Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/48"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 48 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(19 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752
+
1. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010028.png ; $\{ \pm i C ( t ) , 0 , \ldots , 0 \}$ ; confidence 0.678
  
2. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023082.png ; $\phi ( E ) \geq 2$ ; confidence 0.999
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007039.png ; $( n - 1 ) ( n - 2 ) / 2$ ; confidence 0.678
  
3. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023099.png ; $K _ { X } + + B ^ { + }$ ; confidence 0.477
+
3. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160111.png ; $\operatorname{NL}$ ; confidence 0.678
  
4. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023061.png ; $g \circ \phi = f$ ; confidence 0.979
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a1104601.png ; $\overset{\rightharpoonup} { B }$ ; confidence 0.678
  
5. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025012.png ; $( \partial , o )$ ; confidence 0.325
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149054.png ; $x _ { 2 }$ ; confidence 0.678
  
6. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m130250102.png ; $H ^ { s } ( R ^ { n } )$ ; confidence 0.382
+
6. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003037.png ; $\operatorname { IF } ( x ; T , F _ { \theta } ) = \frac { \Psi ( x , \theta ) } { \int \frac { \partial } { \partial \theta } \Psi ( y , \theta ) d F _ { \theta } ( y ) }.$ ; confidence 0.678
  
7. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025055.png ; $M _ { 2 } ( R ^ { n } )$ ; confidence 0.821
+
7. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017054.png ; $\sum _ { k = 1 } ^ { \infty } e ^ { - \lambda _ { k } t } \approx \frac { A } { 4 \pi t } + \frac { L } { 8 \sqrt { \pi  } t } + \frac { 1 } { 6 } ( 1 - r ) + O ( t ),$ ; confidence 0.678
  
8. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026089.png ; $A \subset M ( A )$ ; confidence 0.999
+
8. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l1201505.png ; $[ a , [ b , c ] ] = [ [ a , b ] , c ] + [ b , [ a , c ] ],$ ; confidence 0.678
  
9. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260159.png ; $b _ { 1 } b _ { 2 } = 0$ ; confidence 0.998
+
9. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014067.png ; $\int u ( x + r t ) d \mu ( t ) = 0 , \quad x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + },$ ; confidence 0.678
  
10. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026092.png ; $X \subset M ( A )$ ; confidence 0.992
+
10. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014048.png ; $\operatorname { Ker } T _ { \phi } ^ { * } = \{ 0 \}$ ; confidence 0.678
  
11. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180167.png ; $M \backslash a$ ; confidence 0.395
+
11. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003034.png ; $\| a \square a ^ { * } \| = \| a \| ^ { 2 }$ ; confidence 0.678
  
12. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300303.png ; $u ( x , 0 ) = u 0 ( x )$ ; confidence 0.649
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a01301024.png ; $t _ { 1 } , \ldots , t _ { m }$ ; confidence 0.678
  
13. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003046.png ; $A w = \lambda B w$ ; confidence 0.997
+
13. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027019.png ; $d f = d f _ { 1 } \wedge \ldots \wedge d f _ { n }$ ; confidence 0.678
  
14. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003024.png ; $\omega _ { x } = n$ ; confidence 0.438
+
14. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011020.png ; $D f / D t$ ; confidence 0.678
  
15. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031920/d03192046.png ; $\alpha _ { i } = 1$ ; confidence 0.618
+
15. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024048.png ; $\dot { x } ( t ) = f ( t , x _ { t } ).$ ; confidence 0.678
  
16. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020070/c02007018.png ; $L _ { p } ( R ^ { x } )$ ; confidence 0.214
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201701.png ; $p ( a , t )$ ; confidence 0.678
  
17. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010043.png ; $\varphi ( 0 ) = 1$ ; confidence 1.000
+
17. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011092.png ; $\mathbf{x} ^ { 0 }$ ; confidence 0.678
  
18. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010039.png ; $\varphi ( \xi )$ ; confidence 0.998
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006015.png ; $\mathsf{P}$ ; confidence 0.678
  
19. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011010.png ; $\exists x \in R$ ; confidence 0.715
+
19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620152.png ; $q _ { 1 } ( x ) \rightarrow 0$ ; confidence 0.677
  
20. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011032.png ; $\xi _ { i } ( y ) > 0$ ; confidence 0.950
+
20. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002050.png ; $\hat { f } | x , 1 , w \rangle \rightarrow | x , 1 - f ( x ) , w \rangle$ ; confidence 0.677
  
21. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011030.png ; $\xi _ { i } ( x ) > 0$ ; confidence 0.927
+
21. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029091.png ; $\{ h _ { i } \} _ { 0 \leq i \leq d - 1 }$ ; confidence 0.677
  
22. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520319.png ; $a ^ { * } ( x _ { i } )$ ; confidence 0.852
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040314.png ; $\epsilon _ { i , j } ^ { \mathbf{A} } ( a , b , c , d ) = h ( \epsilon _ { i , j } ( x , y , z , w ) )$ ; confidence 0.677
  
23. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520291.png ; $U D _ { A } = D _ { K }$ ; confidence 0.964
+
23. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020127.png ; $H _ { 0 } ^ { 1 }$ ; confidence 0.677
  
24. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752072.png ; $K = F [ \lambda ]$ ; confidence 0.999
+
24. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003065.png ; $\hat { \theta } = T _ { n }$ ; confidence 0.677
  
25. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520249.png ; $\overline { b }$ ; confidence 0.560
+
25. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008029.png ; $K v$ ; confidence 0.677
  
26. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061150/l06115021.png ; $\xi _ { i } ( 0 ) = 0$ ; confidence 0.995
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016740/b0167402.png ; $U _ { 2 }$ ; confidence 0.677
  
27. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520385.png ; $\Lambda \neq 0$ ; confidence 0.711
+
27. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030041.png ; $\frac { d \mu _ { Y } } { d \mu _ { Z } } = \mathsf{E} _ { \mu _ { X } } [ \psi ( T ) ],$ ; confidence 0.677
  
28. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520282.png ; $L _ { \rho } ^ { 2 }$ ; confidence 0.984
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010047.png ; $\tilde { \varphi } ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } \int _ { D } \frac { \varphi ( w ) } { | 1 - z w | ^ { 4 } } d A ( w ).$ ; confidence 0.677
  
29. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054090/j05409033.png ; $\Delta _ { 0 } = 1$ ; confidence 0.990
+
29. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139019.png ; $\hat{\mu}$ ; confidence 0.677
  
30. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520243.png ; $\vec { A } _ { i j }$ ; confidence 0.383
+
30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019095.png ; $K [ N ]$ ; confidence 0.677
  
31. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001046.png ; $F ^ { * } = F ^ { - 1 }$ ; confidence 0.974
+
31. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404906.png ; $\times \,x ^ { ( \nu _ { 1 } / 2 ) - 1 } \left( 1 + \frac { \nu _ { 1 } } { \nu _ { 2 } } x \right) ^ { ( \nu _ { 1 } + \nu _ { 2 } ) / 2 } , \quad x > 0,$ ; confidence 0.677
  
32. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010127.png ; $H ^ { 1 } ( R ^ { 3 } )$ ; confidence 0.969
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025027.png ; $Y _ { 1 } , \dots , Y _ { j - 1 }$ ; confidence 0.677
  
33. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010119.png ; $\Gamma _ { u } = 0$ ; confidence 0.290
+
33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a1302708.png ; $\operatorname { dim } X _ { n } = \operatorname { dim } Y _ { n }$ ; confidence 0.677
  
34. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o1300104.png ; $( - 1 , \lambda )$ ; confidence 0.288
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b1302006.png ; $a _ { i j } \leq 0$ ; confidence 0.677
  
35. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002011.png ; $\zeta _ { K } ( s )$ ; confidence 0.771
+
35. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020071.png ; $\mathfrak { g }_{ +}$ ; confidence 0.677
  
36. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002012.png ; $s _ { 0 } \neq 0,1$ ; confidence 0.994
+
36. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090106.png ; $0 < q _ { 1 } + \ldots + q _ { k } < 1$ ; confidence 0.676
  
37. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200204.png ; $\alpha = 1 / 2$ ; confidence 0.933
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060153.png ; $\mathcal{S} _ { \text{E} }$ ; confidence 0.676
  
38. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o13004016.png ; $L ( \dot { x } , x )$ ; confidence 0.984
+
38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015011.png ; $( ( x )_{ 0} , ( \dot { x } ) _ { 0 } , t _ { 0 } ) \in \Omega$ ; confidence 0.676
  
39. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008048.png ; $f ( k ) : = f ( 0 , k )$ ; confidence 0.994
+
39. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021013.png ; $F = ( F _ { r } ) _ { r \in R _ { W } , w \in W }$ ; confidence 0.676
  
40. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057630/l05763020.png ; $f ( t ) \leq g ( t )$ ; confidence 0.999
+
40. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012078.png ; $\phi ^ { \prime } = \phi \sum _ { i = 0 } ^ { \infty } ( - 1 ) ^ { i } ( t \phi ) ^ { i }$ ; confidence 0.676
  
41. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o1200503.png ; $\varphi ( 0 ) = 0$ ; confidence 1.000
+
41. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001033.png ; $D _{f , 1}$ ; confidence 0.676
  
42. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005057.png ; $1 < p , q < \infty$ ; confidence 0.998
+
42. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010044.png ; $\alpha : = \xi / | \xi |$ ; confidence 0.676
  
43. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013048.png ; $S = T ^ { \prime }$ ; confidence 0.967
+
43. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110250/b1102502.png ; $M _ { 3 }$ ; confidence 0.676
  
44. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007080.png ; $C ( K , \Omega ) =$ ; confidence 0.990
+
44. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036039.png ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d \text{l} _ { s } = \text{l} _ { t }$ ; confidence 0.676
  
45. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010053.png ; $H ^ { p } ( K , C ) = 0$ ; confidence 0.687
+
45. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022044.png ; $M _ { f } ( t , x , \xi ) = M ( u ( t , x ) , \xi ),$ ; confidence 0.676
  
46. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010042.png ; $C \backslash K$ ; confidence 0.416
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020019.png ; $( \text { End } V ) ^ { + }$ ; confidence 0.676
  
47. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100104.png ; $R \backslash K$ ; confidence 0.292
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012270/a01227057.png ; $S _ { 1 }$ ; confidence 0.676
  
48. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100164.png ; $f ^ { * } d \theta$ ; confidence 0.996
+
48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019025.png ; $\lambda _ { n } ( \Omega ) = \operatorname { inf } \{ \lambda ( L ) : L \subseteq C ^ { \infty _0 } ( \Omega ) , \operatorname { dim } ( L ) = n \},$ ; confidence 0.676
  
49. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010082.png ; $f ( T ) \subset K$ ; confidence 0.998
+
49. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013043.png ; $S ^ { \prime \prime }$ ; confidence 0.676
  
50. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015034.png ; $J _ { n } / 2 ( r ) = 0$ ; confidence 0.458
+
50. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602035.png ; $\alpha ^ { \prime } < 1$ ; confidence 0.676
  
51. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015016.png ; $X = R ^ { \gamma }$ ; confidence 0.459
+
51. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840401.png ; $( N _ { f } ( z _ { i } , z _ { j } ) ) _ { 1 } ^ { n }$ ; confidence 0.675
  
52. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012030.png ; $\sigma ( K ) = - 2$ ; confidence 0.999
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130064.png ; $k_i$ ; confidence 0.675
  
53. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p0745203.png ; $A B \subseteq P$ ; confidence 1.000
+
53. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002092.png ; $X ^ { * } = \operatorname { sup } _ { s \geq 0 } X _ { s }$ ; confidence 0.675
  
54. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013061.png ; $n - r ( \lambda )$ ; confidence 0.999
+
54. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008090.png ; $= \left\{ z \in \mathcal{D} : \operatorname { limsup } _ { w \rightarrow x } [ K _ { \mathcal{D} } ( z , w ) - K _ { \mathcal{D} } ( z _ { 0 } , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \right\},$ ; confidence 0.675
  
55. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013083.png ; $A _ { 2 l } ^ { ( * ) }$ ; confidence 0.910
+
55. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070225.png ; $\mathfrak { R } ( C _ { 1 } )$ ; confidence 0.675
  
56. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014057.png ; $\psi ( + 0 ) = 1 / 2$ ; confidence 0.999
+
56. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012015.png ; $\operatorname {dom}_{G^{\prime}} \circ d _ { A } = d _ { 0 } \circ \operatorname {dom}_{G}$ ; confidence 0.675
  
57. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014049.png ; $\gamma \in R$ ; confidence 0.998
+
57. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011047.png ; $2 \pi l / \theta$ ; confidence 0.675
  
58. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014032.png ; $f \in C ^ { 2 } ( U )$ ; confidence 0.998
+
58. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120174.png ; $K _ { S } [ \overline { \sigma } ]$ ; confidence 0.675
  
59. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001082.png ; $H \times C ^ { 2 }$ ; confidence 0.441
+
59. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070199.png ; $\operatorname { ord } _ { T } ( r / s ) = \lambda - \mu,$ ; confidence 0.675
  
60. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001024.png ; $X _ { t } \sim X - t$ ; confidence 0.495
+
60. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302050.png ; $S : M _ { k } \rightarrow W$ ; confidence 0.675
  
61. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q1200109.png ; $\psi _ { 0 } \in D$ ; confidence 0.986
+
61. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140133.png ; $\operatorname { det } \| 1 / b _ { j } ^ { l } \| \neq 0$ ; confidence 0.675
  
62. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003044.png ; $\varphi ( 1 ) = 1$ ; confidence 1.000
+
62. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005024.png ; $\varphi _ { - } \in \mathfrak{E}$ ; confidence 0.675
  
63. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005091.png ; $\phi \in [ 0,1 ]$ ; confidence 0.998
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006062.png ; $u \in C ( [ 0 , T ] ; Y ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.675
  
64. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646014.png ; $\alpha _ { k } > 0$ ; confidence 0.968
+
64. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003058.png ; $f \in R$ ; confidence 0.675
  
65. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005042.png ; $K [ f ] \leq K ( M )$ ; confidence 0.997
+
65. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020185.png ; $S ^ { n } = \partial \overline { D } \square ^ { n + 1 }$ ; confidence 0.675
  
66. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007077.png ; $\phi \in H ^ { * }$ ; confidence 0.997
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170175.png ; $2 k_{ j} - 1$ ; confidence 0.675
  
67. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007016.png ; $H ^ { \otimes 3 }$ ; confidence 0.239
+
67. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009044.png ; $E _ { 1 } ( k ) \rightarrow \prod _ { \mathfrak{p} | p } U _ { 1 , \mathfrak{p} }$ ; confidence 0.675
  
68. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007013.png ; $H ^ { \otimes 2 }$ ; confidence 0.385
+
68. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086360/s08636084.png ; $P_{l}$ ; confidence 0.675
  
69. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070112.png ; $k \{ a , b , c , d \}$ ; confidence 0.445
+
69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007048.png ; $\mathcal{C} ( C , C ^ { \prime } )$ ; confidence 0.675
  
70. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008052.png ; $\sigma _ { p } < 1$ ; confidence 0.998
+
70. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018050.png ; $S ^ { \perp }$ ; confidence 0.675
  
71. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008084.png ; $E [ f ( x ) ] _ { P S }$ ; confidence 0.284
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240116.png ; $( 1 , t _ { i } , t _ { i } ^ { 2 } )$ ; confidence 0.675
  
72. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005024.png ; $g : h \mapsto g h$ ; confidence 0.952
+
72. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w12016019.png ; $| D ( C ) |$ ; confidence 0.674
  
73. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070166.png ; $L ^ { * } = L ^ { - 1 }$ ; confidence 0.998
+
73. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108004.png ; $\xi _{i}$ ; confidence 0.674
  
74. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008019.png ; $\forall f \in H$ ; confidence 1.000
+
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052083.png ; $O ( N  n  )$ ; confidence 0.674
  
75. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008055.png ; $f ( z , z _ { 0 } ) = 0$ ; confidence 0.999
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020037.png ; $\delta _ { T } = \operatorname { sup } _ { x \in X } \operatorname { dim } \operatorname { lin } \{ x , T x , T ^ { 2 } x , \ldots \} = N$ ; confidence 0.674
  
76. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008050.png ; $\phi _ { j } \in H$ ; confidence 0.895
+
76. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019024.png ; $S ( x , y , t ) = \sqrt { \frac { 2 \pi } { D } } \operatorname { log } \left( \frac { x + y + t + 1 + \sqrt { D } } { x + y + t + 1 - \sqrt { D } } \right),$ ; confidence 0.674
  
77. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010050.png ; $\hat { \Delta }$ ; confidence 0.495
+
77. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n0669608.png ; $\phi ( t ) = ( 1 - 2 i t ) ^ { - n / 2 } \operatorname { exp } \left\{ \frac { \lambda i t } { 1 - 2 i t } \right\};$ ; confidence 0.674
  
78. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010025.png ; $\tau _ { A } ^ { j }$ ; confidence 0.995
+
78. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752080.png ; $\mathcal{E} _ { A , K }$ ; confidence 0.674
  
79. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232035.png ; $1 / \rho ^ { n - 2 }$ ; confidence 0.953
+
79. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b1302107.png ; $R _ { w }$ ; confidence 0.674
  
80. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046320/h04632097.png ; $f ( z ) \in H ^ { 1 }$ ; confidence 1.000
+
80. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501025.png ; $M ^ { n }$ ; confidence 0.674
  
81. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001030.png ; $1.1 _ { \infty }$ ; confidence 0.618
+
81. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009051.png ; $x \mapsto \int _ { \partial \Omega } f d \mu _ { x } ^ { \Omega }.$ ; confidence 0.674
  
82. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004053.png ; $2 ^ { \gamma } - 1$ ; confidence 0.764
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002031.png ; $\operatorname {JC}$ ; confidence 0.674
  
83. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040105.png ; $\chi \in R ^ { x }$ ; confidence 0.572
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013096.png ; $P _ { 1 }$ ; confidence 0.674
  
84. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040126.png ; $\pi T = 3111324$ ; confidence 0.681
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240515.png ; $\mathbf{Z} _ { 0 } = \mathbf{Z} _ { 12 } - \mathbf{Z} _ { 13 } \mathbf{R},$ ; confidence 0.674
  
85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200508.png ; $| S _ { k } ( 0 ) | = 1$ ; confidence 0.881
+
85. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010015.png ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674
  
86. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s1303405.png ; $L _ { + } = q L _ { 0 }$ ; confidence 0.979
+
86. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051370/i05137010.png ; $\pi / 2$ ; confidence 0.674
  
87. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034022.png ; $S _ { 3 , \infty }$ ; confidence 0.604
+
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201203.png ; $B _ { r } ( 0 )$ ; confidence 0.674
  
88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130390/s1303907.png ; $\eta ( n ) \leq n$ ; confidence 0.997
+
88. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115060.png ; $x \cdot \xi$ ; confidence 0.674
  
89. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016017.png ; $C ^ { k } ( [ 0,1 ] )$ ; confidence 0.989
+
89. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019021.png ; $\frac { d C _ { j } } { d x } ( x _ { i } ) = \left\{ \begin{array} { l l } { 0 } & { \text { for } i = j, } \\ { \frac { 1 } { 2 } ( - 1 ) ^ { i + j } \operatorname { cot } \frac { x _ { i } - x _ { j } } { 2 } } & { \text { for } i \neq j, } \end{array} \right.$ ; confidence 0.674
  
90. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017023.png ; $d _ { i } = 1,0 , - 1$ ; confidence 0.995
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004027.png ; $C _ { 0 }$ ; confidence 0.674
  
91. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045070.png ; $C _ { X , Y } ( u , v )$ ; confidence 0.890
+
91. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022056.png ; $\sum _ { i = 0 } ^ { m } ( p _ { m } - i y ^ { ( i ) } ) ^ { ( i ) } = 0$ ; confidence 0.674
  
92. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022010.png ; $\Delta ^ { ( p ) }$ ; confidence 0.993
+
92. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010088.png ; $y _ { 1 } , \dots , y _ { s }$ ; confidence 0.674
  
93. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c020280124.png ; $E ( \lambda )$ ; confidence 1.000
+
93. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002055.png ; $\{ z ^ { k } \} _ { k \geq 0 }$ ; confidence 0.674
  
94. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304709.png ; $\nu ( \lambda )$ ; confidence 0.872
+
94. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010098.png ; $w _ { 1 } , \dots , w _ { s }$ ; confidence 0.673
  
95. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048027.png ; $H _ { S } ^ { * } ( D )$ ; confidence 0.996
+
95. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001080.png ; $c = \operatorname { log } _ { \omega } \gamma$ ; confidence 0.673
  
96. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049047.png ; $i = 0 , \ldots , h$ ; confidence 0.564
+
96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012015.png ; $\tau _ { t , v } : T _ { p } M \rightarrow T _ { \gamma ( t ) } M$ ; confidence 0.673
  
97. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023091.png ; $U \sim U _ { p , n }$ ; confidence 0.473
+
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004033.png ; $0 \leq f _ { n } \uparrow f \in L ^ { 0 } ( \mu )$ ; confidence 0.673
  
98. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023034.png ; $X \sim U _ { p , R }$ ; confidence 0.373
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201108.png ; $\varphi ( a , b , 2 ) = a ^ { b }$ ; confidence 0.673
  
99. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023092.png ; $Q \sim U _ { p , R }$ ; confidence 0.555
+
99. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g0433905.png ; $\delta f ( x _ { 0 } , h ) = \frac { d } { d t } f ( x _ { 0 } + t h ) | _ { t = 0 } =$ ; confidence 0.673
  
100. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230109.png ; $U \sim U _ { p , p }$ ; confidence 0.590
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040594.png ; $\operatorname {mng}_{\mathcal{S}_P}$ ; confidence 0.673
  
101. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230110.png ; $V \sim U _ { p , N }$ ; confidence 0.432
+
101. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019028.png ; $L _ { p } ( \mathbf{R} _ { + } ; x ^ { ( 1 - \nu ) p - 1 } )$ ; confidence 0.673
  
102. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053075.png ; $1 \frac { G } { P }$ ; confidence 0.143
+
102. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260204.png ; $e y = 0$ ; confidence 0.673
  
103. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053032.png ; $\{ e u : u \in U \}$ ; confidence 0.585
+
103. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007055.png ; $R _ { n-1 }$ ; confidence 0.673
  
104. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g04348025.png ; $s ^ { \gamma } - 1$ ; confidence 0.252
+
104. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w120060105.png ; $\operatorname { dim }( F \mathbf{R} ^ { m } ) = m \operatorname { dim } ( F \mathbf{R} )$ ; confidence 0.673
  
105. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054015.png ; $\alpha , b \in F$ ; confidence 0.459
+
105. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300302.png ; $P ( z , f ( z ) , f ( z ^ { d } ) ) = 0$ ; confidence 0.673
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013050/a01305019.png ; $j = 1 , \ldots , n$ ; confidence 0.638
+
106. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010046.png ; $\mathcal{A} _ { m }$ ; confidence 0.672
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209011.png ; $\alpha , b \in R$ ; confidence 0.522
+
107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306606.png ; $I _ { n } ( f ) = \sum _ { k = 1 } ^ { n } \lambda _ { n k } f ( \xi _ { n k } ).$ ; confidence 0.672
  
108. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540124.png ; $1 + a b \in R ^ { x }$ ; confidence 0.869
+
108. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010060.png ; $q = e ^ { 2 \pi i z }$ ; confidence 0.672
  
109. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025051.png ; $[ Q _ { N } ] ^ { - 1 }$ ; confidence 0.795
+
109. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489026.png ; $p ^ { n }$ ; confidence 0.672
  
110. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026053.png ; $\partial _ { S }$ ; confidence 0.631
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240500.png ; $\mathbf{Z}_{i}$ ; confidence 0.672
  
111. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026029.png ; $\Gamma ^ { \pm }$ ; confidence 0.990
+
111. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009014.png ; $x \in B ( x _ { 0 } , r ) ,\, \xi \in \partial B ( x _ { 0 } , r ),$ ; confidence 0.672
  
112. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060810/l0608104.png ; $m = 0,1 , \ldots$ ; confidence 0.623
+
112. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026079.png ; $M ( A ) = C _ { b } ( \Omega )$ ; confidence 0.672
  
113. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028042.png ; $| x g _ { 1 } | = [ x ]$ ; confidence 0.053
+
113. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015036.png ; $g \in G _ { x }$ ; confidence 0.672
  
114. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067051.png ; $M _ { k } \times W$ ; confidence 0.990
+
114. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090227.png ; $Y ^ { \chi } = \{ y \in Y : \delta \cdot y = \chi ( \delta ) y \, \text { for } \delta \in \Delta \}.$ ; confidence 0.672
  
115. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620124.png ; $y ( x , \lambda )$ ; confidence 0.998
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280171.png ; $( \pi , \{ U _ { t } \} _ { t \in \mathbf{R} } )$ ; confidence 0.672
  
116. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062025.png ; $y ( . , \lambda )$ ; confidence 0.688
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540069.png ; $0 \leq x \leq 1$ ; confidence 0.672
  
117. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620223.png ; $\mu _ { s } ( B ) > 0$ ; confidence 0.987
+
117. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003086.png ; $\| x ^ { * } + x ^ { \perp } \| = \| x ^ { * } \| + \| x ^ { \perp } \|$ ; confidence 0.672
  
118. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620117.png ; $+ ( \lambda ) > 0$ ; confidence 0.916
+
118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840363.png ; $T = i ( \square _ { - A^{*} } ^ { B } )$ ; confidence 0.672
  
119. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340154.png ; $x ( 0 ) \in L _ { - }$ ; confidence 0.587
+
119. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042160/f04216010.png ; $h ^ { - 1 }$ ; confidence 0.671
  
120. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034080.png ; $x = x ^ { \prime }$ ; confidence 0.836
+
120. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013074.png ; $\psi _ { - }$ ; confidence 0.671
  
121. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340155.png ; $x ( 1 ) \in L _ { + }$ ; confidence 0.994
+
121. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011030.png ; $G _ { n } ( 1 ) = \mu _ { n }$ ; confidence 0.671
  
122. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064021.png ; $a \in L ^ { 1 } ( T )$ ; confidence 0.802
+
122. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080134.png ; $c \in \mathcal{D}$ ; confidence 0.671
  
123. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064061.png ; $\hat { k } ( x - y )$ ; confidence 0.602
+
123. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054040.png ; $\operatorname { diag } ( a , a ^ { - 1 } , 1,1 , \ldots )$ ; confidence 0.671
  
124. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240309.png ; $\mu ^ { \prime }$ ; confidence 0.999
+
124. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h1300209.png ; $l = 1 , \dots , q$ ; confidence 0.671
  
125. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065022.png ; $\delta _ { \mu }$ ; confidence 1.000
+
125. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671
  
126. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065053.png ; $S _ { k } ( 0 ) \in D$ ; confidence 0.953
+
126. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001030.png ; $R _ { i } = \mathbf{F} _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671
  
127. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065020.png ; $\Phi _ { y } ^ { x }$ ; confidence 0.279
+
127. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013028.png ; $\oint _ { z = \infty } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) \tau _ { m + 1 } ( x ^ { \prime } + [ z ^ { - 1 } ] , y ^ { \prime } ) \times$ ; confidence 0.671
  
128. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004026.png ; $y _ { x } ^ { x } ( x )$ ; confidence 0.220
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201608.png ; $V:\Delta ^ { n - 1 } \rightarrow \Delta ^ { n - 1 }$ ; confidence 0.671
  
129. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004021.png ; $T _ { N } ^ { * } ( x )$ ; confidence 0.836
+
129. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100144.png ; $K \subset \mathbf{C} ^ { 2 }$ ; confidence 0.671
  
130. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005081.png ; $\sigma _ { \pi }$ ; confidence 0.692
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026022.png ; $m ^ { c }\hat{ A}$ ; confidence 0.671
  
131. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300504.png ; $e _ { 0 } \equiv 1$ ; confidence 0.653
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052049.png ; $x _ { n } = x ^ { * }$ ; confidence 0.671
  
132. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007046.png ; $h ( w ) : = g ( w ) / w$ ; confidence 0.889
+
132. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o0681709.png ; $F _ { n } ( \cdot )$ ; confidence 0.671
  
133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060142.png ; $B \sim Z ^ { 4 / 3 }$ ; confidence 0.999
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040479.png ; $\mathcal{C} _ { \Gamma }$ ; confidence 0.670
  
134. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t1200609.png ; $i = 1 , \ldots , K$ ; confidence 0.593
+
134. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009030.png ; $M u _ { t } + u _ { x } + u u _ { x } = 0.$ ; confidence 0.670
  
135. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006046.png ; $\Phi ( x ) \geq 0$ ; confidence 0.997
+
135. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017028.png ; $x _ { t } ^ { ( i ) }$ ; confidence 0.670
  
136. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006017.png ; $\rho ( x ) \geq 0$ ; confidence 0.991
+
136. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004033.png ; $\overset{\rightharpoonup} {  x } \cdot \overset{\rightharpoonup} {  v } > 0,$ ; confidence 0.670
  
137. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013013.png ; $\Lambda ^ { o p }$ ; confidence 0.686
+
137. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010545.png ; $( x _ { t } )$ ; confidence 0.670
  
138. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014037.png ; $\overline { A }$ ; confidence 0.409
+
138. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008034.png ; $\left\{ \begin{array}{l}{ m = - \left( \frac { \partial F } { \partial H } \right) _ { T }, }\\{ \chi = \left( \frac { \partial m } { \partial H } \right) _ { T }, }\\{ S = - \left( \frac { \partial F } { \partial T } \right) _ { H }, }\end{array} \right.$ ; confidence 0.670
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022570/c02257023.png ; $y = y ^ { \prime }$ ; confidence 1.000
+
139. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026025.png ; $S _ { [ n t] } $ ; confidence 0.670
  
140. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015011.png ; $h \in H ^ { 2 } ( T )$ ; confidence 0.769
+
140. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040112.png ; $\mathcal{H} ^ { m } ( R ) < \infty$ ; confidence 0.670
  
141. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015037.png ; $f \in C _ { 0 } ( S )$ ; confidence 0.533
+
141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052077.png ; $B _ { n } ^ { - 1 } = \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 }.$ ; confidence 0.670
  
142. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014022.png ; $k \in L ^ { 1 } ( R )$ ; confidence 0.515
+
142. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040032.png ; $\mathbf{f} \in F$ ; confidence 0.670
  
143. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140166.png ; $H ^ { 2 } ( C ^ { x } )$ ; confidence 0.253
+
143. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g12001014.png ; $\{ G _ { b } ^ { \alpha } f : b \in \mathbf{R} \}$ ; confidence 0.670
  
144. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356011.png ; $f ( x ) < + \infty$ ; confidence 1.000
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040042.png ; $g ( g ^ { \prime } \times ^ { \varrho } \mathbf{f} ) = g g ^ { \prime } \times ^ { \varrho } \mathbf{f}$ ; confidence 0.670
  
145. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356055.png ; $f \mapsto \pi f$ ; confidence 0.894
+
145. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m1201308.png ; $d N / d t \equiv 0$ ; confidence 0.670
  
146. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d03215060.png ; $i = 0 , \ldots , N$ ; confidence 0.492
+
146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024039.png ; $\operatorname{sup} h ( t ) < \infty$ ; confidence 0.670
  
147. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200186.png ; $\phi ( z ) \neq 0$ ; confidence 0.997
+
147. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033020/d03302027.png ; $J _ { 1 }$ ; confidence 0.670
  
148. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021015.png ; $t ( M ) = x t ( M / e )$ ; confidence 0.954
+
148. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011072.png ; $T = \frac { l } { V - U }.$ ; confidence 0.670
  
149. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021070.png ; $t ( M _ { H } ; 2,0 )$ ; confidence 0.998
+
149. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010066.png ; $\pi _ { k } ( X )$ ; confidence 0.669
  
150. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021017.png ; $t ( M ) = y t ( M - e )$ ; confidence 0.981
+
150. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024075.png ; $A = \mathbf{Z} / p ^ { m } ( 1 )$ ; confidence 0.669
  
151. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021048.png ; $p ( M ; \lambda )$ ; confidence 0.998
+
151. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200155.png ; $k \in S$ ; confidence 0.669
  
152. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021043.png ; $t ( M _ { G } ; x , y )$ ; confidence 0.992
+
152. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w12016018.png ; $D ( C ) = \operatorname { lim } _ { h \rightarrow 0 } W ( C ^ { h } ).$ ; confidence 0.669
  
153. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002023.png ; $K e ^ { - c x ^ { 2 } }$ ; confidence 0.660
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240373.png ; $\mathbf{Z} _ { 1 }$ ; confidence 0.669
  
154. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011980/a01198074.png ; $G = R ^ { \gamma }$ ; confidence 0.573
+
154. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015028.png ; $( A , [ \cdot , \cdot ] , d )$ ; confidence 0.669
  
155. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005022.png ; $H ^ { 1 } ( R ^ { N } )$ ; confidence 0.242
+
155. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200202.png ; $( \text{P} )$ ; confidence 0.669
  
156. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006019.png ; $j \in ( 1 / 2 ) Z$ ; confidence 0.983
+
156. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049039.png ; $( a _ { 2 } , \sigma _ { 2 } ^ { 2 } )$ ; confidence 0.669
  
157. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050114.png ; $1 _ { n } ( w ) = 0$ ; confidence 0.957
+
157. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005070.png ; $r ( - k ) = \overline { r ( k ) }$ ; confidence 0.669
  
158. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005083.png ; $[ L ( m ) , L ( n ) ] =$ ; confidence 0.985
+
158. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010096.png ; $L _ { C } ^ { \infty } ( \hat { G } )$ ; confidence 0.669
  
159. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020129.png ; $F * = q * p * ^ { - 1 }$ ; confidence 0.339
+
159. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010105.png ; $\tau \in \operatorname {Wh} \pi _ { 1 } M _ { 0 }$ ; confidence 0.669
  
160. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020174.png ; $q \circ p ^ { - 1 }$ ; confidence 0.998
+
160. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200901.png ; $( A , [ \cdot , \cdot ] _ { A } , q _ { A } )$ ; confidence 0.668
  
161. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002013.png ; $H _ { q } ( M , G ) = 0$ ; confidence 0.995
+
161. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140127.png ; $p = 1 , \dots , n$ ; confidence 0.668
  
162. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020103.png ; $y _ { 0 } \in Fix G$ ; confidence 0.361
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008019.png ; $\left\{ \begin{array} { l } { \frac { d ^ { 2 } u } { d t ^ { 2 } } + A u = f ( t ) , \qquad t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0 } , \frac { d u } { d t } ( 0 ) = u _ { 1 }, } \end{array} \right.$ ; confidence 0.668
  
163. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007032.png ; $w = \phi + i \psi$ ; confidence 0.873
+
163. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007073.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega , \text { and } \angle F ^ { \prime } ( \omega ) < 1,$ ; confidence 0.668
  
164. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007045.png ; $V _ { X } - i V _ { y }$ ; confidence 0.465
+
164. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023055.png ; $\{ Z , J \}$ ; confidence 0.668
  
165. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003032.png ; $L _ { 1 } ( [ 0,1 ] )$ ; confidence 0.983
+
165. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080178.png ; $F B \rightarrow \widetilde { F B }$ ; confidence 0.668
  
166. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011050.png ; $e ^ { \lambda t }$ ; confidence 0.886
+
166. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010104.png ; $\operatorname {dim} M_{0} \geq 5$ ; confidence 0.668
  
167. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011047.png ; $2 \pi l / \theta$ ; confidence 0.675
+
167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008048.png ; $( x , y ) \in \mathcal{O} _ { S } \times \mathcal{O} _ { S }$ ; confidence 0.668
  
168. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690066.png ; $A = x _ { i \in I } A$ ; confidence 0.942
+
168. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001017.png ; $A = [ a _ {i j } ]$ ; confidence 0.668
  
169. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v0969008.png ; $A \subset B ( H )$ ; confidence 0.850
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240279.png ; $S = ( q F _ { \alpha ; q , n - r } ) ^ { 1 / 2 }$ ; confidence 0.668
  
170. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900125.png ; $P \sim P _ { 1 }$ ; confidence 0.999
+
170. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019049.png ; $1 \ll | a / q | \ll 1$ ; confidence 0.668
  
171. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690036.png ; $P ^ { \prime } I F$ ; confidence 0.052
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022070.png ; $\int H ( M ( u _ { f } , \xi ) , \xi ) d \xi \leq \int H ( f ( \xi ) , \xi ) d \xi.$ ; confidence 0.668
  
172. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900186.png ; $T _ { n } ( \zeta )$ ; confidence 0.613
+
172. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110110/i11011024.png ; $m _ { i j } = 1$ ; confidence 0.667
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012900/a01290064.png ; $L _ { 2 } ( X , \mu )$ ; confidence 0.937
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006092.png ; $\leq \| V \| \cdot \| ( \mu I - A ) ^ { - 1 } \| \cdot \| V ^ { - 1 } \|,$ ; confidence 0.667
  
174. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401407.png ; $\alpha < \beta$ ; confidence 1.000
+
174. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180398.png ; $\operatorname { det } \tilde{g} ^ { - 1 }$ ; confidence 0.667
  
175. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001067.png ; $W _ { 1 } + \infty$ ; confidence 0.904
+
175. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013017.png ; $m _ { i j } = 2$ ; confidence 0.667
  
176. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759046.png ; $\square ( E / Q )$ ; confidence 0.968
+
176. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752052.png ; $1 \leq j \leq r$ ; confidence 0.667
  
177. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005032.png ; $A = R .1 \oplus N$ ; confidence 0.711
+
177. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019041.png ; $\mathcal{C} _ { 1 }$ ; confidence 0.667
  
178. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005019.png ; $A = R .1 \oplus N$ ; confidence 0.432
+
178. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696017.png ; $F _ { n } ( x ; \lambda )$ ; confidence 0.667
  
179. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w1200505.png ; $D = R 1 \oplus e R$ ; confidence 0.302
+
179. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j130030103.png ; $J B W ^ { x }$ ; confidence 0.667
  
180. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005022.png ; $H ^ { * } ( W _ { k } )$ ; confidence 0.998
+
180. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006018.png ; $\operatorname { Bel}$ ; confidence 0.667
  
181. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070100.png ; $f \mapsto f ( A )$ ; confidence 0.967
+
181. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016015.png ; $P = \cup _ { k = 1 } ^ { \infty } \operatorname { DTIME } [ n ^ { k } ] = \operatorname { DTIME } [ n ^ { O ( 1 ) } ]$ ; confidence 0.667
  
182. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007030.png ; $\sum \xi _ { j } a$ ; confidence 0.766
+
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b1202408.png ; $S = \overline { \mathbf{C} } = D _ { + } \cup \mathcal{T} \cup D _ { - }$ ; confidence 0.667
  
183. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070107.png ; $s ^ { \prime } = 0$ ; confidence 0.998
+
183. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230158.png ; $i,j = 1 , \dots , s$ ; confidence 0.667
  
184. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007092.png ; $f \in S ( R ^ { k } )$ ; confidence 0.986
+
184. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001054.png ; $\operatorname { Tr } _ { E / F } ( \omega ) = a$ ; confidence 0.667
  
185. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007029.png ; $\xi _ { \alpha }$ ; confidence 0.283
+
185. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584060.png ; $\mathcal{H} / Ker G$ ; confidence 0.667
  
186. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009053.png ; $\Lambda ( n , r )$ ; confidence 0.989
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160120.png ; $j ^ { \prime }$ ; confidence 0.667
  
187. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090373.png ; $M = U _ { Z } v ^ { + }$ ; confidence 0.524
+
187. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006090.png ; $\operatorname { dim } ( G ) = \operatorname { Idim } ( P _ { G } )$ ; confidence 0.666
  
188. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201105.png ; $( a ^ { w } u ) ( x ) =$ ; confidence 0.868
+
188. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008042.png ; $J > 0$ ; confidence 0.666
  
189. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110123.png ; $( a \div b ) ( X ) =$ ; confidence 0.377
+
189. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001042.png ; $\overline { U } _ { 1 } = \left\{ x ^ { ( i ) } : 0 \leq i < p ^ { m } - 1 \right\}$ ; confidence 0.666
  
190. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080224.png ; $N _ { f } < 2 N _ { c }$ ; confidence 0.896
+
190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201004.png ; $x _ { i } \equiv ( q _ { i } , p _ { i } ) \in \mathbf{R} ^ { \nu } \times \mathbf{R} ^ { \nu }$ ; confidence 0.666
  
191. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054420/j05442077.png ; $\overline { P }$ ; confidence 0.500
+
191. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008091.png ; $\mathsf{E} [ W _ { p  + 1} ] / \mathsf{E} [ W _ { p } ]$ ; confidence 0.666
  
192. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008094.png ; $d \omega j \sim$ ; confidence 0.483
+
192. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002030.png ; $| f ( x ) | \leq A e ^ { - \pi a x ^ { 2 } }$ ; confidence 0.666
  
193. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009082.png ; $L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.999
+
193. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007047.png ; $Z \mathcal{C} ( C , C^{\prime} )$ ; confidence 0.666
  
194. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009047.png ; $H ^ { \otimes x }$ ; confidence 0.308
+
194. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001057.png ; $B ^ { * } = ( \gamma _ { 0 } , \dots , \gamma _ { n - 1 } )$ ; confidence 0.666
  
195. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018065.png ; $G ( \partial A )$ ; confidence 0.998
+
195. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170222.png ; $K = K _ { 0 } \subset K _ { 1 } \subset \ldots$ ; confidence 0.666
  
196. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w1100604.png ; $( \Omega , B , P )$ ; confidence 0.719
+
196. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067010.png ; $\mathcal{C} ( C , D )$ ; confidence 0.666
  
197. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012022.png ; $T _ { W d } = T _ { H }$ ; confidence 0.357
+
197. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010063.png ; $\mathcal{P} ( x )$ ; confidence 0.666
  
198. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013034.png ; $R / r = \sqrt { 2 }$ ; confidence 0.993
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027057.png ; $\{ b _ { n } \}$ ; confidence 0.666
  
199. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013020.png ; $\chi ( \Sigma )$ ; confidence 0.995
+
199. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003038.png ; $\mathcal{F} / R$ ; confidence 0.665
  
200. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003010.png ; $( - \theta , - p )$ ; confidence 1.000
+
200. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034100/d03410010.png ; $L _ { \Phi }$ ; confidence 0.665
  
201. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001032.png ; $x ( z ) = Z ( x ( n ) )$ ; confidence 0.533
+
201. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014012.png ; $j \in \mathbf{Z}$ ; confidence 0.665
  
202. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003074.png ; $f \in L ^ { 2 } ( R )$ ; confidence 0.995
+
202. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200197.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { h _ { 1 } } | \geq \delta _ { 1 } >$ ; confidence 0.665
  
203. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003071.png ; $g \in L ^ { 2 } ( R )$ ; confidence 0.999
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012093.png ; $f \in \mathcal{A}$ ; confidence 0.665
  
204. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z1300702.png ; $\pm \zeta ^ { 2 }$ ; confidence 0.984
+
204. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027038.png ; $\Gamma ( z _ { 1 } ) = z _ { 1 } ^ { M } + b _ { 1 } z _ { 1 } ^ { M - 1 } + \ldots + b _ { M - 1 } z _ { 1 } + b _ { M }$ ; confidence 0.665
  
205. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008023.png ; $R _ { x } ^ { m } ( r )$ ; confidence 0.418
+
205. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011069.png ; $T : \Delta _ { n } \rightarrow \Omega _ { n + 1 } ( S ^ { 1 } ),$ ; confidence 0.665
  
206. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110151.png ; $u = \alpha ^ { s }$ ; confidence 0.622
+
206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021069.png ; $= \frac { ( n _ { 1 } + l ) ! } { l ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { 2 } } + \ldots,$ ; confidence 0.665
  
207. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012032.png ; $\xi \in ( - 1,1 )$ ; confidence 1.000
+
207. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737026.png ; $L ^ { - 1 }$ ; confidence 0.665
  
208. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111010.png ; $H ^ { n } ( X , A ; G )$ ; confidence 0.596
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007048.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.665
  
209. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001077.png ; $\xi ( \tau )$ ; confidence 0.999
+
209. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006018.png ; $a _ { k } + 1$ ; confidence 0.665
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040621.png ; $\operatorname {Mod}_{\mathcal{S} _ { P }} \Gamma$ ; confidence 0.665
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458
+
211. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004060.png ; $\operatorname {WF} _ { s } u$ ; confidence 0.665
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202208.png ; $| x | | \leq 1$ ; confidence 0.929
+
212. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130106.png ; $T _ { i } \in \operatorname { add } T$ ; confidence 0.665
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240218.png ; $z = \Gamma y$ ; confidence 0.946
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110670/a11067030.png ; $\{ u _ { n } \}$ ; confidence 0.665
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240224.png ; $Z 1 , \dots , Z y$ ; confidence 0.389
+
214. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021038.png ; $\operatorname { ind } _ { P } ( \operatorname { log } | z | ) = 1$ ; confidence 0.665
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240334.png ; $\Gamma = B X$ ; confidence 0.884
+
215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230128.png ; $\operatorname { rank } ( S - F _ { 3 } S F _ { 3 } ^ { * } ) \leq \operatorname { rank } ( R - F R F ^ { * } ),$ ; confidence 0.665
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884
+
216. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301101.png ; $H ^ { 2 } = ( \mathbf{p} _ { x } ^ { 2 } + \mathbf{p} _ { y } ^ { 2 } + \mathbf{p} _ { z } ^ { 2 } ) c ^ { 2 } + m _ { 0 } ^ { 2 } c ^ { 4 }.$ ; confidence 0.664
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240123.png ; $i = 1,2 , \dots$ ; confidence 0.482
+
217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015036.png ; $\| T \| < \delta$ ; confidence 0.664
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240180.png ; $= E ( y _ { i j k } )$ ; confidence 0.782
+
218. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025021.png ; $( T )$ ; confidence 0.664
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024036.png ; $N ( 0 , \Sigma )$ ; confidence 0.587
+
219. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070103.png ; $1 _ { - 1 } = \operatorname { id}$ ; confidence 0.664
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024021.png ; $E ( y ) = X \beta$ ; confidence 0.586
+
220. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013062.png ; $N ^ { 1 }$ ; confidence 0.664
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240418.png ; $n ^ { - 1 } M _ { E }$ ; confidence 0.519
+
221. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010059.png ; $M \# M ^ { \prime }$ ; confidence 0.664
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240107.png ; $i = 1 , \dots , n$ ; confidence 0.574
+
222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201209.png ; $\operatorname { inj} M$ ; confidence 0.664
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240380.png ; $( p , n - r - p + 1 )$ ; confidence 0.994
+
223. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018043.png ; $\{ e _ { i } : i = 1,2 , \ldots \}$ ; confidence 0.664
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240246.png ; $F = MS _ { H } / MS$ ; confidence 0.488
+
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s1303409.png ; $S _ { 2 , \infty} ( M )$ ; confidence 0.664
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a1200203.png ; $A \subset Y$ ; confidence 0.990
+
225. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737058.png ; $k \in \mathbf{R}$ ; confidence 0.664
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003015.png ; $( - \infty , 0 ]$ ; confidence 0.999
+
226. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021054.png ; $u _ { i l } = z ^ { \lambda _ { i } } \sum _ { j = 0 } ^ { l } \sum _ { k = 0 } ^ { \infty } b _ { j k } ( \operatorname { log } z ) ^ { j } z ^ { k }.$ ; confidence 0.664
  
227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004010.png ; $x ( t ) \in D ( A )$ ; confidence 0.997
+
227. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w12016016.png ; $C ^ { h } : t \rightarrow C ( t + h ) - C ( t ) / h$ ; confidence 0.664
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040344.png ; $F \in Fi _ { D } A$ ; confidence 0.438
+
228. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010041.png ; $\tilde { f } ( \xi ) = \int _ { \mathbf{R} ^ { n } } f ( x ) e ^ { i \xi x } d x$ ; confidence 0.664
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040747.png ; $\Sigma ( P , R )$ ; confidence 0.987
+
229. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110145.png ; $\overline { \mathbf{R} ^ { \pm }}$ ; confidence 0.664
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004098.png ; $\varphi \in S$ ; confidence 0.655
+
230. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033830/d03383015.png ; $x \succ y$ ; confidence 0.664
  
231. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040621.png ; $S _ { P } \Gamma$ ; confidence 0.665
+
231. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200108.png ; $\{ f _ { \alpha } : \alpha \in \operatorname {GF} ( m ) \}$ ; confidence 0.663
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040188.png ; $\Omega ^ { * } S$ ; confidence 0.538
+
232. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053086.png ; $a _ { i } \geq 1$ ; confidence 0.663
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040801.png ; $C \subseteq D$ ; confidence 0.907
+
233. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001023.png ; $f _ { 2 } = \operatorname { gcd } ( x ^ { q ^ { 2 } } - x , f / f _ { 1 } )$ ; confidence 0.663
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980
+
234. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300304.png ; $\tau u _ { xx } = \rho u _ { t t }$ ; confidence 0.663
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040800.png ; $g : B \mapsto D$ ; confidence 0.949
+
235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027015.png ; $\omega = \operatorname { inf } _ { p \in \Omega } \frac { \operatorname { Vol} ( \Omega _ { p } ) } { \alpha ( n - 1 ) },$ ; confidence 0.663
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004037.png ; $\varphi \in T$ ; confidence 0.901
+
236. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210107.png ; $=  c _ { 0 } z ^ { \lambda } \pi ( \lambda ) +$ ; confidence 0.663
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050222.png ; $\eta < \delta$ ; confidence 0.999
+
237. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027068.png ; $\mathrm{II} _ { \infty }$ ; confidence 0.663
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050194.png ; $r = 1,2 , \dots$ ; confidence 0.541
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032017.png ; $\| x \|  = \| u \|$ ; confidence 0.663
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050290.png ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787
+
239. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100170.png ; $\mu _ { z }$ ; confidence 0.663
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050108.png ; $L ( Y ) = L ( Y , Y )$ ; confidence 0.993
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040543.png ; $h ( \xi ) \in C ( \{ h ( \theta _ { 0 } ) , \ldots , h ( \theta _ { n  - 1} ) \} )$ ; confidence 0.663
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007077.png ; $t , s \in [ 0 , T ]$ ; confidence 0.966
+
241. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001011.png ; $\operatorname {GF} ( m )$ ; confidence 0.663
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060122.png ; $G _ { \lambda }$ ; confidence 0.535
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013029.png ; $( \theta _ { n  - 1} , X _ { n  - 1} )$ ; confidence 0.663
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006055.png ; $\partial ( I )$ ; confidence 0.976
+
243. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011063.png ; $\chi _ { \sigma } = \prod _ { j = 1 } ^ { n } 1 / ( e ^ { \sigma _ { j } z _ { j } } + 1 )$ ; confidence 0.663
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060101.png ; $0 < \lambda < 1$ ; confidence 0.999
+
244. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203407.png ; $\operatorname {SH} ^ { * } ( M , \omega , L _ { + } , L _ { - } )$ ; confidence 0.662
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008066.png ; $v _ { 1 } = d u / d t$ ; confidence 0.972
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011039.png ; $\omega ^ { \omega }$ ; confidence 0.662
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008045.png ; $D ( A ) \times V$ ; confidence 0.995
+
246. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010034.png ; $T \otimes_{ B} -$ ; confidence 0.662
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007093.png ; $\alpha \leq 2$ ; confidence 0.978
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066049.png ; $T : \mathcal{D} ( \mathbf{R} ^ { n } ) \rightarrow \mathcal{D}  ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.662
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070108.png ; $\alpha \geq 2$ ; confidence 0.992
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152025.png ; $x \in \mathbf{V}$ ; confidence 0.662
  
249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007095.png ; $\alpha \geq 3$ ; confidence 0.991
+
249. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002032.png ; $i = 1 , \ldots , \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right)$ ; confidence 0.662
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007011.png ; $p = 2 ^ { n + 1 } - 1$ ; confidence 0.988
+
250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290174.png ; $\mathbf{R} ( L )$ ; confidence 0.662
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010019.png ; $x \notin D ( A )$ ; confidence 0.819
+
251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064032.png ; $a ( e ^ { i \theta } ) - z$ ; confidence 0.662
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010068.png ; $u - \Delta u = f$ ; confidence 0.800
+
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040055.png ; $S^{-}$ ; confidence 0.662
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011019.png ; $A ( 2 , n ) = 2 n + 3$ ; confidence 0.998
+
253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007055.png ; $\text{Ab} ^ { \text{ZC} } \approx \text{Ab} ^ { \text{C} }$ ; confidence 0.662
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012042.png ; $( I - A ) ^ { - 1 } v$ ; confidence 0.959
+
254. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630108.png ; $M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j },$ ; confidence 0.662
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012038.png ; $v - A v = ( I - A ) v$ ; confidence 0.609
+
255. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023048.png ; $\operatorname { St } _ { G } ( n )$ ; confidence 0.662
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012054.png ; $y _ { j } ^ { j } > 0$ ; confidence 0.995
+
256. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005076.png ; $\Lambda _ { \varphi , w }$ ; confidence 0.662
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013036.png ; $h ( \theta ) = 0$ ; confidence 0.999
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c1200507.png ; $S = \{ r e ^ { i \theta } : 1 - h \leq r < 1 , | \theta - \theta _ { 0 } | \leq h \}.$ ; confidence 0.662
  
258. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016064.png ; $\lambda < 1$ ; confidence 0.995
+
258. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008067.png ; $\sum _ { i , j + 1 } ^ { n } K ( p _ { i } , p _ { j } ) \xi _ { j } \overline { \xi _ { i } } = \int _ { T } | \sum _ { j = 1 } ^ { n } \xi _ { j } h ( t , p _ { j } ) | ^ { 2 } d m ( t ) > 0$ ; confidence 0.662
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017023.png ; $\lambda ^ { * }$ ; confidence 0.791
+
259. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034074.png ; $\tilde{P}$ ; confidence 0.662
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201701.png ; $p ( \alpha , t )$ ; confidence 0.678
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004079.png ; $\mathbf{C} ^ { 2 }$ ; confidence 0.662
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201709.png ; $\mu ( \alpha )$ ; confidence 0.363
+
261. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004012.png ; $v = t$ ; confidence 0.662
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018072.png ; $( S _ { n + m + 1 } )$ ; confidence 0.440
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018020.png ; $| \lambda | < 1$ ; confidence 0.662
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180100.png ; $u _ { 0 } = x _ { x }$ ; confidence 0.656
+
263. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008085.png ; $\Lambda \xi \sim w  ^ {\mp ( 1 / N ) }$ ; confidence 0.662
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012030.png ; $n = 0,1 , \dots$ ; confidence 0.483
+
264. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006059.png ; $\operatorname { det } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) \not \equiv 0$ ; confidence 0.662
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018069.png ; $C A _ { \omega }$ ; confidence 0.650
+
265. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003031.png ; $x : B \rightarrow C$ ; confidence 0.661
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020017.png ; $p ( t ) \in F [ t ]$ ; confidence 0.995
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016720/b01672047.png ; $\hat { f }$ ; confidence 0.661
  
267. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022023.png ; $\square _ { R }$ ; confidence 0.556
+
267. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003036.png ; $H _ { ! } ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } )$ ; confidence 0.661
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302301.png ; $P _ { L I \cap V }$ ; confidence 0.271
+
268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202503.png ; $\tilde { \kappa } = \kappa | \nabla L | = L _ { y } ^ { 2 } L _ { x x } - 2 L _ { x } L _ { y } L _ { x y } + L _ { x } ^ { 2 } L _ { y y }.$ ; confidence 0.661
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023026.png ; $f | _ { \Gamma }$ ; confidence 0.973
+
269. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018087.png ; $C ( g ) \in \otimes ^ { 3 } \mathcal{E}$ ; confidence 0.661
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027061.png ; $x , y \in X _ { n }$ ; confidence 0.290
+
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016030.png ; $Y = \partial / \partial \theta$ ; confidence 0.661
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025042.png ; $PG ( k - n - 2 , q )$ ; confidence 0.686
+
271. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090230.png ; $\Lambda = \mathbf{Z} _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.661
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071032.png ; $1 \leq i \leq n$ ; confidence 0.997
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200125.png ; $D \subset \mathbf{C} ^ { x }$ ; confidence 0.661
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026061.png ; $( a , a , \dots )$ ; confidence 0.693
+
273. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010138.png ; $\text{p}$ ; confidence 0.661
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027017.png ; $W _ { P } ( \rho )$ ; confidence 0.933
+
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021075.png ; $\mathfrak { F } _ { \lambda }$ ; confidence 0.661
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028076.png ; $L _ { w } ( X , Y ) *$ ; confidence 0.282
+
275. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014048.png ; $[ \mathbf{X} ] \mapsto \chi _ { Q } ( [ \mathbf{X} ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( \mathbf{X} ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( \mathbf{X} , \mathbf{X} )$ ; confidence 0.661
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031039.png ; $\rho ( X _ { 1 } )$ ; confidence 0.944
+
276. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840110.png ; $\mathcal{L} _ { + }$ ; confidence 0.661
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032024.png ; $E ( Y ) = \theta$ ; confidence 0.709
+
277. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080104.png ; $\frac { \partial F } { \partial \alpha _ { j } } = \oint _ { B _ { j } } d S$ ; confidence 0.661
  
278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032023.png ; $Y _ { i } = X _ { i }$ ; confidence 0.604
+
278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012028.png ; $L ( \theta | Y _ { \text { aug } } )$ ; confidence 0.661
  
279. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002053.png ; $b ( u , u ) \neq 0$ ; confidence 0.999
+
279. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032094.png ; $A ^ { p | q} $ ; confidence 0.661
  
280. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002049.png ; $\beta _ { n , F }$ ; confidence 0.196
+
280. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004019.png ; $\operatorname { Re } s > 1$ ; confidence 0.661
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220084.png ; $0 \leq t \leq 1$ ; confidence 0.998
+
281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090217.png ; $\operatorname {Gal}( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \cong \text { varprojlim } A _ { n } ( k ^ { \prime } )$ ; confidence 0.661
  
282. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001064.png ; $0 \leq i \leq t$ ; confidence 0.961
+
282. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180486.png ; $x = ( x ^ { 1 } , \dots , x ^ { n } )$ ; confidence 0.660
  
283. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001019.png ; $V : = X / \Gamma$ ; confidence 0.989
+
283. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015680/b01568010.png ; $n \geq n _ { 0 }$ ; confidence 0.660
  
284. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003028.png ; $( a b ) ^ { - 1 } < 1$ ; confidence 0.969
+
284. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200507.png ; $S _ { n + 1 } ( z ) = \frac { 1 } { z } \frac { S _ { n } ( z ) - S _ { n } ( 0 ) } { 1 - \overline{S} _ { n } ( 0 ) S _ { n } ( z ) } , n \geq 0.$ ; confidence 0.660
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003026.png ; $( a b ) ^ { - 1 } > 1$ ; confidence 0.973
+
285. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010062.png ; $H e$ ; confidence 0.660
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003046.png ; $( a b ) ^ { - 1 } = 1$ ; confidence 0.937
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024088.png ; $U ( \mathfrak { sl } ( n ) )$ ; confidence 0.660
  
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003031.png ; $y _ { 1 } , x _ { 2 }$ ; confidence 0.166
+
287. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016016.png ; $f _ { 2 n } = f _ { 2 n - 1 } - g _ { n }$ ; confidence 0.660
  
288. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003013.png ; $V ^ { + } = V ^ { - }$ ; confidence 0.999
+
288. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201109.png ; $f ( \sum _ { j \in I } x _ { j } )$ ; confidence 0.660
  
289. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300307.png ; $x , y \in V ^ { - }$ ; confidence 0.719
+
289. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004050.png ; $P _ { m } ( v ) \neq 0$ ; confidence 0.660
  
290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003052.png ; $x \in V ^ { \pm }$ ; confidence 0.794
+
290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010141.png ; $\mu \mapsto \tilde{\mu}$ ; confidence 0.660
  
291. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b130040110.png ; $\{ f \in C ( X ) :$ ; confidence 0.996
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027028.png ; $\chi = \text { trace o } \rho$ ; confidence 0.660
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004042.png ; $\| f \| = \| g \|$ ; confidence 0.952
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033017.png ; $r ^ { \prime }$ ; confidence 0.660
  
293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005049.png ; $H _ { \phi } ( E )$ ; confidence 0.361
+
293. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010017.png ; $B = \operatorname { End } _ { H } ( T )$ ; confidence 0.660
  
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005043.png ; $\Pi ^ { - 1 } ( w )$ ; confidence 0.998
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302805.png ; $b _ { 0 } , b _ { 1 } , \dots$ ; confidence 0.660
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006020.png ; $\epsilon = - 1$ ; confidence 1.000
+
295. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008053.png ; $\mathsf{E} [ T _ { p } ] _ { \text{PR} } = \infty$ ; confidence 0.660
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006013.png ; $\epsilon = + 1$ ; confidence 0.999
+
296. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002023.png ; $K e ^ { - c x ^ { 2 } }$ ; confidence 0.660
  
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006010.png ; $w ( z ) = u ( x , y )$ ; confidence 0.987
+
297. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002065.png ; $\operatorname { dim } Q$ ; confidence 0.660
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009024.png ; $f = f ( z , \tau )$ ; confidence 0.999
+
298. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602027.png ; $\overline { D^{-} } = D ^ { - } \cup \Gamma$ ; confidence 0.660
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009021.png ; $\tau = e ^ { - t }$ ; confidence 0.860
+
299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026052.png ; $\partial _ { s + } \phi ( s ) = \operatorname { lim } _ { \epsilon \downarrow 0 } \partial _ { s + \epsilon } \phi ( s )$ ; confidence 0.660
  
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009022.png ; $0 < \tau \leq 1$ ; confidence 0.998
+
300. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200209.png ; $\times \left[ \frac { \operatorname { sin } \frac { \pi \mu } { 2 } } { \operatorname { cosh } \frac { \pi \tau } { 2 } } \operatorname { Re } J _ { i \tau } ( x ) - \frac { \operatorname { cos } \frac { \pi \mu } { 2 } } { \operatorname { sinh } \frac { \pi \tau } { 2 } } \operatorname { Im } J _ { i \tau } ( x ) \right], \; f ( x ) = \frac { 2 ^ { - \mu } } { \pi ^ { 2 } x } \times$ ; confidence 0.660

Latest revision as of 22:17, 5 June 2020

List

1. i12010028.png ; $\{ \pm i C ( t ) , 0 , \ldots , 0 \}$ ; confidence 0.678

2. c13007039.png ; $( n - 1 ) ( n - 2 ) / 2$ ; confidence 0.678

3. c130160111.png ; $\operatorname{NL}$ ; confidence 0.678

4. a1104601.png ; $\overset{\rightharpoonup} { B }$ ; confidence 0.678

5. a01149054.png ; $x _ { 2 }$ ; confidence 0.678

6. m12003037.png ; $\operatorname { IF } ( x ; T , F _ { \theta } ) = \frac { \Psi ( x , \theta ) } { \int \frac { \partial } { \partial \theta } \Psi ( y , \theta ) d F _ { \theta } ( y ) }.$ ; confidence 0.678

7. d13017054.png ; $\sum _ { k = 1 } ^ { \infty } e ^ { - \lambda _ { k } t } \approx \frac { A } { 4 \pi t } + \frac { L } { 8 \sqrt { \pi } t } + \frac { 1 } { 6 } ( 1 - r ) + O ( t ),$ ; confidence 0.678

8. l1201505.png ; $[ a , [ b , c ] ] = [ [ a , b ] , c ] + [ b , [ a , c ] ],$ ; confidence 0.678

9. m13014067.png ; $\int u ( x + r t ) d \mu ( t ) = 0 , \quad x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + },$ ; confidence 0.678

10. t12014048.png ; $\operatorname { Ker } T _ { \phi } ^ { * } = \{ 0 \}$ ; confidence 0.678

11. j13003034.png ; $\| a \square a ^ { * } \| = \| a \| ^ { 2 }$ ; confidence 0.678

12. a01301024.png ; $t _ { 1 } , \ldots , t _ { m }$ ; confidence 0.678

13. m12027019.png ; $d f = d f _ { 1 } \wedge \ldots \wedge d f _ { n }$ ; confidence 0.678

14. m13011020.png ; $D f / D t$ ; confidence 0.678

15. f12024048.png ; $\dot { x } ( t ) = f ( t , x _ { t } ).$ ; confidence 0.678

16. a1201701.png ; $p ( a , t )$ ; confidence 0.678

17. m13011092.png ; $\mathbf{x} ^ { 0 }$ ; confidence 0.678

18. a11006015.png ; $\mathsf{P}$ ; confidence 0.678

19. s130620152.png ; $q _ { 1 } ( x ) \rightarrow 0$ ; confidence 0.677

20. q13002050.png ; $\hat { f } | x , 1 , w \rangle \rightarrow | x , 1 - f ( x ) , w \rangle$ ; confidence 0.677

21. b13029091.png ; $\{ h _ { i } \} _ { 0 \leq i \leq d - 1 }$ ; confidence 0.677

22. a130040314.png ; $\epsilon _ { i , j } ^ { \mathbf{A} } ( a , b , c , d ) = h ( \epsilon _ { i , j } ( x , y , z , w ) )$ ; confidence 0.677

23. j120020127.png ; $H _ { 0 } ^ { 1 }$ ; confidence 0.677

24. m12003065.png ; $\hat { \theta } = T _ { n }$ ; confidence 0.677

25. d11008029.png ; $K v$ ; confidence 0.677

26. b0167402.png ; $U _ { 2 }$ ; confidence 0.677

27. d12030041.png ; $\frac { d \mu _ { Y } } { d \mu _ { Z } } = \mathsf{E} _ { \mu _ { X } } [ \psi ( T ) ],$ ; confidence 0.677

28. b13010047.png ; $\tilde { \varphi } ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } \int _ { D } \frac { \varphi ( w ) } { | 1 - z w | ^ { 4 } } d A ( w ).$ ; confidence 0.677

29. a01139019.png ; $\hat{\mu}$ ; confidence 0.677

30. f12019095.png ; $K [ N ]$ ; confidence 0.677

31. f0404906.png ; $\times \,x ^ { ( \nu _ { 1 } / 2 ) - 1 } \left( 1 + \frac { \nu _ { 1 } } { \nu _ { 2 } } x \right) ^ { ( \nu _ { 1 } + \nu _ { 2 } ) / 2 } , \quad x > 0,$ ; confidence 0.677

32. c13025027.png ; $Y _ { 1 } , \dots , Y _ { j - 1 }$ ; confidence 0.677

33. a1302708.png ; $\operatorname { dim } X _ { n } = \operatorname { dim } Y _ { n }$ ; confidence 0.677

34. b1302006.png ; $a _ { i j } \leq 0$ ; confidence 0.677

35. b13020071.png ; $\mathfrak { g }_{ +}$ ; confidence 0.677

36. f130090106.png ; $0 < q _ { 1 } + \ldots + q _ { k } < 1$ ; confidence 0.676

37. a130060153.png ; $\mathcal{S} _ { \text{E} }$ ; confidence 0.676

38. e12015011.png ; $( ( x )_{ 0} , ( \dot { x } ) _ { 0 } , t _ { 0 } ) \in \Omega$ ; confidence 0.676

39. b13021013.png ; $F = ( F _ { r } ) _ { r \in R _ { W } , w \in W }$ ; confidence 0.676

40. h12012078.png ; $\phi ^ { \prime } = \phi \sum _ { i = 0 } ^ { \infty } ( - 1 ) ^ { i } ( t \phi ) ^ { i }$ ; confidence 0.676

41. j13001033.png ; $D _{f , 1}$ ; confidence 0.676

42. l13010044.png ; $\alpha : = \xi / | \xi |$ ; confidence 0.676

43. b1102502.png ; $M _ { 3 }$ ; confidence 0.676

44. s13036039.png ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d \text{l} _ { s } = \text{l} _ { t }$ ; confidence 0.676

45. b12022044.png ; $M _ { f } ( t , x , \xi ) = M ( u ( t , x ) , \xi ),$ ; confidence 0.676

46. a13020019.png ; $( \text { End } V ) ^ { + }$ ; confidence 0.676

47. a01227057.png ; $S _ { 1 }$ ; confidence 0.676

48. d12019025.png ; $\lambda _ { n } ( \Omega ) = \operatorname { inf } \{ \lambda ( L ) : L \subseteq C ^ { \infty _0 } ( \Omega ) , \operatorname { dim } ( L ) = n \},$ ; confidence 0.676

49. p12013043.png ; $S ^ { \prime \prime }$ ; confidence 0.676

50. s08602035.png ; $\alpha ^ { \prime } < 1$ ; confidence 0.676

51. k055840401.png ; $( N _ { f } ( z _ { i } , z _ { j } ) ) _ { 1 } ^ { n }$ ; confidence 0.675

52. a01130064.png ; $k_i$ ; confidence 0.675

53. j12002092.png ; $X ^ { * } = \operatorname { sup } _ { s \geq 0 } X _ { s }$ ; confidence 0.675

54. d13008090.png ; $= \left\{ z \in \mathcal{D} : \operatorname { limsup } _ { w \rightarrow x } [ K _ { \mathcal{D} } ( z , w ) - K _ { \mathcal{D} } ( z _ { 0 } , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \right\},$ ; confidence 0.675

55. c130070225.png ; $\mathfrak { R } ( C _ { 1 } )$ ; confidence 0.675

56. d12012015.png ; $\operatorname {dom}_{G^{\prime}} \circ d _ { A } = d _ { 0 } \circ \operatorname {dom}_{G}$ ; confidence 0.675

57. v13011047.png ; $2 \pi l / \theta$ ; confidence 0.675

58. l120120174.png ; $K _ { S } [ \overline { \sigma } ]$ ; confidence 0.675

59. c130070199.png ; $\operatorname { ord } _ { T } ( r / s ) = \lambda - \mu,$ ; confidence 0.675

60. g04302050.png ; $S : M _ { k } \rightarrow W$ ; confidence 0.675

61. m130140133.png ; $\operatorname { det } \| 1 / b _ { j } ^ { l } \| \neq 0$ ; confidence 0.675

62. o13005024.png ; $\varphi _ { - } \in \mathfrak{E}$ ; confidence 0.675

63. a12006062.png ; $u \in C ( [ 0 , T ] ; Y ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.675

64. d12003058.png ; $f \in R$ ; confidence 0.675

65. v120020185.png ; $S ^ { n } = \partial \overline { D } \square ^ { n + 1 }$ ; confidence 0.675

66. c120170175.png ; $2 k_{ j} - 1$ ; confidence 0.675

67. i13009044.png ; $E _ { 1 } ( k ) \rightarrow \prod _ { \mathfrak{p} | p } U _ { 1 , \mathfrak{p} }$ ; confidence 0.675

68. s08636084.png ; $P_{l}$ ; confidence 0.675

69. c12007048.png ; $\mathcal{C} ( C , C ^ { \prime } )$ ; confidence 0.675

70. s12018050.png ; $S ^ { \perp }$ ; confidence 0.675

71. a130240116.png ; $( 1 , t _ { i } , t _ { i } ^ { 2 } )$ ; confidence 0.675

72. w12016019.png ; $| D ( C ) |$ ; confidence 0.674

73. b1108004.png ; $\xi _{i}$ ; confidence 0.674

74. b12052083.png ; $O ( N n )$ ; confidence 0.674

75. a12020037.png ; $\delta _ { T } = \operatorname { sup } _ { x \in X } \operatorname { dim } \operatorname { lin } \{ x , T x , T ^ { 2 } x , \ldots \} = N$ ; confidence 0.674

76. m12019024.png ; $S ( x , y , t ) = \sqrt { \frac { 2 \pi } { D } } \operatorname { log } \left( \frac { x + y + t + 1 + \sqrt { D } } { x + y + t + 1 - \sqrt { D } } \right),$ ; confidence 0.674

77. n0669608.png ; $\phi ( t ) = ( 1 - 2 i t ) ^ { - n / 2 } \operatorname { exp } \left\{ \frac { \lambda i t } { 1 - 2 i t } \right\};$ ; confidence 0.674

78. n06752080.png ; $\mathcal{E} _ { A , K }$ ; confidence 0.674

79. b1302107.png ; $R _ { w }$ ; confidence 0.674

80. b01501025.png ; $M ^ { n }$ ; confidence 0.674

81. p13009051.png ; $x \mapsto \int _ { \partial \Omega } f d \mu _ { x } ^ { \Omega }.$ ; confidence 0.674

82. b13002031.png ; $\operatorname {JC}$ ; confidence 0.674

83. a13013096.png ; $P _ { 1 }$ ; confidence 0.674

84. a130240515.png ; $\mathbf{Z} _ { 0 } = \mathbf{Z} _ { 12 } - \mathbf{Z} _ { 13 } \mathbf{R},$ ; confidence 0.674

85. b13010015.png ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674

86. i05137010.png ; $\pi / 2$ ; confidence 0.674

87. b1201203.png ; $B _ { r } ( 0 )$ ; confidence 0.674

88. f04115060.png ; $x \cdot \xi$ ; confidence 0.674

89. f13019021.png ; $\frac { d C _ { j } } { d x } ( x _ { i } ) = \left\{ \begin{array} { l l } { 0 } & { \text { for } i = j, } \\ { \frac { 1 } { 2 } ( - 1 ) ^ { i + j } \operatorname { cot } \frac { x _ { i } - x _ { j } } { 2 } } & { \text { for } i \neq j, } \end{array} \right.$ ; confidence 0.674

90. a12004027.png ; $C _ { 0 }$ ; confidence 0.674

91. d11022056.png ; $\sum _ { i = 0 } ^ { m } ( p _ { m } - i y ^ { ( i ) } ) ^ { ( i ) } = 0$ ; confidence 0.674

92. m12010088.png ; $y _ { 1 } , \dots , y _ { s }$ ; confidence 0.674

93. h12002055.png ; $\{ z ^ { k } \} _ { k \geq 0 }$ ; confidence 0.674

94. m12010098.png ; $w _ { 1 } , \dots , w _ { s }$ ; confidence 0.673

95. g13001080.png ; $c = \operatorname { log } _ { \omega } \gamma$ ; confidence 0.673

96. b12012015.png ; $\tau _ { t , v } : T _ { p } M \rightarrow T _ { \gamma ( t ) } M$ ; confidence 0.673

97. b12004033.png ; $0 \leq f _ { n } \uparrow f \in L ^ { 0 } ( \mu )$ ; confidence 0.673

98. a1201108.png ; $\varphi ( a , b , 2 ) = a ^ { b }$ ; confidence 0.673

99. g0433905.png ; $\delta f ( x _ { 0 } , h ) = \frac { d } { d t } f ( x _ { 0 } + t h ) | _ { t = 0 } =$ ; confidence 0.673

100. a130040594.png ; $\operatorname {mng}_{\mathcal{S}_P}$ ; confidence 0.673

101. m12019028.png ; $L _ { p } ( \mathbf{R} _ { + } ; x ^ { ( 1 - \nu ) p - 1 } )$ ; confidence 0.673

102. m130260204.png ; $e y = 0$ ; confidence 0.673

103. h13007055.png ; $R _ { n-1 }$ ; confidence 0.673

104. w120060105.png ; $\operatorname { dim }( F \mathbf{R} ^ { m } ) = m \operatorname { dim } ( F \mathbf{R} )$ ; confidence 0.673

105. m1300302.png ; $P ( z , f ( z ) , f ( z ^ { d } ) ) = 0$ ; confidence 0.673

106. k12010046.png ; $\mathcal{A} _ { m }$ ; confidence 0.672

107. s1306606.png ; $I _ { n } ( f ) = \sum _ { k = 1 } ^ { n } \lambda _ { n k } f ( \xi _ { n k } ).$ ; confidence 0.672

108. f12010060.png ; $q = e ^ { 2 \pi i z }$ ; confidence 0.672

109. c02489026.png ; $p ^ { n }$ ; confidence 0.672

110. a130240500.png ; $\mathbf{Z}_{i}$ ; confidence 0.672

111. p13009014.png ; $x \in B ( x _ { 0 } , r ) ,\, \xi \in \partial B ( x _ { 0 } , r ),$ ; confidence 0.672

112. m13026079.png ; $M ( A ) = C _ { b } ( \Omega )$ ; confidence 0.672

113. s12015036.png ; $g \in G _ { x }$ ; confidence 0.672

114. i130090227.png ; $Y ^ { \chi } = \{ y \in Y : \delta \cdot y = \chi ( \delta ) y \, \text { for } \delta \in \Delta \}.$ ; confidence 0.672

115. a120280171.png ; $( \pi , \{ U _ { t } \} _ { t \in \mathbf{R} } )$ ; confidence 0.672

116. b01540069.png ; $0 \leq x \leq 1$ ; confidence 0.672

117. w12003086.png ; $\| x ^ { * } + x ^ { \perp } \| = \| x ^ { * } \| + \| x ^ { \perp } \|$ ; confidence 0.672

118. k055840363.png ; $T = i ( \square _ { - A^{*} } ^ { B } )$ ; confidence 0.672

119. f04216010.png ; $h ^ { - 1 }$ ; confidence 0.671

120. d13013074.png ; $\psi _ { - }$ ; confidence 0.671

121. z13011030.png ; $G _ { n } ( 1 ) = \mu _ { n }$ ; confidence 0.671

122. d130080134.png ; $c \in \mathcal{D}$ ; confidence 0.671

123. s13054040.png ; $\operatorname { diag } ( a , a ^ { - 1 } , 1,1 , \ldots )$ ; confidence 0.671

124. h1300209.png ; $l = 1 , \dots , q$ ; confidence 0.671

125. t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671

126. f13001030.png ; $R _ { i } = \mathbf{F} _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671

127. t12013028.png ; $\oint _ { z = \infty } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) \tau _ { m + 1 } ( x ^ { \prime } + [ z ^ { - 1 } ] , y ^ { \prime } ) \times$ ; confidence 0.671

128. b1201608.png ; $V:\Delta ^ { n - 1 } \rightarrow \Delta ^ { n - 1 }$ ; confidence 0.671

129. p130100144.png ; $K \subset \mathbf{C} ^ { 2 }$ ; confidence 0.671

130. a12026022.png ; $m ^ { c }\hat{ A}$ ; confidence 0.671

131. b12052049.png ; $x _ { n } = x ^ { * }$ ; confidence 0.671

132. o0681709.png ; $F _ { n } ( \cdot )$ ; confidence 0.671

133. a130040479.png ; $\mathcal{C} _ { \Gamma }$ ; confidence 0.670

134. b13009030.png ; $M u _ { t } + u _ { x } + u u _ { x } = 0.$ ; confidence 0.670

135. w13017028.png ; $x _ { t } ^ { ( i ) }$ ; confidence 0.670

136. e13004033.png ; $\overset{\rightharpoonup} { x } \cdot \overset{\rightharpoonup} { v } > 0,$ ; confidence 0.670

137. c026010545.png ; $( x _ { t } )$ ; confidence 0.670

138. i12008034.png ; $\left\{ \begin{array}{l}{ m = - \left( \frac { \partial F } { \partial H } \right) _ { T }, }\\{ \chi = \left( \frac { \partial m } { \partial H } \right) _ { T }, }\\{ S = - \left( \frac { \partial F } { \partial T } \right) _ { H }, }\end{array} \right.$ ; confidence 0.670

139. d12026025.png ; $S _ { [ n t] } $ ; confidence 0.670

140. g130040112.png ; $\mathcal{H} ^ { m } ( R ) < \infty$ ; confidence 0.670

141. b12052077.png ; $B _ { n } ^ { - 1 } = \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 }.$ ; confidence 0.670

142. b12040032.png ; $\mathbf{f} \in F$ ; confidence 0.670

143. g12001014.png ; $\{ G _ { b } ^ { \alpha } f : b \in \mathbf{R} \}$ ; confidence 0.670

144. b12040042.png ; $g ( g ^ { \prime } \times ^ { \varrho } \mathbf{f} ) = g g ^ { \prime } \times ^ { \varrho } \mathbf{f}$ ; confidence 0.670

145. m1201308.png ; $d N / d t \equiv 0$ ; confidence 0.670

146. f12024039.png ; $\operatorname{sup} h ( t ) < \infty$ ; confidence 0.670

147. d03302027.png ; $J _ { 1 }$ ; confidence 0.670

148. v13011072.png ; $T = \frac { l } { V - U }.$ ; confidence 0.670

149. p13010066.png ; $\pi _ { k } ( X )$ ; confidence 0.669

150. e12024075.png ; $A = \mathbf{Z} / p ^ { m } ( 1 )$ ; confidence 0.669

151. t120200155.png ; $k \in S$ ; confidence 0.669

152. w12016018.png ; $D ( C ) = \operatorname { lim } _ { h \rightarrow 0 } W ( C ^ { h } ).$ ; confidence 0.669

153. a130240373.png ; $\mathbf{Z} _ { 1 }$ ; confidence 0.669

154. l12015028.png ; $( A , [ \cdot , \cdot ] , d )$ ; confidence 0.669

155. d1200202.png ; $( \text{P} )$ ; confidence 0.669

156. f04049039.png ; $( a _ { 2 } , \sigma _ { 2 } ^ { 2 } )$ ; confidence 0.669

157. i13005070.png ; $r ( - k ) = \overline { r ( k ) }$ ; confidence 0.669

158. f13010096.png ; $L _ { C } ^ { \infty } ( \hat { G } )$ ; confidence 0.669

159. h046010105.png ; $\tau \in \operatorname {Wh} \pi _ { 1 } M _ { 0 }$ ; confidence 0.669

160. l1200901.png ; $( A , [ \cdot , \cdot ] _ { A } , q _ { A } )$ ; confidence 0.668

161. m130140127.png ; $p = 1 , \dots , n$ ; confidence 0.668

162. a12008019.png ; $\left\{ \begin{array} { l } { \frac { d ^ { 2 } u } { d t ^ { 2 } } + A u = f ( t ) , \qquad t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0 } , \frac { d u } { d t } ( 0 ) = u _ { 1 }, } \end{array} \right.$ ; confidence 0.668

163. j13007073.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega , \text { and } \angle F ^ { \prime } ( \omega ) < 1,$ ; confidence 0.668

164. d12023055.png ; $\{ Z , J \}$ ; confidence 0.668

165. w130080178.png ; $F B \rightarrow \widetilde { F B }$ ; confidence 0.668

166. h046010104.png ; $\operatorname {dim} M_{0} \geq 5$ ; confidence 0.668

167. t12008048.png ; $( x , y ) \in \mathcal{O} _ { S } \times \mathcal{O} _ { S }$ ; confidence 0.668

168. i13001017.png ; $A = [ a _ {i j } ]$ ; confidence 0.668

169. a130240279.png ; $S = ( q F _ { \alpha ; q , n - r } ) ^ { 1 / 2 }$ ; confidence 0.668

170. b13019049.png ; $1 \ll | a / q | \ll 1$ ; confidence 0.668

171. b12022070.png ; $\int H ( M ( u _ { f } , \xi ) , \xi ) d \xi \leq \int H ( f ( \xi ) , \xi ) d \xi.$ ; confidence 0.668

172. i11011024.png ; $m _ { i j } = 1$ ; confidence 0.667

173. b13006092.png ; $\leq \| V \| \cdot \| ( \mu I - A ) ^ { - 1 } \| \cdot \| V ^ { - 1 } \|,$ ; confidence 0.667

174. c120180398.png ; $\operatorname { det } \tilde{g} ^ { - 1 }$ ; confidence 0.667

175. m13013017.png ; $m _ { i j } = 2$ ; confidence 0.667

176. n06752052.png ; $1 \leq j \leq r$ ; confidence 0.667

177. c12019041.png ; $\mathcal{C} _ { 1 }$ ; confidence 0.667

178. n06696017.png ; $F _ { n } ( x ; \lambda )$ ; confidence 0.667

179. j130030103.png ; $J B W ^ { x }$ ; confidence 0.667

180. d13006018.png ; $\operatorname { Bel}$ ; confidence 0.667

181. c13016015.png ; $P = \cup _ { k = 1 } ^ { \infty } \operatorname { DTIME } [ n ^ { k } ] = \operatorname { DTIME } [ n ^ { O ( 1 ) } ]$ ; confidence 0.667

182. b1202408.png ; $S = \overline { \mathbf{C} } = D _ { + } \cup \mathcal{T} \cup D _ { - }$ ; confidence 0.667

183. s120230158.png ; $i,j = 1 , \dots , s$ ; confidence 0.667

184. g13001054.png ; $\operatorname { Tr } _ { E / F } ( \omega ) = a$ ; confidence 0.667

185. k05584060.png ; $\mathcal{H} / Ker G$ ; confidence 0.667

186. a120160120.png ; $j ^ { \prime }$ ; confidence 0.667

187. i12006090.png ; $\operatorname { dim } ( G ) = \operatorname { Idim } ( P _ { G } )$ ; confidence 0.666

188. i12008042.png ; $J > 0$ ; confidence 0.666

189. z12001042.png ; $\overline { U } _ { 1 } = \left\{ x ^ { ( i ) } : 0 \leq i < p ^ { m } - 1 \right\}$ ; confidence 0.666

190. b1201004.png ; $x _ { i } \equiv ( q _ { i } , p _ { i } ) \in \mathbf{R} ^ { \nu } \times \mathbf{R} ^ { \nu }$ ; confidence 0.666

191. q12008091.png ; $\mathsf{E} [ W _ { p + 1} ] / \mathsf{E} [ W _ { p } ]$ ; confidence 0.666

192. u13002030.png ; $| f ( x ) | \leq A e ^ { - \pi a x ^ { 2 } }$ ; confidence 0.666

193. c12007047.png ; $Z \mathcal{C} ( C , C^{\prime} )$ ; confidence 0.666

194. g13001057.png ; $B ^ { * } = ( \gamma _ { 0 } , \dots , \gamma _ { n - 1 } )$ ; confidence 0.666

195. l120170222.png ; $K = K _ { 0 } \subset K _ { 1 } \subset \ldots$ ; confidence 0.666

196. s09067010.png ; $\mathcal{C} ( C , D )$ ; confidence 0.666

197. z13010063.png ; $\mathcal{P} ( x )$ ; confidence 0.666

198. b12027057.png ; $\{ b _ { n } \}$ ; confidence 0.666

199. n12003038.png ; $\mathcal{F} / R$ ; confidence 0.665

200. d03410010.png ; $L _ { \Phi }$ ; confidence 0.665

201. t12014012.png ; $j \in \mathbf{Z}$ ; confidence 0.665

202. t120200197.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { h _ { 1 } } | \geq \delta _ { 1 } >$ ; confidence 0.665

203. b13012093.png ; $f \in \mathcal{A}$ ; confidence 0.665

204. m12027038.png ; $\Gamma ( z _ { 1 } ) = z _ { 1 } ^ { M } + b _ { 1 } z _ { 1 } ^ { M - 1 } + \ldots + b _ { M - 1 } z _ { 1 } + b _ { M }$ ; confidence 0.665

205. m12011069.png ; $T : \Delta _ { n } \rightarrow \Omega _ { n + 1 } ( S ^ { 1 } ),$ ; confidence 0.665

206. f12021069.png ; $= \frac { ( n _ { 1 } + l ) ! } { l ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { 2 } } + \ldots,$ ; confidence 0.665

207. b01737026.png ; $L ^ { - 1 }$ ; confidence 0.665

208. a12007048.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.665

209. k13006018.png ; $a _ { k } + 1$ ; confidence 0.665

210. a130040621.png ; $\operatorname {Mod}_{\mathcal{S} _ { P }} \Gamma$ ; confidence 0.665

211. g12004060.png ; $\operatorname {WF} _ { s } u$ ; confidence 0.665

212. t130130106.png ; $T _ { i } \in \operatorname { add } T$ ; confidence 0.665

213. a11067030.png ; $\{ u _ { n } \}$ ; confidence 0.665

214. e12021038.png ; $\operatorname { ind } _ { P } ( \operatorname { log } | z | ) = 1$ ; confidence 0.665

215. d120230128.png ; $\operatorname { rank } ( S - F _ { 3 } S F _ { 3 } ^ { * } ) \leq \operatorname { rank } ( R - F R F ^ { * } ),$ ; confidence 0.665

216. d1301101.png ; $H ^ { 2 } = ( \mathbf{p} _ { x } ^ { 2 } + \mathbf{p} _ { y } ^ { 2 } + \mathbf{p} _ { z } ^ { 2 } ) c ^ { 2 } + m _ { 0 } ^ { 2 } c ^ { 4 }.$ ; confidence 0.664

217. f12015036.png ; $\| T \| < \delta$ ; confidence 0.664

218. b13025021.png ; $( T )$ ; confidence 0.664

219. t120070103.png ; $1 _ { - 1 } = \operatorname { id}$ ; confidence 0.664

220. m12013062.png ; $N ^ { 1 }$ ; confidence 0.664

221. m12010059.png ; $M \# M ^ { \prime }$ ; confidence 0.664

222. b1201209.png ; $\operatorname { inj} M$ ; confidence 0.664

223. s12018043.png ; $\{ e _ { i } : i = 1,2 , \ldots \}$ ; confidence 0.664

224. s1303409.png ; $S _ { 2 , \infty} ( M )$ ; confidence 0.664

225. b01737058.png ; $k \in \mathbf{R}$ ; confidence 0.664

226. f12021054.png ; $u _ { i l } = z ^ { \lambda _ { i } } \sum _ { j = 0 } ^ { l } \sum _ { k = 0 } ^ { \infty } b _ { j k } ( \operatorname { log } z ) ^ { j } z ^ { k }.$ ; confidence 0.664

227. w12016016.png ; $C ^ { h } : t \rightarrow C ( t + h ) - C ( t ) / h$ ; confidence 0.664

228. l13010041.png ; $\tilde { f } ( \xi ) = \int _ { \mathbf{R} ^ { n } } f ( x ) e ^ { i \xi x } d x$ ; confidence 0.664

229. f120110145.png ; $\overline { \mathbf{R} ^ { \pm }}$ ; confidence 0.664

230. d03383015.png ; $x \succ y$ ; confidence 0.664

231. z1200108.png ; $\{ f _ { \alpha } : \alpha \in \operatorname {GF} ( m ) \}$ ; confidence 0.663

232. s13053086.png ; $a _ { i } \geq 1$ ; confidence 0.663

233. f13001023.png ; $f _ { 2 } = \operatorname { gcd } ( x ^ { q ^ { 2 } } - x , f / f _ { 1 } )$ ; confidence 0.663

234. n1300304.png ; $\tau u _ { xx } = \rho u _ { t t }$ ; confidence 0.663

235. c12027015.png ; $\omega = \operatorname { inf } _ { p \in \Omega } \frac { \operatorname { Vol} ( \Omega _ { p } ) } { \alpha ( n - 1 ) },$ ; confidence 0.663

236. f120210107.png ; $= c _ { 0 } z ^ { \lambda } \pi ( \lambda ) +$ ; confidence 0.663

237. b13027068.png ; $\mathrm{II} _ { \infty }$ ; confidence 0.663

238. b12032017.png ; $\| x \| = \| u \|$ ; confidence 0.663

239. p130100170.png ; $\mu _ { z }$ ; confidence 0.663

240. a130040543.png ; $h ( \xi ) \in C ( \{ h ( \theta _ { 0 } ) , \ldots , h ( \theta _ { n - 1} ) \} )$ ; confidence 0.663

241. z12001011.png ; $\operatorname {GF} ( m )$ ; confidence 0.663

242. a12013029.png ; $( \theta _ { n - 1} , X _ { n - 1} )$ ; confidence 0.663

243. f12011063.png ; $\chi _ { \sigma } = \prod _ { j = 1 } ^ { n } 1 / ( e ^ { \sigma _ { j } z _ { j } } + 1 )$ ; confidence 0.663

244. s1203407.png ; $\operatorname {SH} ^ { * } ( M , \omega , L _ { + } , L _ { - } )$ ; confidence 0.662

245. a12011039.png ; $\omega ^ { \omega }$ ; confidence 0.662

246. t13010034.png ; $T \otimes_{ B} -$ ; confidence 0.662

247. b11066049.png ; $T : \mathcal{D} ( \mathbf{R} ^ { n } ) \rightarrow \mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.662

248. a01152025.png ; $x \in \mathbf{V}$ ; confidence 0.662

249. j13002032.png ; $i = 1 , \ldots , \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right)$ ; confidence 0.662

250. f130290174.png ; $\mathbf{R} ( L )$ ; confidence 0.662

251. s13064032.png ; $a ( e ^ { i \theta } ) - z$ ; confidence 0.662

252. b12040055.png ; $S^{-}$ ; confidence 0.662

253. c12007055.png ; $\text{Ab} ^ { \text{ZC} } \approx \text{Ab} ^ { \text{C} }$ ; confidence 0.662

254. n066630108.png ; $M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j },$ ; confidence 0.662

255. b13023048.png ; $\operatorname { St } _ { G } ( n )$ ; confidence 0.662

256. o12005076.png ; $\Lambda _ { \varphi , w }$ ; confidence 0.662

257. c1200507.png ; $S = \{ r e ^ { i \theta } : 1 - h \leq r < 1 , | \theta - \theta _ { 0 } | \leq h \}.$ ; confidence 0.662

258. r13008067.png ; $\sum _ { i , j + 1 } ^ { n } K ( p _ { i } , p _ { j } ) \xi _ { j } \overline { \xi _ { i } } = \int _ { T } | \sum _ { j = 1 } ^ { n } \xi _ { j } h ( t , p _ { j } ) | ^ { 2 } d m ( t ) > 0$ ; confidence 0.662

259. s12034074.png ; $\tilde{P}$ ; confidence 0.662

260. a11004079.png ; $\mathbf{C} ^ { 2 }$ ; confidence 0.662

261. j13004012.png ; $v = t$ ; confidence 0.662

262. a12018020.png ; $| \lambda | < 1$ ; confidence 0.662

263. w13008085.png ; $\Lambda \xi \sim w ^ {\mp ( 1 / N ) }$ ; confidence 0.662

264. o13006059.png ; $\operatorname { det } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) \not \equiv 0$ ; confidence 0.662

265. n12003031.png ; $x : B \rightarrow C$ ; confidence 0.661

266. b01672047.png ; $\hat { f }$ ; confidence 0.661

267. e13003036.png ; $H _ { ! } ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } )$ ; confidence 0.661

268. c1202503.png ; $\tilde { \kappa } = \kappa | \nabla L | = L _ { y } ^ { 2 } L _ { x x } - 2 L _ { x } L _ { y } L _ { x y } + L _ { x } ^ { 2 } L _ { y y }.$ ; confidence 0.661

269. c12018087.png ; $C ( g ) \in \otimes ^ { 3 } \mathcal{E}$ ; confidence 0.661

270. e12016030.png ; $Y = \partial / \partial \theta$ ; confidence 0.661

271. i130090230.png ; $\Lambda = \mathbf{Z} _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.661

272. a012200125.png ; $D \subset \mathbf{C} ^ { x }$ ; confidence 0.661

273. t120010138.png ; $\text{p}$ ; confidence 0.661

274. b12021075.png ; $\mathfrak { F } _ { \lambda }$ ; confidence 0.661

275. t13014048.png ; $[ \mathbf{X} ] \mapsto \chi _ { Q } ( [ \mathbf{X} ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( \mathbf{X} ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( \mathbf{X} , \mathbf{X} )$ ; confidence 0.661

276. k055840110.png ; $\mathcal{L} _ { + }$ ; confidence 0.661

277. w130080104.png ; $\frac { \partial F } { \partial \alpha _ { j } } = \oint _ { B _ { j } } d S$ ; confidence 0.661

278. e12012028.png ; $L ( \theta | Y _ { \text { aug } } )$ ; confidence 0.661

279. s12032094.png ; $A ^ { p | q} $ ; confidence 0.661

280. c13004019.png ; $\operatorname { Re } s > 1$ ; confidence 0.661

281. i130090217.png ; $\operatorname {Gal}( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \cong \text { varprojlim } A _ { n } ( k ^ { \prime } )$ ; confidence 0.661

282. c120180486.png ; $x = ( x ^ { 1 } , \dots , x ^ { n } )$ ; confidence 0.660

283. b01568010.png ; $n \geq n _ { 0 }$ ; confidence 0.660

284. s1200507.png ; $S _ { n + 1 } ( z ) = \frac { 1 } { z } \frac { S _ { n } ( z ) - S _ { n } ( 0 ) } { 1 - \overline{S} _ { n } ( 0 ) S _ { n } ( z ) } , n \geq 0.$ ; confidence 0.660

285. t13010062.png ; $H e$ ; confidence 0.660

286. d12024088.png ; $U ( \mathfrak { sl } ( n ) )$ ; confidence 0.660

287. d12016016.png ; $f _ { 2 n } = f _ { 2 n - 1 } - g _ { n }$ ; confidence 0.660

288. d1201109.png ; $f ( \sum _ { j \in I } x _ { j } )$ ; confidence 0.660

289. j13004050.png ; $P _ { m } ( v ) \neq 0$ ; confidence 0.660

290. c120010141.png ; $\mu \mapsto \tilde{\mu}$ ; confidence 0.660

291. a12027028.png ; $\chi = \text { trace o } \rho$ ; confidence 0.660

292. a01033017.png ; $r ^ { \prime }$ ; confidence 0.660

293. t13010017.png ; $B = \operatorname { End } _ { H } ( T )$ ; confidence 0.660

294. a1302805.png ; $b _ { 0 } , b _ { 1 } , \dots$ ; confidence 0.660

295. q12008053.png ; $\mathsf{E} [ T _ { p } ] _ { \text{PR} } = \infty$ ; confidence 0.660

296. u13002023.png ; $K e ^ { - c x ^ { 2 } }$ ; confidence 0.660

297. v12002065.png ; $\operatorname { dim } Q$ ; confidence 0.660

298. s08602027.png ; $\overline { D^{-} } = D ^ { - } \cup \Gamma$ ; confidence 0.660

299. s12026052.png ; $\partial _ { s + } \phi ( s ) = \operatorname { lim } _ { \epsilon \downarrow 0 } \partial _ { s + \epsilon } \phi ( s )$ ; confidence 0.660

300. i1200209.png ; $\times \left[ \frac { \operatorname { sin } \frac { \pi \mu } { 2 } } { \operatorname { cosh } \frac { \pi \tau } { 2 } } \operatorname { Re } J _ { i \tau } ( x ) - \frac { \operatorname { cos } \frac { \pi \mu } { 2 } } { \operatorname { sinh } \frac { \pi \tau } { 2 } } \operatorname { Im } J _ { i \tau } ( x ) \right], \; f ( x ) = \frac { 2 ^ { - \mu } } { \pi ^ { 2 } x } \times$ ; confidence 0.660

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/48. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/48&oldid=44458