571
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012013.png ; $v = ( v _ { j } )$ ; confidence 0.923
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018056.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda,$ ; confidence 0.571
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012029.png ; $\mu _ { i } > 0$ ; confidence 0.993
+
83. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019019.png ; $\operatorname {ind}( D ) \in K _ { 0 } ^ { \text{alg} } ( \mathcal{C} _ { 1 } \bigotimes \mathbf{C} [ \Gamma ] ),$ ; confidence 0.571
  
84. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012046.png ; $( 0 , y ) \in J$ ; confidence 0.998
+
84. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007044.png ; $\left| \sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } \right| ^ { 2 } \ll$ ; confidence 0.571
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103006.png ; $H * \Omega X$ ; confidence 0.821
+
85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040071.png ; $\mathfrak { h } _ { R } \rightarrow \mathfrak { h } _ { R } ^ { * } : = \operatorname { hom } _ {  \mathbf{R} } ( \mathfrak { h } _ { R } ,  \mathbf{R} )$ ; confidence 0.571
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032031.png ; $T = \lambda$ ; confidence 0.763
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013066.png ; $s$ ; confidence 0.571
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015066.png ; $G = GL ( n , C )$ ; confidence 0.573
+
87. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004043.png ; $K = - \left( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \right) ^ { 2 }.$ ; confidence 0.571
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015036.png ; $( g ) = \{ 0 \}$ ; confidence 0.568
+
88. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066040.png ; $\| T _ { 1 } + i t ( f ) \| _ { * } \leq C \| f \| _ { \infty }$ ; confidence 0.571
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016038.png ; $f ( u ) ( 1 - A )$ ; confidence 1.000
+
89. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008040.png ; $\mathsf{E} [ W _ { p } ] = \infty$ ; confidence 0.571
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016010.png ; $C _ { i j } ( t )$ ; confidence 0.388
+
90. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070118.png ; $S d = a , S a = d , S b = - q b , S c = - q ^ { - 1 } c$ ; confidence 0.571
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012057.png ; $\lambda > 1$ ; confidence 1.000
+
91. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021017.png ; $\operatorname {sup}$ ; confidence 0.571
  
92. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018071.png ; $( S _ { m } + m )$ ; confidence 0.368
+
92. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036032.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } \mathbf{n} ( Y _ { s } ) d \text{l} _ { s } ,\; t \geq 0,$ ; confidence 0.571
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018063.png ; $\lambda = 0$ ; confidence 1.000
+
93. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110171.png ; $\{ a _ { m } = 0 , d a _ { m } = 0 \}$ ; confidence 0.571
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018079.png ; $[ n / 1 ] f ( t )$ ; confidence 0.962
+
94. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005026.png ; $( k _ { c } , R _ { c } )$ ; confidence 0.571
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018061.png ; $( S _ { n } + 2 )$ ; confidence 0.365
+
95. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005039.png ; $f ( x ) = \left\{ \begin{array} { l l } { \operatorname { sin } \frac { 1 } { x } , } & { x \neq 0, } \\ { a , } & { x = 0, } \end{array} \right.$ ; confidence 0.571
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018084.png ; $10 ^ { 16 }$ ; confidence 1.000
+
96. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200704.png ; $\operatorname { log } | P ( x _ { 1 } , \dots , x _ { n } ) |$ ; confidence 0.570
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018082.png ; $- 1 < t \leq 1$ ; confidence 0.717
+
97. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003036.png ; $j = 1 , \dots , 8$ ; confidence 0.570
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018058.png ; $( S _ { n } + 1 )$ ; confidence 0.246
+
98. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022015.png ; $G _ { g } \leq \operatorname {SL} _ { 2 } ( \mathbf{R} )$ ; confidence 0.570
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018075.png ; $\lambda = 1$ ; confidence 1.000
+
99. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001055.png ; $B = ( \beta _ { 0 } , \dots , \beta _ { n - 1 } )$ ; confidence 0.570
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014021.png ; $X = Y = R ^ { n }$ ; confidence 0.297
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013059.png ; $c$ ; confidence 0.570
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130170/a13017022.png ; $\Pi \circ B$ ; confidence 0.932
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032033.png ; $H _ { 1 }$ ; confidence 0.570
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130170/a13017025.png ; $B \circ \Pi$ ; confidence 0.885
+
102. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005011.png ; $k_ j > 0$ ; confidence 0.570
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180123.png ; $c _ { i } ( R ) =$ ; confidence 0.960
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012037.png ; $A v$ ; confidence 0.570
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180107.png ; $\dot { i } < n$ ; confidence 0.451
+
104. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008014.png ; $N ( \mathfrak{p} )$ ; confidence 0.570
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180112.png ; $c _ { i } ^ { U }$ ; confidence 0.900
+
105. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011015.png ; $B _ { \alpha } = \{ x \in \mathbf{R} : \xi ( x ) \geq \alpha \}$ ; confidence 0.570
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018026.png ; $Fm _ { \ell }$ ; confidence 0.217
+
106. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021073.png ; $l = 0$ ; confidence 0.569
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020020.png ; $q ( T ) \neq 0$ ; confidence 0.998
+
107. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005038.png ; $\operatorname { Ran } D _ { A } = \operatorname { Ker } D_ { A } $ ; confidence 0.569
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023055.png ; $\psi \neq 0$ ; confidence 0.843
+
108. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306409.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { \operatorname { det } T _ { n - 1 } ( a ) } = G ( a ),$ ; confidence 0.569
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046038.png ; $D \subset C$ ; confidence 0.833
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012025.png ; $\lambda ( x ) = \int _ {  \mathbf{R} } e ^ { - i x t } d \mu ( t ),$ ; confidence 0.569
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025023.png ; $D _ { i } \in D$ ; confidence 0.974
+
110. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160106.png ; $S = \{ \phi _ { 1 } , \dots , \phi _ { m } \}$ ; confidence 0.569
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027066.png ; $\phi ( t ) > 0$ ; confidence 1.000
+
111. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002061.png ; $\mu_{ \gamma , t}$ ; confidence 0.569
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027065.png ; $\phi ( 0 ) = 0$ ; confidence 1.000
+
112. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h1300208.png ; $w ^ { l } = ( w _ { 1 } ^ { l } , \dots , w _ { n } ^ { l } )$ ; confidence 0.569
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027076.png ; $x \in X _ { y }$ ; confidence 0.140
+
113. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015029.png ; $r_{1} / r _ { 2 } \notin Z _ { n }$ ; confidence 0.569
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027085.png ; $w \in Y ^ { * }$ ; confidence 0.993
+
114. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100121.png ; $\operatorname {SL} _ { n }$ ; confidence 0.569
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024059.png ; $X \subset A$ ; confidence 0.598
+
115. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010016.png ; $0 < a _ { 1 } < \ldots < a _ { n }$ ; confidence 0.569
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a1202405.png ; $f \in Q ^ { * }$ ; confidence 0.893
+
116. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007029.png ; $\lambda_j > 0$ ; confidence 0.569
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024025.png ; $( p - 1 , p - 1 )$ ; confidence 1.000
+
117. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002023.png ; $\mathsf{P} ( A _ { 1 } \bigcap \ldots \bigcap A _ { n } ) = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { 1 } { k ! }.$ ; confidence 0.569
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028021.png ; $s _ { 0 } = 1 / 2$ ; confidence 1.000
+
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052076.png ; $w _ { n } = \frac { B _ { n } ^ { - 1 } u _ { n } } { 1 + v _ { n } ^ { T } B _ { n } ^ { - 1 } u _ { n } },$ ; confidence 0.569
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026044.png ; $y \in A ^ { S }$ ; confidence 0.907
+
119. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090109.png ; $\mu _ { p } ( K / k ) \geq 0$ ; confidence 0.569
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027074.png ; $\rho _ { i j }$ ; confidence 0.310
+
120. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008036.png ; $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$ ; confidence 0.569
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027070.png ; $( 2 , d ) _ { F }$ ; confidence 0.831
+
121. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014022.png ; $\operatorname { lim } _ { n \rightarrow \infty } \| T ^ { n } \| ^ { 1 / n } = 0$ ; confidence 0.569
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027036.png ; $\zeta N ( s )$ ; confidence 0.618
+
122. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001070.png ; $\mathbf{R} ^ { 2 n + 2 }$ ; confidence 0.569
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027072.png ; $a \in K ^ { * }$ ; confidence 0.275
+
123. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027044.png ; $W ( \rho ) = 1$ ; confidence 0.999
+
124. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049020.png ; $B _ { l_{1} , l _ { 2 } } ( x )$ ; confidence 0.569
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028097.png ; $\rho \in Y *$ ; confidence 0.428
+
125. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002011.png ; $J ^ { \prime }$ ; confidence 0.569
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028065.png ; $\rho \in X *$ ; confidence 0.687
+
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050013.png ; $W ^ { o } : = \{ M _ { t } - W _ { t } : t \geq 0 \}$ ; confidence 0.569
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a1302903.png ; $( Y , P _ { Y } )$ ; confidence 0.459
+
127. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065360/m06536024.png ; $i,j = 1 , \dots , k$ ; confidence 0.568
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029059.png ; $QH ^ { * } ( M )$ ; confidence 0.884
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066072.png ; $\text{l} ^ { \infty }$ ; confidence 0.568
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030034.png ; $\Theta ( T )$ ; confidence 0.590
+
129. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029012.png ; $i = 0 , \dots , n + 1$ ; confidence 0.568
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030085.png ; $C ( \Omega )$ ; confidence 0.733
+
130. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007025.png ; $\mathbf{Z} _ { q , n }$ ; confidence 0.568
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030073.png ; $I ( \theta )$ ; confidence 0.513
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400120.png ; $p \in \mathfrak{h} _ { R } ^ { * } \subset \mathfrak{h} ^ { * }$ ; confidence 0.568
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032045.png ; $\theta = .5$ ; confidence 0.882
+
132. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070158.png ; $a _ { 1 } ( g )$ ; confidence 0.568
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032021.png ; $E ( Y ) \neq 0$ ; confidence 0.718
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015036.png ; $\operatorname {ad} ( \mathfrak{g} ) = \{ 0 \}$ ; confidence 0.568
  
134. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021036.png ; $X _ { i } \in a$ ; confidence 0.521
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023028.png ; $f _ { l } = ( P _ { n } \ldots P _ { 1 } ) ^ { \text{l} } f$ ; confidence 0.568
  
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021045.png ; $p \subset a$ ; confidence 0.641
+
135. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840298.png ; $\mathcal{K} _ { 1 }$ ; confidence 0.568
  
136. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066036.png ; $\{ T _ { S } \}$ ; confidence 0.724
+
136. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021062.png ; $\lambda _ { 1 } - \lambda _ { i } , \ldots , \lambda _ { i - 1 } - \lambda _ { i }$ ; confidence 0.568
  
137. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002045.png ; $u = B ^ { - 1 } l$ ; confidence 0.961
+
137. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012023.png ; $F : \mathcal{C} \rightarrow \mathcal{C} ^ { \prime }$ ; confidence 0.568
  
138. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002044.png ; $l \in R ^ { N }$ ; confidence 0.160
+
138. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013029.png ; $r < r_{0}$ ; confidence 0.568
  
139. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002026.png ; $u _ { f } \in U$ ; confidence 0.899
+
139. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197057.png ; $k = 1,2 , \dots ,$ ; confidence 0.568
  
140. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002048.png ; $\beta _ { y }$ ; confidence 0.575
+
140. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012022.png ; $a ( x ) = \operatorname { lim } _ { n \rightarrow \infty } 2 ^ { - n } f ( 2 ^ { n } x ).$ ; confidence 0.568
  
141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002021.png ; $t \in ( 0,1 )$ ; confidence 1.000
+
141. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007057.png ; $v \in H _ { 0 }$ ; confidence 0.568
  
142. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001094.png ; $V ^ { * } - V$ ; confidence 0.998
+
142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011025.png ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|,$ ; confidence 0.567
  
143. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001080.png ; $G = SL ( 2 , Q )$ ; confidence 0.704
+
143. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300301.png ; $H = ( h _ { i  , j} )$ ; confidence 0.567
  
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010101.png ; $Z \in H _ { N }$ ; confidence 0.218
+
144. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001033.png ; $\left\{ \begin{array} { l } { \operatorname { Re } ( \nabla p _ { 0 } + \mathbf{b} ) = 0, } \\ { \Lambda _ { 1 } C ( \theta _ { r } ) \left( \frac { \partial \theta _ { 0 } } { \partial t } + \nabla \theta _ { 0 } \cdot  \mathbf{v} _ { 0 } \right) = \Delta \theta _ { 0 }, } \\ { \operatorname { div } \mathbf{v} _ { 0 } = 0. } \end{array} \right.$ ; confidence 0.567
  
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001055.png ; $\{ U _ { S } \}$ ; confidence 0.863
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200141.png ; $0 \neq a \in G _ { i }$ ; confidence 0.567
  
146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001076.png ; $( V ^ { * } , A )$ ; confidence 0.994
+
146. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021044.png ; $2 ^ { \alpha }$ ; confidence 0.567
  
147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001054.png ; $v \in V ^ { * }$ ; confidence 0.689
+
147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020095.png ; $\operatorname { dim } \mathfrak { g } ^ { \pm  \alpha _ { i }} = 1$ ; confidence 0.567
  
148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003022.png ; $( a b ) ^ { - 1 }$ ; confidence 0.966
+
148. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520376.png ; $Y \equiv ( y _ { 1 } , \dots , y _ { n } ) = 0$ ; confidence 0.567
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003011.png ; $y \in V ^ { - }$ ; confidence 0.878
+
149. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011031.png ; $k f _{( k , n )} \approx \mu _ { n } ,\; k = 1,2 , \ldots,$ ; confidence 0.567
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004066.png ; $q x < \infty$ ; confidence 0.859
+
150. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017039.png ; $\lambda _ { k } \geq \frac { 4 \pi k } { A }\; \text { for } k = 1,2 , \ldots,$ ; confidence 0.567
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004048.png ; $\lambda > 0$ ; confidence 0.918
+
151. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110174.png ; $\text{SS} \ f$ ; confidence 0.567
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040118.png ; $X _ { S } ^ { * }$ ; confidence 0.845
+
152. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110132.png ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { \mathsf{P} } { \rightarrow } \int _ { 0 } ^ { 1 } u ( 1 - u ) ^ { x - 1 } F ( d x ).$ ; confidence 0.567
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040112.png ; $\{ x _ { n } \}$ ; confidence 0.488
+
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200203.png ; $\Gamma _ { n } ( t ) = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } 1 _ { [ 0 , t ] } ( U _ { i } )$ ; confidence 0.567
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005029.png ; $B \subset U$ ; confidence 0.977
+
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055049.png ; $\iota ( M )$ ; confidence 0.567
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005013.png ; $U \subset E$ ; confidence 0.990
+
155. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080107.png ; $\infty_{\pm}$ ; confidence 0.567
  
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005018.png ; $z _ { 0 } \in U$ ; confidence 0.970
+
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002039.png ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.567
  
157. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006023.png ; $\| A \| _ { 1 }$ ; confidence 0.972
+
157. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021054.png ; $i = 1 , \dots , 8$ ; confidence 0.567
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b1300603.png ; $| x | | \geq 0$ ; confidence 0.967
+
158. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008021.png ; $\sigma _ { \mathfrak{P} }$ ; confidence 0.567
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007019.png ; $a \mapsto a$ ; confidence 0.780
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280148.png ; $E \subseteq \hat { G }$ ; confidence 0.567
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007064.png ; $b \mapsto b$ ; confidence 0.976
+
160. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232074.png ; $a = d + e$ ; confidence 0.567
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007047.png ; $n | \hat { k }$ ; confidence 0.426
+
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200201.png ; $U _ { 1 } , \dots , U _ { n } , \dots$ ; confidence 0.567
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007023.png ; $BS ( 12,18 )$ ; confidence 0.889
+
162. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080137.png ; $\{ S _ { 1 } , \ldots , S _ { N } \}$ ; confidence 0.566
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220231.png ; $CH ^ { i } ( X )$ ; confidence 0.959
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017040.png ; $K = \mathbf{R} ^ { n }$ ; confidence 0.566
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220202.png ; $m = ( i + 1 ) + 2$ ; confidence 0.692
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406027.png ; $\phi_{0}$ ; confidence 0.566
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b1102209.png ; $H _ { DR } ( X )$ ; confidence 0.990
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020015.png ; $[ h _ { i } e _ { j } ] = a _ { ij } e _ { j }$ ; confidence 0.566
  
166. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220144.png ; $\dot { i } = 0$ ; confidence 0.339
+
166. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007025.png ; $( K x ) ( t ) : = \frac { 1 } { 2 \pi } \text{P} \cdot \text{V} \cdot \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s \ (a.e.) .$ ; confidence 0.566
  
167. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220152.png ; $\dot { i } = 1$ ; confidence 0.812
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280142.png ; $S _ { E }$ ; confidence 0.566
  
168. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220123.png ; $E \otimes C$ ; confidence 0.929
+
168. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020167.png ; $\tilde{u} _ { 1 } \geq 0$ ; confidence 0.566
  
169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009019.png ; $\| . \| _ { 1 }$ ; confidence 0.911
+
169. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110390/b11039025.png ; $\gamma _ { j k } ^ { i }$ ; confidence 0.566
  
170. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009023.png ; $d ( u , \phi )$ ; confidence 0.999
+
170. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020059.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , n } \frac { | s _ { k } | } { M _ { 1 } ( k ) } = 1$ ; confidence 0.566
  
171. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301008.png ; $K _ { Z } \in H$ ; confidence 0.498
+
171. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008073.png ; $= \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N } \langle S _ { i } | \mathcal{P} | S _ { i+ 1 } \rangle$ ; confidence 0.566
  
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013052.png ; $1 / p + 1 / q = 1$ ; confidence 0.999
+
172. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030025.png ; $\square ^ { 0 } \mathcal{O} _ { \mathcal{H} } ^ { ( k ) }$ ; confidence 0.566
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014047.png ; $a ( z ) = S ( z )$ ; confidence 0.980
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003027.png ; $\{ g _ { n  , m} : n , m \in \mathbf{Z} \}$ ; confidence 0.566
  
174. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201402.png ; $\sigma ( z )$ ; confidence 0.983
+
174. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052021.png ; $\| x _ { n  + 1} - x ^ { * } \| = O ( \| x _ { n } - x ^ { * } \| ^ { 2 } ),$ ; confidence 0.566
  
175. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014024.png ; $S \in F _ { q }$ ; confidence 0.348
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012210/a0122105.png ; $x = ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.566
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201403.png ; $\omega ( z )$ ; confidence 0.947
+
176. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010128.png ; $\widetilde { A  ( R )}$ ; confidence 0.566
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015032.png ; $\beth \in P$ ; confidence 0.547
+
177. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007057.png ; $k = \frac { \gamma  b  ^ { 2 } \pi ^ { 2 } } { 12 \mu U a ^ { 2 } ( 1 - \lambda ) ^ { 2 } }.$ ; confidence 0.566
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015073.png ; $p \in [ 0,1 ]$ ; confidence 1.000
+
178. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070100/o07010011.png ; $x ^ { - 1 } P x \subseteq P$ ; confidence 0.565
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015091.png ; $P _ { 0 } \in P$ ; confidence 0.635
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040567.png ; $\Lambda _ { \mathcal{D}} \operatorname { Thm } \mathcal{D}$ ; confidence 0.565
  
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015054.png ; $d _ { 2 } ^ { * }$ ; confidence 0.601
+
180. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006049.png ; $\mathcal{C} ( Y , \hat{X} )$ ; confidence 0.565
  
181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015053.png ; $d _ { 1 } ^ { * }$ ; confidence 0.804
+
181. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006010.png ; $u_m ( x , t )$ ; confidence 0.565
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011032.png ; $b _ { j } ^ { x }$ ; confidence 0.587
+
182. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002038.png ; $A ^ { 0 } = I$ ; confidence 0.565
  
183. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017050.png ; $W _ { 0 } ^ { Y }$ ; confidence 0.353
+
183. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080146.png ; $\{ F ^ { n } \}$ ; confidence 0.565
  
184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017024.png ; $L _ { 0 } ^ { p }$ ; confidence 0.217
+
184. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201408.png ; $N ( x ) = \lfloor x + 1 / 2 \rfloor$ ; confidence 0.565
  
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017047.png ; $W _ { 1 } ^ { 2 }$ ; confidence 0.988
+
185. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009036.png ; $2 r_ 2 ( k )$ ; confidence 0.565
  
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017048.png ; $L _ { O } ^ { 2 }$ ; confidence 0.156
+
186. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011024.png ; $S ^ { - 1 }$ ; confidence 0.565
  
187. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017033.png ; $g \in L ^ { p }$ ; confidence 0.968
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240481.png ; $n _ { 1 } + 1 , \ldots , n _ { 1 } + n _ { 2 }$ ; confidence 0.565
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018042.png ; $( A , P ^ { A } )$ ; confidence 0.979
+
188. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003026.png ; $\Phi _ { 2 } = \pm \Phi _ { 1 } + \text{const}$ ; confidence 0.565
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020016.png ; $\theta ( z )$ ; confidence 0.990
+
189. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004022.png ; $K_{\text{O}} ( f )$ ; confidence 0.565
  
190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020030.png ; $f = \theta g$ ; confidence 0.999
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006023.png ; $u = ( u _ { 1 } , \ldots , u _ { p } )$ ; confidence 0.565
  
191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020050.png ; $T ( \theta )$ ; confidence 0.964
+
191. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001018.png ; $Re = \frac { \rho L U } { \mu } , \quad \varepsilon = U ( \frac { \rho } { g \mu } ) ^ { 1 / 3 },$ ; confidence 0.565
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020046.png ; $H ( \theta )$ ; confidence 0.990
+
192. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201107.png ; $I_{ \{ x \} } ( \cdot )$ ; confidence 0.565
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120103.png ; $p \in [ 1,2 ]$ ; confidence 1.000
+
193. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027030.png ; $R _ { l } ^ { B }$ ; confidence 0.564
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012071.png ; $f \in A ^ { * }$ ; confidence 0.995
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020057.png ; $\sum _ { j = 1 } ^ { n } P _ { j } = I$ ; confidence 0.564
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012074.png ; $t | \leq \pi$ ; confidence 0.756
+
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049052.png ; $E \in \mathcal{A}$ ; confidence 0.564
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022017.png ; $\rho \geq 0$ ; confidence 0.977
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018054.png ; $s = 1$ ; confidence 0.564
  
197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022027.png ; $\rho ( t , x )$ ; confidence 0.989
+
197. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049047.png ; $i = 0 , \ldots , h$ ; confidence 0.564
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022019.png ; $u \in R ^ { N }$ ; confidence 0.706
+
198. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160143.png ; $\text{ATIMEALT} [ t ( n ) , a ( n )]$ ; confidence 0.564
  
199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022075.png ; $\Xi = R ^ { N }$ ; confidence 0.613
+
199. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010122.png ; $\overline { H } ^ { 1 } ( D )$ ; confidence 0.564
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022089.png ; $\xi = ( v , l )$ ; confidence 0.889
+
200. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070103.png ; $\leq d$ ; confidence 0.564
  
201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022041.png ; $x \in R ^ { N }$ ; confidence 0.830
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020082.png ; $\text{degree}- \alpha_{i}$ ; confidence 0.564
  
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024013.png ; $U \subset C$ ; confidence 0.605
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080100.png ; $T _ { 10 } = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { 0 } & { 0 } \end{array} \right] ,\; T _ { 01 } = \left[ \begin{array} { c c } { 0 } & { 0 } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right].$ ; confidence 0.564
  
203. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016078.png ; $C ( X , \tau )$ ; confidence 0.999
+
203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005048.png ; $q \geq 4$ ; confidence 0.564
  
204. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017042.png ; $\phi ( . , . )$ ; confidence 0.791
+
204. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020019.png ; $\alpha ^ { \prime } : \mathfrak { g } \rightarrow \mathfrak { X } ( M , \omega )$ ; confidence 0.564
  
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017043.png ; $\psi ( . , . )$ ; confidence 0.545
+
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007019.png ; $S _ { \lambda } = e ^ { \lambda + \rho } \sum _ { \gamma } ( - 1 ) ^ { | \gamma | } e ^ { - \gamma }$ ; confidence 0.564
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027057.png ; $\{ b _ { n } \}$ ; confidence 0.666
+
206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110221.png ; $\operatorname { sup } _ { X \in \Phi } \| a ^ { ( k ) } ( X ) \| _ { G _ { X } } m ( X ) ^ { - 1 } < \infty.$ ; confidence 0.564
  
207. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027066.png ; $\alpha ( . )$ ; confidence 0.803
+
207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110126.png ; $\operatorname {Op} ( a ) \operatorname {Op} ( b ) = \operatorname {Op} ( a \circ b )$ ; confidence 0.564
  
208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027058.png ; $\{ a _ { n } \}$ ; confidence 0.439
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290189.png ; $R = \oplus _ { n  \geq 0} R _ { n }$ ; confidence 0.563
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015014.png ; $\alpha ( t )$ ; confidence 0.885
+
209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005066.png ; $U = \left( \begin{array} { c c } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.563
  
210. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027072.png ; $\{ u _ { j } \}$ ; confidence 0.823
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240280.png ; $\hat { \sigma }_{ \hat { \psi }} = \| \mathbf{d} \| ( \text{MS} _ { e } ) ^ { 1 / 2 }$ ; confidence 0.563
  
211. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029023.png ; $H _ { f } ^ { U }$ ; confidence 0.820
+
211. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110160.png ; $a = a _ { m } + a _ { m - 1 } + r _ { m - 2 },$ ; confidence 0.563
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090261.png ; $x \in R ^ { x }$ ; confidence 0.440
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040188.png ; $D_i$ ; confidence 0.563
  
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203005.png ; $p \in Z ^ { N }$ ; confidence 0.849
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010277.png ; $C$ ; confidence 0.563
  
214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030072.png ; $\sigma ( A )$ ; confidence 0.986
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040606.png ; $\mathfrak { M } \models  _ { \mathcal{S}  _ { P }} \varphi$ ; confidence 0.563
  
215. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310101.png ; $f \in L ^ { 1 }$ ; confidence 0.976
+
215. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019017.png ; $y _ { 1 } ( a / q ) = - \overline { a } / q$ ; confidence 0.563
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031055.png ; $x _ { 0 } \in S$ ; confidence 0.550
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040711.png ; $X ^ { \omega }$ ; confidence 0.563
  
217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031057.png ; $M _ { R } f ( x )$ ; confidence 0.985
+
217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l1201702.png ; $\tilde { K } ^ { 2 }$ ; confidence 0.563
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034026.png ; $D ^ { \circ }$ ; confidence 0.764
+
218. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110163.png ; $a _ { j } ( x , \lambda \xi ) = \lambda ^ { j } a _ { j } ( x , \xi ) , \text { for } | \xi | \geq 1 , \lambda \geq 1,$ ; confidence 0.563
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034069.png ; $z _ { 0 } \in M$ ; confidence 0.962
+
219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007048.png ; $\alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.563
  
220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034043.png ; $K \subset D$ ; confidence 0.989
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022061.png ; $S _ { C }$ ; confidence 0.563
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034057.png ; $K \subset M$ ; confidence 0.961
+
221. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010127.png ; $d : B \rightarrow A$ ; confidence 0.563
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034040.png ; $z _ { 0 } \in D$ ; confidence 0.974
+
222. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007064.png ; $U ^ { 6 } = I$ ; confidence 0.563
  
223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203607.png ; $\{ \in \{ \}$ ; confidence 0.191
+
223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013037.png ; $\mathbf{Q} ( \chi )$ ; confidence 0.563
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019056.png ; $L = L _ { k , q }$ ; confidence 0.951
+
224. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080187.png ; $i = 1 , \dots , M = ( N ^ { 2 } - 1 ) ( g - 1 )$ ; confidence 0.563
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019081.png ; $3 / 20 = 0.15$ ; confidence 0.960
+
225. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010040.png ; $\hat { K } = \mathbf{C} \backslash \Omega _ { \infty }$ ; confidence 0.562
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037010.png ; $2 ^ { 2 ^ { n } }$ ; confidence 0.467
+
226. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300108.png ; $\{ a ^ { n } \}$ ; confidence 0.562
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037063.png ; $f \in B _ { x }$ ; confidence 0.830
+
227. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130115.png ; $[ \cdot ]$ ; confidence 0.562
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200201.png ; $s l _ { 2 } ( R )$ ; confidence 0.193
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050112.png ; $v \in Y$ ; confidence 0.562
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200120.png ; $b ^ { t ^ { s } }$ ; confidence 0.200
+
229. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003051.png ; $a \| b$ ; confidence 0.562
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200200.png ; $\Lambda = 0$ ; confidence 0.998
+
230. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006016.png ; $\{ | x - x_{ 0} | < a T \}$ ; confidence 0.562
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200114.png ; $h ^ { t ^ { 2 } }$ ; confidence 0.088
+
231. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001024.png ; $( f _ { 1 } , f _ { 2 } , \ldots )$ ; confidence 0.562
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040062.png ; $B \subset G$ ; confidence 0.971
+
232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201306.png ; $\frac { \partial M } { \partial y _ { n } } = - M ( \Lambda ^ { t } ) ^ { n },$ ; confidence 0.562
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040073.png ; $b _ { R } ^ { * }$ ; confidence 0.122
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240393.png ; $\operatorname { tr } ( \mathbf{M} _ { \mathcal{H} } ( \mathbf{M} _ { H } + \mathbf{M} _ { \mathsf{E} } ) ^ { - 1 } ) > \text{const}$ ; confidence 0.562
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040069.png ; $5 \sqrt { 3 }$ ; confidence 0.161
+
234. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002061.png ; $\overline{X} _ { n } \in M _ { F }$ ; confidence 0.562
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040083.png ; $w \in ^ { - 1 }$ ; confidence 0.089
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419073.png ; $v _ { t }$ ; confidence 0.562
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400132.png ; $i \neq 1 ( w )$ ; confidence 0.551
+
236. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010140.png ; $\geq 7$ ; confidence 0.562
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021031.png ; $r \in R _ { W }$ ; confidence 0.375
+
237. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120134.png ; $M = M ^ { \prime } \cap K _ { \operatorname { tot } S }$ ; confidence 0.562
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042080.png ; $\Psi ^ { - 1 }$ ; confidence 0.942
+
238. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012061.png ; $R = F \langle x , y \rangle$ ; confidence 0.562
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042020.png ; $W \otimes V$ ; confidence 0.710
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028057.png ; $( \mathbf{Z} / 2 ) ^ { k }$ ; confidence 0.562
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420128.png ; $SL _ { q } ( 2 )$ ; confidence 0.758
+
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150140.png ; $i \in \{ 1 , \ldots , m \} \backslash \{ j \}$ ; confidence 0.562
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420100.png ; $q \in k ^ { * }$ ; confidence 0.364
+
241. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120109.png ; $t = 0,1 , \ldots$ ; confidence 0.562
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043059.png ; $A _ { q } ^ { 2 }$ ; confidence 0.967
+
242. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004026.png ; $r \geq n$ ; confidence 0.561
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043071.png ; $GL _ { q } ( 2 )$ ; confidence 0.561
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002019.png ; $H _ { 0 }$ ; confidence 0.561
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043095.png ; $B U _ { q } ( g )$ ; confidence 0.631
+
244. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065028.png ; $\{ \Phi _ { k } \} _ { k = 0 } ^ { \infty }$ ; confidence 0.561
  
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043022.png ; $B \otimes B$ ; confidence 0.996
+
245. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005025.png ; $\frac { \text{Ma} } { \text{Re} } = \frac { u / c } { u l / \nu } = \frac { 1 } { c } \frac { \nu } { \lambda },$ ; confidence 0.561
  
246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204309.png ; $B \otimes C$ ; confidence 0.988
+
246. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110179.png ; $b ^ { s } _{m - 1}$ ; confidence 0.561
  
247. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022015.png ; $\partial T$ ; confidence 0.381
+
247. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140164.png ; $q _ { \Lambda } : \mathbf{Z} ^ { n } \rightarrow \mathbf{Z}$ ; confidence 0.561
  
248. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022040.png ; $\gamma j = 0$ ; confidence 0.631
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024056.png ; $\omega ^ { 2 }$ ; confidence 0.561
  
249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022056.png ; $q \in P _ { K }$ ; confidence 0.963
+
249. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000186.png ; $\lambda x \cdot f ( x ) = \{ ( b , \beta ) : b \in f ( \beta ) \} \in D _ { A }$ ; confidence 0.561
  
250. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302207.png ; $W _ { 2 } ^ { 1 }$ ; confidence 0.926
+
250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290112.png ; $L ^ { X }$ ; confidence 0.561
  
251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049047.png ; $\{ m _ { x } \}$ ; confidence 0.624
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017024.png ; $\int _ { 0 } ^ { + \infty } e ^ { - \lambda a } \beta ( a ) \Pi ( a ) d a = 1,$ ; confidence 0.561
  
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049039.png ; $\{ A _ { j } \}$ ; confidence 0.947
+
252. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020135.png ; $\lambda_{l}$ ; confidence 0.561
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049033.png ; $\{ E _ { n } \}$ ; confidence 0.999
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050200.png ; $\mathbf{p} ( n )$ ; confidence 0.561
  
254. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663026.png ; $\partial K$ ; confidence 0.992
+
254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043071.png ; $\operatorname {GL} _ { q } ( 2 )$ ; confidence 0.561
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015140/b01514018.png ; $f ^ { - 1 } ( 0 )$ ; confidence 1.000
+
255. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201409.png ; $E ( 3,5 ) = \{ 3,5,8,13 , \dots \}$ ; confidence 0.560
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b130260100.png ; $f _ { x } ^ { x }$ ; confidence 0.435
+
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014035.png ; $a ( z ) , b ( z ) \in \mathbf{F} _ { q } [ z ]$ ; confidence 0.560
  
257. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028032.png ; $f * ( x _ { x } )$ ; confidence 0.591
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017075.png ; $p , q \in P _ { n }$ ; confidence 0.560
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028057.png ; $( Z / 2 ) ^ { k }$ ; confidence 0.562
+
258. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017040.png ; $H _ { y } ( t )$ ; confidence 0.560
  
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052072.png ; $\{ B _ { N } \}$ ; confidence 0.386
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043015.png ; $c , d \in C$ ; confidence 0.560
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290213.png ; $R = k [ R _ { 1 }$ ; confidence 0.983
+
260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c1302507.png ; $u _ { k } ( t ) = \alpha ( t ) e ^ { z _ { k } ^ { T } ( t ) \beta }.$ ; confidence 0.560
  
261. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290165.png ; $A \nmid \pi$ ; confidence 0.468
+
261. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002024.png ; $\Delta = o ( \lambda )$ ; confidence 0.560
  
262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300163.png ; $D ( 2 n _ { 1 } )$ ; confidence 0.875
+
262. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013032.png ; $P _ { \sigma } + P _ { \tau } =\operatorname {id}$ ; confidence 0.560
  
263. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300105.png ; $n > 10 ^ { 10 }$ ; confidence 0.582
+
263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022029.png ; $\operatorname { spec } ( M , \Delta )$ ; confidence 0.560
  
264. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300164.png ; $D ( 2 n _ { 2 } )$ ; confidence 0.511
+
264. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520249.png ; $\overline { b }_j$ ; confidence 0.560
  
265. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300155.png ; $E ( m , R ) ( G )$ ; confidence 0.179
+
265. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002024.png ; $\overline { f } _{-\text{ap}} = - \infty$ ; confidence 0.560
  
266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b1303007.png ; $F _ { m } ^ { N }$ ; confidence 0.286
+
266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009051.png ; $f \in H ^ { \hat{\otimes} n }$ ; confidence 0.560
  
267. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010112.png ; $\partial E$ ; confidence 0.991
+
267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009051.png ; $w ^ { \frac { m } { 1 + a i } } =$ ; confidence 0.560
  
268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001048.png ; $T ^ { - 1 } ( F )$ ; confidence 1.000
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600190.png ; $H _ { f }$ ; confidence 0.560
  
269. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200305.png ; $P \subset X$ ; confidence 0.627
+
269. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011014.png ; $260,430$ ; confidence 0.560
  
270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200903.png ; $\{ x \} ^ { G }$ ; confidence 0.508
+
270. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110136.png ; $\operatorname { supp } f _ { \Delta _ { k } } \subset - \Delta _ { k } ^ { \circ }$ ; confidence 0.560
  
271. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001024.png ; $c ( x ) = \tau$ ; confidence 0.434
+
271. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120020/k12002010.png ; $c _ { 1 } ( M ) _ { \mathbf{R} } < 0$ ; confidence 0.560
  
272. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729036.png ; $\partial V$ ; confidence 0.998
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120107.png ; $\omega ( f ^ { \prime } ; t ) _ { \infty } = O \left( \left( \operatorname { ln } \frac { 1 } { t } \right) ^ { - 1 / 2 } \right).$ ; confidence 0.560
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001037.png ; $c _ { \beta }$ ; confidence 0.384
+
273. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048019.png ; $R _ { m } \subset J ^ { m } ( \alpha )$ ; confidence 0.560
  
274. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200208.png ; $| S ^ { x - 1 } |$ ; confidence 0.624
+
274. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752033.png ; $N \in M _ { m \times n } ( K )$ ; confidence 0.560
  
275. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003018.png ; $I \subset R$ ; confidence 0.834
+
275. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900232.png ; $\mathbf{III} _ { 0 }$ ; confidence 0.560
  
276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003013.png ; $K \subset G$ ; confidence 0.510
+
276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210115.png ; $P _ { n , \theta }$ ; confidence 0.560
  
277. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003046.png ; $J \subset I$ ; confidence 0.683
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240337.png ; $\mathbf{F}$ ; confidence 0.560
  
278. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004015.png ; $Cl _ { 2 } ( z )$ ; confidence 0.766
+
278. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201103.png ; $f : \mathcal{S} \rightarrow [ 0 , + \infty )$ ; confidence 0.560
  
279. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005020.png ; $V \Gamma = G$ ; confidence 0.995
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008069.png ; $\pm$ ; confidence 0.560
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012540/a0125405.png ; $S \subset G$ ; confidence 0.943
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100202.png ; $v$ ; confidence 0.560
  
281. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005032.png ; $\Gamma = G H$ ; confidence 0.976
+
281. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014040.png ; $\tilde{\mathbf{E}} _ { 7 }$ ; confidence 0.560
  
282. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215409.png ; $x \in A ^ { + }$ ; confidence 0.643
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060114.png ; $P ^ { \# } ( n ) \sim C q ^ { n } n ^ { - \alpha } \;\text { as } n \rightarrow \infty.$ ; confidence 0.559
  
283. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007058.png ; $D _ { t _ { 0 } }$ ; confidence 0.899
+
283. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452012.png ; $P \subset R$ ; confidence 0.559
  
284. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070169.png ; $\delta ( P )$ ; confidence 0.435
+
284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240134.png ; $\operatorname { deg } \phi$ ; confidence 0.559
  
285. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211020.png ; $x \in R ^ { 1 }$ ; confidence 0.280
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005055.png ; $\mathcal{A} = \mathcal{H} _ { uc } ^ { \infty } ( B _ { E } )$ ; confidence 0.559
  
286. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016032.png ; $A = L D L ^ { T }$ ; confidence 0.873
+
286. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016017.png ; $R_{h}$ ; confidence 0.559
  
287. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011021.png ; $\{ t _ { i } \}$ ; confidence 0.972
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040509.png ; $\mathbf{A}$ ; confidence 0.559
  
288. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011023.png ; $\{ v _ { i } \}$ ; confidence 0.978
+
288. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301701.png ; $\{ x _ { t } : t \in \mathbf{Z} \}$ ; confidence 0.559
  
289. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b017470110.png ; $\{ x _ { i } \}$ ; confidence 0.991
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031081.png ; $\{ z \in A : z a = a z \;\text { for each } a \in A \}$ ; confidence 0.559
  
290. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014045.png ; $p _ { 2 } ^ { k }$ ; confidence 0.217
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040093.png ; $\check{R} : G \rightarrow V ^ { * }$ ; confidence 0.559
  
291. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014024.png ; $A _ { i } ^ { T }$ ; confidence 0.994
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070137.png ; $S _ { n }$ ; confidence 0.559
  
292. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015047.png ; $N ( \Omega )$ ; confidence 0.999
+
292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003042.png ; $\psi = \Psi ^ { \prime 2}$ ; confidence 0.559
  
293. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301503.png ; $D ( \Omega )$ ; confidence 0.863
+
293. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022062.png ; $Z ( e , h ; z ) = T _ { h } ( z )$ ; confidence 0.559
  
294. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015061.png ; $G ( \Omega )$ ; confidence 0.972
+
294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202902.png ; $\sum x _ { k }$ ; confidence 0.559
  
295. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232706.png ; $A \subset B$ ; confidence 0.993
+
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064010.png ; $G ( a ) = \operatorname { exp } ( [ \operatorname { log } a ] _ { 0 } )$ ; confidence 0.559
  
296. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232705.png ; $A \subset A$ ; confidence 0.790
+
296. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011022.png ; $\mathbf{P} = \mathbf{M} = \mathbf{J} = 0$ ; confidence 0.559
  
297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170130.png ; $M ( \infty )$ ; confidence 0.999
+
297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016047.png ; $\operatorname {rank} ( A ) = r$ ; confidence 0.559
  
298. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170154.png ; $M ( n ) \geq 0$ ; confidence 0.999
+
298. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026056.png ; $( \mathcal{L} _ { h k } V ) _ { j } ^ { n + 1 } \leq 0,\;1 \leq j \leq J - 1,\;0 \leq n \leq N - 1,$ ; confidence 0.559
  
299. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170144.png ; $M ( 1 ) \geq 0$ ; confidence 0.999
+
299. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005010.png ; $1 \leq j \leq J$ ; confidence 0.559
  
300. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017015.png ; $K \subset C$ ; confidence 0.632
+
300. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007059.png ; $\mathbf{R} _ { - } ^ { 3 } : = \{ x : x _ { 3 } < 0 \}$ ; confidence 0.559

Latest revision as of 02:03, 14 June 2020

List

1. a120160135.png ; $r _ { 12 } ( X _ { 12 } )$ ; confidence 0.576

2. k055840397.png ; $S _ { f } ( z , \overline { \rho } ) =\left. \frac { 1 - f ( z ) \overline { f ( \rho ) } } { 1 - z \overline { \rho } }\right)$ ; confidence 0.576

3. j12002089.png ; $\| Y \| _{*}$ ; confidence 0.576

4. o13003039.png ; $f _ { j k l }$ ; confidence 0.576

5. q12001035.png ; $\operatorname { lim } _ { t \rightarrow \infty } \int e ^ { i q ( f ) } d \mu _ { t } ( q ) = \int e ^ { i q ( f ) } d \mu ( q ) = : S ( f )$ ; confidence 0.576

6. b12002048.png ; $\beta _ { n }$ ; confidence 0.575

7. a1103203.png ; $u_{m}$ ; confidence 0.575

8. d11022013.png ; $\eta ( a )$ ; confidence 0.575

9. s1201603.png ; $I _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x\; \text { or }\; I _ { d } ( f ) = f,$ ; confidence 0.575

10. d13006016.png ; $\operatorname { Pl } ( A ) = 1 - \operatorname { Bel } ( \Xi - A )$ ; confidence 0.575

11. q120070132.png ; $k \langle t ^ { i } \square_j \rangle$ ; confidence 0.575

12. q12001079.png ; $C \subset \text{q}$ ; confidence 0.575

13. s12018037.png ; $\langle x , y \rangle ^ { * } = \langle y , x \rangle$ ; confidence 0.575

14. a12002018.png ; $H : A \times \mathbf{I} \rightarrow Z$ ; confidence 0.575

15. t12002028.png ; $\mathcal{T}^{-}$ ; confidence 0.575

16. d12024033.png ; $\operatorname { dim } \mathfrak { g } - \operatorname { dim } \mathfrak { g } ( f )$ ; confidence 0.575

17. e1200902.png ; $\nabla \times H = \frac { 1 } { c } \left( \frac { \partial E } { \partial t } + J \right)$ ; confidence 0.575

18. o1200104.png ; $\operatorname { div } \mathbf{v} = \frac { f ^ { \prime } ( \theta ) } { f ( \theta ) } \left( \frac { \partial \theta } { \partial t } + \nabla \theta \cdot \mathbf{v} \right) = \alpha ( \theta ) \left( \frac { \partial \theta } { \partial t } + \nabla \theta \cdot \mathbf{v} \right),$ ; confidence 0.575

19. s13064047.png ; $\theta _ { 1 } , \dots , \theta _ { R } \in [ 0,2 \pi )$ ; confidence 0.575

20. b01681024.png ; $\epsilon_{i}$ ; confidence 0.575

21. a01212032.png ; $\tilde { G }$ ; confidence 0.574

22. e12021016.png ; $\operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E ).$ ; confidence 0.574

23. a130240107.png ; $i = 1 , \dots , n$ ; confidence 0.574

24. p12012011.png ; $C$ ; confidence 0.574

25. l13006027.png ; $0 , \ldots , 2 ^ { E } - 1$ ; confidence 0.574

26. c026010543.png ; $\mathcal{F} _ { t }$ ; confidence 0.574

27. s1303707.png ; $\| x \| = \operatorname { sup } _ { 0 \leq t \leq 1} | x ( t ) |$ ; confidence 0.574

28. b120310107.png ; $\delta > | 1 / n p - 1 / 2 n | - 1 / 2$ ; confidence 0.574

29. a12022041.png ; $r _ { ess } ( S ) \leq r _ { ess } ( T )$ ; confidence 0.574

30. f041060146.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } )$ ; confidence 0.574

31. t12001014.png ; $\xi $ ; confidence 0.574

32. a12011035.png ; $\alpha ( m , n ) = \operatorname { min } \{ r \geq 1 : T ( r , 4 \lceil m / n ] ) > \operatorname { log } _ { 2 } n \}$ ; confidence 0.574

33. l12013056.png ; $V ( \tilde{\mathbf{Z}} ) \neq \emptyset$ ; confidence 0.574

34. t120140160.png ; $\Phi = \Psi _ { 2 } ^ { * } \wedge \Psi _ { 1 },$ ; confidence 0.574

35. f04125056.png ; $\xi_2$ ; confidence 0.574

36. v096900169.png ; $g \in H$ ; confidence 0.574

37. c1302109.png ; $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$ ; confidence 0.574

38. o12002014.png ; $L _ { 2 } ( \mathbf{R} _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 a } )$ ; confidence 0.574

39. a12013032.png ; $P _ { \theta _ { n } } ( X _ { n - 1 } , d x )$ ; confidence 0.574

40. e120020107.png ; $Y \ncong Z$ ; confidence 0.574

41. k13007058.png ; $k = O ( 1 )$ ; confidence 0.573

42. b11022035.png ; $M ^ { \vee }$ ; confidence 0.573

43. s13051022.png ; $b _ { i } \in \mathbf{Z} ^ { 0 }$ ; confidence 0.573

44. c12018094.png ; $W ( g ) \in \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.573

45. q130050107.png ; $h \in \operatorname{QS} ( \mathbf{T} , \mathbf{C} )$ ; confidence 0.573

46. a12015066.png ; $G = \operatorname{GL} ( n , \mathbf{C} )$ ; confidence 0.573

47. b12050017.png ; $M _ { t }$ ; confidence 0.573

48. n12011023.png ; $x _ { 1 } ^ { * } , \ldots , x _ { n } ^ { * }$ ; confidence 0.573

49. g1200301.png ; $\int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 n + 1 } ^ { G K } [ f ] =$ ; confidence 0.573

50. o1300206.png ; $2r_2$ ; confidence 0.573

51. a01198074.png ; $G = \mathbf{R} ^ { n }$ ; confidence 0.573

52. h13007011.png ; $a _ { i j } \in R$ ; confidence 0.573

53. t12014047.png ; $\operatorname{Ker} T _ { \phi } = \{ 0 \}$ ; confidence 0.573

54. t12006057.png ; $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ ; confidence 0.573

55. a12027060.png ; $E / K$ ; confidence 0.573

56. f12024074.png ; $\overline { t _ { 0 } } = t _ { 0 }$ ; confidence 0.573

57. b12009083.png ; $r \rightarrow 1$ ; confidence 0.573

58. w120110260.png ; $H ( 1 , G ) = L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.572

59. s120040105.png ; $\chi \in R ^ { x }$ ; confidence 0.572

60. e12012074.png ; $L ( \mu , \Sigma | Y _ { \text{aug} } )$ ; confidence 0.572

61. z12001061.png ; $e _ { p - 2}$ ; confidence 0.572

62. l11001080.png ; $x \preceq y \Rightarrow y - x \in P$ ; confidence 0.572

63. a12006041.png ; $u = u ( t )$ ; confidence 0.572

64. b12032011.png ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572

65. m12027025.png ; $f _ { j } = z _ { j } ^ { k _ { j } } + P _ { j } ( z ) , \quad j = 1 , \dots , n,$ ; confidence 0.572

66. q12005018.png ; $D ^ { 2 } f ( x ^ { k } ) \cdot d = - D ^ { T } f ( x ^ { k } )$ ; confidence 0.572

67. f1201609.png ; $\chi _ { T } = \operatorname { dim } \operatorname { ker } T - \operatorname { dim } \text { coker } T;$ ; confidence 0.572

68. s130540122.png ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572

69. b12034063.png ; $\sum _ { k = 0 } ^ { \infty } | c _ { k } z ^ { k } | < 2 f ( 0 )$ ; confidence 0.572

70. e1201509.png ; $g ^ { i }$ ; confidence 0.572

71. m12007022.png ; $\| P \| _ { \infty } = \operatorname { max } _ { | z | = 1 } | P ( z ) |$ ; confidence 0.572

72. k055840159.png ; $z _ { 0 } \neq \overline{z} _ { 0 }$ ; confidence 0.572

73. q12005035.png ; $\langle x , y \rangle _ { R } = x ^ { T } R y$ ; confidence 0.572

74. h11001017.png ; $S _ { f } ( a ) = \sum _ { p } 1 / p \cdot ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i a } ) )$ ; confidence 0.571

75. i13009092.png ; $\operatorname {Coker} \varphi$ ; confidence 0.571

76. f13007035.png ; $F ^ { k / l } ( 2 , m ) =$ ; confidence 0.571

77. h1200306.png ; $v _ { g }$ ; confidence 0.571

78. a1200307.png ; $( - 1 ) ^ { n } f ^ { ( n ) } ( x ) \geq 0 \text { on } I.$ ; confidence 0.571

79. c12004053.png ; $\operatorname {CF}$ ; confidence 0.571

80. p120170111.png ; $V$ ; confidence 0.571

81. c12004044.png ; $w \in C _ { \zeta } ^ { 1 } ( \Gamma )$ ; confidence 0.571

82. a12018056.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda,$ ; confidence 0.571

83. c12019019.png ; $\operatorname {ind}( D ) \in K _ { 0 } ^ { \text{alg} } ( \mathcal{C} _ { 1 } \bigotimes \mathbf{C} [ \Gamma ] ),$ ; confidence 0.571

84. e13007044.png ; $\left| \sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } \right| ^ { 2 } \ll$ ; confidence 0.571

85. b12040071.png ; $\mathfrak { h } _ { R } \rightarrow \mathfrak { h } _ { R } ^ { * } : = \operatorname { hom } _ { \mathbf{R} } ( \mathfrak { h } _ { R } , \mathbf{R} )$ ; confidence 0.571

86. a13013066.png ; $s$ ; confidence 0.571

87. w13004043.png ; $K = - \left( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \right) ^ { 2 }.$ ; confidence 0.571

88. b11066040.png ; $\| T _ { 1 } + i t ( f ) \| _ { * } \leq C \| f \| _ { \infty }$ ; confidence 0.571

89. q12008040.png ; $\mathsf{E} [ W _ { p } ] = \infty$ ; confidence 0.571

90. q120070118.png ; $S d = a , S a = d , S b = - q b , S c = - q ^ { - 1 } c$ ; confidence 0.571

91. c12021017.png ; $\operatorname {sup}$ ; confidence 0.571

92. s13036032.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } \mathbf{n} ( Y _ { s } ) d \text{l} _ { s } ,\; t \geq 0,$ ; confidence 0.571

93. w120110171.png ; $\{ a _ { m } = 0 , d a _ { m } = 0 \}$ ; confidence 0.571

94. g12005026.png ; $( k _ { c } , R _ { c } )$ ; confidence 0.571

95. d12005039.png ; $f ( x ) = \left\{ \begin{array} { l l } { \operatorname { sin } \frac { 1 } { x } , } & { x \neq 0, } \\ { a , } & { x = 0, } \end{array} \right.$ ; confidence 0.571

96. m1200704.png ; $\operatorname { log } | P ( x _ { 1 } , \dots , x _ { n } ) |$ ; confidence 0.570

97. o13003036.png ; $j = 1 , \dots , 8$ ; confidence 0.570

98. m13022015.png ; $G _ { g } \leq \operatorname {SL} _ { 2 } ( \mathbf{R} )$ ; confidence 0.570

99. g13001055.png ; $B = ( \beta _ { 0 } , \dots , \beta _ { n - 1 } )$ ; confidence 0.570

100. a13013059.png ; $c$ ; confidence 0.570

101. a13032033.png ; $H _ { 1 }$ ; confidence 0.570

102. i13005011.png ; $k_ j > 0$ ; confidence 0.570

103. a12012037.png ; $A v$ ; confidence 0.570

104. c13008014.png ; $N ( \mathfrak{p} )$ ; confidence 0.570

105. n12011015.png ; $B _ { \alpha } = \{ x \in \mathbf{R} : \xi ( x ) \geq \alpha \}$ ; confidence 0.570

106. f12021073.png ; $l = 0$ ; confidence 0.569

107. t13005038.png ; $\operatorname { Ran } D _ { A } = \operatorname { Ker } D_ { A } $ ; confidence 0.569

108. s1306409.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { \operatorname { det } T _ { n - 1 } ( a ) } = G ( a ),$ ; confidence 0.569

109. b13012025.png ; $\lambda ( x ) = \int _ { \mathbf{R} } e ^ { - i x t } d \mu ( t ),$ ; confidence 0.569

110. f110160106.png ; $S = \{ \phi _ { 1 } , \dots , \phi _ { m } \}$ ; confidence 0.569

111. c12002061.png ; $\mu_{ \gamma , t}$ ; confidence 0.569

112. h1300208.png ; $w ^ { l } = ( w _ { 1 } ^ { l } , \dots , w _ { n } ^ { l } )$ ; confidence 0.569

113. p12015029.png ; $r_{1} / r _ { 2 } \notin Z _ { n }$ ; confidence 0.569

114. b110100121.png ; $\operatorname {SL} _ { n }$ ; confidence 0.569

115. c13010016.png ; $0 < a _ { 1 } < \ldots < a _ { n }$ ; confidence 0.569

116. r13007029.png ; $\lambda_j > 0$ ; confidence 0.569

117. i13002023.png ; $\mathsf{P} ( A _ { 1 } \bigcap \ldots \bigcap A _ { n } ) = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { 1 } { k ! }.$ ; confidence 0.569

118. b12052076.png ; $w _ { n } = \frac { B _ { n } ^ { - 1 } u _ { n } } { 1 + v _ { n } ^ { T } B _ { n } ^ { - 1 } u _ { n } },$ ; confidence 0.569

119. i130090109.png ; $\mu _ { p } ( K / k ) \geq 0$ ; confidence 0.569

120. k12008036.png ; $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$ ; confidence 0.569

121. r13014022.png ; $\operatorname { lim } _ { n \rightarrow \infty } \| T ^ { n } \| ^ { 1 / n } = 0$ ; confidence 0.569

122. k11001070.png ; $\mathbf{R} ^ { 2 n + 2 }$ ; confidence 0.569

123. z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569

124. f04049020.png ; $B _ { l_{1} , l _ { 2 } } ( x )$ ; confidence 0.569

125. b13002011.png ; $J ^ { \prime }$ ; confidence 0.569

126. b12050013.png ; $W ^ { o } : = \{ M _ { t } - W _ { t } : t \geq 0 \}$ ; confidence 0.569

127. m06536024.png ; $i,j = 1 , \dots , k$ ; confidence 0.568

128. a11066072.png ; $\text{l} ^ { \infty }$ ; confidence 0.568

129. d03029012.png ; $i = 0 , \dots , n + 1$ ; confidence 0.568

130. q12007025.png ; $\mathbf{Z} _ { q , n }$ ; confidence 0.568

131. b120400120.png ; $p \in \mathfrak{h} _ { R } ^ { * } \subset \mathfrak{h} ^ { * }$ ; confidence 0.568

132. t120070158.png ; $a _ { 1 } ( g )$ ; confidence 0.568

133. a12015036.png ; $\operatorname {ad} ( \mathfrak{g} ) = \{ 0 \}$ ; confidence 0.568

134. a13023028.png ; $f _ { l } = ( P _ { n } \ldots P _ { 1 } ) ^ { \text{l} } f$ ; confidence 0.568

135. k055840298.png ; $\mathcal{K} _ { 1 }$ ; confidence 0.568

136. f12021062.png ; $\lambda _ { 1 } - \lambda _ { i } , \ldots , \lambda _ { i - 1 } - \lambda _ { i }$ ; confidence 0.568

137. d12012023.png ; $F : \mathcal{C} \rightarrow \mathcal{C} ^ { \prime }$ ; confidence 0.568

138. z13013029.png ; $r < r_{0}$ ; confidence 0.568

139. a01197057.png ; $k = 1,2 , \dots ,$ ; confidence 0.568

140. h13012022.png ; $a ( x ) = \operatorname { lim } _ { n \rightarrow \infty } 2 ^ { - n } f ( 2 ^ { n } x ).$ ; confidence 0.568

141. r13007057.png ; $v \in H _ { 0 }$ ; confidence 0.568

142. d12011025.png ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|,$ ; confidence 0.567

143. h1300301.png ; $H = ( h _ { i , j} )$ ; confidence 0.567

144. o12001033.png ; $\left\{ \begin{array} { l } { \operatorname { Re } ( \nabla p _ { 0 } + \mathbf{b} ) = 0, } \\ { \Lambda _ { 1 } C ( \theta _ { r } ) \left( \frac { \partial \theta _ { 0 } } { \partial t } + \nabla \theta _ { 0 } \cdot \mathbf{v} _ { 0 } \right) = \Delta \theta _ { 0 }, } \\ { \operatorname { div } \mathbf{v} _ { 0 } = 0. } \end{array} \right.$ ; confidence 0.567

145. b130200141.png ; $0 \neq a \in G _ { i }$ ; confidence 0.567

146. t13021044.png ; $2 ^ { \alpha }$ ; confidence 0.567

147. b13020095.png ; $\operatorname { dim } \mathfrak { g } ^ { \pm \alpha _ { i }} = 1$ ; confidence 0.567

148. n067520376.png ; $Y \equiv ( y _ { 1 } , \dots , y _ { n } ) = 0$ ; confidence 0.567

149. z13011031.png ; $k f _{( k , n )} \approx \mu _ { n } ,\; k = 1,2 , \ldots,$ ; confidence 0.567

150. d13017039.png ; $\lambda _ { k } \geq \frac { 4 \pi k } { A }\; \text { for } k = 1,2 , \ldots,$ ; confidence 0.567

151. f120110174.png ; $\text{SS} \ f$ ; confidence 0.567

152. z130110132.png ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { \mathsf{P} } { \rightarrow } \int _ { 0 } ^ { 1 } u ( 1 - u ) ^ { x - 1 } F ( d x ).$ ; confidence 0.567

153. b1200203.png ; $\Gamma _ { n } ( t ) = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } 1 _ { [ 0 , t ] } ( U _ { i } )$ ; confidence 0.567

154. b12055049.png ; $\iota ( M )$ ; confidence 0.567

155. w130080107.png ; $\infty_{\pm}$ ; confidence 0.567

156. b12002039.png ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.567

157. w12021054.png ; $i = 1 , \dots , 8$ ; confidence 0.567

158. c13008021.png ; $\sigma _ { \mathfrak{P} }$ ; confidence 0.567

159. a120280148.png ; $E \subseteq \hat { G }$ ; confidence 0.567

160. r08232074.png ; $a = d + e$ ; confidence 0.567

161. b1200201.png ; $U _ { 1 } , \dots , U _ { n } , \dots$ ; confidence 0.567

162. i120080137.png ; $\{ S _ { 1 } , \ldots , S _ { N } \}$ ; confidence 0.566

163. c12017040.png ; $K = \mathbf{R} ^ { n }$ ; confidence 0.566

164. a01406027.png ; $\phi_{0}$ ; confidence 0.566

165. b13020015.png ; $[ h _ { i } e _ { j } ] = a _ { ij } e _ { j }$ ; confidence 0.566

166. t13007025.png ; $( K x ) ( t ) : = \frac { 1 } { 2 \pi } \text{P} \cdot \text{V} \cdot \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s \ (a.e.) .$ ; confidence 0.566

167. a120280142.png ; $S _ { E }$ ; confidence 0.566

168. d120020167.png ; $\tilde{u} _ { 1 } \geq 0$ ; confidence 0.566

169. b11039025.png ; $\gamma _ { j k } ^ { i }$ ; confidence 0.566

170. t12020059.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , n } \frac { | s _ { k } | } { M _ { 1 } ( k ) } = 1$ ; confidence 0.566

171. i12008073.png ; $= \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N } \langle S _ { i } | \mathcal{P} | S _ { i+ 1 } \rangle$ ; confidence 0.566

172. c12030025.png ; $\square ^ { 0 } \mathcal{O} _ { \mathcal{H} } ^ { ( k ) }$ ; confidence 0.566

173. b12003027.png ; $\{ g _ { n , m} : n , m \in \mathbf{Z} \}$ ; confidence 0.566

174. b12052021.png ; $\| x _ { n + 1} - x ^ { * } \| = O ( \| x _ { n } - x ^ { * } \| ^ { 2 } ),$ ; confidence 0.566

175. a0122105.png ; $x = ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.566

176. y120010128.png ; $\widetilde { A ( R )}$ ; confidence 0.566

177. v13007057.png ; $k = \frac { \gamma b ^ { 2 } \pi ^ { 2 } } { 12 \mu U a ^ { 2 } ( 1 - \lambda ) ^ { 2 } }.$ ; confidence 0.566

178. o07010011.png ; $x ^ { - 1 } P x \subseteq P$ ; confidence 0.565

179. a130040567.png ; $\Lambda _ { \mathcal{D}} \operatorname { Thm } \mathcal{D}$ ; confidence 0.565

180. e13006049.png ; $\mathcal{C} ( Y , \hat{X} )$ ; confidence 0.565

181. d12006010.png ; $u_m ( x , t )$ ; confidence 0.565

182. c12002038.png ; $A ^ { 0 } = I$ ; confidence 0.565

183. d130080146.png ; $\{ F ^ { n } \}$ ; confidence 0.565

184. p1201408.png ; $N ( x ) = \lfloor x + 1 / 2 \rfloor$ ; confidence 0.565

185. i13009036.png ; $2 r_ 2 ( k )$ ; confidence 0.565

186. d13011024.png ; $S ^ { - 1 }$ ; confidence 0.565

187. a130240481.png ; $n _ { 1 } + 1 , \ldots , n _ { 1 } + n _ { 2 }$ ; confidence 0.565

188. t12003026.png ; $\Phi _ { 2 } = \pm \Phi _ { 1 } + \text{const}$ ; confidence 0.565

189. q13004022.png ; $K_{\text{O}} ( f )$ ; confidence 0.565

190. a12006023.png ; $u = ( u _ { 1 } , \ldots , u _ { p } )$ ; confidence 0.565

191. o12001018.png ; $Re = \frac { \rho L U } { \mu } , \quad \varepsilon = U ( \frac { \rho } { g \mu } ) ^ { 1 / 3 },$ ; confidence 0.565

192. n1201107.png ; $I_{ \{ x \} } ( \cdot )$ ; confidence 0.565

193. s12027030.png ; $R _ { l } ^ { B }$ ; confidence 0.564

194. a12020057.png ; $\sum _ { j = 1 } ^ { n } P _ { j } = I$ ; confidence 0.564

195. b12049052.png ; $E \in \mathcal{A}$ ; confidence 0.564

196. a01018054.png ; $s = 1$ ; confidence 0.564

197. s13049047.png ; $i = 0 , \ldots , h$ ; confidence 0.564

198. c130160143.png ; $\text{ATIMEALT} [ t ( n ) , a ( n )]$ ; confidence 0.564

199. o130010122.png ; $\overline { H } ^ { 1 } ( D )$ ; confidence 0.564

200. c130070103.png ; $\leq d$ ; confidence 0.564

201. b13020082.png ; $\text{degree}- \alpha_{i}$ ; confidence 0.564

202. c120080100.png ; $T _ { 10 } = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { 0 } & { 0 } \end{array} \right] ,\; T _ { 01 } = \left[ \begin{array} { c c } { 0 } & { 0 } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right].$ ; confidence 0.564

203. f12005048.png ; $q \geq 4$ ; confidence 0.564

204. m13020019.png ; $\alpha ^ { \prime } : \mathfrak { g } \rightarrow \mathfrak { X } ( M , \omega )$ ; confidence 0.564

205. w13007019.png ; $S _ { \lambda } = e ^ { \lambda + \rho } \sum _ { \gamma } ( - 1 ) ^ { | \gamma | } e ^ { - \gamma }$ ; confidence 0.564

206. w120110221.png ; $\operatorname { sup } _ { X \in \Phi } \| a ^ { ( k ) } ( X ) \| _ { G _ { X } } m ( X ) ^ { - 1 } < \infty.$ ; confidence 0.564

207. w120110126.png ; $\operatorname {Op} ( a ) \operatorname {Op} ( b ) = \operatorname {Op} ( a \circ b )$ ; confidence 0.564

208. b130290189.png ; $R = \oplus _ { n \geq 0} R _ { n }$ ; confidence 0.563

209. o13005066.png ; $U = \left( \begin{array} { c c } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.563

210. a130240280.png ; $\hat { \sigma }_{ \hat { \psi }} = \| \mathbf{d} \| ( \text{MS} _ { e } ) ^ { 1 / 2 }$ ; confidence 0.563

211. w120110160.png ; $a = a _ { m } + a _ { m - 1 } + r _ { m - 2 },$ ; confidence 0.563

212. a110040188.png ; $D_i$ ; confidence 0.563

213. a110010277.png ; $C$ ; confidence 0.563

214. a130040606.png ; $\mathfrak { M } \models _ { \mathcal{S} _ { P }} \varphi$ ; confidence 0.563

215. b13019017.png ; $y _ { 1 } ( a / q ) = - \overline { a } / q$ ; confidence 0.563

216. a130040711.png ; $X ^ { \omega }$ ; confidence 0.563

217. l1201702.png ; $\tilde { K } ^ { 2 }$ ; confidence 0.563

218. w120110163.png ; $a _ { j } ( x , \lambda \xi ) = \lambda ^ { j } a _ { j } ( x , \xi ) , \text { for } | \xi | \geq 1 , \lambda \geq 1,$ ; confidence 0.563

219. i13007048.png ; $\alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.563

220. a13022061.png ; $S _ { C }$ ; confidence 0.563

221. e120010127.png ; $d : B \rightarrow A$ ; confidence 0.563

222. z13007064.png ; $U ^ { 6 } = I$ ; confidence 0.563

223. s13013037.png ; $\mathbf{Q} ( \chi )$ ; confidence 0.563

224. w130080187.png ; $i = 1 , \dots , M = ( N ^ { 2 } - 1 ) ( g - 1 )$ ; confidence 0.563

225. p13010040.png ; $\hat { K } = \mathbf{C} \backslash \Omega _ { \infty }$ ; confidence 0.562

226. z1300108.png ; $\{ a ^ { n } \}$ ; confidence 0.562

227. t130130115.png ; $[ \cdot ]$ ; confidence 0.562

228. a120050112.png ; $v \in Y$ ; confidence 0.562

229. l06003051.png ; $a \| b$ ; confidence 0.562

230. d03006016.png ; $\{ | x - x_{ 0} | < a T \}$ ; confidence 0.562

231. f13001024.png ; $( f _ { 1 } , f _ { 2 } , \ldots )$ ; confidence 0.562

232. t1201306.png ; $\frac { \partial M } { \partial y _ { n } } = - M ( \Lambda ^ { t } ) ^ { n },$ ; confidence 0.562

233. a130240393.png ; $\operatorname { tr } ( \mathbf{M} _ { \mathcal{H} } ( \mathbf{M} _ { H } + \mathbf{M} _ { \mathsf{E} } ) ^ { - 1 } ) > \text{const}$ ; confidence 0.562

234. n12002061.png ; $\overline{X} _ { n } \in M _ { F }$ ; confidence 0.562

235. a01419073.png ; $v _ { t }$ ; confidence 0.562

236. t120010140.png ; $\geq 7$ ; confidence 0.562

237. l120120134.png ; $M = M ^ { \prime } \cap K _ { \operatorname { tot } S }$ ; confidence 0.562

238. m12012061.png ; $R = F \langle x , y \rangle$ ; confidence 0.562

239. b13028057.png ; $( \mathbf{Z} / 2 ) ^ { k }$ ; confidence 0.562

240. b120150140.png ; $i \in \{ 1 , \ldots , m \} \backslash \{ j \}$ ; confidence 0.562

241. e120120109.png ; $t = 0,1 , \ldots$ ; confidence 0.562

242. v12004026.png ; $r \geq n$ ; confidence 0.561

243. a12002019.png ; $H _ { 0 }$ ; confidence 0.561

244. s13065028.png ; $\{ \Phi _ { k } \} _ { k = 0 } ^ { \infty }$ ; confidence 0.561

245. k13005025.png ; $\frac { \text{Ma} } { \text{Re} } = \frac { u / c } { u l / \nu } = \frac { 1 } { c } \frac { \nu } { \lambda },$ ; confidence 0.561

246. w120110179.png ; $b ^ { s } _{m - 1}$ ; confidence 0.561

247. t130140164.png ; $q _ { \Lambda } : \mathbf{Z} ^ { n } \rightarrow \mathbf{Z}$ ; confidence 0.561

248. a12024056.png ; $\omega ^ { 2 }$ ; confidence 0.561

249. l057000186.png ; $\lambda x \cdot f ( x ) = \{ ( b , \beta ) : b \in f ( \beta ) \} \in D _ { A }$ ; confidence 0.561

250. f130290112.png ; $L ^ { X }$ ; confidence 0.561

251. a12017024.png ; $\int _ { 0 } ^ { + \infty } e ^ { - \lambda a } \beta ( a ) \Pi ( a ) d a = 1,$ ; confidence 0.561

252. d120020135.png ; $\lambda_{l}$ ; confidence 0.561

253. a130050200.png ; $\mathbf{p} ( n )$ ; confidence 0.561

254. b12043071.png ; $\operatorname {GL} _ { q } ( 2 )$ ; confidence 0.561

255. p1201409.png ; $E ( 3,5 ) = \{ 3,5,8,13 , \dots \}$ ; confidence 0.560

256. b12014035.png ; $a ( z ) , b ( z ) \in \mathbf{F} _ { q } [ z ]$ ; confidence 0.560

257. c12017075.png ; $p , q \in P _ { n }$ ; confidence 0.560

258. w13017040.png ; $H _ { y } ( t )$ ; confidence 0.560

259. b12043015.png ; $c , d \in C$ ; confidence 0.560

260. c1302507.png ; $u _ { k } ( t ) = \alpha ( t ) e ^ { z _ { k } ^ { T } ( t ) \beta }.$ ; confidence 0.560

261. j13002024.png ; $\Delta = o ( \lambda )$ ; confidence 0.560

262. r13013032.png ; $P _ { \sigma } + P _ { \tau } =\operatorname {id}$ ; confidence 0.560

263. s12022029.png ; $\operatorname { spec } ( M , \Delta )$ ; confidence 0.560

264. n067520249.png ; $\overline { b }_j$ ; confidence 0.560

265. z13002024.png ; $\overline { f } _{-\text{ap}} = - \infty$ ; confidence 0.560

266. w13009051.png ; $f \in H ^ { \hat{\otimes} n }$ ; confidence 0.560

267. b12009051.png ; $w ^ { \frac { m } { 1 + a i } } =$ ; confidence 0.560

268. a011600190.png ; $H _ { f }$ ; confidence 0.560

269. z13011014.png ; $260,430$ ; confidence 0.560

270. f120110136.png ; $\operatorname { supp } f _ { \Delta _ { k } } \subset - \Delta _ { k } ^ { \circ }$ ; confidence 0.560

271. k12002010.png ; $c _ { 1 } ( M ) _ { \mathbf{R} } < 0$ ; confidence 0.560

272. b130120107.png ; $\omega ( f ^ { \prime } ; t ) _ { \infty } = O \left( \left( \operatorname { ln } \frac { 1 } { t } \right) ^ { - 1 / 2 } \right).$ ; confidence 0.560

273. s13048019.png ; $R _ { m } \subset J ^ { m } ( \alpha )$ ; confidence 0.560

274. n06752033.png ; $N \in M _ { m \times n } ( K )$ ; confidence 0.560

275. v096900232.png ; $\mathbf{III} _ { 0 }$ ; confidence 0.560

276. c120210115.png ; $P _ { n , \theta }$ ; confidence 0.560

277. a130240337.png ; $\mathbf{F}$ ; confidence 0.560

278. d1201103.png ; $f : \mathcal{S} \rightarrow [ 0 , + \infty )$ ; confidence 0.560

279. a13008069.png ; $\pm$ ; confidence 0.560

280. a1100202.png ; $v$ ; confidence 0.560

281. t13014040.png ; $\tilde{\mathbf{E}} _ { 7 }$ ; confidence 0.560

282. a130060114.png ; $P ^ { \# } ( n ) \sim C q ^ { n } n ^ { - \alpha } \;\text { as } n \rightarrow \infty.$ ; confidence 0.559

283. p07452012.png ; $P \subset R$ ; confidence 0.559

284. e120240134.png ; $\operatorname { deg } \phi$ ; confidence 0.559

285. b12005055.png ; $\mathcal{A} = \mathcal{H} _ { uc } ^ { \infty } ( B _ { E } )$ ; confidence 0.559

286. e12016017.png ; $R_{h}$ ; confidence 0.559

287. a130040509.png ; $\mathbf{A}$ ; confidence 0.559

288. w1301701.png ; $\{ x _ { t } : t \in \mathbf{Z} \}$ ; confidence 0.559

289. a12031081.png ; $\{ z \in A : z a = a z \;\text { for each } a \in A \}$ ; confidence 0.559

290. b12040093.png ; $\check{R} : G \rightarrow V ^ { * }$ ; confidence 0.559

291. a130070137.png ; $S _ { n }$ ; confidence 0.559

292. t12003042.png ; $\psi = \Psi ^ { \prime 2}$ ; confidence 0.559

293. m13022062.png ; $Z ( e , h ; z ) = T _ { h } ( z )$ ; confidence 0.559

294. s1202902.png ; $\sum x _ { k }$ ; confidence 0.559

295. s13064010.png ; $G ( a ) = \operatorname { exp } ( [ \operatorname { log } a ] _ { 0 } )$ ; confidence 0.559

296. e12011022.png ; $\mathbf{P} = \mathbf{M} = \mathbf{J} = 0$ ; confidence 0.559

297. c12016047.png ; $\operatorname {rank} ( A ) = r$ ; confidence 0.559

298. c12026056.png ; $( \mathcal{L} _ { h k } V ) _ { j } ^ { n + 1 } \leq 0,\;1 \leq j \leq J - 1,\;0 \leq n \leq N - 1,$ ; confidence 0.559

299. i13005010.png ; $1 \leq j \leq J$ ; confidence 0.559

300. i13007059.png ; $\mathbf{R} _ { - } ^ { 3 } : = \{ x : x _ { 3 } < 0 \}$ ; confidence 0.559

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/54. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/54&oldid=44464