Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/42"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 42 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(23 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005013.png ; $E G \rightarrow B G$ ; confidence 0.996
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350236.png ; $\Xi$ ; confidence 0.780
  
2. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006030.png ; $f ( 0 ) = g ( 0 ) = x \in M$ ; confidence 0.989
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430109.png ; $k \langle \alpha , \beta , \gamma , \delta \rangle$ ; confidence 0.779
  
3. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006066.png ; $T _ { B } \circ T _ { A }$ ; confidence 0.930
+
3. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007090.png ; $= \operatorname { sup } \left\{ h ( z ) : \begin{array}{ c c } { h \in \operatorname{PSH}(\Omega), \, h<0,} \\{h ( \zeta ) - \operatorname { log } \| \zeta - w \| = O ( 1 ) ( \zeta \rightarrow w )} \end{array} \right\}.$ ; confidence 0.779
  
4. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006067.png ; $\pi _ { B } \otimes A$ ; confidence 0.107
+
4. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005010.png ; $S = S ^ { - 1 } : = \left\{ s ^ { - 1 } : s \in S \right\}$ ; confidence 0.779
  
5. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007041.png ; $e ^ { i ( p D + q X + t I ) }$ ; confidence 0.193
+
5. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020056.png ; $\sigma = ( 452 ) ( 89 ) ( 316 ) \in S_{9}$ ; confidence 0.779
  
6. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090149.png ; $\Delta ( \lambda )$ ; confidence 1.000
+
6. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007044.png ; $C ^ { 0 } ( \Gamma , k , \mathbf{v} )$ ; confidence 0.779
  
7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090217.png ; $\nabla ( \lambda )$ ; confidence 1.000
+
7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210136.png ; $d _ { k } : C _ { k } \rightarrow C _ { k - 1 }$ ; confidence 0.779
  
8. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090343.png ; $h = h _ { \beta } \in h$ ; confidence 0.803
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a1203106.png ; $W ^ { * }$ ; confidence 0.779
  
9. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011061.png ; $H ( \varphi , \psi )$ ; confidence 0.994
+
9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020117.png ; $\phi \in \operatorname{BMO}$ ; confidence 0.779
  
10. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110268.png ; $S ( m , \sigma _ { l } )$ ; confidence 0.584
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779
  
11. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017016.png ; $\omega _ { 0 } ( G ) = 1$ ; confidence 0.904
+
11. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $\mathcal{K} ( L ^ { 2 } ( S ) )$ ; confidence 0.779
  
12. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009050.png ; $\varphi \in G _ { X }$ ; confidence 0.406
+
12. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023032.png ; $X X ^ { \prime } = I _ { p }$ ; confidence 0.779
  
13. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011032.png ; $g ( y ) = e ^ { 2 \pi i y }$ ; confidence 0.997
+
13. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g130050122.png ; $d - 1$ ; confidence 0.779
  
14. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018046.png ; $t _ { 1 } \in D ^ { - }$ ; confidence 0.997
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610226.png ; $N = 1$ ; confidence 0.779
  
15. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019029.png ; $A _ { \Psi Y } ( x , p ) =$ ; confidence 0.327
+
15. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022052.png ; $\mathbf{Z} ^ { 2 }$ ; confidence 0.779
  
16. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019048.png ; $( \Omega f ) _ { W } = f$ ; confidence 0.802
+
16. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021070.png ; $\mathfrak { F } _ { \lambda } ( M ) = ( M \otimes L ( \lambda ) ) _ { \theta _ { \lambda } }$ ; confidence 0.779
  
17. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201903.png ; $H = L ^ { 2 } ( R ^ { 3 N } )$ ; confidence 0.991
+
17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e1201405.png ; $\rho : \Phi \rightarrow \{ 0,1 , \ldots \}$ ; confidence 0.779
  
18. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
+
18. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032074.png ; $\operatorname{Mod}_{A}$ ; confidence 0.779
  
19. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301701.png ; $\{ x _ { t } : t \in Z \}$ ; confidence 0.559
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008063.png ; $\frac { d } { d t } \left( \begin{array} { l } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) =$ ; confidence 0.779
  
20. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020054.png ; $\varepsilon _ { k }$ ; confidence 0.317
+
20. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003029.png ; $g \in L ^ { 2 } ( \mathbf{R} )$ ; confidence 0.779
  
21. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010114.png ; $\Phi _ { \sigma } = 0$ ; confidence 0.997
+
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045026.png ; $F _ { Y } ( Y )$ ; confidence 0.779
  
22. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001037.png ; $C = Z ( Q ) = C _ { Q } ( R )$ ; confidence 0.415
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050203.png ; $\mathcal{P}$ ; confidence 0.779
  
23. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003032.png ; $\Lambda _ { + } ^ { 2 }$ ; confidence 0.991
+
23. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z1300308.png ; $= \sqrt { a } \sum _ { k = - \infty } ^ { \infty } f ( a t + a k ) e ^ { - 2 \pi i k w },$ ; confidence 0.779
  
24. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001064.png ; $k ! z / ( z - 1 ) ^ { k + 1 }$ ; confidence 0.413
+
24. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006024.png ; $r \equiv 1 ( \operatorname { mod } 2 )$ ; confidence 0.778
  
25. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010025.png ; $\forall x \varphi$ ; confidence 0.771
+
25. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m11012011.png ; $\operatorname{SL} ( 2 , \mathbf{C} )$ ; confidence 0.778
  
26. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010026.png ; $\exists x \varphi$ ; confidence 0.964
+
26. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007047.png ; $r D$ ; confidence 0.778
  
27. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002026.png ; $\overline { f } - ap$ ; confidence 0.775
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011670/a01167084.png ; $\forall$ ; confidence 0.778
  
28. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200109.png ; $GF ( m ) \subseteq K$ ; confidence 0.839
+
28. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020206.png ; $t = q$ ; confidence 0.778
  
29. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001055.png ; $p ^ { ( p ^ { m } - 1 ) / 2 }$ ; confidence 0.828
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210129.png ; $w = w _ { 1 } \leftarrow \ldots \leftarrow w _ { k } = w ^ { \prime }$ ; confidence 0.778
  
30. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007056.png ; $U \in SGL _ { n } ( Z G )$ ; confidence 0.703
+
30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020092.png ; $g ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k }$ ; confidence 0.778
  
31. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007049.png ; $U \in SGL _ { n } ( Z A )$ ; confidence 0.457
+
31. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010059.png ; $\operatorname{Tr}D$ ; confidence 0.778
  
32. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007047.png ; $G \rightarrow G / A$ ; confidence 0.907
+
32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013023.png ; $e = e ( L | F )$ ; confidence 0.778
  
33. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110135.png ; $\alpha : 1 - \alpha$ ; confidence 0.842
+
33. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025054.png ; $\operatorname{PG} ( 3 , q )$ ; confidence 0.778
  
34. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011035.png ; $G _ { n } ( f ( k , n ) ) = k$ ; confidence 0.816
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022055.png ; $H _ { \mathcal{M} } ^ { 2 j } ( X , \mathbf{Q} ( j ) ) \cong \operatorname{CH} ^ { j } ( X ) \otimes \mathbf{Q}$ ; confidence 0.778
  
35. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110138.png ; $i = 1 , \dots , 2 ^ { q }$ ; confidence 0.267
+
35. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004099.png ; $\operatorname { lk } ( K _ { 0 } )$ ; confidence 0.778
  
36. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012018.png ; $Z _ { n } ( x ; \sigma )$ ; confidence 0.810
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027023.png ; $n \in \mathbf{Z}$ ; confidence 0.778
  
37. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013020.png ; $H ( r _ { 0 } , \theta )$ ; confidence 0.327
+
37. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700036.png ; $F V ( M ) = \emptyset$ ; confidence 0.778
  
38. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190
+
38. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004028.png ; $= \int _ { 1 } ^ { \infty } \frac { t \operatorname { log } ( t \pm t ^ { - 1 } ) } { 1 + t ^ { 4 } } d t = \frac { \pi } { 16 } \operatorname { log } 2 \pm \frac { G } { 4 },$ ; confidence 0.778
  
39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001060.png ; $S ^ { 3 } / \Gamma$ ; confidence 0.633
+
39. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160167.png ; $( w \notin S )$ ; confidence 0.778
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002013.png ; $\sigma \delta$ ; confidence 0.999
+
40. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110019.png ; $a , b , c \in A$ ; confidence 0.778
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022025.png ; $Y = L ^ { 1 } ( \mu )$ ; confidence 1.000
+
41. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007036.png ; $\prod _ { l = 1 } ^ { n } A ^ { \text { in/out } } ( f _ { l } ) \Omega = \operatorname { lim } _ { t \rightarrow \pm \infty } \prod _ { l = 1 } ^ { n } A ( f _ { l } ^ { t } ) \Omega,$ ; confidence 0.778
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022035.png ; $r ( S ) \leq r ( T )$ ; confidence 0.998
+
42. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011024.png ; $( \mathcal{T} ( T _ { A } ) , \mathcal{F} ( T _ { A } ) )$ ; confidence 0.778
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240348.png ; $( r - q ) \times p$ ; confidence 1.000
+
43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024020.png ; $f _ { \pm } \in A ( \overline { D } _ { \pm } , \operatorname{GL} ( n , \mathbf{C} ) )$ ; confidence 0.778
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240480.png ; $1 , \ldots , n _ { 1 }$ ; confidence 0.745
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260111.png ; $y = ( y _ { 1 } , \dots , y _ { n } )$ ; confidence 0.778
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240200.png ; $H : X _ { 3 } \beta = 0$ ; confidence 0.961
+
45. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005010.png ; $S _ { k } ( z )$ ; confidence 0.777
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310106.png ; $B ( K ) / M ( K ) = C ( S )$ ; confidence 0.999
+
46. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004068.png ; $k _ { \mu }$ ; confidence 0.777
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004013.png ; $t \in ( 0 , \infty )$ ; confidence 0.998
+
47. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006043.png ; $D \alpha D = \coprod _ { \alpha ^ { \prime } \in A } D \alpha ^ { \prime }$ ; confidence 0.777
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004078.png ; $h ( \varphi ) \in F$ ; confidence 0.997
+
48. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066026.png ; $\operatorname { log } | P |$ ; confidence 0.777
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040639.png ; $P , \mathfrak { M }$ ; confidence 0.733
+
49. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008085.png ; $x _ { i j } ^ { h }$ ; confidence 0.777
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040696.png ; $\square \varphi$ ; confidence 0.999
+
50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008021.png ; $F ( x , y ) \in \mathcal{O} _ { S } ^ { * }\quad \text { in} ( x , y ) \in \mathcal{O} _ { S } \times \mathcal{O} _ { S }$ ; confidence 0.777
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004038.png ; $\Gamma \subset T$ ; confidence 0.992
+
51. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170293.png ; $0 \rightarrow P _ { n } \rightarrow \ldots \rightarrow P _ { 0 } \rightarrow \mathbf{Z} \rightarrow 0$ ; confidence 0.777
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040213.png ; $^ { * } S \text { s } 5$ ; confidence 0.380
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240248.png ; $( q , n - r )$ ; confidence 0.777
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050252.png ; $Z _ { G } ( - q ^ { - 1 } )$ ; confidence 0.506
+
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004040.png ; $X _ { g } ^ { * }$ ; confidence 0.777
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005059.png ; $u ( t ) \in D ( A ( t ) )$ ; confidence 0.997
+
54. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019025.png ; $U ( f ; M _ { 1 } , M _ { 2 } ; H _ { 1 } , H _ { 2 } ) = \sum _ { h } \frac { S ( h f ^ { \prime } ; M _ { 1 } , M _ { 2 } ) } { h },$ ; confidence 0.777
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005056.png ; $\alpha \in ( 0,1 ]$ ; confidence 1.000
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240435.png ; $\operatorname { tr } ( \mathbf{N} \Theta )$ ; confidence 0.777
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006065.png ; $f \in C ( [ 0 , T ] ; Y )$ ; confidence 0.983
+
56. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110126.png ; $\textsf{E} \frac { \mu _ { N } ( x ) } { M } \rightarrow \frac { 1 } { x ( x + 1 ) },$ ; confidence 0.777
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200604.png ; $\partial \Omega$ ; confidence 1.000
+
57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012068.png ; $k , N > 0$ ; confidence 0.776
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006019.png ; $( b ( x ) u , u ) \geq 0$ ; confidence 0.978
+
58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006074.png ; $N = N_{j}$ ; confidence 0.776
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006083.png ; $\overline { H }$ ; confidence 0.950
+
59. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001031.png ; $v u \simeq 1_{Y}$ ; confidence 0.776
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008048.png ; $f \in C ( [ 0 , T ] ; V )$ ; confidence 0.985
+
60. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h0460205.png ; $\| F \| _ { \infty } = \operatorname { sup } _ { \operatorname { Re s } > 0 } | F ( s ) |.$ ; confidence 0.776
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007053.png ; $\omega ( \alpha )$ ; confidence 0.534
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013054.png ; $\gamma _ { n } = n ^ { - 2 / 3 }$ ; confidence 0.776
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080109.png ; $U \geq f ( X ) / h ( X )$ ; confidence 0.922
+
62. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017017.png ; $\operatorname { det } ( X _ { 1 } ) \ldots \operatorname { det } ( X _ { n } ) = ( - 1 ) ^ { n } \operatorname { det } ( A _ { n } ) , \operatorname { det } ( I - \lambda X _ { 1 } ) \ldots \operatorname { det } ( I - \lambda X _ { n } )=$ ; confidence 0.776
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008011.png ; $U \leq f ( X ) / h ( X )$ ; confidence 0.932
+
63. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201705.png ; $\delta _ { A , B } ( X ) = A X - X B$ ; confidence 0.776
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010079.png ; $( I + \lambda A )$ ; confidence 0.992
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a0106406.png ; $k_2$ ; confidence 0.776
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010048.png ; $R ( I + \lambda A = X$ ; confidence 0.987
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060117.png ; $G ^ { \# } ( n ) \sim C Z _ { G } ( q ^ { - 1 } ) q ^ { n } n ^ { - \alpha } \text { as }\, n \rightarrow \infty ,$ ; confidence 0.776
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012049.png ; $x ^ { \prime } > x$ ; confidence 0.689
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028026.png ; $\mathcal{C}\operatorname { rs } ( A \otimes B , C ) \cong \mathcal{C}\operatorname { rs } ( A , \operatorname { CRS } ( B , C ) )$ ; confidence 0.776
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103004.png ; $C \times \Omega X$ ; confidence 0.719
+
67. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016054.png ; $f (\, \cdot\, , t )$ ; confidence 0.776
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032016.png ; $R _ { 0 } ^ { ( i ) } ( z )$ ; confidence 0.996
+
68. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006059.png ; $\operatorname {ind} S ( k ) = - \kappa$ ; confidence 0.776
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013064.png ; $\theta _ { n } ^ { * }$ ; confidence 0.495
+
69. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001044.png ; $c ( D )$ ; confidence 0.776
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013038.png ; $\gamma _ { n } = 1 / n$ ; confidence 0.998
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180110.png ; $c _ { i } ( R ) \subseteq \square ^ { n } U$ ; confidence 0.776
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160175.png ; $\alpha \in ( 0,1 )$ ; confidence 1.000
+
71. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507011.png ; $H ^ { 1 } ( M , \mathbf{C} ) \cong A ^ { 1 } \bigoplus \overline { A } \square ^ { 1 },$ ; confidence 0.776
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016047.png ; $X ( t _ { 0 } ) = X _ { 0 }$ ; confidence 0.401
+
72. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001057.png ; $G ^ { c }$ ; confidence 0.775
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012024.png ; $r \geq k + \lambda$ ; confidence 0.957
+
73. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t0935607.png ; $f ( x x ^ { * } ) = f ( x ^ { * } x )$ ; confidence 0.775
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018016.png ; $\lambda \neq 0,1$ ; confidence 0.998
+
74. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034088.png ; $S _ { H } ( \tilde{x} ) = \int _ { D ^ { 2 } } u ^ { * } ( \omega ) + \int _ { 0 } ^ { 1 } H ( t , x ( t ) ) d t,$ ; confidence 0.775
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023042.png ; $\Gamma \in C ^ { 2 }$ ; confidence 0.992
+
75. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014011.png ; $G = \operatorname {SU} ( N )$ ; confidence 0.775
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025022.png ; $\alpha _ { j } \in V$ ; confidence 0.174
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014130/a01413018.png ; $p _ { 1 } , \dots , p _ { k }$ ; confidence 0.775
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025016.png ; $L = L _ { 0 } \oplus L$ ; confidence 0.694
+
77. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020094.png ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq \left( \frac { n } { 2 e ( m + n ) } \right) ^ { n } | b _ { 1 } + \ldots + b _ { n } |.$ ; confidence 0.775
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028023.png ; $p 0 , p _ { 1 } , \dots$ ; confidence 0.423
+
78. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022020.png ; $o ( g )$ ; confidence 0.775
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302801.png ; $\alpha = \alpha 0$ ; confidence 0.252
+
79. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007034.png ; $k < m \leq n$ ; confidence 0.775
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302804.png ; $a 0 , a _ { 1 } , \dots$ ; confidence 0.616
+
80. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023041.png ; $d f _ { t } = t ^ { - 1 } ( I - R _ { t } ) = ( ( \partial f ) ^ { - 1 } + t I ) ^ { - 1 },$ ; confidence 0.775
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026041.png ; $f ( \not g ) \cong 0$ ; confidence 0.139
+
81. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095330/u09533017.png ; $1 / 6$ ; confidence 0.775
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028073.png ; $A \in L _ { w } ( X , Y )$ ; confidence 0.925
+
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014062.png ; $\sigma ( T _ { \phi } ) = \operatorname { conv } ( \mathcal{R} ( \phi ) ) = [ \operatorname { essinf } \phi , \operatorname { esssup } \phi ].$ ; confidence 0.775
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280132.png ; $M ^ { U } ( E ) = P ( E ) X$ ; confidence 0.626
+
83. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005015.png ; $\mathbf{F}$ ; confidence 0.775
  
84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029025.png ; $u ( 1 , t ) \in L _ { 1 }$ ; confidence 0.985
+
84. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007030.png ; $\# A / ( \sqrt { q }\operatorname { log } q  ) \rightarrow \infty$ ; confidence 0.775
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a1302907.png ; $P Y \rightarrow Y$ ; confidence 0.804
+
85. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002026.png ; $\overline { f }_{ - \text{ap}}$ ; confidence 0.775
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029024.png ; $u ( 0 , t ) \in L _ { 0 }$ ; confidence 0.977
+
86. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110212.png ; $( \mathbf{R} ^ { n } - i \Delta ) \cap C _ { \delta }$ ; confidence 0.775
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303207.png ; $H _ { 1 } : \theta > 0$ ; confidence 0.998
+
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210112.png ; $\operatorname { Hom } _ { a }( - , N ) : N ^ { \prime } \rightarrow \operatorname { Hom } _ { a } ( N ^ { \prime } , N )$ ; confidence 0.774
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032026.png ; $H _ { 0 } : \theta = p$ ; confidence 0.995
+
88. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003056.png ; $\pi : \operatorname { Fun } _ { q } ( G ) \rightarrow \operatorname { Fun } _ { q } ( H )$ ; confidence 0.774
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032050.png ; $\sigma ^ { 2 } = .25$ ; confidence 0.928
+
89. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065024.png ; $\delta _ { \mu } = \operatorname { exp } \{ c _ { \mu } / ( 4 \pi ) \}$ ; confidence 0.774
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303206.png ; $H _ { 0 } : \theta = 0$ ; confidence 0.995
+
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301903.png ; $S ( f ; M _ { 1 } , M _ { 2 } ) = \sum _ { M _ { 1 } < m < M _ { 2 } } e ( f ( m ) ),$ ; confidence 0.774
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032040.png ; $E ( Y ) = 2 \theta - 1$ ; confidence 0.497
+
91. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021092.png ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots,$ ; confidence 0.774
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210131.png ; $w _ { 1 } \leq w _ { 2 }$ ; confidence 0.991
+
92. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501034.png ; $B O _ { n }$ ; confidence 0.774
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021067.png ; $( L ( \lambda ) )$ ; confidence 1.000
+
93. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020031.png ; $H ^ { 2 } ( \mathfrak { g } , H ^ { 0 } ( M ) )$ ; confidence 0.774
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021090.png ; $\sigma _ { Q _ { l } }$ ; confidence 0.054
+
94. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570013.png ; $\rho ( X )$ ; confidence 0.774
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066057.png ; $( x , y ) \in \Omega$ ; confidence 0.964
+
95. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280145.png ; $| u ( z ) | \leq \frac { C } { | z | ^ { 2 n - 2 } }.$ ; confidence 0.774
  
96. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002038.png ; $l \in V ^ { \prime }$ ; confidence 0.172
+
96. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301601.png ; $\mathcal{C} ^ { \infty } ( \Omega ) ^ { \text{N} }$ ; confidence 0.774
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002030.png ; $X _ { i } = Q ( U _ { i } )$ ; confidence 0.224
+
97. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060101.png ; $Y _ { 1 } \in \{ y _ { 1  , 1} , y _ { 1  , 3} , y _ { 1 ,8}  \}$ ; confidence 0.774
  
98. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001081.png ; $\Gamma = SL ( 2 , Z )$ ; confidence 0.770
+
98. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013078.png ; $A^{\mp}$ ; confidence 0.774
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002014.png ; $x \in J ^ { \prime }$ ; confidence 0.867
+
99. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066590/n06659020.png ; $\overline{\theta}$ ; confidence 0.774
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003056.png ; $V _ { y } ^ { \sigma }$ ; confidence 0.928
+
100. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037041.png ; $( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.774
  
101. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003050.png ; $Q _ { x } V ^ { \pm } = 0$ ; confidence 0.365
+
101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007033.png ; $C ^ { * } ( \mathcal{C} , - )$ ; confidence 0.774
  
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003041.png ; $\| . \| ^ { \prime }$ ; confidence 0.765
+
102. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019026.png ; $\langle f , g \rangle = L ( f ( x ) g ( x ) )$ ; confidence 0.774
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040140.png ; $\theta \in ( 0,1 )$ ; confidence 1.000
+
103. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076370/q07637068.png ; $n _ { 1 } , n _ { 2 } , \dots$ ; confidence 0.774
  
104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040148.png ; $| x | | _ { \theta } =$ ; confidence 0.867
+
104. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001043.png ; $\operatorname { span } \langle D \rangle = 4 c ( D )$ ; confidence 0.774
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040154.png ; $f \in L _ { 1 } ( \mu )$ ; confidence 0.988
+
105. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050122.png ; $f : V ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.774
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040142.png ; $x \in L ^ { 0 } ( \mu )$ ; confidence 0.985
+
106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013036.png ; $\operatorname {lim} \operatorname {sup}_{n \rightarrow \infty} | a _ { n } | ^ { 1 / n } = 1$ ; confidence 0.774
  
107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040157.png ; $y \in X ^ { \prime }$ ; confidence 0.937
+
107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430124.png ; $k \langle u ^ { i } \square_{ j} \rangle$ ; confidence 0.774
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004015.png ; $\| x \| \leq \| y \|$ ; confidence 0.948
+
108. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302307.png ; $L _ { + } \sim _ { c } L _ { + } ^ { \prime }$ ; confidence 0.774
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004038.png ; $g \in L ^ { 0 } ( \mu )$ ; confidence 0.998
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034053.png ; $\varphi _ { n } ( z _ { 0 } ) = 0$ ; confidence 0.773
  
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005059.png ; $M ( H _ { \phi } ( E ) )$ ; confidence 0.714
+
110. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051051.png ; $P _ { n } = \left\{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \bigcup _ { i < m } N _ { i } \right\},$ ; confidence 0.773
  
111. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006097.png ; $\| . \| _ { \infty }$ ; confidence 0.889
+
111. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301006.png ; $\operatorname {p.dim} T \leq 1$ ; confidence 0.773
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600224.png ; $( \alpha , \beta )$ ; confidence 1.000
+
112. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025025.png ; $Y_{j}$ ; confidence 0.773
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009048.png ; $f ( z , \tau ) / \tau$ ; confidence 0.514
+
113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003061.png ; $\mathcal{E} _ { M } = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in \mathcal{C} ^ { \infty } ( \Omega ) ^ { ( 0 , \infty ) }$ ; confidence 0.773
  
114. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022092.png ; $Y = X \backslash X$ ; confidence 0.995
+
114. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011076.png ; $g : K \rightarrow \overline { M }$ ; confidence 0.773
  
115. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b1102602.png ; $\rho / \lambda < 1$ ; confidence 0.949
+
115. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002042.png ; $\mathcal{F} ( S ) ^ { q }$ ; confidence 0.773
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130104.png ; $\pi ( 0 ) + 2 \pi ( 0 )$ ; confidence 0.161
+
116. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $\mathcal{C} ^ { m } ( \Omega )$ ; confidence 0.773
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013032.png ; $W _ { 0 } ^ { q , 1 } ( G )$ ; confidence 0.769
+
117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013011.png ; $\operatorname {diag} ( S _ { 1 } ) = I$ ; confidence 0.773
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150114.png ; $k \in N \cup \{ 0 \}$ ; confidence 0.490
+
118. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066051.png ; $\Omega = \{ ( x , y ) : x , y \in \mathbf{R} ^ { n } , x \neq y \}$ ; confidence 0.773
  
119. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015037.png ; $E _ { P } ( d _ { 0 } ) = 0$ ; confidence 0.640
+
119. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180167.png ; $\mathcal{E} \otimes \mathcal{E}$ ; confidence 0.773
  
120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016055.png ; $x _ { i } ^ { \prime }$ ; confidence 0.520
+
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200238.png ; $n _ { 1 } , n _ { 2 } \geq 1$ ; confidence 0.773
  
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016058.png ; $x _ { j } ^ { \prime }$ ; confidence 0.833
+
121. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028027.png ; $\mathbf{c} ^ { T } \mathbf{x}$ ; confidence 0.773
  
122. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016027.png ; $x _ { 3 } ^ { \prime }$ ; confidence 0.895
+
122. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025046.png ; $h \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta }$ ; confidence 0.773
  
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016054.png ; $x _ { i } ^ { \prime }$ ; confidence 0.980
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022082.png ; $\mathcal{O} _ { X }$ ; confidence 0.773
  
124. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016026.png ; $x _ { 2 } ^ { \prime }$ ; confidence 0.986
+
124. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014014.png ; $\operatorname {lim} \operatorname{sup} | \epsilon _ { n } | \leq \frac { 1 } { 2 ( \theta - 1 ) ^ { 2 } }.$ ; confidence 0.773
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016025.png ; $x _ { 1 } ^ { \prime }$ ; confidence 0.855
+
125. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090223.png ; $X = \operatorname { Gal } ( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \otimes \mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.772
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018058.png ; $\sigma \cap \tau$ ; confidence 0.987
+
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030079.png ; $L ^ { 2 } ( Y ^ { \prime } , \text{l} ^ { 2 } ( \mathbf{N} ) )$ ; confidence 0.772
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020054.png ; $\theta ( e ^ { i t } )$ ; confidence 0.999
+
127. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014023.png ; $\tilde { f } \in A$ ; confidence 0.772
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120114.png ; $f ^ { \prime } \in A$ ; confidence 0.998
+
128. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002084.png ; $( \operatorname {LD} )$ ; confidence 0.772
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301507.png ; $z ( \Gamma ) = x + i y$ ; confidence 0.990
+
129. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016012.png ; $\chi_{ T + K} = \chi _{T}$ ; confidence 0.772
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024022.png ; $f = f + . \delta . f -$ ; confidence 0.736
+
130. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890220.png ; $D = D _ { 1 } \times \ldots \times D _ { n }$ ; confidence 0.772
  
131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024021.png ; $f - ( \{ \infty \} )$ ; confidence 0.998
+
131. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001095.png ; $S = \frac { k ^ { 2 } V } { 4 \pi } \cdot \left( \begin{array} { c } { A B } \\ { C D } \end{array} \right),$ ; confidence 0.772
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027013.png ; $L ( t ) = R ( t ) + A ( t )$ ; confidence 0.981
+
132. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380105.png ; $\leq m$ ; confidence 0.772
  
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031076.png ; $\delta > ( n - 1 ) / 2$ ; confidence 1.000
+
133. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023048.png ; $X \sim T _ { p , n } ( \delta , 0 , \Sigma , I _ { n } )$ ; confidence 0.772
  
134. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031013.png ; $M _ { R } ^ { \delta }$ ; confidence 0.862
+
134. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180491.png ; $( N , g )$ ; confidence 0.772
  
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031078.png ; $x \in T ^ { \gamma }$ ; confidence 0.357
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081038.png ; $( \, . \, , \, . \, )$ ; confidence 0.772
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149066.png ; $x \rightarrow x 0$ ; confidence 0.763
+
136. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png ; $\tau$ ; confidence 0.772
  
137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203203.png ; $( \Omega , A , \mu )$ ; confidence 0.996
+
137. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301702.png ; $x _ { t } : \Omega \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.772
  
138. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b120320108.png ; $\sigma ( \Gamma )$ ; confidence 0.354
+
138. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012041.png ; $Q = Q _ { \text{l} } ( R )$ ; confidence 0.772
  
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032088.png ; $a _ { n } i = ( a _ { n } )$ ; confidence 0.627
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040019.png ; $m \in M$ ; confidence 0.772
  
140. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034035.png ; $B _ { N } ( D ) = K _ { N }$ ; confidence 0.862
+
140. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180131.png ; $E \subseteq F$ ; confidence 0.772
  
141. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019062.png ; $\overline { a } + q$ ; confidence 0.271
+
141. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001027.png ; $C ( \theta _ { r } )$ ; confidence 0.772
  
142. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019024.png ; $y ( a _ { 1 } / q _ { 1 } )$ ; confidence 0.611
+
142. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010029.png ; $\forall z ( z \in x \rightarrow z \in y )$ ; confidence 0.772
  
143. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020017.png ; $[ h _ { i } h _ { j } ] = 0$ ; confidence 0.785
+
143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240124.png ; $E / \mathbf{Q}$ ; confidence 0.772
  
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020092.png ; $\omega h _ { i } = - h$ ; confidence 0.679
+
144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c1300107.png ; $F = N _ { V } \int _ { V } ( f _ { 0 } ( c ) + \kappa | \nabla c | ^ { 2 } ) d V,$ ; confidence 0.772
  
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200141.png ; $0 \neq a \in G _ { l }$ ; confidence 0.567
+
145. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018031.png ; $v < t$ ; confidence 0.772
  
146. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040058.png ; $\alpha \in S ^ { + }$ ; confidence 0.598
+
146. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002074.png ; $\lambda ( x ^ { \prime \prime } )$ ; confidence 0.772
  
147. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400137.png ; $H ^ { i } ( G / B , \xi )$ ; confidence 0.995
+
147. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003087.png ; $u _ { j } | _ { V } \equiv 0$ ; confidence 0.771
  
148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430145.png ; $H _ { 1 } = B \times H$ ; confidence 0.990
+
148. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008078.png ; $N = N _ { c }$ ; confidence 0.771
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430172.png ; $\partial _ { q } , y$ ; confidence 0.086
+
149. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003065.png ; $T _ { E , \varphi } R ^ { * } = T _ { E } R ^ { * } \bigotimes _ { T ^ { 0 } E } \mathbf{F} _ { p }.$ ; confidence 0.771
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046053.png ; $\chi _ { f } ( x y ) = 0$ ; confidence 0.609
+
150. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010025.png ; $\forall x \varphi$ ; confidence 0.771
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b1302509.png ; $\angle \Omega C A$ ; confidence 0.993
+
151. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016074.png ; $\mathfrak { B } [ \Lambda ]$ ; confidence 0.771
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b1302507.png ; $\angle \Omega A B$ ; confidence 0.998
+
152. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450441.png ; $A _ { n } ( k )$ ; confidence 0.771
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b1302508.png ; $\angle \Omega B C$ ; confidence 0.999
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240104.png ; $y _ { i }$ ; confidence 0.771
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049041.png ; $\{ A _ { j n _ { k } } \}$ ; confidence 0.872
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270106.png ; $[ K : Q ]$ ; confidence 0.771
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049028.png ; $m ( \emptyset ) = 0$ ; confidence 0.983
+
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022097.png ; $u ^ { n } ( x )$ ; confidence 0.771
  
156. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026055.png ; $[ l , \Omega , y ] = 1$ ; confidence 0.881
+
156. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002011.png ; $\zeta _ { K } ( s )$ ; confidence 0.771
  
157. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240205.png ; $\mathbf{X} _ { 3 } \beta \neq 0$ ; confidence 0.771
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b1302703.png ; $\sigma ( \pi ( T ) )$ ; confidence 1.000
+
158. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w120060107.png ; $F \mathbf{R}$ ; confidence 0.771
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302802.png ; $H * X = H * ( X , Z / p Z )$ ; confidence 0.684
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015082.png ; $( \operatorname{Ad} , \mathfrak{g} )$ ; confidence 0.771
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028033.png ; $\sum ^ { \infty } z$ ; confidence 0.646
+
160. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h120070122.png ; $4 D$ ; confidence 0.771
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051047.png ; $\nabla f ( x ^ { * } )$ ; confidence 0.966
+
161. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004045.png ; $\langle s ( \zeta , z ) , \zeta - z \rangle = \sum _ { j = 1 } ^ { n } s _ { j } ( \zeta , z ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.771
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290133.png ; $A / H _ { m } ^ { 0 } ( A )$ ; confidence 0.962
+
162. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006060.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) \not\equiv 0$ ; confidence 0.771
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290202.png ; $t _ { i } \leq t + 1 + 1$ ; confidence 0.712
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070213.png ; $f _ { Y } ( x , y ) R ^ { \prime } ( P ) = \mathfrak { C } ( P ) \mathfrak { D } ( P , x ),$ ; confidence 0.770
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053012.png ; $( \Omega , A , \mu )$ ; confidence 0.998
+
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230114.png ; $E ^ { 2 k }$ ; confidence 0.770
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053015.png ; $M \subset M ( \nu )$ ; confidence 0.985
+
165. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090443.png ; $S ( n , r )$ ; confidence 0.770
  
166. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053014.png ; $L \subset M ( \mu )$ ; confidence 0.977
+
166. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006081.png ; $q \Rightarrow \mathcal{S}$ ; confidence 0.770
  
167. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030091.png ; $B ( m , n , 0 ) = F _ { m }$ ; confidence 0.993
+
167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200130.png ; $| 1 - z _{l + 1} | > \delta _ { 2 }$ ; confidence 0.770
  
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055013.png ; $d ( x , \gamma ( 0 ) )$ ; confidence 0.730
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420132.png ; $\mathcal{R} : H \otimes H \rightarrow k $ ; confidence 0.770
  
169. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001013.png ; $u ( x _ { 1 } , x _ { 2 } )$ ; confidence 0.970
+
169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001081.png ; $\Gamma = \operatorname{SL} ( 2 , \mathbf{Z} )$ ; confidence 0.770
  
170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002087.png ; $d \nu ( t ) = g ( t ) d t$ ; confidence 0.967
+
170. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e03580021.png ; $\nu_2$ ; confidence 0.770
  
171. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002049.png ; $\theta \in S ^ { 2 }$ ; confidence 0.805
+
171. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019027.png ; $\mathbf{C} [ \Gamma ]$ ; confidence 0.770
  
172. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002059.png ; $\gamma \in SO ( n )$ ; confidence 0.992
+
172. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008010.png ; $\left( \text{l} _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0,$ ; confidence 0.770
  
173. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002037.png ; $\{ A ^ { \alpha } \}$ ; confidence 0.991
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050156.png ; $| a | = c ^ { \partial ( a ) }$ ; confidence 0.770
  
174. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003027.png ; $g ( t ) = f ( t , u ( t ) )$ ; confidence 0.999
+
174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020085.png ; $\mathfrak { h } = \mathfrak { g } ^ { 0 }$ ; confidence 0.769
  
175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898
+
175. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008057.png ; $\pm m _ { s }$ ; confidence 0.769
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330200.png ; $\zeta \in \Gamma$ ; confidence 0.998
+
176. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001085.png ; $d _ { \lambda } ( x I _ { n } - A )$ ; confidence 0.769
  
177. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007030.png ; $M \rightarrow c M$ ; confidence 0.862
+
177. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067096.png ; $V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.769
  
178. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007049.png ; $C \rightarrow Z L$ ; confidence 0.806
+
178. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001020.png ; $\mathcal{R} \subset X ^ { ( r ) }$ ; confidence 0.769
  
179. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007094.png ; $c ^ { * } \otimes k C$ ; confidence 0.141
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306602.png ; $I _ { \mu } ( f ) = \int _ { T } f ( t ) d \mu ( t ),$ ; confidence 0.769
  
180. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007022.png ; $d ^ { n + 1 } d ^ { n } = 0$ ; confidence 0.985
+
180. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015310/b01531042.png ; $q \geq 0$ ; confidence 0.769
  
181. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080105.png ; $x _ { i j } \in R ^ { x }$ ; confidence 0.279
+
181. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010025.png ; $\square ^ { \prime \prime } \Gamma _ { j k } ^ { i } ( x )$ ; confidence 0.769
  
182. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070264.png ; $F = \nu _ { 1 } F _ { 1 }$ ; confidence 0.991
+
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013032.png ; $W _ { 0 } ^ { q , 1 } ( G )$ ; confidence 0.769
  
183. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007066.png ; $Y ^ { é } = X ^ { \phi }$ ; confidence 0.109
+
183. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s0860204.png ; $t ( 0 ) = t ( l )$ ; confidence 0.769
  
184. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070263.png ; $E = \nu _ { 1 } E _ { 1 }$ ; confidence 0.996
+
184. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043880/g04388018.png ; $t \downarrow 0$ ; confidence 0.769
  
185. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c0221005.png ; $\Gamma ( \alpha )$ ; confidence 0.995
+
185. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005076.png ; $n \geq i _ { 1 } \geq \ldots \geq i _ { r } \geq 0$ ; confidence 0.769
  
186. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211039.png ; $\tilde { \theta }$ ; confidence 0.930
+
186. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022031.png ; $\Gamma _ { 0 } ( 2 ) ^ { + } : = \left( \Gamma _ { 0 } ( 2 ) , \left( \begin{array} { c c } { 0 } & { - 1 } \\ { 2 } & { 0 } \end{array} \right) \right).$ ; confidence 0.769
  
187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016036.png ; $R = D ^ { 1 / 2 } L ^ { T }$ ; confidence 0.994
+
187. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105032.png ; $F _ { X }$ ; confidence 0.769
  
188. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016022.png ; $( A + \Delta A ) x = b$ ; confidence 0.744
+
188. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090339.png ; $\left. e _ { \alpha } ^ { i } \middle/ i !\right.$ ; confidence 0.769
  
189. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010030.png ; $f _ { 1 } \leq f _ { 2 }$ ; confidence 0.996
+
189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047021.png ; $\operatorname { dim } ( E ( \lambda ) X )$ ; confidence 0.769
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419048.png ; $K \subset \Omega$ ; confidence 0.985
+
190. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015011.png ; $h \in H ^ { 2 } ( \mathbf{T} )$ ; confidence 0.769
  
191. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327011.png ; $\overline { p } = p$ ; confidence 0.759
+
191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430147.png ; $\mathcal{A} _ { q } ^ { 2 } \rtimes \operatorname { GL} _ { q } ( 2 )$ ; confidence 0.769
  
192. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c1301605.png ; $\Sigma = \{ 0,1 \}$ ; confidence 0.999
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329045.png ; $\Pi _ { n }$ ; confidence 0.769
  
193. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016099.png ; $w \in \Sigma ^ { * }$ ; confidence 0.976
+
193. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009026.png ; $\frac { \partial F _ { \mu \nu } } { \partial x ^ { \sigma } } + \frac { \partial F _ { \nu \sigma } \sigma } { \partial x ^ { \mu } } + \frac { \partial F _ { \sigma \mu } } { \partial x ^ { \nu } } = 0.$ ; confidence 0.769
  
194. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160190.png ; $\Sigma ^ { 1 } _ { 1 }$ ; confidence 0.902
+
194. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044270/g04427053.png ; $s = 1 , \dots , r$ ; confidence 0.769
  
195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160158.png ; $NP = SO ( \exists )$ ; confidence 0.946
+
195. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029013.png ; $T _ { \operatorname { min } } ( a , b ) = a \wedge b$ ; confidence 0.768
  
196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016074.png ; $S = \Sigma ^ { * } - S$ ; confidence 0.751
+
196. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230142.png ; $\operatorname {GF} ( 2 )$ ; confidence 0.768
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180460.png ; $s ^ { 2 } t ^ { 2 } g ( P )$ ; confidence 0.998
+
197. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002057.png ; $X _ { t } = X _ { 0 } + \int _ { 0 } ^ { t } H _ { s } \cdot d B _ { s }.$ ; confidence 0.768
  
198. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180373.png ; $q 1 + \ldots + q m > 0$ ; confidence 0.649
+
198. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064064.png ; $I + W _ { \tau } ( k )$ ; confidence 0.768
  
199. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020043.png ; $( W , J ^ { \prime } )$ ; confidence 0.447
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040262.png ; $\textsf{BA}$ ; confidence 0.768
  
200. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202001.png ; $( M ^ { 2 n - 1 } , \xi )$ ; confidence 0.930
+
200. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017038.png ; $\langle a , b , c | c ^ { - 1 } b c = b ^ { 2 } , a ^ { - 1 } c a = c ^ { 2 } , b ^ { - 1 } a b = a ^ { 2 } \rangle$ ; confidence 0.768
  
201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021072.png ; $P _ { N } ^ { \prime }$ ; confidence 0.294
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220223.png ; $\mathcal{M} _ { Q }$ ; confidence 0.768
  
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021014.png ; $\{ P _ { N } ^ { / / } \}$ ; confidence 0.149
+
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020070.png ; $X = X _ { 1 } \oplus \ldots \oplus X _ { n }$ ; confidence 0.768
  
203. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210120.png ; $\Gamma ( \theta )$ ; confidence 1.000
+
203. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016011.png ; $a _ { j } ^ { i } \in C ( [ 0,1 ] )$ ; confidence 0.768
  
204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021027.png ; $A \in A _ { \gamma }$ ; confidence 0.421
+
204. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002029.png ; $A = \left( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } \right) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i },$ ; confidence 0.768
  
205. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202203.png ; $: X \rightarrow X$ ; confidence 0.609
+
205. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }.$ ; confidence 0.768
  
206. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583034.png ; $u \in H ^ { \infty }$ ; confidence 0.946
+
206. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702051.png ; $H ^ { i } ( \overline{X} , F ) = \operatorname { lim } _ { \leftarrow n } H ^ { i } ( \overline{X} , \overline{F} _ { n } )$ ; confidence 0.768
  
207. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583044.png ; $m _ { T } ( \lambda )$ ; confidence 0.987
+
207. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006031.png ; $p \nmid k$ ; confidence 0.768
  
208. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026079.png ; $t _ { x } = n \dot { k }$ ; confidence 0.296
+
208. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160173.png ; $P = \operatorname {BPP}$ ; confidence 0.768
  
209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026066.png ; $k h ^ { - 2 } \leq 3 / 2$ ; confidence 0.969
+
209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303603.png ; $X _ { t } ^ { + }$ ; confidence 0.768
  
210. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030072.png ; $K _ { 1 } ( O _ { N } ) = 0$ ; confidence 0.502
+
210. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006082.png ; $\mathfrak { V } ^ { ( l ) } = ( A _ { 1 } ^ { ( l ) } , A _ { 2 } ^ { ( l ) } , \mathcal{H} ^ { ( l ) } , \Phi ^ { ( l ) } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \tilde { \gamma } )$ ; confidence 0.768
  
211. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300906.png ; $m _ { \nu } w _ { \nu }$ ; confidence 0.875
+
211. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017082.png ; $B ^ { * }$ ; confidence 0.768
  
212. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020107.png ; $\vec { c } ^ { 1 } k > 0$ ; confidence 0.589
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040154.png ; $\varphi \equiv \psi ( \operatorname { mod } \tilde { \Omega } _ { S 5 } T )$ ; confidence 0.768
  
213. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020206.png ; $k \in P ^ { \prime }$ ; confidence 0.534
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040077.png ; $\langle \alpha , h ^ { * } \rangle \geq 0$ ; confidence 0.768
  
214. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020208.png ; $k \in R ^ { \prime }$ ; confidence 0.645
+
214. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011029.png ; $\mathbf{R} ^ { n } + i \Gamma _ { j }$ ; confidence 0.767
  
215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002091.png ; $v _ { M } \geq v ^ { * }$ ; confidence 0.856
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005045.png ; $\alpha _ { 1 } , \ldots , \alpha _ { k } , \beta _ { 1 } , \ldots , \beta _ { k }$ ; confidence 0.767
  
216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003057.png ; $R \subset D B _ { 1 }$ ; confidence 0.911
+
216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029033.png ; $( p _ { 1 } , \dots , p _ { k } )$ ; confidence 0.767
  
217. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003071.png ; $f \in DB _ { 1 } ^ { * }$ ; confidence 0.654
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029076.png ; $\phi _ { \tilde{f} } : \mathcal{M} ( Q ) \rightarrow \mathcal{M} ( Q )$ ; confidence 0.767
  
218. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003024.png ; $0 \lfloor J b _ { 1 }$ ; confidence 0.127
+
218. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001025.png ; $f : \text { Edge } ( D ) \rightarrow \{ 1,2 \}$ ; confidence 0.767
  
219. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033021.png ; $H _ { c } ^ { * } ( M , R )$ ; confidence 0.970
+
219. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003057.png ; $( L - \operatorname { Re } ( \lambda I ) u = f$ ; confidence 0.767
  
220. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024024.png ; $f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.931
+
220. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007016.png ; $| f ( y ) | \leq c ( y ) \| f \| , c ( y ) : = \| K (\, .\, , y ) \|.$ ; confidence 0.767
  
221. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029013.png ; $Q \in [ \alpha , b ]$ ; confidence 0.642
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023031.png ; $( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.767
  
222. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006041.png ; $j 1 , \dots , j _ { k }$ ; confidence 0.380
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006074.png ; $| \operatorname { Re } ( A ( t ) u , S ^ { 2 } u ) _ { X } | \leq \gamma \| S u \| _ { X } ^ { 2 }$ ; confidence 0.767
  
223. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006080.png ; $m ^ { T X } ( A ) = m ( B )$ ; confidence 0.896
+
223. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009081.png ; $F _ { n } ^ { ( k ) } ( x )$ ; confidence 0.767
  
224. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008091.png ; $F _ { z _ { 0 } } ( x , R )$ ; confidence 0.989
+
224. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025018.png ; $H ^ { s } ( \Omega )$ ; confidence 0.767
  
225. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008085.png ; $E _ { z _ { 0 } } ( x , R )$ ; confidence 0.976
+
225. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001039.png ; $| f |_{ +}$ ; confidence 0.767
  
226. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008022.png ; $\partial \Delta$ ; confidence 0.998
+
226. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003089.png ; $\text{l} _ { \infty }$ ; confidence 0.767
  
227. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012059.png ; $c _ { k } = d ( g _ { k } )$ ; confidence 0.969
+
227. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c02311096.png ; $\mathbf{C} ^ { * }$ ; confidence 0.767
  
228. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012020.png ; $G \rightarrow U C$ ; confidence 0.603
+
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032036.png ; $\| x + y \| = \operatorname { max } \{ \| x \| , \| y \| \}$ ; confidence 0.767
  
229. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013028.png ; $H ^ { * } ( W ; F _ { 2 } )$ ; confidence 0.984
+
229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005061.png ; $A \in \mathfrak { L } ( \mathfrak { H } _ { 1 } , \mathfrak { H } _ { 2 } )$ ; confidence 0.767
  
230. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014077.png ; $\{ D _ { N } ( x , 1 ) \}$ ; confidence 0.870
+
230. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101206.png ; $\lambda _ { 1 } = \left( \begin{array} { l l l } { 0 } & { 1 } & { 0 } \\ { 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \lambda _ { 2 } = \left( \begin{array} { c c c } { 0 } & { - i } & { 0 } \\ { i } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right),$ ; confidence 0.766
  
231. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c0276007.png ; $0 \leq \phi < 2 \pi$ ; confidence 0.998
+
231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006031.png ; $m _ { E _{1} , E _ { 2 }}$ ; confidence 0.766
  
232. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013066.png ; $H _ { + } \cap H _ { - }$ ; confidence 0.988
+
232. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160148.png ; $\operatorname{ATIMEALT}[ n ^ { O ( 1 ) } , 1 ] = \operatorname{NP}$ ; confidence 0.766
  
233. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020026.png ; $( H ( G ) , B ( H ( G ) ) )$ ; confidence 0.994
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005053.png ; $\| \frac { \partial } { \partial t } U ( t , s ) \| \leq \frac { C } { t - s } , \quad 0 \leq s < t \leq T.$ ; confidence 0.766
  
234. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023086.png ; $T ^ { - 1 } = T ^ { - \# }$ ; confidence 0.724
+
234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010078.png ; $\mathcal{L} ( L _ { \text{C} } ^ { p } ( G ) )$ ; confidence 0.766
  
235. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230145.png ; $R = L D ^ { - 1 } L ^ { * }$ ; confidence 0.980
+
235. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005047.png ; $D _ { A } ^ { k }$ ; confidence 0.766
  
236. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018046.png ; $E _ { 1 } \cup E _ { 2 }$ ; confidence 0.964
+
236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007030.png ; $\sum \xi _ { j } a_ { j }$ ; confidence 0.766
  
237. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018045.png ; $E _ { 1 } \cap E _ { 2 }$ ; confidence 0.951
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103304.png ; $\beta _ { r }$ ; confidence 0.766
  
238. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028014.png ; $f _ { m } , f \in A ( U )$ ; confidence 0.318
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021054.png ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } \subset \mathfrak { g }$ ; confidence 0.766
  
239. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299
+
239. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g_0 ) \psi ( t ).$ ; confidence 0.766
  
240. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028052.png ; $D ; \subset C ^ { 1 }$ ; confidence 0.759
+
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200304.png ; $a , b > 0$ ; confidence 0.766
  
241. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029090.png ; $y _ { n } = f ( q _ { m } )$ ; confidence 0.741
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010025.png ; $\mathcal{S} _ { + } ^ { \nu - 1 } = \left\{ \eta \in \mathbf{R} ^ { \nu } : | \eta | = 1 , \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle > 0 \right\}$ ; confidence 0.766
  
242. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030019.png ; $( F _ { t } ; t \geq 0 )$ ; confidence 0.981
+
242. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009052.png ; $\mathbf{R} _ { + } ^ { n } = \left\{ ( x , t ) : x \in \mathbf{R} ^ { n - 1 } , t > 0 \right\}.$ ; confidence 0.766
  
243. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203009.png ; $Y ( t ) \in R ^ { m }$ ; confidence 0.934
+
243. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001033.png ; $\mathbf{C} [ X ]$ ; confidence 0.766
  
244. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d1302103.png ; $\alpha \in R ^ { m }$ ; confidence 0.311
+
244. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030710/d0307108.png ; $C ^ { 3 }$ ; confidence 0.766
  
245. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120104.png ; $\theta ^ { ( t + 1 ) }$ ; confidence 0.992
+
245. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003018.png ; $W _ { \psi } [ f ] ( a , b ) = \frac { 1 } { \sqrt { a } } \int _ { - \infty } ^ { \infty } f ( x ) \psi \overline{\left( \frac { x - b } { a } \right)} d x,$ ; confidence 0.766
  
246. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201202.png ; $f ( \theta , \phi )$ ; confidence 1.000
+
246. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090105.png ; $\wedge \mathfrak{g}$ ; confidence 0.766
  
247. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120106.png ; $f ( \phi | \theta )$ ; confidence 0.996
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220253.png ; $S L _ { 2 }$ ; confidence 0.766
  
248. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020102.png ; $V \not \equiv W$ ; confidence 0.489
+
248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004015.png ; $\operatorname{Cl} _ { 2 } ( z )$ ; confidence 0.766
  
249. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006072.png ; $V Y \rightarrow M$ ; confidence 0.994
+
249. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019051.png ; $S = \{ 0 \}$ ; confidence 0.765
  
250. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007032.png ; $\{ \Gamma , k , v \}$ ; confidence 0.979
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004065.png ; $1 < p_{ X}$ ; confidence 0.765
  
251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200904.png ; $\nabla \cdot H = 0$ ; confidence 0.871
+
251. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002016.png ; $e ^ { i \vartheta }$ ; confidence 0.765
  
252. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009015.png ; $\sigma = 0,1,2,3$ ; confidence 0.998
+
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203208.png ; $\| y \| _ { p } = \| v \| _ { p }$ ; confidence 0.765
  
253. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010055.png ; $E ^ { \prime } = 0$ ; confidence 0.985
+
253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110116.png ; $M = \tau _ { x _ { 0 }  , \xi _ { 0 }}$ ; confidence 0.765
  
254. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004028.png ; $\Omega _ { \pm } = 1$ ; confidence 0.999
+
254. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i1200608.png ; $x <_{ Q _ { i }} y$ ; confidence 0.765
  
255. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004047.png ; $\vec { x } \vec { v }$ ; confidence 0.580
+
255. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520315.png ; $\left\{ a ^ { * } ( f ) : f \in L _ { 2 } ( M , \sigma ) \right\}$ ; confidence 0.765
  
256. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004024.png ; $\Omega _ { \perp }$ ; confidence 0.689
+
256. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003041.png ; $\| \, . \, \| ^ { \prime }$ ; confidence 0.765
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095068.png ; $x ^ { i } = x ^ { i } ( t )$ ; confidence 0.974
+
257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015022.png ; $T V = \oplus _ { k \geq 1 } V ^ { \otimes k }$ ; confidence 0.765
  
258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190179.png ; $h _ { 1 } ^ { \prime }$ ; confidence 0.343
+
258. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340184.png ; $\operatorname { lim } _ { s \rightarrow \pm \infty } ( \sigma \cdot \varphi _ { i } ( s , t ) ) = x _ { i } ( t )$ ; confidence 0.765
  
259. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190201.png ; $d ( x , y ) = \| x - y \|$ ; confidence 0.997
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200207.png ; $\Gamma _ { n }$ ; confidence 0.765
  
260. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190158.png ; $h _ { 1 } \cup h _ { 2 }$ ; confidence 0.900
+
260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c1300802.png ; $\operatorname {Gal}( L / K )$ ; confidence 0.765
  
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190180.png ; $h _ { 2 } ^ { \prime }$ ; confidence 0.600
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a1301406.png ; $d_{2} ( f ( x ) , f ( y ) ) = d _ { 1 } ( x , y )$ ; confidence 0.765
  
262. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120200/e1202005.png ; $d ( C _ { i } , C _ { j } )$ ; confidence 0.982
+
262. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110120.png ; $\mathcal{Q} ( D ^ { n } ) \rightarrow \mathcal{B} ( \mathbf{R} ^ { n } )$ ; confidence 0.765
  
263. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021017.png ; $\sigma \in Sp ( E )$ ; confidence 0.692
+
263. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010070.png ; $\tilde{Z} ( K )$ ; confidence 0.765
  
264. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021026.png ; $\lambda _ { 0 } = - 1$ ; confidence 0.997
+
264. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027014.png ; $\Lambda _ { m } ^ { \alpha , \beta } \sim \operatorname { max } \{ \operatorname { log } m , m ^ { \gamma + 1 / 2 } \},$ ; confidence 0.765
  
265. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110440/c11044032.png ; $\alpha + \beta = 1$ ; confidence 0.998
+
265. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001036.png ; $M : = \left\{ \theta : \theta \in \mathbf{C} ^ { 3 } , \theta \cdot \theta = 1 \right\}$ ; confidence 0.765
  
266. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e1300504.png ; $\alpha + \beta < 1$ ; confidence 0.996
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030048.png ; $\alpha = 1 + ( m - 1 ) 3 ^ { C _ { m } ^ { 1 } + C _ { m } ^ { 2 } + C _ { m } ^ { 3 } }$ ; confidence 0.765
  
267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892
+
267. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017099.png ; $\mathcal{B} x = b x - x d$ ; confidence 0.765
  
268. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024095.png ; $H ^ { 1 } ( K _ { n } ; A )$ ; confidence 0.994
+
268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180242.png ; $ k  = + m$ ; confidence 0.764
  
269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026037.png ; $( \Omega , A , \nu )$ ; confidence 0.996
+
269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015016.png ; $( \operatorname {B} )$ ; confidence 0.764
  
270. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006015.png ; $f ( C ) \subseteq U$ ; confidence 0.998
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017028.png ; $w ^ { * } ( a )$ ; confidence 0.764
  
271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027016.png ; $\gamma \leq - 1 / 2$ ; confidence 0.983
+
271. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034026.png ; $D ^ { \circ }$ ; confidence 0.764
  
272. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001012.png ; $R = F _ { q } [ x ] / ( f )$ ; confidence 0.985
+
272. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004053.png ; $2 ^ { r } - 1$ ; confidence 0.764
  
273. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f1300202.png ; $\vec { c } ^ { d } ( x )$ ; confidence 0.063
+
273. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004017.png ; $a _ { n } = \tau$ ; confidence 0.764
  
274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002063.png ; $K ( X ) \cap A ( ( X ) )$ ; confidence 0.982
+
274. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013056.png ; $2 ^ { \nu }$ ; confidence 0.764
  
275. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004022.png ; $f ^ { c } ( \varphi )$ ; confidence 0.718
+
275. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011042.png ; $( x _ { m, j} + m l + U t , y _ { m , j } \pm b / 2 )$ ; confidence 0.764
  
276. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004038.png ; $f ^ { b ( \varphi ) }$ ; confidence 0.470
+
276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180152.png ; $\tilde{\gamma}$ ; confidence 0.764
  
277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009094.png ; $x = ( x , \ldots , x )$ ; confidence 0.628
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028023.png ; $\{ n : \tilde{x} ( n ) \neq 0 \}$ ; confidence 0.764
  
278. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009081.png ; $F _ { N } ^ { ( k ) } ( x )$ ; confidence 0.767
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c0209504.png ; $x \geq x_0$ ; confidence 0.764
  
279. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009035.png ; $U _ { N } ^ { ( k ) } ( x )$ ; confidence 0.514
+
279. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200605.png ; $- \psi [ 1 ] _ { xx } + u [ 1 ] \psi [ 1 ] = \lambda \psi [ 1 ],$ ; confidence 0.764
  
280. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009061.png ; $n = k , k + 1 , \dots .$ ; confidence 0.413
+
280. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008072.png ; $\operatorname { exp } \left\{ \frac { 1 } { k _ { B } T } \left[ J S _ { i } S _ { i + 1 } + \frac { H } { 2 } ( S _ { i } + S _ { i + 1 } ) \right] \right\} =$ ; confidence 0.764
  
281. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412
+
281. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006038.png ; $\operatorname { Aut} ( A _ { i } )$ ; confidence 0.764
  
282. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100118.png ; $L ^ { 1 } ( \hat { G } )$ ; confidence 0.969
+
282. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005085.png ; $\Sigma ^ { i _ { 1 } } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } ( d f _ { x } ) = i _ { 1 } \},$ ; confidence 0.763
  
283. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015440/b01544012.png ; $\sigma _ { 2 } ^ { 2 }$ ; confidence 0.988
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032031.png ; $T = \lambda$ ; confidence 0.763
  
284. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404908.png ; $B ( l _ { 1 } , l _ { 2 } )$ ; confidence 0.540
+
284. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b1302605.png ; $K : = f _ { 0 } ^ { - 1 } ( ] - \infty , 0 ] )$ ; confidence 0.763
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015440/b01544011.png ; $\sigma _ { 1 } ^ { 2 }$ ; confidence 0.996
+
285. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030107.png ; $x _ { i } ^ { * } ( x ) = 0$ ; confidence 0.763
  
286. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049020.png ; $B _ { l , l _ { 2 } } ( x )$ ; confidence 0.569
+
286. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002086.png ; $q \geq n$ ; confidence 0.763
  
287. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016043.png ; $\mu _ { R } ( M ) \leq$ ; confidence 0.577
+
287. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019011.png ; $F ( \tau ) = \frac { \tau \operatorname { sinh } ( \pi \tau ) } { \pi } \Gamma \left( \frac { 1 } { 2 } - k + i \tau \right)\times$ ; confidence 0.763
  
288. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009027.png ; $C _ { \epsilon } > 0$ ; confidence 0.825
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149066.png ; $x \rightarrow x_{0}$ ; confidence 0.763
  
289. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008019.png ; $L _ { 1 } ( \hat { G } )$ ; confidence 0.916
+
289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016023.png ; $\| \Delta A \| _ { 2 } \leq c n ^ { 2 } u \| A \| _ { 2 }$ ; confidence 0.763
  
290. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008032.png ; $\varphi \in B ( G )$ ; confidence 0.998
+
290. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $\mathcal{Z} = \mathcal{S} / \mathcal{F} _ { \tau }$ ; confidence 0.763
  
291. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080128.png ; $B ( G ) = M _ { 0 } A ( G )$ ; confidence 0.992
+
291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763
  
292. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010035.png ; $\square ^ { t } a P a$ ; confidence 0.504
+
292. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109209.png ; $\operatorname{epi} ( f ) = \left\{ ( x , r ) \in E \times \mathbf{R} : x \in E , r \geq f ( x ) \right\}.$ ; confidence 0.763
  
293. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110142.png ; $f _ { \Delta _ { k } }$ ; confidence 0.994
+
293. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840290.png ; $0 \notin \sigma _ { p } ( A )$ ; confidence 0.763
  
294. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110104.png ; $P * ( K ) ^ { \prime }$ ; confidence 0.927
+
294. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010115.png ; $A ( \alpha ^ { \prime } , \alpha _ { 0 } , k _ { 0 } )$ ; confidence 0.763
  
295. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014021.png ; $\lambda = \infty$ ; confidence 1.000
+
295. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013033.png ; $S ^ { ( n ) }$ ; confidence 0.763
  
296. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015039.png ; $B A \in \Phi ( X , Z )$ ; confidence 0.998
+
296. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060193.png ; $x > a$ ; confidence 0.763
  
297. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202011.png ; $x _ { 0 } \in \Omega$ ; confidence 0.983
+
297. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230170.png ; $\Omega ( d L \Delta ) = \sum _ { | \alpha | = 0 } ^ { k } \frac { \partial L } { \partial y _ { \alpha } ^ { a } } \omega _ { \alpha } ^ { a } \bigotimes \Delta .$ ; confidence 0.763
  
298. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150119.png ; $F ( x _ { 0 } ) = y _ { 0 }$ ; confidence 0.983
+
298. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005036.png ; $f _ { \operatorname{ap} } ^ { \prime }$ ; confidence 0.763
  
299. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016048.png ; $\chi \lambda I - T$ ; confidence 0.585
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180118.png ; $A \subset \mathbf{R} ^ { n }$ ; confidence 0.762
  
300. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016038.png ; $\sigma ( T ) \cap G$ ; confidence 0.995
+
300. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x1200105.png ; $Q = Q _ { s } ( R )$ ; confidence 0.762

Latest revision as of 01:27, 4 June 2020

List

1. b015350236.png ; $\Xi$ ; confidence 0.780

2. b120430109.png ; $k \langle \alpha , \beta , \gamma , \delta \rangle$ ; confidence 0.779

3. p13007090.png ; $= \operatorname { sup } \left\{ h ( z ) : \begin{array}{ c c } { h \in \operatorname{PSH}(\Omega), \, h<0,} \\{h ( \zeta ) - \operatorname { log } \| \zeta - w \| = O ( 1 ) ( \zeta \rightarrow w )} \end{array} \right\}.$ ; confidence 0.779

4. c13005010.png ; $S = S ^ { - 1 } : = \left\{ s ^ { - 1 } : s \in S \right\}$ ; confidence 0.779

5. s12020056.png ; $\sigma = ( 452 ) ( 89 ) ( 316 ) \in S_{9}$ ; confidence 0.779

6. e12007044.png ; $C ^ { 0 } ( \Gamma , k , \mathbf{v} )$ ; confidence 0.779

7. b120210136.png ; $d _ { k } : C _ { k } \rightarrow C _ { k - 1 }$ ; confidence 0.779

8. a1203106.png ; $W ^ { * }$ ; confidence 0.779

9. h120020117.png ; $\phi \in \operatorname{BMO}$ ; confidence 0.779

10. a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779

11. t13015064.png ; $\mathcal{K} ( L ^ { 2 } ( S ) )$ ; confidence 0.779

12. s12023032.png ; $X X ^ { \prime } = I _ { p }$ ; confidence 0.779

13. g130050122.png ; $d - 1$ ; confidence 0.779

14. a110610226.png ; $N = 1$ ; confidence 0.779

15. m13022052.png ; $\mathbf{Z} ^ { 2 }$ ; confidence 0.779

16. b12021070.png ; $\mathfrak { F } _ { \lambda } ( M ) = ( M \otimes L ( \lambda ) ) _ { \theta _ { \lambda } }$ ; confidence 0.779

17. e1201405.png ; $\rho : \Phi \rightarrow \{ 0,1 , \ldots \}$ ; confidence 0.779

18. s12032074.png ; $\operatorname{Mod}_{A}$ ; confidence 0.779

19. a12008063.png ; $\frac { d } { d t } \left( \begin{array} { l } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) =$ ; confidence 0.779

20. b12003029.png ; $g \in L ^ { 2 } ( \mathbf{R} )$ ; confidence 0.779

21. s13045026.png ; $F _ { Y } ( Y )$ ; confidence 0.779

22. a130050203.png ; $\mathcal{P}$ ; confidence 0.779

23. z1300308.png ; $= \sqrt { a } \sum _ { k = - \infty } ^ { \infty } f ( a t + a k ) e ^ { - 2 \pi i k w },$ ; confidence 0.779

24. l13006024.png ; $r \equiv 1 ( \operatorname { mod } 2 )$ ; confidence 0.778

25. m11012011.png ; $\operatorname{SL} ( 2 , \mathbf{C} )$ ; confidence 0.778

26. h13007047.png ; $r D$ ; confidence 0.778

27. a01167084.png ; $\forall$ ; confidence 0.778

28. v120020206.png ; $t = q$ ; confidence 0.778

29. b120210129.png ; $w = w _ { 1 } \leftarrow \ldots \leftarrow w _ { k } = w ^ { \prime }$ ; confidence 0.778

30. t12020092.png ; $g ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k }$ ; confidence 0.778

31. t13010059.png ; $\operatorname{Tr}D$ ; confidence 0.778

32. s13013023.png ; $e = e ( L | F )$ ; confidence 0.778

33. a12025054.png ; $\operatorname{PG} ( 3 , q )$ ; confidence 0.778

34. b11022055.png ; $H _ { \mathcal{M} } ^ { 2 j } ( X , \mathbf{Q} ( j ) ) \cong \operatorname{CH} ^ { j } ( X ) \otimes \mathbf{Q}$ ; confidence 0.778

35. j13004099.png ; $\operatorname { lk } ( K _ { 0 } )$ ; confidence 0.778

36. b11027023.png ; $n \in \mathbf{Z}$ ; confidence 0.778

37. l05700036.png ; $F V ( M ) = \emptyset$ ; confidence 0.778

38. c13004028.png ; $= \int _ { 1 } ^ { \infty } \frac { t \operatorname { log } ( t \pm t ^ { - 1 } ) } { 1 + t ^ { 4 } } d t = \frac { \pi } { 16 } \operatorname { log } 2 \pm \frac { G } { 4 },$ ; confidence 0.778

39. c130160167.png ; $( w \notin S )$ ; confidence 0.778

40. a01110019.png ; $a , b , c \in A$ ; confidence 0.778

41. m13007036.png ; $\prod _ { l = 1 } ^ { n } A ^ { \text { in/out } } ( f _ { l } ) \Omega = \operatorname { lim } _ { t \rightarrow \pm \infty } \prod _ { l = 1 } ^ { n } A ( f _ { l } ^ { t } ) \Omega,$ ; confidence 0.778

42. t13011024.png ; $( \mathcal{T} ( T _ { A } ) , \mathcal{F} ( T _ { A } ) )$ ; confidence 0.778

43. b12024020.png ; $f _ { \pm } \in A ( \overline { D } _ { \pm } , \operatorname{GL} ( n , \mathbf{C} ) )$ ; confidence 0.778

44. a120260111.png ; $y = ( y _ { 1 } , \dots , y _ { n } )$ ; confidence 0.778

45. s12005010.png ; $S _ { k } ( z )$ ; confidence 0.777

46. s12004068.png ; $k _ { \mu }$ ; confidence 0.777

47. h13006043.png ; $D \alpha D = \coprod _ { \alpha ^ { \prime } \in A } D \alpha ^ { \prime }$ ; confidence 0.777

48. b11066026.png ; $\operatorname { log } | P |$ ; confidence 0.777

49. c12008085.png ; $x _ { i j } ^ { h }$ ; confidence 0.777

50. t12008021.png ; $F ( x , y ) \in \mathcal{O} _ { S } ^ { * }\quad \text { in} ( x , y ) \in \mathcal{O} _ { S } \times \mathcal{O} _ { S }$ ; confidence 0.777

51. l120170293.png ; $0 \rightarrow P _ { n } \rightarrow \ldots \rightarrow P _ { 0 } \rightarrow \mathbf{Z} \rightarrow 0$ ; confidence 0.777

52. a130240248.png ; $( q , n - r )$ ; confidence 0.777

53. s13004040.png ; $X _ { g } ^ { * }$ ; confidence 0.777

54. b13019025.png ; $U ( f ; M _ { 1 } , M _ { 2 } ; H _ { 1 } , H _ { 2 } ) = \sum _ { h } \frac { S ( h f ^ { \prime } ; M _ { 1 } , M _ { 2 } ) } { h },$ ; confidence 0.777

55. a130240435.png ; $\operatorname { tr } ( \mathbf{N} \Theta )$ ; confidence 0.777

56. z130110126.png ; $\textsf{E} \frac { \mu _ { N } ( x ) } { M } \rightarrow \frac { 1 } { x ( x + 1 ) },$ ; confidence 0.777

57. b13012068.png ; $k , N > 0$ ; confidence 0.776

58. t12006074.png ; $N = N_{j}$ ; confidence 0.776

59. f12001031.png ; $v u \simeq 1_{Y}$ ; confidence 0.776

60. h0460205.png ; $\| F \| _ { \infty } = \operatorname { sup } _ { \operatorname { Re s } > 0 } | F ( s ) |.$ ; confidence 0.776

61. a12013054.png ; $\gamma _ { n } = n ^ { - 2 / 3 }$ ; confidence 0.776

62. m12017017.png ; $\operatorname { det } ( X _ { 1 } ) \ldots \operatorname { det } ( X _ { n } ) = ( - 1 ) ^ { n } \operatorname { det } ( A _ { n } ) , \operatorname { det } ( I - \lambda X _ { 1 } ) \ldots \operatorname { det } ( I - \lambda X _ { n } )=$ ; confidence 0.776

63. p1201705.png ; $\delta _ { A , B } ( X ) = A X - X B$ ; confidence 0.776

64. a0106406.png ; $k_2$ ; confidence 0.776

65. a130060117.png ; $G ^ { \# } ( n ) \sim C Z _ { G } ( q ^ { - 1 } ) q ^ { n } n ^ { - \alpha } \text { as }\, n \rightarrow \infty ,$ ; confidence 0.776

66. c12028026.png ; $\mathcal{C}\operatorname { rs } ( A \otimes B , C ) \cong \mathcal{C}\operatorname { rs } ( A , \operatorname { CRS } ( B , C ) )$ ; confidence 0.776

67. d12016054.png ; $f (\, \cdot\, , t )$ ; confidence 0.776

68. i13006059.png ; $\operatorname {ind} S ( k ) = - \kappa$ ; confidence 0.776

69. k13001044.png ; $c ( D )$ ; confidence 0.776

70. a130180110.png ; $c _ { i } ( R ) \subseteq \square ^ { n } U$ ; confidence 0.776

71. k05507011.png ; $H ^ { 1 } ( M , \mathbf{C} ) \cong A ^ { 1 } \bigoplus \overline { A } \square ^ { 1 },$ ; confidence 0.776

72. q12001057.png ; $G ^ { c }$ ; confidence 0.775

73. t0935607.png ; $f ( x x ^ { * } ) = f ( x ^ { * } x )$ ; confidence 0.775

74. s12034088.png ; $S _ { H } ( \tilde{x} ) = \int _ { D ^ { 2 } } u ^ { * } ( \omega ) + \int _ { 0 } ^ { 1 } H ( t , x ( t ) ) d t,$ ; confidence 0.775

75. c12014011.png ; $G = \operatorname {SU} ( N )$ ; confidence 0.775

76. a01413018.png ; $p _ { 1 } , \dots , p _ { k }$ ; confidence 0.775

77. t12020094.png ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq \left( \frac { n } { 2 e ( m + n ) } \right) ^ { n } | b _ { 1 } + \ldots + b _ { n } |.$ ; confidence 0.775

78. m13022020.png ; $o ( g )$ ; confidence 0.775

79. h12007034.png ; $k < m \leq n$ ; confidence 0.775

80. m12023041.png ; $d f _ { t } = t ^ { - 1 } ( I - R _ { t } ) = ( ( \partial f ) ^ { - 1 } + t I ) ^ { - 1 },$ ; confidence 0.775

81. u09533017.png ; $1 / 6$ ; confidence 0.775

82. t12014062.png ; $\sigma ( T _ { \phi } ) = \operatorname { conv } ( \mathcal{R} ( \phi ) ) = [ \operatorname { essinf } \phi , \operatorname { esssup } \phi ].$ ; confidence 0.775

83. f12005015.png ; $\mathbf{F}$ ; confidence 0.775

84. e13007030.png ; $\# A / ( \sqrt { q }\operatorname { log } q ) \rightarrow \infty$ ; confidence 0.775

85. z13002026.png ; $\overline { f }_{ - \text{ap}}$ ; confidence 0.775

86. f120110212.png ; $( \mathbf{R} ^ { n } - i \Delta ) \cap C _ { \delta }$ ; confidence 0.775

87. b120210112.png ; $\operatorname { Hom } _ { a }( - , N ) : N ^ { \prime } \rightarrow \operatorname { Hom } _ { a } ( N ^ { \prime } , N )$ ; confidence 0.774

88. q12003056.png ; $\pi : \operatorname { Fun } _ { q } ( G ) \rightarrow \operatorname { Fun } _ { q } ( H )$ ; confidence 0.774

89. s13065024.png ; $\delta _ { \mu } = \operatorname { exp } \{ c _ { \mu } / ( 4 \pi ) \}$ ; confidence 0.774

90. b1301903.png ; $S ( f ; M _ { 1 } , M _ { 2 } ) = \sum _ { M _ { 1 } < m < M _ { 2 } } e ( f ( m ) ),$ ; confidence 0.774

91. f12021092.png ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots,$ ; confidence 0.774

92. b01501034.png ; $B O _ { n }$ ; confidence 0.774

93. m13020031.png ; $H ^ { 2 } ( \mathfrak { g } , H ^ { 0 } ( M ) )$ ; confidence 0.774

94. e03570013.png ; $\rho ( X )$ ; confidence 0.774

95. d120280145.png ; $| u ( z ) | \leq \frac { C } { | z | ^ { 2 n - 2 } }.$ ; confidence 0.774

96. r1301601.png ; $\mathcal{C} ^ { \infty } ( \Omega ) ^ { \text{N} }$ ; confidence 0.774

97. d130060101.png ; $Y _ { 1 } \in \{ y _ { 1 , 1} , y _ { 1 , 3} , y _ { 1 ,8} \}$ ; confidence 0.774

98. d13013078.png ; $A^{\mp}$ ; confidence 0.774

99. n06659020.png ; $\overline{\theta}$ ; confidence 0.774

100. b11037041.png ; $( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.774

101. c12007033.png ; $C ^ { * } ( \mathcal{C} , - )$ ; confidence 0.774

102. m13019026.png ; $\langle f , g \rangle = L ( f ( x ) g ( x ) )$ ; confidence 0.774

103. q07637068.png ; $n _ { 1 } , n _ { 2 } , \dots$ ; confidence 0.774

104. k13001043.png ; $\operatorname { span } \langle D \rangle = 4 c ( D )$ ; confidence 0.774

105. t120050122.png ; $f : V ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.774

106. z13013036.png ; $\operatorname {lim} \operatorname {sup}_{n \rightarrow \infty} | a _ { n } | ^ { 1 / n } = 1$ ; confidence 0.774

107. b120430124.png ; $k \langle u ^ { i } \square_{ j} \rangle$ ; confidence 0.774

108. c1302307.png ; $L _ { + } \sim _ { c } L _ { + } ^ { \prime }$ ; confidence 0.774

109. b12034053.png ; $\varphi _ { n } ( z _ { 0 } ) = 0$ ; confidence 0.773

110. s13051051.png ; $P _ { n } = \left\{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \bigcup _ { i < m } N _ { i } \right\},$ ; confidence 0.773

111. t1301006.png ; $\operatorname {p.dim} T \leq 1$ ; confidence 0.773

112. c13025025.png ; $Y_{j}$ ; confidence 0.773

113. g13003061.png ; $\mathcal{E} _ { M } = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in \mathcal{C} ^ { \infty } ( \Omega ) ^ { ( 0 , \infty ) }$ ; confidence 0.773

114. m12011076.png ; $g : K \rightarrow \overline { M }$ ; confidence 0.773

115. h13002042.png ; $\mathcal{F} ( S ) ^ { q }$ ; confidence 0.773

116. r13016037.png ; $\mathcal{C} ^ { m } ( \Omega )$ ; confidence 0.773

117. t12013011.png ; $\operatorname {diag} ( S _ { 1 } ) = I$ ; confidence 0.773

118. b11066051.png ; $\Omega = \{ ( x , y ) : x , y \in \mathbf{R} ^ { n } , x \neq y \}$ ; confidence 0.773

119. c120180167.png ; $\mathcal{E} \otimes \mathcal{E}$ ; confidence 0.773

120. t120200238.png ; $n _ { 1 } , n _ { 2 } \geq 1$ ; confidence 0.773

121. f13028027.png ; $\mathbf{c} ^ { T } \mathbf{x}$ ; confidence 0.773

122. c13025046.png ; $h \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta }$ ; confidence 0.773

123. b11022082.png ; $\mathcal{O} _ { X }$ ; confidence 0.773

124. p12014014.png ; $\operatorname {lim} \operatorname{sup} | \epsilon _ { n } | \leq \frac { 1 } { 2 ( \theta - 1 ) ^ { 2 } }.$ ; confidence 0.773

125. i130090223.png ; $X = \operatorname { Gal } ( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \otimes \mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.772

126. b12030079.png ; $L ^ { 2 } ( Y ^ { \prime } , \text{l} ^ { 2 } ( \mathbf{N} ) )$ ; confidence 0.772

127. e12014023.png ; $\tilde { f } \in A$ ; confidence 0.772

128. d12002084.png ; $( \operatorname {LD} )$ ; confidence 0.772

129. f12016012.png ; $\chi_{ T + K} = \chi _{T}$ ; confidence 0.772

130. c020890220.png ; $D = D _ { 1 } \times \ldots \times D _ { n }$ ; confidence 0.772

131. o13001095.png ; $S = \frac { k ^ { 2 } V } { 4 \pi } \cdot \left( \begin{array} { c } { A B } \\ { C D } \end{array} \right),$ ; confidence 0.772

132. c023380105.png ; $\leq m$ ; confidence 0.772

133. s12023048.png ; $X \sim T _ { p , n } ( \delta , 0 , \Sigma , I _ { n } )$ ; confidence 0.772

134. c120180491.png ; $( N , g )$ ; confidence 0.772

135. a01081038.png ; $( \, . \, , \, . \, )$ ; confidence 0.772

136. a110420123.png ; $\tau$ ; confidence 0.772

137. w1301702.png ; $x _ { t } : \Omega \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.772

138. m12012041.png ; $Q = Q _ { \text{l} } ( R )$ ; confidence 0.772

139. b12040019.png ; $m \in M$ ; confidence 0.772

140. m130180131.png ; $E \subseteq F$ ; confidence 0.772

141. o12001027.png ; $C ( \theta _ { r } )$ ; confidence 0.772

142. z13010029.png ; $\forall z ( z \in x \rightarrow z \in y )$ ; confidence 0.772

143. e120240124.png ; $E / \mathbf{Q}$ ; confidence 0.772

144. c1300107.png ; $F = N _ { V } \int _ { V } ( f _ { 0 } ( c ) + \kappa | \nabla c | ^ { 2 } ) d V,$ ; confidence 0.772

145. w12018031.png ; $v < t$ ; confidence 0.772

146. c12002074.png ; $\lambda ( x ^ { \prime \prime } )$ ; confidence 0.772

147. g13003087.png ; $u _ { j } | _ { V } \equiv 0$ ; confidence 0.771

148. w13008078.png ; $N = N _ { c }$ ; confidence 0.771

149. l12003065.png ; $T _ { E , \varphi } R ^ { * } = T _ { E } R ^ { * } \bigotimes _ { T ^ { 0 } E } \mathbf{F} _ { p }.$ ; confidence 0.771

150. z13010025.png ; $\forall x \varphi$ ; confidence 0.771

151. f11016074.png ; $\mathfrak { B } [ \Lambda ]$ ; confidence 0.771

152. d032450441.png ; $A _ { n } ( k )$ ; confidence 0.771

153. a130240104.png ; $y _ { i }$ ; confidence 0.771

154. a120270106.png ; $[ K : Q ]$ ; confidence 0.771

155. b12022097.png ; $u ^ { n } ( x )$ ; confidence 0.771

156. o13002011.png ; $\zeta _ { K } ( s )$ ; confidence 0.771

157. a130240205.png ; $\mathbf{X} _ { 3 } \beta \neq 0$ ; confidence 0.771

158. w120060107.png ; $F \mathbf{R}$ ; confidence 0.771

159. a12015082.png ; $( \operatorname{Ad} , \mathfrak{g} )$ ; confidence 0.771

160. h120070122.png ; $4 D$ ; confidence 0.771

161. i12004045.png ; $\langle s ( \zeta , z ) , \zeta - z \rangle = \sum _ { j = 1 } ^ { n } s _ { j } ( \zeta , z ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.771

162. o13006060.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) \not\equiv 0$ ; confidence 0.771

163. c130070213.png ; $f _ { Y } ( x , y ) R ^ { \prime } ( P ) = \mathfrak { C } ( P ) \mathfrak { D } ( P , x ),$ ; confidence 0.770

164. e120230114.png ; $E ^ { 2 k }$ ; confidence 0.770

165. w120090443.png ; $S ( n , r )$ ; confidence 0.770

166. i13006081.png ; $q \Rightarrow \mathcal{S}$ ; confidence 0.770

167. t120200130.png ; $| 1 - z _{l + 1} | > \delta _ { 2 }$ ; confidence 0.770

168. b120420132.png ; $\mathcal{R} : H \otimes H \rightarrow k $ ; confidence 0.770

169. b13001081.png ; $\Gamma = \operatorname{SL} ( 2 , \mathbf{Z} )$ ; confidence 0.770

170. e03580021.png ; $\nu_2$ ; confidence 0.770

171. c12019027.png ; $\mathbf{C} [ \Gamma ]$ ; confidence 0.770

172. o13008010.png ; $\left( \text{l} _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0,$ ; confidence 0.770

173. a130050156.png ; $| a | = c ^ { \partial ( a ) }$ ; confidence 0.770

174. b13020085.png ; $\mathfrak { h } = \mathfrak { g } ^ { 0 }$ ; confidence 0.769

175. i12008057.png ; $\pm m _ { s }$ ; confidence 0.769

176. i13001085.png ; $d _ { \lambda } ( x I _ { n } - A )$ ; confidence 0.769

177. s09067096.png ; $V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.769

178. h12001020.png ; $\mathcal{R} \subset X ^ { ( r ) }$ ; confidence 0.769

179. s1306602.png ; $I _ { \mu } ( f ) = \int _ { T } f ( t ) d \mu ( t ),$ ; confidence 0.769

180. b01531042.png ; $q \geq 0$ ; confidence 0.769

181. w12010025.png ; $\square ^ { \prime \prime } \Gamma _ { j k } ^ { i } ( x )$ ; confidence 0.769

182. b12013032.png ; $W _ { 0 } ^ { q , 1 } ( G )$ ; confidence 0.769

183. s0860204.png ; $t ( 0 ) = t ( l )$ ; confidence 0.769

184. g04388018.png ; $t \downarrow 0$ ; confidence 0.769

185. t12005076.png ; $n \geq i _ { 1 } \geq \ldots \geq i _ { r } \geq 0$ ; confidence 0.769

186. m13022031.png ; $\Gamma _ { 0 } ( 2 ) ^ { + } : = \left( \Gamma _ { 0 } ( 2 ) , \left( \begin{array} { c c } { 0 } & { - 1 } \\ { 2 } & { 0 } \end{array} \right) \right).$ ; confidence 0.769

187. c02105032.png ; $F _ { X }$ ; confidence 0.769

188. w120090339.png ; $\left. e _ { \alpha } ^ { i } \middle/ i !\right.$ ; confidence 0.769

189. s13047021.png ; $\operatorname { dim } ( E ( \lambda ) X )$ ; confidence 0.769

190. t13015011.png ; $h \in H ^ { 2 } ( \mathbf{T} )$ ; confidence 0.769

191. b120430147.png ; $\mathcal{A} _ { q } ^ { 2 } \rtimes \operatorname { GL} _ { q } ( 2 )$ ; confidence 0.769

192. a01329045.png ; $\Pi _ { n }$ ; confidence 0.769

193. e12009026.png ; $\frac { \partial F _ { \mu \nu } } { \partial x ^ { \sigma } } + \frac { \partial F _ { \nu \sigma } \sigma } { \partial x ^ { \mu } } + \frac { \partial F _ { \sigma \mu } } { \partial x ^ { \nu } } = 0.$ ; confidence 0.769

194. g04427053.png ; $s = 1 , \dots , r$ ; confidence 0.769

195. f13029013.png ; $T _ { \operatorname { min } } ( a , b ) = a \wedge b$ ; confidence 0.768

196. e036230142.png ; $\operatorname {GF} ( 2 )$ ; confidence 0.768

197. j12002057.png ; $X _ { t } = X _ { 0 } + \int _ { 0 } ^ { t } H _ { s } \cdot d B _ { s }.$ ; confidence 0.768

198. s13064064.png ; $I + W _ { \tau } ( k )$ ; confidence 0.768

199. a130040262.png ; $\textsf{BA}$ ; confidence 0.768

200. l12017038.png ; $\langle a , b , c | c ^ { - 1 } b c = b ^ { 2 } , a ^ { - 1 } c a = c ^ { 2 } , b ^ { - 1 } a b = a ^ { 2 } \rangle$ ; confidence 0.768

201. b110220223.png ; $\mathcal{M} _ { Q }$ ; confidence 0.768

202. a12020070.png ; $X = X _ { 1 } \oplus \ldots \oplus X _ { n }$ ; confidence 0.768

203. s12016011.png ; $a _ { j } ^ { i } \in C ( [ 0,1 ] )$ ; confidence 0.768

204. m13002029.png ; $A = \left( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } \right) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i },$ ; confidence 0.768

205. v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }.$ ; confidence 0.768

206. l05702051.png ; $H ^ { i } ( \overline{X} , F ) = \operatorname { lim } _ { \leftarrow n } H ^ { i } ( \overline{X} , \overline{F} _ { n } )$ ; confidence 0.768

207. v12006031.png ; $p \nmid k$ ; confidence 0.768

208. c130160173.png ; $P = \operatorname {BPP}$ ; confidence 0.768

209. s1303603.png ; $X _ { t } ^ { + }$ ; confidence 0.768

210. o13006082.png ; $\mathfrak { V } ^ { ( l ) } = ( A _ { 1 } ^ { ( l ) } , A _ { 2 } ^ { ( l ) } , \mathcal{H} ^ { ( l ) } , \Phi ^ { ( l ) } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \tilde { \gamma } )$ ; confidence 0.768

211. p12017082.png ; $B ^ { * }$ ; confidence 0.768

212. a130040154.png ; $\varphi \equiv \psi ( \operatorname { mod } \tilde { \Omega } _ { S 5 } T )$ ; confidence 0.768

213. b12040077.png ; $\langle \alpha , h ^ { * } \rangle \geq 0$ ; confidence 0.768

214. f12011029.png ; $\mathbf{R} ^ { n } + i \Gamma _ { j }$ ; confidence 0.767

215. a12005045.png ; $\alpha _ { 1 } , \ldots , \alpha _ { k } , \beta _ { 1 } , \ldots , \beta _ { k }$ ; confidence 0.767

216. d12029033.png ; $( p _ { 1 } , \dots , p _ { k } )$ ; confidence 0.767

217. a13029076.png ; $\phi _ { \tilde{f} } : \mathcal{M} ( Q ) \rightarrow \mathcal{M} ( Q )$ ; confidence 0.767

218. j13001025.png ; $f : \text { Edge } ( D ) \rightarrow \{ 1,2 \}$ ; confidence 0.767

219. n13003057.png ; $( L - \operatorname { Re } ( \lambda I ) u = f$ ; confidence 0.767

220. r13007016.png ; $| f ( y ) | \leq c ( y ) \| f \| , c ( y ) : = \| K (\, .\, , y ) \|.$ ; confidence 0.767

221. a12023031.png ; $( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.767

222. a12006074.png ; $| \operatorname { Re } ( A ( t ) u , S ^ { 2 } u ) _ { X } | \leq \gamma \| S u \| _ { X } ^ { 2 }$ ; confidence 0.767

223. f13009081.png ; $F _ { n } ^ { ( k ) } ( x )$ ; confidence 0.767

224. m13025018.png ; $H ^ { s } ( \Omega )$ ; confidence 0.767

225. j13001039.png ; $| f |_{ +}$ ; confidence 0.767

226. w12003089.png ; $\text{l} _ { \infty }$ ; confidence 0.767

227. c02311096.png ; $\mathbf{C} ^ { * }$ ; confidence 0.767

228. b12032036.png ; $\| x + y \| = \operatorname { max } \{ \| x \| , \| y \| \}$ ; confidence 0.767

229. s12005061.png ; $A \in \mathfrak { L } ( \mathfrak { H } _ { 1 } , \mathfrak { H } _ { 2 } )$ ; confidence 0.767

230. g1101206.png ; $\lambda _ { 1 } = \left( \begin{array} { l l l } { 0 } & { 1 } & { 0 } \\ { 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \lambda _ { 2 } = \left( \begin{array} { c c c } { 0 } & { - i } & { 0 } \\ { i } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right),$ ; confidence 0.766

231. d13006031.png ; $m _ { E _{1} , E _ { 2 }}$ ; confidence 0.766

232. c130160148.png ; $\operatorname{ATIMEALT}[ n ^ { O ( 1 ) } , 1 ] = \operatorname{NP}$ ; confidence 0.766

233. a12005053.png ; $\| \frac { \partial } { \partial t } U ( t , s ) \| \leq \frac { C } { t - s } , \quad 0 \leq s < t \leq T.$ ; confidence 0.766

234. f13010078.png ; $\mathcal{L} ( L _ { \text{C} } ^ { p } ( G ) )$ ; confidence 0.766

235. t13005047.png ; $D _ { A } ^ { k }$ ; confidence 0.766

236. w12007030.png ; $\sum \xi _ { j } a_ { j }$ ; confidence 0.766

237. a0103304.png ; $\beta _ { r }$ ; confidence 0.766

238. b12021054.png ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } \subset \mathfrak { g }$ ; confidence 0.766

239. e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g_0 ) \psi ( t ).$ ; confidence 0.766

240. b1200304.png ; $a , b > 0$ ; confidence 0.766

241. b12010025.png ; $\mathcal{S} _ { + } ^ { \nu - 1 } = \left\{ \eta \in \mathbf{R} ^ { \nu } : | \eta | = 1 , \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle > 0 \right\}$ ; confidence 0.766

242. p13009052.png ; $\mathbf{R} _ { + } ^ { n } = \left\{ ( x , t ) : x \in \mathbf{R} ^ { n - 1 } , t > 0 \right\}.$ ; confidence 0.766

243. j12001033.png ; $\mathbf{C} [ X ]$ ; confidence 0.766

244. d0307108.png ; $C ^ { 3 }$ ; confidence 0.766

245. d13003018.png ; $W _ { \psi } [ f ] ( a , b ) = \frac { 1 } { \sqrt { a } } \int _ { - \infty } ^ { \infty } f ( x ) \psi \overline{\left( \frac { x - b } { a } \right)} d x,$ ; confidence 0.766

246. l120090105.png ; $\wedge \mathfrak{g}$ ; confidence 0.766

247. b110220253.png ; $S L _ { 2 }$ ; confidence 0.766

248. c13004015.png ; $\operatorname{Cl} _ { 2 } ( z )$ ; confidence 0.766

249. c13019051.png ; $S = \{ 0 \}$ ; confidence 0.765

250. b12004065.png ; $1 < p_{ X}$ ; confidence 0.765

251. j12002016.png ; $e ^ { i \vartheta }$ ; confidence 0.765

252. b1203208.png ; $\| y \| _ { p } = \| v \| _ { p }$ ; confidence 0.765

253. w120110116.png ; $M = \tau _ { x _ { 0 } , \xi _ { 0 }}$ ; confidence 0.765

254. i1200608.png ; $x <_{ Q _ { i }} y$ ; confidence 0.765

255. n067520315.png ; $\left\{ a ^ { * } ( f ) : f \in L _ { 2 } ( M , \sigma ) \right\}$ ; confidence 0.765

256. b13003041.png ; $\| \, . \, \| ^ { \prime }$ ; confidence 0.765

257. l12015022.png ; $T V = \oplus _ { k \geq 1 } V ^ { \otimes k }$ ; confidence 0.765

258. s120340184.png ; $\operatorname { lim } _ { s \rightarrow \pm \infty } ( \sigma \cdot \varphi _ { i } ( s , t ) ) = x _ { i } ( t )$ ; confidence 0.765

259. b1200207.png ; $\Gamma _ { n }$ ; confidence 0.765

260. c1300802.png ; $\operatorname {Gal}( L / K )$ ; confidence 0.765

261. a1301406.png ; $d_{2} ( f ( x ) , f ( y ) ) = d _ { 1 } ( x , y )$ ; confidence 0.765

262. f120110120.png ; $\mathcal{Q} ( D ^ { n } ) \rightarrow \mathcal{B} ( \mathbf{R} ^ { n } )$ ; confidence 0.765

263. k12010070.png ; $\tilde{Z} ( K )$ ; confidence 0.765

264. e12027014.png ; $\Lambda _ { m } ^ { \alpha , \beta } \sim \operatorname { max } \{ \operatorname { log } m , m ^ { \gamma + 1 / 2 } \},$ ; confidence 0.765

265. o13001036.png ; $M : = \left\{ \theta : \theta \in \mathbf{C} ^ { 3 } , \theta \cdot \theta = 1 \right\}$ ; confidence 0.765

266. b13030048.png ; $\alpha = 1 + ( m - 1 ) 3 ^ { C _ { m } ^ { 1 } + C _ { m } ^ { 2 } + C _ { m } ^ { 3 } }$ ; confidence 0.765

267. p12017099.png ; $\mathcal{B} x = b x - x d$ ; confidence 0.765

268. c120180242.png ; $ k = + m$ ; confidence 0.764

269. e12015016.png ; $( \operatorname {B} )$ ; confidence 0.764

270. a12017028.png ; $w ^ { * } ( a )$ ; confidence 0.764

271. b12034026.png ; $D ^ { \circ }$ ; confidence 0.764

272. s13004053.png ; $2 ^ { r } - 1$ ; confidence 0.764

273. t13004017.png ; $a _ { n } = \tau$ ; confidence 0.764

274. m13013056.png ; $2 ^ { \nu }$ ; confidence 0.764

275. v13011042.png ; $( x _ { m, j} + m l + U t , y _ { m , j } \pm b / 2 )$ ; confidence 0.764

276. c120180152.png ; $\tilde{\gamma}$ ; confidence 0.764

277. a12028023.png ; $\{ n : \tilde{x} ( n ) \neq 0 \}$ ; confidence 0.764

278. c0209504.png ; $x \geq x_0$ ; confidence 0.764

279. d1200605.png ; $- \psi [ 1 ] _ { xx } + u [ 1 ] \psi [ 1 ] = \lambda \psi [ 1 ],$ ; confidence 0.764

280. i12008072.png ; $\operatorname { exp } \left\{ \frac { 1 } { k _ { B } T } \left[ J S _ { i } S _ { i + 1 } + \frac { H } { 2 } ( S _ { i } + S _ { i + 1 } ) \right] \right\} =$ ; confidence 0.764

281. c13006038.png ; $\operatorname { Aut} ( A _ { i } )$ ; confidence 0.764

282. t12005085.png ; $\Sigma ^ { i _ { 1 } } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } ( d f _ { x } ) = i _ { 1 } \},$ ; confidence 0.763

283. a11032031.png ; $T = \lambda$ ; confidence 0.763

284. b1302605.png ; $K : = f _ { 0 } ^ { - 1 } ( ] - \infty , 0 ] )$ ; confidence 0.763

285. w120030107.png ; $x _ { i } ^ { * } ( x ) = 0$ ; confidence 0.763

286. v12002086.png ; $q \geq n$ ; confidence 0.763

287. m12019011.png ; $F ( \tau ) = \frac { \tau \operatorname { sinh } ( \pi \tau ) } { \pi } \Gamma \left( \frac { 1 } { 2 } - k + i \tau \right)\times$ ; confidence 0.763

288. a01149066.png ; $x \rightarrow x_{0}$ ; confidence 0.763

289. c12016023.png ; $\| \Delta A \| _ { 2 } \leq c n ^ { 2 } u \| A \| _ { 2 }$ ; confidence 0.763

290. t12001082.png ; $\mathcal{Z} = \mathcal{S} / \mathcal{F} _ { \tau }$ ; confidence 0.763

291. c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763

292. b1109209.png ; $\operatorname{epi} ( f ) = \left\{ ( x , r ) \in E \times \mathbf{R} : x \in E , r \geq f ( x ) \right\}.$ ; confidence 0.763

293. k055840290.png ; $0 \notin \sigma _ { p } ( A )$ ; confidence 0.763

294. o130010115.png ; $A ( \alpha ^ { \prime } , \alpha _ { 0 } , k _ { 0 } )$ ; confidence 0.763

295. p12013033.png ; $S ^ { ( n ) }$ ; confidence 0.763

296. i130060193.png ; $x > a$ ; confidence 0.763

297. e120230170.png ; $\Omega ( d L \Delta ) = \sum _ { | \alpha | = 0 } ^ { k } \frac { \partial L } { \partial y _ { \alpha } ^ { a } } \omega _ { \alpha } ^ { a } \bigotimes \Delta .$ ; confidence 0.763

298. d12005036.png ; $f _ { \operatorname{ap} } ^ { \prime }$ ; confidence 0.763

299. a013180118.png ; $A \subset \mathbf{R} ^ { n }$ ; confidence 0.762

300. x1200105.png ; $Q = Q _ { s } ( R )$ ; confidence 0.762

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/42. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/42&oldid=44452