Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/18"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 18 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211027.png ; $( x _ { 0 } , x _ { 1 } ] , \ldots , ( x _ { k } - 1 , x _ { k } )$ ; confidence 0.500
+
1. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021032.png ; $t ( M ^ { * } ; x , y ) = t ( M ; y , x )$ ; confidence 0.987
  
2. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
+
2. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059044.png ; $L _ { 0 } = - \sum _ { k = 1 } ^ { \infty } c _ { - k } ( - z ) ^ { k } , L _ { \infty } = \sum _ { k = 0 } ^ { \infty } c _ { k } ( - z ) ^ { - k }.$ ; confidence 0.987
  
3. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017099.png ; $Z ^ { n + k + 1 } = \sum _ { \alpha j } Z ^ { i } Z ^ { j + k }$ ; confidence 0.237
+
3. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200162.png ; $0 < \kappa \leq \pi / 2$ ; confidence 0.987
  
4. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180277.png ; $\in \otimes \square ^ { p + q + 1 } \varepsilon$ ; confidence 0.640
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240323.png ; $\mathcal{H} : \mathbf{X} _ { 3 } \mathbf{B} = 0,$ ; confidence 0.987
  
5. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020045.png ; $\iota : S ^ { k } \rightarrow ( M ^ { 2 n - 1 } , \xi )$ ; confidence 0.963
+
5. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110133.png ; $\alpha ( x ) = \frac { \beta \Gamma ( x - \beta ) } { \Gamma ( 1 - \beta ) \Gamma ( x + 1 ) },$ ; confidence 0.987
  
6. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021052.png ; $L _ { \aleph } = L ( \Lambda _ { \aleph } | P _ { N } )$ ; confidence 0.067
+
6. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s1304408.png ; $[ , ] _ { 0 }$ ; confidence 0.987
  
7. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210108.png ; $A _ { \gamma } = \sigma ( X _ { 0 } , \dots , X _ { p } )$ ; confidence 0.099
+
7. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520217.png ; $A \rightarrow C ^ { - 1 } A D$ ; confidence 0.987
  
8. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210146.png ; $\{ P _ { \alpha _ { n } , \theta _ { \tau _ { n } } } \}$ ; confidence 0.717
+
8. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012039.png ; $h ( G ) \leq f ( \text{l} ( C ) )$ ; confidence 0.987
  
9. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021091.png ; $L ( T _ { n } | P _ { n } ) \Rightarrow N ( 0 , \Gamma )$ ; confidence 0.901
+
9. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015039.png ; $( u _ { \varepsilon } ) _ { \varepsilon > 0 } \subset \mathcal{C} ^ { \infty } ( \Omega )$ ; confidence 0.987
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203101.png ; $Q _ { N } ( f ) = \sum _ { i = 1 } ^ { n } c _ { i } f ( x _ { i } )$ ; confidence 0.518
+
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020010.png ; $S ^ { k } \times S ^ { m - k - 1 }$ ; confidence 0.987
  
11. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003030.png ; $M _ { 0 } = M _ { 1 } \supset \ldots \supset M _ { 5 }$ ; confidence 0.812
+
11. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008049.png ; $= - n ( n + 2 + 2 \alpha ) f , \mathcal{D} = z \frac { \partial } { \partial z } + \bar{z} \frac { \partial } { \partial \bar{z} }.$ ; confidence 0.987
  
12. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033015.png ; $\gamma \rightarrow \int _ { \gamma } \omega$ ; confidence 0.747
+
12. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090113.png ; $\lambda _ { p } ( K / k )$ ; confidence 0.987
  
13. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029015.png ; $P _ { N } ( x ) = \sum _ { k = 0 } ^ { N } c _ { k } s _ { k } ( x )$ ; confidence 0.264
+
13. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c1202303.png ; $f : S ^ { 1 } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.987
  
14. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005010.png ; $K ( m ) \subseteq DG ( m , r ) \subseteq RM ( 2 , m )$ ; confidence 0.483
+
14. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007062.png ; $m ( P ) > c _ { 1 } ( \operatorname { log } \operatorname { log } d / \operatorname { log } d ) ^ { 3 }$ ; confidence 0.987
  
15. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011020.png ; $f ( \sum _ { j \in J } x _ { i j } ) \geq f ( x _ { i i } ) / 2$ ; confidence 0.600
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121022.png ; $v ( x )$ ; confidence 0.987
  
16. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014013.png ; $D _ { n } ( x , a ) = u ^ { n } + \frac { a ^ { n } } { u ^ { n } }$ ; confidence 0.526
+
16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013060.png ; $\Lambda ^ { p } M = M ( \Lambda ^ { t } ) ^ { p }$ ; confidence 0.987
  
17. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023013.png ; $T = ( \mathfrak { c } _ { i } - j ) _ { i , j } ^ { n - 1 } = 0$ ; confidence 0.172
+
17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230120.png ; $\omega \in \Omega ^ { 1 } ( M )$ ; confidence 0.987
  
18. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026031.png ; $X _ { n } = \operatorname { sup } _ { t } X _ { n } ( t )$ ; confidence 0.839
+
18. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090137.png ; $\mu _ { p } ( k _ { \infty } / k ) = 0$ ; confidence 0.987
  
19. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280124.png ; $F ( f ) = F _ { g } ( f ) = \int _ { \partial D _ { m } } f g$ ; confidence 0.800
+
19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620223.png ; $\mu _ { s } ( B ) > 0$ ; confidence 0.987
  
20. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030010.png ; $\alpha : R + \times R ^ { N } \rightarrow R ^ { N }$ ; confidence 0.086
+
20. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013012.png ; $\sigma _ { d } ( T )$ ; confidence 0.987
  
21. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012075.png ; $t = \mu + \frac { \Sigma ^ { 1 / 2 } z } { \sqrt { q } }$ ; confidence 0.469
+
21. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090179.png ; $L _ { p } ( s , \chi )$ ; confidence 0.987
  
22. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012098.png ; $( w _ { i } ^ { ( t + 1 ) } , \ldots , w _ { N } ^ { ( t + 1 ) } )$ ; confidence 0.255
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023038.png ; $\mathcal{O} ( p , n )$ ; confidence 0.987
  
23. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011048.png ; $\nabla \times H = \frac { 1 } { c } J , \nabla B = 0$ ; confidence 0.970
+
23. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016076.png ; $L _ { 1 } ( X \times Y )$ ; confidence 0.987
  
24. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005029.png ; $E ( \alpha , \beta ) = ( x - y ) E ( \alpha , \beta )$ ; confidence 0.986
+
24. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004018.png ; $b _ { k } = - i h ^ { - 1 } H _ { 0 } ( x _ { k } ) t - i H _ { 1 } ( x _ { k } ) t$ ; confidence 0.987
  
25. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023098.png ; $A ( \sigma ) = \int _ { M } L ( \sigma ^ { k } ( x ) ) d x$ ; confidence 0.546
+
25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006069.png ; $\sum _ { j } N _ { j } = N$ ; confidence 0.987
  
26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023029.png ; $\sigma ^ { 1 } ( x ) = ( x , y ( x ) , y ^ { \prime } ( x ) )$ ; confidence 0.990
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012053.png ; $( x ^ { j } , y ^ { j } ) \in \mathcal{J}$ ; confidence 0.987
  
27. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240105.png ; $\operatorname { Hom } ( T , Q _ { p } / Z _ { p } ( 1 ) )$ ; confidence 0.894
+
27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540110.png ; $K _ { 1 } R$ ; confidence 0.987
  
28. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006021.png ; $e : X ^ { Z \times Y } \rightarrow ( X ^ { Y } ) ^ { Z }$ ; confidence 0.939
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234025.png ; $r > 1$ ; confidence 0.987
  
29. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100117.png ; $\not \varphi ( \chi ) = \varphi ( \chi ^ { - 1 } )$ ; confidence 0.175
+
29. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021098.png ; $( \operatorname { log } z ) z ^ { \lambda _ { 1 } }$ ; confidence 0.987
  
30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110143.png ; $\sum _ { k = - \infty } ^ { \infty } \delta ( x - k )$ ; confidence 0.997
+
30. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747061.png ; $I = [ 0,1 ]$ ; confidence 0.987
  
31. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015078.png ; $A \in \Phi _ { - } ( X , Y ) \backslash \Phi ( X , Y )$ ; confidence 0.998
+
31. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200307.png ; $\prod _ { i = 1 } ^ { n } f _ { T _ { n } } ( x _ { i } )$ ; confidence 0.987
  
32. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150173.png ; $\Gamma ( A ) = \operatorname { inf } _ { M } \| A |$ ; confidence 0.363
+
32. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030114.png ; $[ 0 , c ]$ ; confidence 0.987
  
33. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015076.png ; $A \in \Phi _ { + } ( X , Y ) \backslash \Phi ( X , Y )$ ; confidence 0.997
+
33. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583044.png ; $m _ { T } ( \lambda )$ ; confidence 0.987
  
34. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021098.png ; $( \operatorname { log } z ) z ^ { \lambda _ { 1 } }$ ; confidence 0.987
+
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t1200201.png ; $( F , \mathcal{B} )$ ; confidence 0.987
  
35. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021046.png ; $\lambda _ { 1 } + j , \ldots , \lambda _ { \nu } + j$ ; confidence 0.501
+
35. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004034.png ; $P_-$ ; confidence 0.987
  
36. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029013.png ; $T _ { \operatorname { min } } ( a , b ) = a \wedge b$ ; confidence 0.768
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018058.png ; $\sigma \cap \tau$ ; confidence 0.987
  
37. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010112.png ; $\tau ( W , M _ { 0 } ) = \tau ( W ^ { \prime } , M _ { 0 } )$ ; confidence 0.993
+
37. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003024.png ; $( Z f ) ( t , w ) = f ( t )$ ; confidence 0.987
  
38. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010134.png ; $( W \times P , M _ { 0 } \times P , M _ { 1 } \times P )$ ; confidence 0.893
+
38. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840121.png ; $\mathcal{L} \cap \mathcal{L} ^ { \perp }$ ; confidence 0.987
  
39. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009061.png ; $\langle b , t : t ^ { - 1 } b ^ { 2 } t = b ^ { 3 } \rangle$ ; confidence 0.866
+
39. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v1300505.png ; $J ( q ) = q ^ { - 1 } + 196884 q + \dots$ ; confidence 0.987
  
40. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h1300609.png ; $f ( z ) = \sum _ { m = 0 } ^ { \infty } c ( m ) q ^ { m } ( z )$ ; confidence 0.596
+
40. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o13004015.png ; $\operatorname { exp } \left[ \int _ { 0 } ^ { T } L ( \dot { \phi } ( s ) , \phi ( s ) ) d s - \int _ { 0 } ^ { T } L ( \dot { \psi } ( s ) , \psi ( s ) ) d s \right]$ ; confidence 0.987
  
41. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012034.png ; $\Phi = \overline { \phi } d \overline { \phi }$ ; confidence 0.974
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010048.png ; $R ( I + \lambda A = X$ ; confidence 0.987
  
42. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807040.png ; $T ^ { 2 } = n ( X - \mu ) ^ { \prime } S ^ { - 1 } ( X - \mu )$ ; confidence 0.989
+
42. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020066.png ; $R _ { n } > 1 / 5$ ; confidence 0.987
  
43. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004039.png ; $\partial u / \partial \overline { z } _ { j } = f$ ; confidence 0.686
+
43. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840362.png ; $( X ^ { * } - X ) ( A + B X ) \geq 0$ ; confidence 0.987
  
44. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050111.png ; $n ^ { 1 / 2 } \epsilon _ { n } \rightarrow \infty$ ; confidence 0.913
+
44. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045048.png ; $( X _ { 2 } , Y _ { 2 } )$ ; confidence 0.987
  
45. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006033.png ; $S : = \{ S ( k ) , i k _ { j } , s _ { j } : 1 \leq j \leq J \}$ ; confidence 0.911
+
45. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013050.png ; $L = \nu I - J$ ; confidence 0.987
  
46. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060161.png ; $\sigma ( x ) : = \int _ { x } ^ { \infty } | q ( t ) | d t$ ; confidence 0.967
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a011460115.png ; $n \leq 2$ ; confidence 0.987
  
47. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007027.png ; $q ( \xi ) : = \int _ { R ^ { 3 } } e ^ { - i \xi x } q ( x ) d x$ ; confidence 0.478
+
47. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034079.png ; $( x , u ) \equiv ( x ^ { \prime } , u ^ { \prime } )$ ; confidence 0.987
  
48. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008018.png ; $( \alpha ^ { - 1 } : \beta ^ { - 1 } : \gamma ^ { - 1 } )$ ; confidence 0.997
+
48. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019011.png ; $P _ { N } u = \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) C _ { j } ( x )$ ; confidence 0.987
  
49. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001015.png ; $Q _ { D } ( v _ { 1 } v _ { 2 } , z ) = \sum _ { f \in b 1 ( D ) }$ ; confidence 0.107
+
49. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005015.png ; $\{ \gamma _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.987
  
50. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840380.png ; $- \frac { d ^ { 2 } y } { d x ^ { 2 } } + q y - \lambda y = f$ ; confidence 1.000
+
50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003010.png ; $x , z \in V ^ { \pm }$ ; confidence 0.987
  
51. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840103.png ; $L = \{ x _ { + } + K _ { L } x _ { + } : x _ { + } \in K _ { + } \}$ ; confidence 0.794
+
51. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012022.png ; $u ^ { * } u \leq y ^ { * } y$ ; confidence 0.987
  
52. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002037.png ; $\varphi , \psi \in \operatorname { Aut } ( X )$ ; confidence 0.848
+
52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034062.png ; $n = \operatorname { dim } M / 2$ ; confidence 0.987
  
53. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004080.png ; $| x | | y | \bigwedge | y | ^ { 2 } | x | ^ { 2 } = | x | | y |$ ; confidence 0.631
+
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048031.png ; $D = d : C ^ { \infty } ( M ) \rightarrow \Omega ^ { 1 } ( M )$ ; confidence 0.987
  
54. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700089.png ; $\equiv \lambda \text { pqf } x \cdot p f ( q f x )$ ; confidence 0.279
+
54. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013069.png ; $\lambda \in \operatorname {SP} ^ { + } ( n )$ ; confidence 0.987
  
55. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100128.png ; $\rho ( x ) = \sum _ { j = 1 } ^ { N } | u _ { j } ( x ) | ^ { 2 }$ ; confidence 0.635
+
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010147.png ; $T ^ { 2 } \times \operatorname { Sp } ( 1 )$ ; confidence 0.987
  
56. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001057.png ; $\operatorname { Re } \langle u - v , j \rangle$ ; confidence 0.706
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240431.png ; $\mathbf{a} ^ { \prime } \Theta$ ; confidence 0.987
  
57. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030104.png ; $r _ { i } = y _ { i } - \vec { x } _ { i } ^ { \star } T _ { n }$ ; confidence 0.307
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101003.png ; $V$ ; confidence 0.987
  
58. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003061.png ; $\tilde { \chi } ( x ) = [ x ^ { 2 } - 1 - a ] _ { - b } ^ { b }$ ; confidence 0.680
+
58. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030042.png ; $u : \mathcal{H} \rightarrow \mathcal{H} ^ { \prime }$ ; confidence 0.987
  
59. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001029.png ; $\langle \alpha _ { 1 } , \dots , a _ { x } \rangle$ ; confidence 0.073
+
59. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006038.png ; $Y \rightarrow J ^ { 1 } Y$ ; confidence 0.987
  
60. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007054.png ; $m ( P ) \geq \operatorname { log } \theta _ { 0 }$ ; confidence 0.999
+
60. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003082.png ; $\Gamma \subset \Omega$ ; confidence 0.987
  
61. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m1200907.png ; $\xi ^ { I } = \xi _ { 1 } ^ { 1 } \ldots \xi _ { n } ^ { n }$ ; confidence 0.085
+
61. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009035.png ; $g \rightarrow g$ ; confidence 0.987
  
62. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007033.png ; $\{ p : p ^ { 0 } > 0 , | p ^ { 2 } - m ^ { 2 } | < \epsilon \}$ ; confidence 1.000
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002040.png ; $g _ { t } ( u )$ ; confidence 0.987
  
63. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015029.png ; $P ( ( X , Y ) \in A ) = \int \int _ { A } f _ { X , Y } d X d Y$ ; confidence 0.929
+
63. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v1300709.png ; $\overset{\rightharpoonup} { V }$ ; confidence 0.987
  
64. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230116.png ; $( ( X ^ { \prime } , B ^ { \prime } ) , f ^ { \prime } )$ ; confidence 0.992
+
64. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005024.png ; $( s , s \mu ; \mu$ ; confidence 0.987
  
65. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230134.png ; $( ( K _ { X ^ { \prime } } + B ^ { \prime } ) . C ) \geq 0$ ; confidence 0.788
+
65. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005041.png ; $K [ f ]$ ; confidence 0.987
  
66. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027053.png ; $Q _ { j } ( z ) + P _ { j } ( z ) = 0 , \quad j = 1 , \dots , n$ ; confidence 0.335
+
66. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003069.png ; $t ( z )$ ; confidence 0.987
  
67. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025073.png ; $( \rho _ { \varepsilon } ) _ { \varepsilon > 0 }$ ; confidence 0.997
+
67. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060108.png ; $\varphi_{+} ( k )$ ; confidence 0.987
  
68. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018042.png ; $x = x _ { 0 } < x _ { 1 } < \ldots < x _ { i - 1 } < x _ { i } = y$ ; confidence 0.790
+
68. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007020.png ; $b \mapsto b ^ { 2 }$ ; confidence 0.987
  
69. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630108.png ; $M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j }$ ; confidence 0.662
+
69. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034043.png ; $\omega ( J u , J v ) = \omega ( u , v )$ ; confidence 0.987
  
70. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011048.png ; $\exists x = ( x _ { 1 } , \dots , x _ { N } ) \in R ^ { x }$ ; confidence 0.125
+
70. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520100.png ; $A , B \in M _ { n \times n } ( K )$ ; confidence 0.987
  
71. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011079.png ; $x \rightarrow \overline { f } _ { \alpha } ( x )$ ; confidence 0.929
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050210.png ; $G _ { K }$ ; confidence 0.987
  
72. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001044.png ; $y \in S ( z ) \Rightarrow S ( x ) \cap S ( y ) \neq 0$ ; confidence 0.718
+
72. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020205.png ; $c _ { 1 } = c _ { 1 } ( c )$ ; confidence 0.987
  
73. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001032.png ; $C _ { + } : = \{ k : \operatorname { Im } k \geq 0 \}$ ; confidence 0.448
+
73. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020024.png ; $\gamma \circ \alpha ^ { \prime } = 0$ ; confidence 0.987
  
74. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003020.png ; $\mu = \overline { \nu } = ( 3 \pm i \sqrt { 3 } ) / 6$ ; confidence 0.999
+
74. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578010.png ; $f _ { i } ( x ) x ^ { - 3 / 4 } \in L ( 0 , \infty ) , \quad f _ { i } ( x ) \in L _ { 2 } ( 0 , \infty );$ ; confidence 0.987
  
75. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002014.png ; $L _ { 2 } ( R _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 \alpha } )$ ; confidence 0.574
+
75. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h0480706.png ; $n \geq k \geq 1$ ; confidence 0.987
  
76. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005048.png ; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( A - z I ) ^ { - 1 } K J$ ; confidence 0.914
+
76. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065046.png ; $F _ { \mu }$ ; confidence 0.987
  
77. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005014.png ; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( T - z I ) ^ { - 1 } K J$ ; confidence 0.624
+
77. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003035.png ; $( u _ { \lambda } - v _ { \lambda } ) _ { \lambda \in \Lambda } \in \mathcal{Z}$ ; confidence 0.987
  
78. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005031.png ; $\operatorname { inf } _ { t > 0 } S ( 2 t ) / S ( t ) > 1$ ; confidence 0.892
+
78. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008015.png ; $\frac { \partial d \omega _ { 1 } } { \partial T } = \frac { \partial d \omega _ { 3 } } { \partial X },$ ; confidence 0.987
  
79. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201304.png ; $P ( x ) = x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n }$ ; confidence 0.483
+
79. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003048.png ; $P U ^ { \prime } \| Q A ^ { \prime }$ ; confidence 0.987
  
80. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014011.png ; $a _ { x } = \lambda \theta ^ { x } + \epsilon _ { y }$ ; confidence 0.237
+
80. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019032.png ; $U ( f ; M _ { 1 } , M _ { 2 } ; H _ { 1 } , H _ { 2 } )$ ; confidence 0.987
  
81. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070102.png ; $h ( z , w ) - \operatorname { log } \| z - w \| \leq$ ; confidence 0.995
+
81. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024070.png ; $\square ( E / K )$ ; confidence 0.987
  
82. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p1300906.png ; $B ( x _ { 0 } , r ) = \{ x \in R ^ { n } : | x - x _ { 0 } | < r \}$ ; confidence 0.631
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001053.png ; $V _ { j }$ ; confidence 0.987
  
83. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015015.png ; $P f ( g ) = ( \int _ { g K } f d \mu ) _ { K \in K } , g \in G$ ; confidence 0.281
+
83. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015053.png ; $( p n \times r s )$ ; confidence 0.987
  
84. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452019.png ; $a b \in P \Rightarrow a \in P \text { or } b \in P$ ; confidence 0.530
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016043.png ; $\Pi ^ { T } A \Pi = R ^ { T } R , \quad R = \left( \begin{array} { c c } { R _ { 11 } } & { R _ { 12 } } \\ { 0 } & { 0 } \end{array} \right),$ ; confidence 0.987
  
85. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014054.png ; $\psi ( - \gamma ) : = \psi ( \gamma ) , \gamma > 0$ ; confidence 0.994
+
85. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005029.png ; $S ( 0 )$ ; confidence 0.987
  
86. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003016.png ; $( \epsilon \otimes id _ { A } ) \circ L = id _ { A }$ ; confidence 0.503
+
86. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002044.png ; $H _ { \phi } f = \mathcal{P} _ { - } \phi f$ ; confidence 0.987
  
87. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005080.png ; $\theta = \frac { \phi - 1 } { \phi - 1 - \phi \mu }$ ; confidence 0.998
+
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006010.png ; $w ( z ) = u ( x , y )$ ; confidence 0.987
  
88. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008078.png ; $E [ W ] _ { P S } = \frac { \rho \dot { b } } { 1 - \rho }$ ; confidence 0.171
+
88. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h1301206.png ; $h : G _ { 1 } \rightarrow G _ { 2 }$ ; confidence 0.987
  
89. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300108.png ; $b _ { 1 } f _ { 1 } + \ldots + b _ { m } f _ { m } = f ^ { \mu }$ ; confidence 0.866
+
89. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007036.png ; $i , j \geq 0$ ; confidence 0.987
  
90. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007040.png ; $( u , v ) _ { + } : = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.880
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016051.png ; $X ( t )$ ; confidence 0.987
  
91. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008023.png ; $K ( x , y ) = \overline { K ( y , x ) } , K ( x , x ) \geq 0$ ; confidence 0.993
+
91. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b11104018.png ; $a x + b$ ; confidence 0.987
  
92. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200209.png ; $\partial _ { t } L = \frac { 1 } { 2 } \nabla ^ { 2 } L$ ; confidence 0.995
+
92. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n1200709.png ; $| m ( E ) | < M , \quad m \in \mathcal{M} , E \in \Sigma.$ ; confidence 0.987
  
93. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014010.png ; $\sum _ { i = 0 } ^ { n } ( - 1 ) ^ { i } q _ { i } q _ { n } - i = 0$ ; confidence 0.468
+
93. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003037.png ; $x.z = \{ x y z \} / 2$ ; confidence 0.987
  
94. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014013.png ; $\lambda _ { 1 } > \ldots > \lambda _ { 2 m } \geq 0$ ; confidence 0.874
+
94. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008090.png ; $T _ { p , q }$ ; confidence 0.987
  
95. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014020.png ; $\{ 1 ^ { \prime } < 1 < 2 ^ { \prime } < 2 < \ldots \}$ ; confidence 0.870
+
95. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005031.png ; $p _ { i } = x _ { 0 }$ ; confidence 0.987
  
96. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014030.png ; $\gamma = ( \gamma _ { 1 } , \gamma _ { 2 } , \dots )$ ; confidence 0.506
+
96. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001033.png ; $f , g \in \mathcal{C} ( X , \mathbf{R} )$ ; confidence 0.987
  
97. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977
+
97. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008061.png ; $( L , w _ { i } )$ ; confidence 0.987
  
98. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015024.png ; $\varphi : G \times _ { G _ { X } } S \rightarrow X$ ; confidence 0.554
+
98. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016011.png ; $\mathcal{E} = f + i \psi$ ; confidence 0.987
  
99. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041057.png ; $( p _ { x } ^ { \langle \alpha , \beta \rangle } )$ ; confidence 0.296
+
99. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021033.png ; $( p + 1 ) q / 2$ ; confidence 0.987
  
100. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024056.png ; $z ^ { \gamma } = \{ z _ { i } ^ { N } , x _ { i } ^ { n + 1 } \}$ ; confidence 0.059
+
100. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070143.png ; $\delta _ { m } ( t - s )$ ; confidence 0.987
  
101. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067097.png ; $V _ { ( 2 ) } ^ { 1 } \approx V \otimes S ^ { 2 } V ^ { * }$ ; confidence 0.829
+
101. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058050/l05805010.png ; $x \in [ - 1,1 ]$ ; confidence 0.987
  
102. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032031.png ; $[ \alpha , b ] = a b - ( - 1 ) ^ { p ( \alpha ) p ( b ) } b a$ ; confidence 0.185
+
102. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017018.png ; $P M _ { 2 } ( G ) = C V _ { 2 } ( G )$ ; confidence 0.987
  
103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203402.png ; $\phi : ( M , \omega ) \rightarrow ( M , \omega )$ ; confidence 0.999
+
103. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010103.png ; $\{ P _ { i } : i \in I \}$ ; confidence 0.987
  
104. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035037.png ; $= X _ { N - 1 } + \mu _ { N } Q _ { 2 } ( X _ { N } ^ { \theta }$ ; confidence 0.090
+
104. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060129.png ; $f ^ { \prime } ( 0 , k )$ ; confidence 0.987
  
105. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s1203502.png ; $= b _ { 1 } u ( t - 1 ) + \ldots + b _ { m } u ( t - m ) + e ( t )$ ; confidence 0.335
+
105. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022050/c02205014.png ; $x _ { i } ^ { 0 }$ ; confidence 0.987
  
106. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s1203501.png ; $y ( t ) + a _ { 1 } y ( t - 1 ) + \ldots + a _ { n } y ( t - n ) =$ ; confidence 0.599
+
106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022061.png ; $f ( t , x , \xi ) \in D _ { \xi }$ ; confidence 0.987
  
107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064040.png ; $\hat { a } ( e ^ { i \theta } ) = a ( e ^ { - i \theta } )$ ; confidence 0.120
+
107. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001033.png ; $C _ { 1 } < C _ { 2 }$ ; confidence 0.987
  
108. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005096.png ; $\sigma _ { T } ( L _ { i t } , B ) = \sigma _ { T } ( a , H )$ ; confidence 0.325
+
108. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003025.png ; $| t | \leq 1 / 2$ ; confidence 0.987
  
109. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050133.png ; $\sigma _ { H } : = \sigma _ { I } \cup \sigma _ { r }$ ; confidence 0.137
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100267.png ; $c _ { 1 } , c _ { 2 } > 0$ ; confidence 0.987
  
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003033.png ; $F _ { K } : \xi + i \eta \rightarrow K \xi + i \eta$ ; confidence 0.993
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040747.png ; $\Sigma ( P , R )$ ; confidence 0.987
  
111. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003040.png ; $\Psi : U ^ { \prime } \rightarrow V ^ { \prime }$ ; confidence 0.995
+
111. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012057.png ; $X = \operatorname { im } ( \pi )$ ; confidence 0.987
  
112. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130124.png ; $\Gamma = \operatorname { End } _ { \Lambda } T$ ; confidence 0.895
+
112. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003014.png ; $F _ { x } ( q )$ ; confidence 0.987
  
113. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013057.png ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , )$ ; confidence 0.425
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220010.png ; $f _ { 0 }$ ; confidence 0.987
  
114. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201304.png ; $\Lambda = \Lambda _ { i , j } = \delta _ { i + 1 , j }$ ; confidence 0.975
+
114. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002017.png ; $\sigma ( Y )$ ; confidence 0.987
  
115. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014048.png ; $\operatorname { Ker } T _ { \phi } ^ { * } = \{ 0 \}$ ; confidence 0.678
+
115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100139.png ; $\Lambda \cong \pi _ { 1 } ( M )$ ; confidence 0.987
  
116. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015048.png ; $\eta \rightarrow \pi ^ { \prime } ( \eta ) \xi$ ; confidence 0.999
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001013.png ; $G ( \mathbf{R} )$ ; confidence 0.987
  
117. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408032.png ; $( \Omega ( X ; B , * ) , \Omega ( A ; A \cap B , * ) , * )$ ; confidence 0.963
+
117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210139.png ; $w _ { 2 } \in W ^ { ( k - 1 ) }$ ; confidence 0.987
  
118. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021014.png ; $u _ { N } = \sum _ { n = 0 } ^ { N } a _ { n } \phi _ { n } ( x )$ ; confidence 0.375
+
118. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r1300803.png ; $f : E \rightarrow \mathbf{C}$ ; confidence 0.987
  
119. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200224.png ; $\frac { 1 } { 4 } ( \frac { K - 1 } { 8 e ( m + K ) } ) ^ { K }$ ; confidence 0.997
+
119. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420137.png ; $\square _ { H } ^ { H } \mathcal{M}$ ; confidence 0.987
  
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021031.png ; $t ( M _ { 1 } \oplus M _ { 2 } ) = t ( M _ { 1 } ) t ( M _ { 2 } )$ ; confidence 0.980
+
120. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010024.png ; $( \varphi \leftrightarrow \psi )$ ; confidence 0.987
  
121. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050122.png ; $Y ( u , x ) v = \sum _ { n \in Z } ( u _ { n } v ) x ^ { - n - 1 }$ ; confidence 0.805
+
121. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013040.png ; $( 1 , \theta _ { 0 } )$ ; confidence 0.987
  
122. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005088.png ; $Y ( \omega , x ) = \sum _ { n \in Z } L ( n ) x ^ { - n - 2 }$ ; confidence 0.905
+
122. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006044.png ; $\mathcal{H} = \mathcal{H} ^ { \prime } \oplus \mathcal{H} ^ { \prime \prime }$ ; confidence 0.987
  
123. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v1200303.png ; $\lambda : \Sigma \rightarrow [ 0 , + \infty ]$ ; confidence 0.985
+
123. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004013.png ; $z = \sqrt { t } - 1 / \sqrt { t }$ ; confidence 0.987
  
124. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006018.png ; $p B _ { 2 n } \equiv - 1 ( \operatorname { mod } p )$ ; confidence 0.790
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440121.png ; $N _ { G } ( D ) \subseteq H$ ; confidence 0.987
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a0120608.png ; $\alpha = ( \alpha _ { 1 } , \dots , \alpha _ { m } )$ ; confidence 0.354
+
125. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007070.png ; $K _ { 1 } > 0$ ; confidence 0.987
  
126. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007043.png ; $x \mapsto e ^ { i t } e ^ { i p q / 2 } e ^ { i q x } f ( x + p )$ ; confidence 0.449
+
126. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110169.png ; $T ^ { * } ( \Omega )$ ; confidence 0.986
  
127. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110147.png ; $t _ { N } ( a , b ) \in S _ { sc 1 } ^ { m _ { 1 } + m _ { 2 } - N }$ ; confidence 0.210
+
127. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065044.png ; $F _ { n } = - \psi _ { n } / \phi _ { n }$ ; confidence 0.986
  
128. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008042.png ; $d \Omega _ { n } \sim d ( \lambda ^ { n } ) + \ldots$ ; confidence 0.740
+
128. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060158.png ; $V _ { \chi } \otimes \Delta$ ; confidence 0.986
  
129. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080101.png ; $\partial d S / \partial T _ { N } = d \omega _ { N }$ ; confidence 0.310
+
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290195.png ; $i \neq \operatorname { dim } R$ ; confidence 0.986
  
130. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020015.png ; $R [ K ( x _ { \nu } , . ) ] = 0 , \quad \nu = 1 , \dots , n$ ; confidence 0.467
+
130. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008058.png ; $\langle \varphi , T \rangle = ( \pi ( T ) \xi , \eta )$ ; confidence 0.986
  
131. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021028.png ; $\sum _ { i = 1 } ^ { k } A _ { i } A _ { i } ^ { T } = k m I _ { m }$ ; confidence 0.922
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025033.png ; $C _ { B C }$ ; confidence 0.986
  
132. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z1300801.png ; $D = \{ ( x , y ) \in R ^ { 2 } : x ^ { 2 } + y ^ { 2 } \leq 1 \}$ ; confidence 0.990
+
132. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015058.png ; $\mathcal{C} ^ { \infty } ( \Omega )$ ; confidence 0.986
  
133. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011079.png ; $= k ( n ) [ ( x - 1 ) \mu _ { n } ( x - 1 ) - x \mu _ { n } ( x ) ]$ ; confidence 0.601
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017047.png ; $\Phi ( x )$ ; confidence 0.986
  
134. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094048.png ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264
+
134. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021100/c0211007.png ; $\sigma ( A )$ ; confidence 0.986
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779
+
135. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020130.png ; $M \subseteq N \Rightarrow M ^ { \perp } \supseteq N ^ { \perp },$ ; confidence 0.986
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240261.png ; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961
+
136. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027010.png ; $S _ { 0 } = 0,$ ; confidence 0.986
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240493.png ; $( 1 , t _ { j } , \ldots , t _ { j } ^ { k } ) ^ { \prime }$ ; confidence 0.604
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060123.png ; $\lambda = \lambda _ { G } = 1 / Z _ { G } ( q ^ { - 1 } )$ ; confidence 0.986
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070109.png ; $\sigma ^ { * } ( n )$ ; confidence 0.986
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240233.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { r } d _ { i } z _ { i }$ ; confidence 0.709
+
139. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011034.png ; $f \in C ( \Gamma )$ ; confidence 0.986
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240282.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { q } d _ { i } z _ { i }$ ; confidence 0.180
+
140. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013068.png ; $[ \Lambda ^ { l } , L _ { 1 } ] = [ \Lambda ^ { l } , L _ { 2 } ] = 0$ ; confidence 0.986
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003016.png ; $f ( x ) = \int _ { 0 } ^ { \infty } e ^ { x t } d \mu ( t )$ ; confidence 0.995
+
141. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230138.png ; $[ J , J ]$ ; confidence 0.986
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040654.png ; $\stackrel { * } { S } _ { P } ^ { L } \mathfrak { N }$ ; confidence 0.119
+
142. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017043.png ; $\omega ( G ) / Z ( G )$ ; confidence 0.986
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006032.png ; $u \in C ( [ 0 , T ] ; D ( A ) ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.940
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b1201803.png ; $p ( x ) = 0$ ; confidence 0.986
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006035.png ; $u ( 0 ) = u _ { 0 } \in D ( A ) , f \in C ( [ 0 , T ] ; D ( A ) )$ ; confidence 0.943
+
144. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q1200109.png ; $\psi _ { 0 } \in D$ ; confidence 0.986
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006012.png ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872
+
145. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020181.png ; $F : \overline { D } \square ^ { n + 1 } \rightarrow K ( E ^ { n + 1 } )$ ; confidence 0.986
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007062.png ; $A ( 0 ) u _ { 0 } \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.979
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027054.png ; $j \rightarrow \infty$ ; confidence 0.986
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070107.png ; $\{ B _ { j } ( t , x , D _ { x } ) \} _ { j = 1 } ^ { \infty }$ ; confidence 0.140
+
147. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017039.png ; $H _ { x } ( t )$ ; confidence 0.986
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060123.png ; $\lambda = \lambda _ { G } = 1 / Z _ { G } ( q ^ { - 1 } )$ ; confidence 0.986
+
148. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r1301205.png ; $x - y \in C$ ; confidence 0.986
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012092.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c _ { t } = y _ { 0 }$ ; confidence 0.783
+
149. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004097.png ; $( x , \xi ) \in \Sigma _ { P }$ ; confidence 0.986
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201507.png ; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945
+
150. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031810/d03181064.png ; $| \omega |$ ; confidence 0.986
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201607.png ; $S _ { i } ( t | \{ u _ { i } ( t ) \} , \{ C _ { i j } ( t ) \} )$ ; confidence 0.797
+
151. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026027.png ; $\Gamma ^ { - } \supset \Gamma ( L ^ { 2 } ( \mathbf{R} ) ) \supset \Gamma ^ { + }$ ; confidence 0.986
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020044.png ; $1 = \sum _ { i = 1 } ^ { n } \mathfrak { p } _ { i } ( t )$ ; confidence 0.606
+
152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007015.png ; $\mathcal{R} _ { 23 } = 1 \otimes \mathcal{R}$ ; confidence 0.986
  
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022048.png ; $S _ { C } = \operatorname { Mod } ( ? , C ) / E _ { C }$ ; confidence 0.591
+
153. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040141.png ; $u \in \mathcal{D} _ { s } ^ { \prime } ( \Omega )$ ; confidence 0.986
  
154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026012.png ; $\operatorname { lcm } ( 1 , \dots , n ) > 3 ^ { x }$ ; confidence 0.618
+
154. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008062.png ; $Z ( t , \phi ) = \int _ { \phi _ { 0 } } \mathcal{D} \phi \operatorname { exp } [ S ( t , \phi ) ],$ ; confidence 0.986
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026063.png ; $A _ { 1 } = A ^ { * } / \cap _ { \{ \in N } m ^ { i } A ^ { * }$ ; confidence 0.180
+
155. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566024.png ; $\tau_2$ ; confidence 0.986
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270111.png ; $\{ a _ { j } ^ { g } : j = 1 , \dots , [ K : Q ] , g \in G \}$ ; confidence 0.270
+
156. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066082.png ; $\sum _ { i } | f _ { i } | > \delta > 0$ ; confidence 0.986
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031033.png ; $\mu _ { n } ( X ) : = \mu ( X ) / \sum _ { R = n } \mu ( Y )$ ; confidence 0.206
+
157. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020056.png ; $0 \leq d ^ { \prime } , d ^ { \prime \prime } \leq 3$ ; confidence 0.986
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210118.png ; $H ^ { i } ( \mathfrak { n } ^ { - } , L ) = \# W ^ { ( i ) }$ ; confidence 0.593
+
158. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754804.png ; $( p \& q ) \supset q$ ; confidence 0.986
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210143.png ; $k = 1 , \dots , r = \operatorname { dim } n ^ { - }$ ; confidence 0.277
+
159. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001064.png ; $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.986
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066051.png ; $\Omega = \{ ( x , y ) : x , y \in R ^ { n } , x \neq y \}$ ; confidence 0.773
+
160. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005077.png ; $V V ^ { * } = 1$ ; confidence 0.986
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002043.png ; $\alpha _ { \aleph } , F \circ Q + \beta _ { N , F }$ ; confidence 0.082
+
161. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200202.png ; $f : \mathbf{R} ^ { N } \rightarrow \mathbf{R}$ ; confidence 0.986
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002039.png ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.567
+
162. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130124.png ; $L _ { 0 } \approx 0$ ; confidence 0.986
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001042.png ; $V ^ { * } = V \cup V _ { 1 } \cup \ldots \cup V _ { t }$ ; confidence 0.340
+
163. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520375.png ; $\| \partial \psi _ { i } / \partial y _ { j } \|$ ; confidence 0.986
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001087.png ; $z \mapsto ( z - \sqrt { - 1 } ) / ( z + \sqrt { - 1 } )$ ; confidence 0.991
+
164. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004049.png ; $\varphi ( x ^ { 0 } ) \neq 0$ ; confidence 0.986
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b1200403.png ; $L ^ { 0 } ( \mu ) = L ^ { 0 } ( \Omega , \Sigma , \mu )$ ; confidence 0.994
+
165. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002014.png ; $\alpha = P / Q$ ; confidence 0.986
  
166. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180167.png ; $d T$ ; confidence 0.986
  
167. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220147.png ; $K _ { 2 } ( X ) \rightarrow H ^ { 1 } ( X ( C ) , R ( 1 ) )$ ; confidence 0.922
+
167. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007092.png ; $f \in S ( \mathbf{R} ^ { k } )$ ; confidence 0.986
  
168. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220101.png ; $F _ { \infty } \in \operatorname { Gal } ( C / R$ ; confidence 0.828
+
168. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004049.png ; $F _ { \mathcal{X} } ( T )$ ; confidence 0.986
  
169. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022087.png ; $H _ { D } ^ { i } ( X , A ( j ) ) = H ^ { i } ( X , A ( j ) _ { D } )$ ; confidence 0.470
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240415.png ; $f ( \Theta )$ ; confidence 0.986
  
170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012010.png ; $X ^ { \prime \prime } ( t ) + R ( t ) \circ X ( t ) = 0$ ; confidence 0.998
+
170. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306301.png ; $( A , \mathfrak m )$ ; confidence 0.986
  
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013048.png ; $C _ { \mu } ( z ) = \int \frac { 1 } { z - w } d \mu ( w )$ ; confidence 0.997
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022020.png ; $\epsilon > 0$ ; confidence 0.986
  
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201608.png ; $\Delta ^ { x - 1 } \rightarrow \Delta ^ { x - 1 }$ ; confidence 0.671
+
172. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180348.png ; $C ( g ) = 0$ ; confidence 0.986
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022048.png ; $F _ { j } ( u ) = \int a _ { j } ( \xi ) M ( u , \xi ) d \xi$ ; confidence 0.921
+
173. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302061.png ; $O ( n )$ ; confidence 0.986
  
174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017020.png ; $d S _ { t } = \mu S _ { t } d t + \sigma S _ { t } d w _ { t }$ ; confidence 0.339
+
174. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008045.png ; $( x , y ) \mapsto ( x ^ { k + 1 } / ( k + 1 ) + i y )$ ; confidence 0.986
  
175. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017035.png ; $V _ { T } = \operatorname { max } ( S _ { T } - K , 0 )$ ; confidence 0.997
+
175. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001033.png ; $L _ { \Phi _ { 2 } } ( \Omega )$ ; confidence 0.986
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027049.png ; $N ( t ) = \sum _ { 1 } ^ { \infty } I ( S _ { k } \leq t )$ ; confidence 0.936
+
176. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110242.png ; $S ( H ^ { - 2 } , G )$ ; confidence 0.986
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120280/b12028010.png ; $f ( z ) = e ^ { - ( G ( z , \alpha ) + i \zeta ( z , z ) ) }$ ; confidence 0.117
+
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016026.png ; $x _ { 2 } ^ { \prime }$ ; confidence 0.986
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030065.png ; $\{ \phi _ { m } ( ; \eta ) \} _ { m = 1 } ^ { \infty } 1$ ; confidence 0.785
+
178. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010140.png ; $W \times S ^ { 1 } \approx M _ { 0 } \times S ^ { 1 } \times [ 0,1 ] \approx M _ { 1 } \times S ^ { 1 } \times [ 0,1 ].$ ; confidence 0.986
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030048.png ; $\psi ( y ; \eta ) = e ^ { i \eta y } \phi ( y ; \eta )$ ; confidence 0.436
+
179. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007086.png ; $H ^ { 0 } \subset H _ { 1 }$ ; confidence 0.986
  
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030064.png ; $\{ \psi _ { m } ( ; \eta ) \} _ { m = 1 } ^ { \infty } 1$ ; confidence 0.851
+
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302004.png ; $V \times V \times V \rightarrow V$ ; confidence 0.986
  
181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034039.png ; $B _ { N } ( D ^ { \circ } ) < \frac { 0.446663 } { n }$ ; confidence 0.684
+
181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001061.png ; $U \subset V ^ { * }$ ; confidence 0.986
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040040.png ; $\pi : G \times \ell \quad F \rightarrow G / H$ ; confidence 0.459
+
182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e1201009.png ; $\mathbf{E} ^ { \prime } = \mathbf{E} + \frac { 1 } { c } \mathbf{v} \times \mathbf{B},$ ; confidence 0.986
  
183. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042014.png ; $\Psi : \otimes \rightarrow \otimes ^ { 0 p }$ ; confidence 0.245
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013610/a01361020.png ; $x \rightarrow \pm \infty$ ; confidence 0.986
  
184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022013.png ; $\rho = \rho ( T ) = \operatorname { diam } ( T )$ ; confidence 1.000
+
184. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003094.png ; $X ^ { E }$ ; confidence 0.986
  
185. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026068.png ; $g : \overline { \Delta } \rightarrow R ^ { n }$ ; confidence 0.423
+
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022014.png ; $Q ( f ) = 0$ ; confidence 0.986
  
186. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026067.png ; $f : \overline { \Omega } \rightarrow R ^ { n }$ ; confidence 0.521
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046011.png ; $|.|$ ; confidence 0.986
  
187. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290162.png ; $M \cong \oplus _ { l = 0 } ^ { d } E _ { l } ^ { h _ { i } }$ ; confidence 0.299
+
187. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025020.png ; $H ^ { s } ( \Omega ) \times H ^ { - s } ( \Omega ) \rightarrow H ^ { - s } ( \Omega )$ ; confidence 0.986
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029047.png ; $\mathfrak { p } \in \operatorname { Spec } R$ ; confidence 0.267
+
188. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010123.png ; $\mathcal{M} \in \mathfrak { M }$ ; confidence 0.986
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001033.png ; $\frac { \partial v } { \partial x } = u + v ^ { 2 }$ ; confidence 0.432
+
189. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036021.png ; $p _ { y } + d p _ { y }$ ; confidence 0.986
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008049.png ; $\operatorname { det } [ E \lambda - A ] \neq 0$ ; confidence 0.837
+
190. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022023.png ; $M = h ^ { i } ( X )$ ; confidence 0.986
  
191. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154014.png ; $\{ x : x \in A ^ { + } , \square f ( x ) < + \infty \}$ ; confidence 0.964
+
191. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006032.png ; $h ^ { i } ( L )$ ; confidence 0.986
  
192. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007097.png ; $f ^ { \prime } ( X ^ { \prime } , Y ^ { \prime } ) = 0$ ; confidence 0.999
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012024.png ; $\mathcal{J}$ ; confidence 0.986
  
193. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009036.png ; $\tau _ { n } b _ { n } = b _ { n + 2 } + 2 ( n + 1 ) a _ { n + 1 }$ ; confidence 0.320
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032019.png ; $z \rightarrow 0$ ; confidence 0.986
  
194. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016023.png ; $\| \Delta A \| _ { 2 } \leq c n ^ { 2 } u \| A \| _ { 2 }$ ; confidence 0.763
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600249.png ; $L / K$ ; confidence 0.986
  
195. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016027.png ; $A \| _ { 2 } = \operatorname { max } _ { x } \neq 0$ ; confidence 0.377
+
195. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203201.png ; $T : L ^ { 1 } \rightarrow X$ ; confidence 0.986
  
196. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170125.png ; $\mu \equiv \sum \rho _ { i } \delta _ { z _ { i } }$ ; confidence 0.686
+
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032010.png ; $u \perp v$ ; confidence 0.986
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180160.png ; $\theta \otimes \varphi \in \otimes ^ { 2 } E$ ; confidence 0.994
+
197. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019026.png ; $D = x ^ { 2 } + y ^ { 2 } + t ^ { 2 } - 1 - 2 x y t$ ; confidence 0.986
  
198. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180306.png ; $( R ( \nabla ) \otimes 1 ) g \in \otimes ^ { 4 } E$ ; confidence 0.972
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005042.png ; $E ^ { * } \subset \mathcal{A}$ ; confidence 0.986
  
199. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180465.png ; $\pi ^ { * } _ { 0 } g \in S ^ { 2 } \varepsilon _ { 0 }$ ; confidence 0.217
+
199. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026048.png ; $\int _ { 0 } ^ { t } \phi ( s ) d B ( s ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) \phi ( s ) d s,$ ; confidence 0.986
  
200. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019038.png ; $\varphi * : K _ { 0 } ^ { alg } ( A ) \rightarrow C$ ; confidence 0.330
+
200. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011071.png ; $V - U$ ; confidence 0.986
  
201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029015.png ; $\pi _ { 1 } ( F , e ) \rightarrow \pi _ { 1 } ( E , e )$ ; confidence 0.691
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030072.png ; $\sigma ( A )$ ; confidence 0.986
  
202. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300607.png ; $\{ t \geq 0 , \square - \infty < x < + \infty \}$ ; confidence 0.994
+
202. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003011.png ; $X ^ { * } Y = \mu X Y + \nu Y X + \frac { 1 } { 6 } \operatorname { Tr } ( X Y ),$ ; confidence 0.986
  
203. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020237.png ; $( \overline { \lambda } , \overline { \mu } )$ ; confidence 0.999
+
203. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017085.png ; $B = c + i d$ ; confidence 0.986
  
204. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060101.png ; $Y _ { 1 } \in \{ y _ { 1 } , 1 , y _ { 1 } , 3 , y _ { 1 } , 8 \}$ ; confidence 0.774
+
204. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g0433906.png ; $= \operatorname { lim } _ { t \rightarrow 0 } \frac { f ( x _ { 0 } + t h ) - f ( x _ { 0 } ) } { t }$ ; confidence 0.986
  
205. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080144.png ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) )$ ; confidence 0.733
+
205. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075140/p0751404.png ; $R ( L )$ ; confidence 0.986
  
206. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011025.png ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.567
+
206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028010.png ; $\pi _ { 1 } ( X _ { 1 } , X _ { 0 } )$ ; confidence 0.986
  
207. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d1201309.png ; $GL ( V ) = \operatorname { Aut } _ { F _ { q } } ( V )$ ; confidence 0.276
+
207. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010081.png ; $\int _ { \mathbf{R} ^ { n N } } | \Phi | ^ { 2 } = 1$ ; confidence 0.986
  
208. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020015.png ; $p _ { N } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m j } m ^ { - s }$ ; confidence 0.206
+
208. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005098.png ; $B _ { n } = H _ { n } ^ { - 1 } = D ^ { 2 } f ( x ^ { * } )$ ; confidence 0.986
  
209. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026020.png ; $P \{ X _ { n } \in G \} \rightarrow P \{ w \in G \}$ ; confidence 0.751
+
209. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840266.png ; $\overline { \Delta } \cap \sigma ( A )$ ; confidence 0.986
  
210. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280150.png ; $z \in C ^ { x } \backslash \overline { D } _ { m }$ ; confidence 0.353
+
210. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016078.png ; $C ( T \times S )$ ; confidence 0.986
  
211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001013.png ; $M \subseteq \text { Mono } ( \mathfrak { A } )$ ; confidence 0.193
+
211. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230134.png ; $R _ { 22 } = 0$ ; confidence 0.986
  
212. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012032.png ; $\operatorname { log } L ( \theta | Y _ { aug } )$ ; confidence 0.516
+
212. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020042.png ; $g _ { 1 } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.986
  
213. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000139.png ; $S ( T , \alpha ) = H _ { \alpha } ( T ( B ( 0,1 ) ) , H )$ ; confidence 0.989
+
213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007019.png ; $L ( 5,2 )$ ; confidence 0.986
  
214. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015011.png ; $( ( x ) 0 , ( \dot { x } ) _ { 0 } , t _ { 0 } ) \in \Omega$ ; confidence 0.676
+
214. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004064.png ; $\Delta ( G ) = \omega ( L ( G ) )$ ; confidence 0.986
  
215. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e1300508.png ; $\phi ( \lambda , \mu ; \alpha , \beta ; x , y ) =$ ; confidence 0.995
+
215. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007028.png ; $M : \mathcal{C} \rightarrow \mathcal{A}$ ; confidence 0.986
  
216. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023017.png ; $E ^ { 1 } = J ^ { 1 } ( E ) = M \times F \times R ^ { n m }$ ; confidence 0.409
+
216. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020169.png ; $\mathcal{M} ^ { 1 }$ ; confidence 0.986
  
217. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260135.png ; $\pi _ { v , p } ( d \theta ) P ( \theta , \mu ) ( d x )$ ; confidence 0.493
+
217. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240125.png ; $\phi : X _ { 0 } ( N ) \rightarrow E$ ; confidence 0.986
  
218. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080119.png ; $\Gamma \varphi ( x , y ) = \varphi ( x y ^ { - 1 } )$ ; confidence 0.997
+
218. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150141.png ; $\beta ( A - S ) < \infty$ ; confidence 0.986
  
219. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f1201005.png ; $f ( \frac { a z + b } { c z + d } ) = ( c z + d ) ^ { k } f ( z )$ ; confidence 0.948
+
219. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005022.png ; $\mathbf{L} = ( L _ { k } ( \mathbf a ) )$ ; confidence 0.986
  
220. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010019.png ; $\sigma _ { k - 1 } ( n ) = \sum _ { 0 < d | n } d ^ { k - 1 }$ ; confidence 0.635
+
220. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012040.png ; $\sigma \in \mathbf{C}$ ; confidence 0.986
  
221. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110154.png ; $G ( \zeta ) \in \tilde { O } ( D ^ { N } - i \Gamma )$ ; confidence 0.552
+
221. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011050.png ; $\pi _ { 1 } ( \overline { M } ) = \pi _ { 1 } ( F )$ ; confidence 0.986
  
222. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110138.png ; $\operatorname { Im } \zeta \in \Delta _ { k }$ ; confidence 0.805
+
222. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019029.png ; $1 \neq n \in N$ ; confidence 0.986
  
223. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016051.png ; $\lambda \notin \sigma _ { \text { lre } } ( T )$ ; confidence 0.362
+
223. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002029.png ; $A ^ { 7 }$ ; confidence 0.986
  
224. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019065.png ; $H = \{ u \in G : \omega ^ { \lambda } = \omega \}$ ; confidence 0.709
+
224. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015057.png ; $W ^ { \infty , p } ( \Omega )$ ; confidence 0.986
  
225. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023084.png ; $D \in \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.905
+
225. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007082.png ; $\gamma _ { i } \in \Gamma$ ; confidence 0.986
  
226. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023051.png ; $( i _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.491
+
226. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008035.png ; $X \mapsto X ^ { \prime \prime }$ ; confidence 0.986
  
227. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230123.png ; $( L _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.630
+
227. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003011.png ; $\sum _ { i = 1 } ^ { n } [ - \operatorname { ln } f _ { T _ { n } } ( x _ { i } ) ]$ ; confidence 0.986
  
228. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001080.png ; $c = \operatorname { log } _ { \omega } \gamma$ ; confidence 0.673
+
228. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011086.png ; $( x _ { k } , \xi _ { k } ) \mapsto ( \xi _ { k } , - x _ { k } )$ ; confidence 0.986
  
229. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030102.png ; $( x , \varepsilon ) \in R \times ( 0 , \infty )$ ; confidence 0.991
+
229. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n1300704.png ; $\mu : \Sigma \rightarrow [ 0 , + \infty ]$ ; confidence 0.986
  
230. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005084.png ; $P = \{ p _ { 1 } , \dots , p _ { n } \} \subset R ^ { k }$ ; confidence 0.876
+
230. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008088.png ; $w \rightarrow 0$ ; confidence 0.986
  
231. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004093.png ; $WF _ { s } ( P ( x , D ) u ) \cap \Gamma = \emptyset$ ; confidence 0.618
+
231. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k1201007.png ; $Z ( K )$ ; confidence 0.986
  
232. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005032.png ; $\mu _ { 0 } ( \dot { k } _ { C } , R _ { C } ) = i \mu _ { C }$ ; confidence 0.144
+
232. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025053.png ; $= 2 \left( \frac { 2 n \operatorname { sin } \theta } { \pi } \right) ^ { 1 / 2 } \operatorname { cos } \left\{ \left( n + \frac { 1 } { 2 } \right) \theta + \frac { \pi } { 4 } \right\} + \mathcal{O} ( 1 ),$ ; confidence 0.986
  
233. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300309.png ; $r ( z ) = \sum _ { k = 1 } ^ { \infty } s _ { k } z ^ { - k }$ ; confidence 0.995
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040118.png ; $\varphi \rightarrow \psi \in T$ ; confidence 0.986
  
234. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020119.png ; $\{ \rho _ { N } ( \phi ) \} _ { R } \geq 0 \in I ^ { p }$ ; confidence 0.142
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004018.png ; $\varphi \in \operatorname {Fm}$ ; confidence 0.986
  
235. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012073.png ; $\pi ^ { \prime } = 1 _ { Y } - D ( \phi ^ { \prime } )$ ; confidence 0.591
+
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043018.png ; $\Delta : B \rightarrow B \otimes B$ ; confidence 0.986
  
236. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120148.png ; $\pi _ { Y } : \overline { B } ( Y ) \rightarrow Y$ ; confidence 0.969
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013049.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } \Gamma H ( \theta _ { n - 1 } , X _ { n } ),$ ; confidence 0.986
  
237. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012013.png ; $\| f ( x + y ) - f ( x ) - f ( y ) \| \leq \varepsilon$ ; confidence 0.979
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302007.png ; $V \times V \times V$ ; confidence 0.986
  
238. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030164.png ; $\phi \in H ^ { * } ( \Gamma ) = H ^ { * } ( B \Gamma )$ ; confidence 0.997
+
238. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007014.png ; $1 \leq j \leq l$ ; confidence 0.986
  
239. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050108.png ; $P _ { \theta } ( | X - \theta | > \epsilon _ { X } )$ ; confidence 0.314
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220106.png ; $m \leq i / 2$ ; confidence 0.986
  
240. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300602.png ; $u ^ { \prime \prime } + k ^ { 2 } u - q ( x ) u = 0 , x > 0$ ; confidence 0.963
+
240. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302809.png ; $A \mathbf{x} \in B$ ; confidence 0.986
  
241. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090201.png ; $L _ { p } ( s , \chi ) = G _ { \chi } ^ { * } ( u ^ { s } - 1 )$ ; confidence 0.955
+
241. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018055.png ; $u \vee y = x$ ; confidence 0.986
  
242. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002043.png ; $\operatorname { ln } P ( X = 0 ) \sim - \lambda$ ; confidence 0.553
+
242. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005051.png ; $- k _ { j } ^ { 2 }$ ; confidence 0.986
  
243. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002083.png ; $E | Y _ { \infty } - Y _ { T } | \leq cP [ T < \infty ]$ ; confidence 0.521
+
243. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301704.png ; $x _ { t } = y _ { t } + z _ { t },$ ; confidence 0.986
  
244. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002050.png ; $E B _ { S } B _ { t } = \operatorname { min } ( s , t )$ ; confidence 0.519
+
244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021080.png ; $t ( M ; 1,2 )$ ; confidence 0.986
  
245. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002034.png ; $\varphi _ { 2 } + i \overline { \varphi } _ { 2 }$ ; confidence 0.515
+
245. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002015.png ; $( \partial / \partial x _ { k } ) u ( x )$ ; confidence 0.986
  
246. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020111.png ; $P [ X ^ { * } > \lambda ] \leq C e ^ { - \lambda / e }$ ; confidence 0.350
+
246. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020175.png ; $f _ { 2 } = u _ { 2 } + i v _ { 2 }$ ; confidence 0.986
  
247. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200709.png ; $X ^ { \prime \prime } ( t ) + R ( t ) \circ X ( t ) = 0$ ; confidence 0.995
+
247. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d120180104.png ; $L ^ { \infty } ( m )$ ; confidence 0.986
  
248. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008025.png ; $Q ( \partial / \partial x ) ( K _ { p } ( f ) - ( f ) )$ ; confidence 0.952
+
248. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c02028083.png ; $D ^ { \prime }$ ; confidence 0.986
  
249. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840216.png ; $\sigma ( T ) \cap \{ | \rho | = 1 \} = \emptyset$ ; confidence 0.994
+
249. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011039.png ; $S ^ { n } \subset S ^ { n + 2 }$ ; confidence 0.986
  
250. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k1300609.png ; $\{ \alpha _ { 1 } + 1 , \dots , \alpha _ { k } + 1 \}$ ; confidence 0.381
+
250. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002021.png ; $k ^ { \prime  \mu}$ ; confidence 0.986
  
251. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006026.png ; $\alpha _ { 2 } = 1 , \dots , \alpha _ { k - 1 } = k - 2$ ; confidence 0.492
+
251. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018077.png ; $\rho = u + v$ ; confidence 0.986
  
252. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009010.png ; $[ X , f Y ] _ { A } = f [ X , Y ] _ { A } + ( q _ { 4 } ( X ) , f ) Y$ ; confidence 0.684
+
252. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006017.png ; $z _ { i } \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.986
  
253. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010074.png ; $\rho ( x ) = \sum _ { j \geq 1 } | f _ { j } ( x ) | ^ { 2 }$ ; confidence 0.853
+
253. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035070/e03507041.png ; $\theta \rightarrow \theta _ { 0 }$ ; confidence 0.986
  
254. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006063.png ; $m _ { i - 1 } = a _ { i - 1 } m _ { i } + m _ { i + 1 } , i = 1,2 ,$ ; confidence 0.350
+
254. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202006.png ; $\{ \lambda _ { m } \}$ ; confidence 0.986
  
255. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006067.png ; $p _ { i + 1 } = a _ { i - 1 } p _ { i } + p _ { i - 1 } , i = 1,2 ,$ ; confidence 0.106
+
255. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008033.png ; $( L , w )$ ; confidence 0.986
  
256. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002019.png ; $L ( \pi + x ) = \pi \operatorname { ln } 2 + L ( x )$ ; confidence 0.991
+
256. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548016.png ; $\neg p \supset ( p \supset q )$ ; confidence 0.986
  
257. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002018.png ; $L ( \pi - x ) = \pi \operatorname { ln } 2 - L ( x )$ ; confidence 0.946
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110060/c11006050.png ; $m > k$ ; confidence 0.986
  
258. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003028.png ; $\angle Q P T = \angle Q P U ^ { \prime } = \alpha$ ; confidence 0.996
+
258. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016020.png ; $C ( q \times n )$ ; confidence 0.986
  
259. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120180.png ; $K _ { S } ( \overline { \sigma } ) \cap K _ { tot }$ ; confidence 0.452
+
259. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009085.png ; $( 1 + T ) x = \gamma . x$ ; confidence 0.986
  
260. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120148.png ; $\overline { \sigma } \in G ( K ) ^ { \epsilon }$ ; confidence 0.450
+
260. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009011.png ; $\rho _ { X } ^ { - 1 } ( 0 ) = X$ ; confidence 0.986
  
261. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110115.png ; $\partial \phi / \partial x _ { i } = \phi _ { i }$ ; confidence 0.507
+
261. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005029.png ; $E ( \alpha , \beta ) = ( x - y ) \bar{E} ( \alpha , \beta )$ ; confidence 0.986
  
262. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140145.png ; $\zeta = ( 1 , \zeta _ { 2 } , \dots , \zeta _ { N } )$ ; confidence 0.411
+
262. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520150.png ; $K [ \lambda ]$ ; confidence 0.985
  
263. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025022.png ; $\pi _ { k } ( X , * ) \rightarrow \pi _ { k } ( Y , * )$ ; confidence 0.883
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110730/a1107304.png ; $Y \rightarrow X$ ; confidence 0.985
  
264. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026041.png ; $\lambda ^ { * } ( x ) = ( \lambda ( x ^ { * } ) ) ^ { * }$ ; confidence 0.934
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008048.png ; $f \in C ( [ 0 , T ] ; V )$ ; confidence 0.985
  
265. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026050.png ; $x \rightarrow \| \alpha x \| + \| \alpha x \|$ ; confidence 0.184
+
265. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202009.png ; $D ^ { k + 1 } \times S ^ { m - k - 1 }$ ; confidence 0.985
  
266. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018065.png ; $\mu ( 0,1 ) = \sum _ { y , z } \mu ( 0 , y ) \mu ( z , 1 )$ ; confidence 0.999
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026026.png ; $y \notin f ( \partial \Omega )$ ; confidence 0.985
  
267. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018039.png ; $\phi ( n ) = \sum _ { d | n } d \mu ( \frac { n } { d } )$ ; confidence 0.446
+
267. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110020/f11002025.png ; $\partial P$ ; confidence 0.985
  
268. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010115.png ; $A ( \alpha ^ { \prime } , \alpha _ { 0 } , k _ { 0 } )$ ; confidence 0.763
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008070.png ; $2 s = R - L$ ; confidence 0.985
  
269. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010129.png ; $A _ { 1 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.997
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290205.png ; $n \neq t_i$ ; confidence 0.985
  
270. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001062.png ; $D _ { R } ^ { \prime } : = D ^ { \prime } \cap B _ { R }$ ; confidence 0.996
+
270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007022.png ; $d ^ { n + 1 } d ^ { n } = 0$ ; confidence 0.985
  
271. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010130.png ; $A _ { 2 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.994
+
271. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022048.png ; $F ( u )$ ; confidence 0.985
  
272. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005073.png ; $\Theta _ { \Delta } ( z ) = H + z G ( I - z T ) ^ { - 1 } F$ ; confidence 0.878
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002040.png ; $b : \mathbf{R} ^ { n } \times \mathbf{R} ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.985
  
273. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920
+
273. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002016.png ; $j \left( u \left( x + \frac { 1 } { j } e _ { k } \right) - u ( x ) \right),$ ; confidence 0.985
  
274. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009052.png ; $R _ { + } ^ { n } = \{ ( x , t ) : x \in R ^ { n - 1 } , t > 0 \}$ ; confidence 0.766
+
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027085.png ; $\sum | b _ { n } | < \infty$ ; confidence 0.985
  
275. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002017.png ; $R = \Delta \zeta : G \rightarrow G \otimes A$ ; confidence 0.430
+
275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170183.png ; $\operatorname { dim } K = 3$ ; confidence 0.985
  
276. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q1200104.png ; $\varphi _ { 1 } ( f ) , \dots , \varphi _ { N } ( f )$ ; confidence 0.400
+
276. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014026.png ; $\operatorname{dim}\operatorname {ker}p(T)=\operatorname{dim}\operatorname{ker}T.\operatorname{degree}p ( T ) $ ; confidence 0.985
  
277. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001095.png ; $d \tilde { \pi } ^ { c } ( X ) = d \tilde { \pi } ( X )$ ; confidence 0.195
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121027.png ; $x \rightarrow + \infty$ ; confidence 0.985
  
278. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001022.png ; $x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } - t ^ { 2 }$ ; confidence 0.993
+
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210119.png ; $w _ { 1 } , w _ { 2 } \in W$ ; confidence 0.985
  
279. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005053.png ; $y ^ { k } = D ^ { T } f ( x ^ { k + 1 } ) - D ^ { T } f ( x ^ { k } )$ ; confidence 0.996
+
279. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170209.png ; $\overline { K } \rightarrow K$ ; confidence 0.985
  
280. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794
+
280. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h1301209.png ; $H : G _ { 1 } \rightarrow G _ { 2 }$ ; confidence 0.985
  
281. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005078.png ; $D ^ { * } = \hat { C } \backslash \overline { D }$ ; confidence 0.378
+
281. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070102.png ; $h , g \in H$ ; confidence 0.985
  
282. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007016.png ; $| f ( y ) | \leq c ( y ) \| f \| , c ( y ) : = \| K ( , y ) \|$ ; confidence 0.767
+
282. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290159.png ; $( X , L , \mathcal{T} )$ ; confidence 0.985
  
283. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007028.png ; $A \varphi _ { j } = \lambda _ { j } \varphi _ { j }$ ; confidence 0.989
+
283. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010129.png ; $M _ { 1 } \times S ^ { N } \approx M _ { 2 } \times S ^ { N }$ ; confidence 0.985
  
284. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070141.png ; $( h ( s , x ) , h ( t , x ) ) _ { H } = \delta _ { m } ( t - s )$ ; confidence 0.957
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a1101606.png ; $( n \times n )$ ; confidence 0.985
  
285. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070142.png ; $( h ( s , y ) , \delta _ { m } ( t - s ) ) _ { H } = h ( t , y )$ ; confidence 0.920
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040229.png ; $\wedge \Gamma \approx \Delta \rightarrow \varphi \approx \psi$ ; confidence 0.985
  
286. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008093.png ; $( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.945
+
286. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320127.png ; $\varphi ^ { * } : \mathcal{O} ( \mathcal{V} ) \rightarrow \mathcal{O} ( \mathcal{U} )$ ; confidence 0.985
  
287. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002032.png ; $d \gamma = | \langle v , N _ { X } \rangle | d v d x$ ; confidence 0.342
+
287. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s1202109.png ; $E ( \lambda , D _ { \operatorname {Z} } )$ ; confidence 0.985
  
288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004013.png ; $a _ { \delta } = \prod _ { i < j } ( x _ { i } - x _ { j } )$ ; confidence 0.679
+
288. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007039.png ; $f \in \{ \Gamma , k , \mathbf{v} \}$ ; confidence 0.985
  
289. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017062.png ; $v = ( \succsim _ { 1 } , \dots , \succsim _ { n } )$ ; confidence 0.555
+
289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053015.png ; $M \subset M ( \nu )$ ; confidence 0.985
  
290. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044022.png ; $V \mapsto \operatorname { Hom } _ { k } ( V , k )$ ; confidence 0.892
+
290. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006035.png ; $C \rightarrow X$ ; confidence 0.985
  
291. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230123.png ; $\operatorname { cov } ( X ) = V \otimes I _ { n }$ ; confidence 0.979
+
291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m1302004.png ; $P = \omega ^ { - 1 } : T ^ { * } M \rightarrow T M$ ; confidence 0.985
  
292. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023048.png ; $X \sim T _ { p , n } ( \delta , 0 , \Sigma , l _ { n } )$ ; confidence 0.772
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022023.png ; $p = 1$ ; confidence 0.985
  
293. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023025.png ; $A X \sim \operatorname { RS } _ { q , n } ( \psi )$ ; confidence 0.493
+
293. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034079.png ; $f : \mathbf{R} ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.985
  
294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230116.png ; $\tau _ { 1 } \geq \ldots \geq \tau _ { p } \geq 0$ ; confidence 0.972
+
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002022.png ; $\operatorname { limsup } _ { n \rightarrow \infty } \pm \frac { n ^ { 1 / 4 } } { ( \operatorname { log } \operatorname { log } n ) ^ { 3 / 4 } } ( \alpha _ { n } ( t ) + \beta _ { n } ( t ) ) =$ ; confidence 0.985
  
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620119.png ; $( 1 / \pi ) \operatorname { Im } m + ( \lambda )$ ; confidence 0.973
+
295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007046.png ; $C ^ { + } ( \Gamma , k , \mathbf{v} )$ ; confidence 0.985
  
296. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340131.png ; $\alpha _ { H } ( x _ { + } ) - \alpha _ { H } ( x _ { - } )$ ; confidence 0.165
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007072.png ; $\left\| \frac { \partial } { \partial t } ( \lambda - A ( t ) ) ^ { - 1 } \right\| \leq \frac { K _ { 1 } } { ( 1 + | \lambda | ) ^ { \rho } },$ ; confidence 0.985
  
297. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005042.png ; $\Lambda = \oplus _ { k = 1 } ^ { n } \Lambda ^ { k }$ ; confidence 0.975
+
297. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120060/n1200608.png ; $F f : F M \rightarrow F N$ ; confidence 0.985
  
298. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007012.png ; $\int _ { 0 } ^ { 2 \pi } \theta ( t ) d t = 2 \pi ^ { 2 }$ ; confidence 0.999
+
298. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006016.png ; $z _ { 0 } \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.985
  
299. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005059.png ; $U \rightarrow G _ { N } ( R ^ { N } \times R ^ { p } )$ ; confidence 0.621
+
299. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010046.png ; $R ( X , Y ) Z = C \{ g ( \phi Y , Z ) \phi X - g ( \phi X , Z ) \phi Y \},$ ; confidence 0.985
  
300. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005054.png ; $F _ { i } \subset G _ { N } ( R ^ { N } \times R ^ { p } )$ ; confidence 0.470
+
300. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023056.png ; $\operatorname { max } \{ 1 / s , 1 / ( t - s ) \}$ ; confidence 0.985

Latest revision as of 17:51, 18 May 2020

List

1. t12021032.png ; $t ( M ^ { * } ; x , y ) = t ( M ; y , x )$ ; confidence 0.987

2. s13059044.png ; $L _ { 0 } = - \sum _ { k = 1 } ^ { \infty } c _ { - k } ( - z ) ^ { k } , L _ { \infty } = \sum _ { k = 0 } ^ { \infty } c _ { k } ( - z ) ^ { - k }.$ ; confidence 0.987

3. t120200162.png ; $0 < \kappa \leq \pi / 2$ ; confidence 0.987

4. a130240323.png ; $\mathcal{H} : \mathbf{X} _ { 3 } \mathbf{B} = 0,$ ; confidence 0.987

5. z130110133.png ; $\alpha ( x ) = \frac { \beta \Gamma ( x - \beta ) } { \Gamma ( 1 - \beta ) \Gamma ( x + 1 ) },$ ; confidence 0.987

6. s1304408.png ; $[ , ] _ { 0 }$ ; confidence 0.987

7. n067520217.png ; $A \rightarrow C ^ { - 1 } A D$ ; confidence 0.987

8. f13012039.png ; $h ( G ) \leq f ( \text{l} ( C ) )$ ; confidence 0.987

9. c13015039.png ; $( u _ { \varepsilon } ) _ { \varepsilon > 0 } \subset \mathcal{C} ^ { \infty } ( \Omega )$ ; confidence 0.987

10. c12020010.png ; $S ^ { k } \times S ^ { m - k - 1 }$ ; confidence 0.987

11. z13008049.png ; $= - n ( n + 2 + 2 \alpha ) f , \mathcal{D} = z \frac { \partial } { \partial z } + \bar{z} \frac { \partial } { \partial \bar{z} }.$ ; confidence 0.987

12. i130090113.png ; $\lambda _ { p } ( K / k )$ ; confidence 0.987

13. c1202303.png ; $f : S ^ { 1 } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.987

14. m12007062.png ; $m ( P ) > c _ { 1 } ( \operatorname { log } \operatorname { log } d / \operatorname { log } d ) ^ { 3 }$ ; confidence 0.987

15. a01121022.png ; $v ( x )$ ; confidence 0.987

16. t12013060.png ; $\Lambda ^ { p } M = M ( \Lambda ^ { t } ) ^ { p }$ ; confidence 0.987

17. f120230120.png ; $\omega \in \Omega ^ { 1 } ( M )$ ; confidence 0.987

18. i130090137.png ; $\mu _ { p } ( k _ { \infty } / k ) = 0$ ; confidence 0.987

19. s130620223.png ; $\mu _ { s } ( B ) > 0$ ; confidence 0.987

20. w12013012.png ; $\sigma _ { d } ( T )$ ; confidence 0.987

21. i130090179.png ; $L _ { p } ( s , \chi )$ ; confidence 0.987

22. s12023038.png ; $\mathcal{O} ( p , n )$ ; confidence 0.987

23. d12016076.png ; $L _ { 1 } ( X \times Y )$ ; confidence 0.987

24. f13004018.png ; $b _ { k } = - i h ^ { - 1 } H _ { 0 } ( x _ { k } ) t - i H _ { 1 } ( x _ { k } ) t$ ; confidence 0.987

25. t12006069.png ; $\sum _ { j } N _ { j } = N$ ; confidence 0.987

26. a12012053.png ; $( x ^ { j } , y ^ { j } ) \in \mathcal{J}$ ; confidence 0.987

27. s130540110.png ; $K _ { 1 } R$ ; confidence 0.987

28. a01234025.png ; $r > 1$ ; confidence 0.987

29. f12021098.png ; $( \operatorname { log } z ) z ^ { \lambda _ { 1 } }$ ; confidence 0.987

30. c02747061.png ; $I = [ 0,1 ]$ ; confidence 0.987

31. m1200307.png ; $\prod _ { i = 1 } ^ { n } f _ { T _ { n } } ( x _ { i } )$ ; confidence 0.987

32. m120030114.png ; $[ 0 , c ]$ ; confidence 0.987

33. c02583044.png ; $m _ { T } ( \lambda )$ ; confidence 0.987

34. t1200201.png ; $( F , \mathcal{B} )$ ; confidence 0.987

35. e13004034.png ; $P_-$ ; confidence 0.987

36. b12018058.png ; $\sigma \cap \tau$ ; confidence 0.987

37. z13003024.png ; $( Z f ) ( t , w ) = f ( t )$ ; confidence 0.987

38. k055840121.png ; $\mathcal{L} \cap \mathcal{L} ^ { \perp }$ ; confidence 0.987

39. v1300505.png ; $J ( q ) = q ^ { - 1 } + 196884 q + \dots$ ; confidence 0.987

40. o13004015.png ; $\operatorname { exp } \left[ \int _ { 0 } ^ { T } L ( \dot { \phi } ( s ) , \phi ( s ) ) d s - \int _ { 0 } ^ { T } L ( \dot { \psi } ( s ) , \psi ( s ) ) d s \right]$ ; confidence 0.987

41. a12010048.png ; $R ( I + \lambda A = X$ ; confidence 0.987

42. t12020066.png ; $R _ { n } > 1 / 5$ ; confidence 0.987

43. k055840362.png ; $( X ^ { * } - X ) ( A + B X ) \geq 0$ ; confidence 0.987

44. s13045048.png ; $( X _ { 2 } , Y _ { 2 } )$ ; confidence 0.987

45. m13013050.png ; $L = \nu I - J$ ; confidence 0.987

46. a011460115.png ; $n \leq 2$ ; confidence 0.987

47. s12034079.png ; $( x , u ) \equiv ( x ^ { \prime } , u ^ { \prime } )$ ; confidence 0.987

48. f13019011.png ; $P _ { N } u = \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) C _ { j } ( x )$ ; confidence 0.987

49. s12005015.png ; $\{ \gamma _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.987

50. b13003010.png ; $x , z \in V ^ { \pm }$ ; confidence 0.987

51. r13012022.png ; $u ^ { * } u \leq y ^ { * } y$ ; confidence 0.987

52. s12034062.png ; $n = \operatorname { dim } M / 2$ ; confidence 0.987

53. s13048031.png ; $D = d : C ^ { \infty } ( M ) \rightarrow \Omega ^ { 1 } ( M )$ ; confidence 0.987

54. p13013069.png ; $\lambda \in \operatorname {SP} ^ { + } ( n )$ ; confidence 0.987

55. t120010147.png ; $T ^ { 2 } \times \operatorname { Sp } ( 1 )$ ; confidence 0.987

56. a130240431.png ; $\mathbf{a} ^ { \prime } \Theta$ ; confidence 0.987

57. a1101003.png ; $V$ ; confidence 0.987

58. c12030042.png ; $u : \mathcal{H} \rightarrow \mathcal{H} ^ { \prime }$ ; confidence 0.987

59. e12006038.png ; $Y \rightarrow J ^ { 1 } Y$ ; confidence 0.987

60. g13003082.png ; $\Gamma \subset \Omega$ ; confidence 0.987

61. h13009035.png ; $g \rightarrow g$ ; confidence 0.987

62. s13002040.png ; $g _ { t } ( u )$ ; confidence 0.987

63. v1300709.png ; $\overset{\rightharpoonup} { V }$ ; confidence 0.987

64. n13005024.png ; $( s , s \mu ; \mu$ ; confidence 0.987

65. q13005041.png ; $K [ f ]$ ; confidence 0.987

66. h13003069.png ; $t ( z )$ ; confidence 0.987

67. i130060108.png ; $\varphi_{+} ( k )$ ; confidence 0.987

68. b13007020.png ; $b \mapsto b ^ { 2 }$ ; confidence 0.987

69. s12034043.png ; $\omega ( J u , J v ) = \omega ( u , v )$ ; confidence 0.987

70. n067520100.png ; $A , B \in M _ { n \times n } ( K )$ ; confidence 0.987

71. a130050210.png ; $G _ { K }$ ; confidence 0.987

72. j120020205.png ; $c _ { 1 } = c _ { 1 } ( c )$ ; confidence 0.987

73. m13020024.png ; $\gamma \circ \alpha ^ { \prime } = 0$ ; confidence 0.987

74. k05578010.png ; $f _ { i } ( x ) x ^ { - 3 / 4 } \in L ( 0 , \infty ) , \quad f _ { i } ( x ) \in L _ { 2 } ( 0 , \infty );$ ; confidence 0.987

75. h0480706.png ; $n \geq k \geq 1$ ; confidence 0.987

76. s13065046.png ; $F _ { \mu }$ ; confidence 0.987

77. g13003035.png ; $( u _ { \lambda } - v _ { \lambda } ) _ { \lambda \in \Lambda } \in \mathcal{Z}$ ; confidence 0.987

78. w13008015.png ; $\frac { \partial d \omega _ { 1 } } { \partial T } = \frac { \partial d \omega _ { 3 } } { \partial X },$ ; confidence 0.987

79. l06003048.png ; $P U ^ { \prime } \| Q A ^ { \prime }$ ; confidence 0.987

80. b13019032.png ; $U ( f ; M _ { 1 } , M _ { 2 } ; H _ { 1 } , H _ { 2 } )$ ; confidence 0.987

81. e12024070.png ; $\square ( E / K )$ ; confidence 0.987

82. b13001053.png ; $V _ { j }$ ; confidence 0.987

83. m12015053.png ; $( p n \times r s )$ ; confidence 0.987

84. c12016043.png ; $\Pi ^ { T } A \Pi = R ^ { T } R , \quad R = \left( \begin{array} { c c } { R _ { 11 } } & { R _ { 12 } } \\ { 0 } & { 0 } \end{array} \right),$ ; confidence 0.987

85. h13005029.png ; $S ( 0 )$ ; confidence 0.987

86. h12002044.png ; $H _ { \phi } f = \mathcal{P} _ { - } \phi f$ ; confidence 0.987

87. b12006010.png ; $w ( z ) = u ( x , y )$ ; confidence 0.987

88. h1301206.png ; $h : G _ { 1 } \rightarrow G _ { 2 }$ ; confidence 0.987

89. b13007036.png ; $i , j \geq 0$ ; confidence 0.987

90. a12016051.png ; $X ( t )$ ; confidence 0.987

91. b11104018.png ; $a x + b$ ; confidence 0.987

92. n1200709.png ; $| m ( E ) | < M , \quad m \in \mathcal{M} , E \in \Sigma.$ ; confidence 0.987

93. b13003037.png ; $x.z = \{ x y z \} / 2$ ; confidence 0.987

94. c12008090.png ; $T _ { p , q }$ ; confidence 0.987

95. f13005031.png ; $p _ { i } = x _ { 0 }$ ; confidence 0.987

96. l11001033.png ; $f , g \in \mathcal{C} ( X , \mathbf{R} )$ ; confidence 0.987

97. d11008061.png ; $( L , w _ { i } )$ ; confidence 0.987

98. e12016011.png ; $\mathcal{E} = f + i \psi$ ; confidence 0.987

99. w12021033.png ; $( p + 1 ) q / 2$ ; confidence 0.987

100. r130070143.png ; $\delta _ { m } ( t - s )$ ; confidence 0.987

101. l05805010.png ; $x \in [ - 1,1 ]$ ; confidence 0.987

102. f13017018.png ; $P M _ { 2 } ( G ) = C V _ { 2 } ( G )$ ; confidence 0.987

103. l110010103.png ; $\{ P _ { i } : i \in I \}$ ; confidence 0.987

104. i130060129.png ; $f ^ { \prime } ( 0 , k )$ ; confidence 0.987

105. c02205014.png ; $x _ { i } ^ { 0 }$ ; confidence 0.987

106. b12022061.png ; $f ( t , x , \xi ) \in D _ { \xi }$ ; confidence 0.987

107. l13001033.png ; $C _ { 1 } < C _ { 2 }$ ; confidence 0.987

108. z13003025.png ; $| t | \leq 1 / 2$ ; confidence 0.987

109. b110100267.png ; $c _ { 1 } , c _ { 2 } > 0$ ; confidence 0.987

110. a130040747.png ; $\Sigma ( P , R )$ ; confidence 0.987

111. h12012057.png ; $X = \operatorname { im } ( \pi )$ ; confidence 0.987

112. x12003014.png ; $F _ { x } ( q )$ ; confidence 0.987

113. a01220010.png ; $f _ { 0 }$ ; confidence 0.987

114. t12002017.png ; $\sigma ( Y )$ ; confidence 0.987

115. m120100139.png ; $\Lambda \cong \pi _ { 1 } ( M )$ ; confidence 0.987

116. b13001013.png ; $G ( \mathbf{R} )$ ; confidence 0.987

117. b120210139.png ; $w _ { 2 } \in W ^ { ( k - 1 ) }$ ; confidence 0.987

118. r1300803.png ; $f : E \rightarrow \mathbf{C}$ ; confidence 0.987

119. b120420137.png ; $\square _ { H } ^ { H } \mathcal{M}$ ; confidence 0.987

120. z13010024.png ; $( \varphi \leftrightarrow \psi )$ ; confidence 0.987

121. z13013040.png ; $( 1 , \theta _ { 0 } )$ ; confidence 0.987

122. o13006044.png ; $\mathcal{H} = \mathcal{H} ^ { \prime } \oplus \mathcal{H} ^ { \prime \prime }$ ; confidence 0.987

123. j13004013.png ; $z = \sqrt { t } - 1 / \sqrt { t }$ ; confidence 0.987

124. b120440121.png ; $N _ { G } ( D ) \subseteq H$ ; confidence 0.987

125. a12007070.png ; $K _ { 1 } > 0$ ; confidence 0.987

126. w120110169.png ; $T ^ { * } ( \Omega )$ ; confidence 0.986

127. s13065044.png ; $F _ { n } = - \psi _ { n } / \phi _ { n }$ ; confidence 0.986

128. o130060158.png ; $V _ { \chi } \otimes \Delta$ ; confidence 0.986

129. b130290195.png ; $i \neq \operatorname { dim } R$ ; confidence 0.986

130. f12008058.png ; $\langle \varphi , T \rangle = ( \pi ( T ) \xi , \eta )$ ; confidence 0.986

131. b13025033.png ; $C _ { B C }$ ; confidence 0.986

132. c13015058.png ; $\mathcal{C} ^ { \infty } ( \Omega )$ ; confidence 0.986

133. a12017047.png ; $\Phi ( x )$ ; confidence 0.986

134. c0211007.png ; $\sigma ( A )$ ; confidence 0.986

135. l110020130.png ; $M \subseteq N \Rightarrow M ^ { \perp } \supseteq N ^ { \perp },$ ; confidence 0.986

136. b12027010.png ; $S _ { 0 } = 0,$ ; confidence 0.986

137. a130060123.png ; $\lambda = \lambda _ { G } = 1 / Z _ { G } ( q ^ { - 1 } )$ ; confidence 0.986

138. a130070109.png ; $\sigma ^ { * } ( n )$ ; confidence 0.986

139. h12011034.png ; $f \in C ( \Gamma )$ ; confidence 0.986

140. t12013068.png ; $[ \Lambda ^ { l } , L _ { 1 } ] = [ \Lambda ^ { l } , L _ { 2 } ] = 0$ ; confidence 0.986

141. f120230138.png ; $[ J , J ]$ ; confidence 0.986

142. w12017043.png ; $\omega ( G ) / Z ( G )$ ; confidence 0.986

143. b1201803.png ; $p ( x ) = 0$ ; confidence 0.986

144. q1200109.png ; $\psi _ { 0 } \in D$ ; confidence 0.986

145. v120020181.png ; $F : \overline { D } \square ^ { n + 1 } \rightarrow K ( E ^ { n + 1 } )$ ; confidence 0.986

146. a13027054.png ; $j \rightarrow \infty$ ; confidence 0.986

147. w13017039.png ; $H _ { x } ( t )$ ; confidence 0.986

148. r1301205.png ; $x - y \in C$ ; confidence 0.986

149. g12004097.png ; $( x , \xi ) \in \Sigma _ { P }$ ; confidence 0.986

150. d03181064.png ; $| \omega |$ ; confidence 0.986

151. s12026027.png ; $\Gamma ^ { - } \supset \Gamma ( L ^ { 2 } ( \mathbf{R} ) ) \supset \Gamma ^ { + }$ ; confidence 0.986

152. q12007015.png ; $\mathcal{R} _ { 23 } = 1 \otimes \mathcal{R}$ ; confidence 0.986

153. g120040141.png ; $u \in \mathcal{D} _ { s } ^ { \prime } ( \Omega )$ ; confidence 0.986

154. w13008062.png ; $Z ( t , \phi ) = \int _ { \phi _ { 0 } } \mathcal{D} \phi \operatorname { exp } [ S ( t , \phi ) ],$ ; confidence 0.986

155. b01566024.png ; $\tau_2$ ; confidence 0.986

156. b11066082.png ; $\sum _ { i } | f _ { i } | > \delta > 0$ ; confidence 0.986

157. t12020056.png ; $0 \leq d ^ { \prime } , d ^ { \prime \prime } \leq 3$ ; confidence 0.986

158. p0754804.png ; $( p \& q ) \supset q$ ; confidence 0.986

159. j12001064.png ; $F : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.986

160. s12005077.png ; $V V ^ { * } = 1$ ; confidence 0.986

161. s1200202.png ; $f : \mathbf{R} ^ { N } \rightarrow \mathbf{R}$ ; confidence 0.986

162. m120130124.png ; $L _ { 0 } \approx 0$ ; confidence 0.986

163. n067520375.png ; $\| \partial \psi _ { i } / \partial y _ { j } \|$ ; confidence 0.986

164. g12004049.png ; $\varphi ( x ^ { 0 } ) \neq 0$ ; confidence 0.986

165. f12002014.png ; $\alpha = P / Q$ ; confidence 0.986

166. a013180167.png ; $d T$ ; confidence 0.986

167. w12007092.png ; $f \in S ( \mathbf{R} ^ { k } )$ ; confidence 0.986

168. l11004049.png ; $F _ { \mathcal{X} } ( T )$ ; confidence 0.986

169. a130240415.png ; $f ( \Theta )$ ; confidence 0.986

170. s1306301.png ; $( A , \mathfrak m )$ ; confidence 0.986

171. a01022020.png ; $\epsilon > 0$ ; confidence 0.986

172. c120180348.png ; $C ( g ) = 0$ ; confidence 0.986

173. g04302061.png ; $O ( n )$ ; confidence 0.986

174. l12008045.png ; $( x , y ) \mapsto ( x ^ { k + 1 } / ( k + 1 ) + i y )$ ; confidence 0.986

175. i12001033.png ; $L _ { \Phi _ { 2 } } ( \Omega )$ ; confidence 0.986

176. w120110242.png ; $S ( H ^ { - 2 } , G )$ ; confidence 0.986

177. b12016026.png ; $x _ { 2 } ^ { \prime }$ ; confidence 0.986

178. h046010140.png ; $W \times S ^ { 1 } \approx M _ { 0 } \times S ^ { 1 } \times [ 0,1 ] \approx M _ { 1 } \times S ^ { 1 } \times [ 0,1 ].$ ; confidence 0.986

179. r13007086.png ; $H ^ { 0 } \subset H _ { 1 }$ ; confidence 0.986

180. a1302004.png ; $V \times V \times V \rightarrow V$ ; confidence 0.986

181. b13001061.png ; $U \subset V ^ { * }$ ; confidence 0.986

182. e1201009.png ; $\mathbf{E} ^ { \prime } = \mathbf{E} + \frac { 1 } { c } \mathbf{v} \times \mathbf{B},$ ; confidence 0.986

183. a01361020.png ; $x \rightarrow \pm \infty$ ; confidence 0.986

184. l12003094.png ; $X ^ { E }$ ; confidence 0.986

185. b12022014.png ; $Q ( f ) = 0$ ; confidence 0.986

186. a01046011.png ; $|.|$ ; confidence 0.986

187. m13025020.png ; $H ^ { s } ( \Omega ) \times H ^ { - s } ( \Omega ) \rightarrow H ^ { - s } ( \Omega )$ ; confidence 0.986

188. e120010123.png ; $\mathcal{M} \in \mathfrak { M }$ ; confidence 0.986

189. b12036021.png ; $p _ { y } + d p _ { y }$ ; confidence 0.986

190. b11022023.png ; $M = h ^ { i } ( X )$ ; confidence 0.986

191. k12006032.png ; $h ^ { i } ( L )$ ; confidence 0.986

192. a12012024.png ; $\mathcal{J}$ ; confidence 0.986

193. a11032019.png ; $z \rightarrow 0$ ; confidence 0.986

194. a011600249.png ; $L / K$ ; confidence 0.986

195. d1203201.png ; $T : L ^ { 1 } \rightarrow X$ ; confidence 0.986

196. b12032010.png ; $u \perp v$ ; confidence 0.986

197. m12019026.png ; $D = x ^ { 2 } + y ^ { 2 } + t ^ { 2 } - 1 - 2 x y t$ ; confidence 0.986

198. b12005042.png ; $E ^ { * } \subset \mathcal{A}$ ; confidence 0.986

199. s12026048.png ; $\int _ { 0 } ^ { t } \phi ( s ) d B ( s ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) \phi ( s ) d s,$ ; confidence 0.986

200. v13011071.png ; $V - U$ ; confidence 0.986

201. b12030072.png ; $\sigma ( A )$ ; confidence 0.986

202. o13003011.png ; $X ^ { * } Y = \mu X Y + \nu Y X + \frac { 1 } { 6 } \operatorname { Tr } ( X Y ),$ ; confidence 0.986

203. p12017085.png ; $B = c + i d$ ; confidence 0.986

204. g0433906.png ; $= \operatorname { lim } _ { t \rightarrow 0 } \frac { f ( x _ { 0 } + t h ) - f ( x _ { 0 } ) } { t }$ ; confidence 0.986

205. p0751404.png ; $R ( L )$ ; confidence 0.986

206. c12028010.png ; $\pi _ { 1 } ( X _ { 1 } , X _ { 0 } )$ ; confidence 0.986

207. l12010081.png ; $\int _ { \mathbf{R} ^ { n N } } | \Phi | ^ { 2 } = 1$ ; confidence 0.986

208. q12005098.png ; $B _ { n } = H _ { n } ^ { - 1 } = D ^ { 2 } f ( x ^ { * } )$ ; confidence 0.986

209. k055840266.png ; $\overline { \Delta } \cap \sigma ( A )$ ; confidence 0.986

210. d12016078.png ; $C ( T \times S )$ ; confidence 0.986

211. d120230134.png ; $R _ { 22 } = 0$ ; confidence 0.986

212. t12020042.png ; $g _ { 1 } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.986

213. f13007019.png ; $L ( 5,2 )$ ; confidence 0.986

214. v12004064.png ; $\Delta ( G ) = \omega ( L ( G ) )$ ; confidence 0.986

215. c12007028.png ; $M : \mathcal{C} \rightarrow \mathcal{A}$ ; confidence 0.986

216. j120020169.png ; $\mathcal{M} ^ { 1 }$ ; confidence 0.986

217. e120240125.png ; $\phi : X _ { 0 } ( N ) \rightarrow E$ ; confidence 0.986

218. f120150141.png ; $\beta ( A - S ) < \infty$ ; confidence 0.986

219. l13005022.png ; $\mathbf{L} = ( L _ { k } ( \mathbf a ) )$ ; confidence 0.986

220. z13012040.png ; $\sigma \in \mathbf{C}$ ; confidence 0.986

221. m12011050.png ; $\pi _ { 1 } ( \overline { M } ) = \pi _ { 1 } ( F )$ ; confidence 0.986

222. f12019029.png ; $1 \neq n \in N$ ; confidence 0.986

223. h13002029.png ; $A ^ { 7 }$ ; confidence 0.986

224. c13015057.png ; $W ^ { \infty , p } ( \Omega )$ ; confidence 0.986

225. z13007082.png ; $\gamma _ { i } \in \Gamma$ ; confidence 0.986

226. i13008035.png ; $X \mapsto X ^ { \prime \prime }$ ; confidence 0.986

227. m12003011.png ; $\sum _ { i = 1 } ^ { n } [ - \operatorname { ln } f _ { T _ { n } } ( x _ { i } ) ]$ ; confidence 0.986

228. w12011086.png ; $( x _ { k } , \xi _ { k } ) \mapsto ( \xi _ { k } , - x _ { k } )$ ; confidence 0.986

229. n1300704.png ; $\mu : \Sigma \rightarrow [ 0 , + \infty ]$ ; confidence 0.986

230. w13008088.png ; $w \rightarrow 0$ ; confidence 0.986

231. k1201007.png ; $Z ( K )$ ; confidence 0.986

232. s12025053.png ; $= 2 \left( \frac { 2 n \operatorname { sin } \theta } { \pi } \right) ^ { 1 / 2 } \operatorname { cos } \left\{ \left( n + \frac { 1 } { 2 } \right) \theta + \frac { \pi } { 4 } \right\} + \mathcal{O} ( 1 ),$ ; confidence 0.986

233. a130040118.png ; $\varphi \rightarrow \psi \in T$ ; confidence 0.986

234. a13004018.png ; $\varphi \in \operatorname {Fm}$ ; confidence 0.986

235. b12043018.png ; $\Delta : B \rightarrow B \otimes B$ ; confidence 0.986

236. a12013049.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } \Gamma H ( \theta _ { n - 1 } , X _ { n } ),$ ; confidence 0.986

237. a1302007.png ; $V \times V \times V$ ; confidence 0.986

238. h13007014.png ; $1 \leq j \leq l$ ; confidence 0.986

239. b110220106.png ; $m \leq i / 2$ ; confidence 0.986

240. f1302809.png ; $A \mathbf{x} \in B$ ; confidence 0.986

241. m13018055.png ; $u \vee y = x$ ; confidence 0.986

242. i13005051.png ; $- k _ { j } ^ { 2 }$ ; confidence 0.986

243. w1301704.png ; $x _ { t } = y _ { t } + z _ { t },$ ; confidence 0.986

244. t12021080.png ; $t ( M ; 1,2 )$ ; confidence 0.986

245. e13002015.png ; $( \partial / \partial x _ { k } ) u ( x )$ ; confidence 0.986

246. j120020175.png ; $f _ { 2 } = u _ { 2 } + i v _ { 2 }$ ; confidence 0.986

247. d120180104.png ; $L ^ { \infty } ( m )$ ; confidence 0.986

248. c02028083.png ; $D ^ { \prime }$ ; confidence 0.986

249. m12011039.png ; $S ^ { n } \subset S ^ { n + 2 }$ ; confidence 0.986

250. n12002021.png ; $k ^ { \prime \mu}$ ; confidence 0.986

251. c12018077.png ; $\rho = u + v$ ; confidence 0.986

252. l13006017.png ; $z _ { i } \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.986

253. e03507041.png ; $\theta \rightarrow \theta _ { 0 }$ ; confidence 0.986

254. d1202006.png ; $\{ \lambda _ { m } \}$ ; confidence 0.986

255. d11008033.png ; $( L , w )$ ; confidence 0.986

256. p07548016.png ; $\neg p \supset ( p \supset q )$ ; confidence 0.986

257. c11006050.png ; $m > k$ ; confidence 0.986

258. m12016020.png ; $C ( q \times n )$ ; confidence 0.986

259. i13009085.png ; $( 1 + T ) x = \gamma . x$ ; confidence 0.986

260. t13009011.png ; $\rho _ { X } ^ { - 1 } ( 0 ) = X$ ; confidence 0.986

261. e13005029.png ; $E ( \alpha , \beta ) = ( x - y ) \bar{E} ( \alpha , \beta )$ ; confidence 0.986

262. n067520150.png ; $K [ \lambda ]$ ; confidence 0.985

263. a1107304.png ; $Y \rightarrow X$ ; confidence 0.985

264. a12008048.png ; $f \in C ( [ 0 , T ] ; V )$ ; confidence 0.985

265. c1202009.png ; $D ^ { k + 1 } \times S ^ { m - k - 1 }$ ; confidence 0.985

266. b13026026.png ; $y \notin f ( \partial \Omega )$ ; confidence 0.985

267. f11002025.png ; $\partial P$ ; confidence 0.985

268. a13008070.png ; $2 s = R - L$ ; confidence 0.985

269. b130290205.png ; $n \neq t_i$ ; confidence 0.985

270. c12007022.png ; $d ^ { n + 1 } d ^ { n } = 0$ ; confidence 0.985

271. b13022048.png ; $F ( u )$ ; confidence 0.985

272. b11002040.png ; $b : \mathbf{R} ^ { n } \times \mathbf{R} ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.985

273. e13002016.png ; $j \left( u \left( x + \frac { 1 } { j } e _ { k } \right) - u ( x ) \right),$ ; confidence 0.985

274. b12027085.png ; $\sum | b _ { n } | < \infty$ ; confidence 0.985

275. l120170183.png ; $\operatorname { dim } K = 3$ ; confidence 0.985

276. l12014026.png ; $\operatorname{dim}\operatorname {ker}p(T)=\operatorname{dim}\operatorname{ker}T.\operatorname{degree}p ( T ) $ ; confidence 0.985

277. a01121027.png ; $x \rightarrow + \infty$ ; confidence 0.985

278. b120210119.png ; $w _ { 1 } , w _ { 2 } \in W$ ; confidence 0.985

279. l120170209.png ; $\overline { K } \rightarrow K$ ; confidence 0.985

280. h1301209.png ; $H : G _ { 1 } \rightarrow G _ { 2 }$ ; confidence 0.985

281. q120070102.png ; $h , g \in H$ ; confidence 0.985

282. f130290159.png ; $( X , L , \mathcal{T} )$ ; confidence 0.985

283. h046010129.png ; $M _ { 1 } \times S ^ { N } \approx M _ { 2 } \times S ^ { N }$ ; confidence 0.985

284. a1101606.png ; $( n \times n )$ ; confidence 0.985

285. a130040229.png ; $\wedge \Gamma \approx \Delta \rightarrow \varphi \approx \psi$ ; confidence 0.985

286. s120320127.png ; $\varphi ^ { * } : \mathcal{O} ( \mathcal{V} ) \rightarrow \mathcal{O} ( \mathcal{U} )$ ; confidence 0.985

287. s1202109.png ; $E ( \lambda , D _ { \operatorname {Z} } )$ ; confidence 0.985

288. e12007039.png ; $f \in \{ \Gamma , k , \mathbf{v} \}$ ; confidence 0.985

289. b12053015.png ; $M \subset M ( \nu )$ ; confidence 0.985

290. e13006035.png ; $C \rightarrow X$ ; confidence 0.985

291. m1302004.png ; $P = \omega ^ { - 1 } : T ^ { * } M \rightarrow T M$ ; confidence 0.985

292. a01022023.png ; $p = 1$ ; confidence 0.985

293. f04034079.png ; $f : \mathbf{R} ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.985

294. b12002022.png ; $\operatorname { limsup } _ { n \rightarrow \infty } \pm \frac { n ^ { 1 / 4 } } { ( \operatorname { log } \operatorname { log } n ) ^ { 3 / 4 } } ( \alpha _ { n } ( t ) + \beta _ { n } ( t ) ) =$ ; confidence 0.985

295. e12007046.png ; $C ^ { + } ( \Gamma , k , \mathbf{v} )$ ; confidence 0.985

296. a12007072.png ; $\left\| \frac { \partial } { \partial t } ( \lambda - A ( t ) ) ^ { - 1 } \right\| \leq \frac { K _ { 1 } } { ( 1 + | \lambda | ) ^ { \rho } },$ ; confidence 0.985

297. n1200608.png ; $F f : F M \rightarrow F N$ ; confidence 0.985

298. l13006016.png ; $z _ { 0 } \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.985

299. i12010046.png ; $R ( X , Y ) Z = C \{ g ( \phi Y , Z ) \phi X - g ( \phi X , Z ) \phi Y \},$ ; confidence 0.985

300. m12023056.png ; $\operatorname { max } \{ 1 / s , 1 / ( t - s ) \}$ ; confidence 0.985

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/18. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/18&oldid=44428