Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/14"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 14 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270106.png ; $= \frac { E \int _ { 0 } ^ { T _ { 1 } } h ( Z ( u ) ) d u } { E ( T _ { 1 } ) }$ ; confidence 0.743
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310111.png ; $M ( C ( S ) , \alpha , G )$ ; confidence 0.994
  
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027045.png ; $\operatorname { lim } _ { A } u _ { n } = \frac { 1 } { E X _ { 1 } }$ ; confidence 0.142
+
2. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001090.png ; $M = K , \overline { U } _ { 1 } , U _ { - 1 } , U _ { 2 } , U _ { 3 } , U _ { 5 }$ ; confidence 0.994
  
3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301903.png ; $S ( f ; M _ { 1 } , M _ { 2 } ) = \sum _ { M _ { 1 } < m < M _ { 2 } } e ( f ( m ) )$ ; confidence 0.774
+
3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010069.png ; $\widetilde{T} ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } / ( 1 + | z | ^ { 2 } ) ^ { 2 }$ ; confidence 0.994
  
4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040064.png ; $\mathfrak { n } ^ { + } = [ \mathfrak { b } , \mathfrak { b } ]$ ; confidence 0.505
+
4. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010030.png ; $f : \mathbf{R} _ { + } \rightarrow \mathbf{R} _ { + }$ ; confidence 0.994
  
5. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420140.png ; $\sum h ( 1 ) v ^ { ( T ) } \bigotimes h ( 2 ) \supset v ^ { ( 2 ) } =$ ; confidence 0.066
+
5. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840216.png ; $\sigma ( T ) \cap \{ | \rho | = 1 \} = \emptyset$ ; confidence 0.994
  
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042015.png ; $( \otimes ) \otimes : C \times C \times C \rightarrow C$ ; confidence 0.654
+
6. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006016.png ; $T ( f ) ( x , t ) = f ( q x , t ) , \quad x , q \in \mathbf{R} , q \neq 0.$ ; confidence 0.994
  
7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050044.png ; $\alpha _ { X } : = \operatorname { inf } \{ s : 1 ( s , 0 ) > x \}$ ; confidence 0.797
+
7. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002042.png ; $\overline { U M } = \{ u \in U M : l ( - u ) < \infty \} \cup U ^ { + } \partial M$ ; confidence 0.994
  
8. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029083.png ; $\mathfrak { m } \cdot H _ { \mathfrak { m } } ^ { 2 } ( M ) = ( 0 )$ ; confidence 0.329
+
8. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007029.png ; $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , k _ { 0 } )$ ; confidence 0.994
  
9. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290226.png ; $v ( A ) = e _ { m } ^ { 0 } ( A ) + \operatorname { dim } A + I ( A ) - 1$ ; confidence 0.851
+
9. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010033.png ; $\operatorname { log } | P ( z ) | \leq \int _ { K } \operatorname { log } | P ( \zeta ) | d \mu _ { z } ( \zeta ) , P \in \mathcal{P}.$ ; confidence 0.994
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007018.png ; $( \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } , \frac { 2 t } { 1 + t ^ { 2 } } )$ ; confidence 1.000
+
10. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013011.png ; $M \subset E _ { 2 }$ ; confidence 0.994
  
11. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211030.png ; $p _ { i } ( \theta ) = P \{ X _ { i } \in ( x _ { i } - 1 , x _ { i } ] \} > 0$ ; confidence 0.626
+
11. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014020.png ; $1 \leq \lambda \leq \infty$ ; confidence 0.994
  
12. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211047.png ; $\| \partial p _ { i } ( \theta ) / \partial \theta _ { j } \|$ ; confidence 0.961
+
12. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050102.png ; $h ( \mathbf{T} )$ ; confidence 0.993
  
13. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c1301107.png ; $f ( y ) - f ( x ) + \sigma \| y - x \| ^ { 2 } \geq \{ \zeta , y - x \}$ ; confidence 0.350
+
13. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130090/l1300904.png ; $\delta ^ { i } \lambda ^ { j }$ ; confidence 0.993
  
14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017069.png ; $Z , Z , Z ^ { 2 } , Z Z , Z ^ { 2 } , \ldots , Z ^ { n } , \ldots , Z ^ { n }$ ; confidence 0.384
+
14. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017029.png ; $R _ { i } \rightarrow R _ { i } ^ { - 1 }$ ; confidence 0.993
  
15. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180328.png ; $\tau _ { 3 } : \otimes ^ { 3 } E \rightarrow \otimes ^ { 3 } E$ ; confidence 0.751
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021091.png ; $\alpha \in \Pi$ ; confidence 0.993
  
16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180204.png ; $\tau _ { p } : \otimes ^ { 4 } E \rightarrow \otimes ^ { 4 } E$ ; confidence 0.510
+
16. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029083.png ; $x \in [ 0,1 ]$ ; confidence 0.993
  
17. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180138.png ; $\tau _ { 2 } : \otimes ^ { 2 } E \rightarrow \otimes ^ { 2 } E$ ; confidence 0.835
+
17. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005044.png ; $\tau = \varepsilon ^ { 2 } t.$ ; confidence 0.993
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180236.png ; $W ( g ) \otimes \ldots \otimes W ( g ) \in \otimes ^ { 4 m } E$ ; confidence 0.979
+
18. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008079.png ; $u _ { k } \in \mathcal{M} =$ ; confidence 0.993
  
19. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180396.png ; $\operatorname { max } \{ q _ { 1 } + 2 , \ldots , q _ { m } + 2 \}$ ; confidence 0.511
+
19. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025031.png ; $( u , f v )$ ; confidence 0.993
  
20. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021053.png ; $L _ { n } ^ { \prime } = L ( \Lambda _ { n } | P _ { n } ^ { \prime } )$ ; confidence 0.866
+
20. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008024.png ; $| K ( x , y ) | ^ { 2 } \leq K ( x , x ) K ( y , y ).$ ; confidence 0.993
  
21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020134.png ; $g ( \overline { u } _ { 1 } ) = v ^ { * } = \overline { q } = v _ { N }$ ; confidence 0.440
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280133.png ; $M ^ { U } ( E )$ ; confidence 0.993
  
22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020132.png ; $g ( \overline { u } _ { 1 } ) \leq v ^ { * } \leq \overline { q }$ ; confidence 0.808
+
22. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205602.png ; $\lambda _ { 1 } = \lambda _ { 1 } ( M )$ ; confidence 0.993
  
23. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006014.png ; $\sigma ^ { \pm } = \varphi [ T ^ { \pm 1 } ( \varphi ) ] ^ { - 1 }$ ; confidence 0.999
+
23. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004068.png ; $( x , \xi ) \in \Gamma$ ; confidence 0.993
  
24. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302503.png ; $y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0$ ; confidence 0.930
+
24. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440107.png ; $b \mapsto b ^ { G }$ ; confidence 0.993
  
25. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006069.png ; $m ^ { \perp Y } ( B ) = \sum _ { A ; B = A ^ { \downarrow Y } } m ( A )$ ; confidence 0.533
+
25. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001086.png ; $( \pi , C , \mathcal{H} , J )$ ; confidence 0.993
  
26. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006015.png ; $\operatorname { Bel } ( A ) = \sum _ { B \subseteq A } m ( B )$ ; confidence 0.721
+
26. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230140.png ; $( ( X _ { 0 } , B _ { 0 } ) , f _ { 0 } ) = ( ( X , B ) , f )$ ; confidence 0.993
  
27. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201904.png ; $C _ { 0 } ^ { \infty } ( \Omega ) \subset L _ { 2 } ( \Omega )$ ; confidence 0.992
+
27. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070151.png ; $= \int _ { T } d m ( t ) F ( t ) \overline { G ( t ) } = ( F , G ) _ { \mathcal{H} }.$ ; confidence 0.993
  
28. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022063.png ; $x ^ { ( n ) } + p _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + p _ { n } ( t ) x = 0$ ; confidence 0.829
+
28. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012019.png ; $( E _ { 1 } , E _ { 2 } )$ ; confidence 0.993
  
29. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023092.png ; $F = \operatorname { diag } \{ f _ { 0 } , \dots , f _ { n - 1 } \}$ ; confidence 0.519
+
29. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d03289090.png ; $\Lambda ( n )$ ; confidence 0.993
  
30. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230114.png ; $R ( z , w ) = \sum _ { i , j = 0 } ^ { \infty } R _ { j } z ^ { i } w ^ { * j }$ ; confidence 0.654
+
30. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070265.png ; $2 g - 2 = \nu _ { 1 } ( 2 g _ { 1 } - 2 ) + \mathfrak { D } _ { 1 }.$ ; confidence 0.993
  
31. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230147.png ; $D = \operatorname { diag } \{ d _ { 0 } , \dots , d _ { n - 1 } \}$ ; confidence 0.185
+
31. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002067.png ; $q , r , d \in \mathbf{N}$ ; confidence 0.993
  
32. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028023.png ; $A ( D ) ^ { * } \simeq A _ { 0 } ( \overline { C } \backslash D )$ ; confidence 0.736
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101607.png ; $\equiv$ ; confidence 0.993
  
33. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012039.png ; $\sum _ { j g _ { j } } = \sum _ { i } f _ { i } = \sum _ { j } h _ { i j } = 1$ ; confidence 0.384
+
33. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011046.png ; $p : M \rightarrow S ^ { 1 }$ ; confidence 0.993
  
34. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070131.png ; $C ^ { 0 } ( \Gamma , k + 2 , v ) \oplus C ^ { + } ( \Gamma , k + 2 , v )$ ; confidence 0.966
+
34. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011045.png ; $F _ { j } ( z ) e ^ { - i z \zeta }$ ; confidence 0.993
  
35. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070106.png ; $C ^ { 0 } ( \Gamma , k + 2 , v ) \oplus C ^ { 0 } ( \Gamma , k + 2 , v )$ ; confidence 0.923
+
35. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014029.png ; $A \in L _ { 0 } ( X )$ ; confidence 0.993
  
36. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003030.png ; $C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } )$ ; confidence 0.890
+
36. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007075.png ; $( f , f ) = 0$ ; confidence 0.993
  
37. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003036.png ; $H _ { 1 } ^ { \bullet } ( \Gamma \backslash X , \tilde { M } )$ ; confidence 0.661
+
37. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000108.png ; $\pi \{ ( x , y ) : \rho ( x , y ) \leq \epsilon / 2 \} = 1.$ ; confidence 0.993
  
38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015033.png ; $\frac { D ^ { 2 } \xi ^ { i } } { d t ^ { 2 } } = P _ { r } ^ { i } \xi ^ { r }$ ; confidence 0.846
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148089.png ; $n = 5$ ; confidence 0.993
  
39. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002013.png ; $c ^ { \alpha } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { \alpha } ( x )$ ; confidence 0.753
+
39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060124.png ; $\mathcal{F}$ ; confidence 0.993
  
40. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002028.png ; $c ^ { \alpha } ( x ) c ^ { b } ( x ) = - c ^ { b } ( x ) c ^ { \alpha } ( x )$ ; confidence 0.472
+
40. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002082.png ; $m \mapsto V _ { F } ( m )$ ; confidence 0.993
  
41. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049030.png ; $F _ { m x } = \frac { \chi _ { m } ^ { 2 } / m } { \chi _ { x } ^ { 2 } / n }$ ; confidence 0.111
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a1302707.png ; $\{ Y _ { n } \} \subset Y$ ; confidence 0.993
  
42. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023080.png ; $L _ { K } = L ( K ) \in \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.993
+
42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022029.png ; $u ( t , x )$ ; confidence 0.993
  
43. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807023.png ; $T ^ { 2 } = \frac { Y ^ { 2 } } { \chi _ { N } ^ { 2 } / n } = t _ { N } ^ { 2 }$ ; confidence 0.220
+
43. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022085.png ; $c = 24$ ; confidence 0.993
  
44. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001057.png ; $\chi _ { \lambda ^ { \prime } } \preceq \chi _ { \lambda }$ ; confidence 0.947
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026039.png ; $\nu :\mathbf{N} \rightarrow \mathbf{N}$ ; confidence 0.993
  
45. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004018.png ; $f ( z ) = \int _ { \partial D } f ( \zeta ) K _ { BM } ( \zeta , z )$ ; confidence 0.979
+
45. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019097.png ; $\sqrt { \sigma ( x , x ) }$ ; confidence 0.993
  
46. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006039.png ; $\operatorname { ldim } ( P ) = \operatorname { dim } ( Q )$ ; confidence 0.877
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012029.png ; $\mu _ { i } > 0$ ; confidence 0.993
  
47. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010046.png ; $R ( X , Y ) Z = C \{ g ( \phi Y , Z ) \phi X - g ( \phi X , Z ) \phi Y \}$ ; confidence 0.985
+
47. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070201.png ; $s T = M ( T ) ^ { \mu }$ ; confidence 0.993
  
48. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003039.png ; $\| \alpha \square b ^ { * } \| \leq \| \alpha \| _ { \| } b \|$ ; confidence 0.107
+
48. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302808.png ; $B = \{ \mathbf{r} : \mathbf{r} \leq \mathbf{b} \}$ ; confidence 0.993
  
49. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k0550707.png ; $H ^ { \prime } ( M , C ) \cong \oplus _ { p + q = r } H ^ { p , q } ( M )$ ; confidence 0.581
+
49. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047512/h04751231.png ; $0 < \alpha _ { i } \leq 1$ ; confidence 0.993
  
50. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000151.png ; $\vdash ( \lambda x , x ) : ( \sigma \rightarrow \sigma )$ ; confidence 0.346
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018081.png ; $\operatorname { ln } ( 1 + t ) = t - t ^ { 2 } / 2 + t ^ { 3 } / 3 - \dots$ ; confidence 0.993
  
51. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003083.png ; $T _ { E } R ^ { * } = \prod _ { \text { Homgrp } ( E , U ) } H ^ { * } B V$ ; confidence 0.062
+
51. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030091.png ; $B ( m , n , 0 ) = F _ { m }$ ; confidence 0.993
  
52. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002010.png ; $\alpha = \Pi ( l ) = 2 \operatorname { arctan } e ^ { - l / R }$ ; confidence 0.829
+
52. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007043.png ; $1 \leq i \leq j \leq k$ ; confidence 0.993
  
53. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120164.png ; $( K _ { s } ( \overline { \sigma } ) \cap K _ { tot } s ) _ { ins }$ ; confidence 0.161
+
53. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005041.png ; $\frac { d ^ { 2 } \psi } { d x ^ { 2 } } + [ \lambda \rho ( x , t ) - u ( x , t ) ] \psi = 0 , - \infty < x < \infty ,$ ; confidence 0.993
  
54. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120151.png ; $M = ( K _ { s } ( \overline { \sigma } ) \cap K _ { tot } S ) _ { 1 }$ ; confidence 0.145
+
54. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015021.png ; $\mathcal{N} ( \mathcal{D} ( \Omega ) )$ ; confidence 0.993
  
55. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030106.png ; $\frac { 1 } { n } \sum _ { i = 1 } ^ { n } \rho ( \frac { n } { s } ) = K$ ; confidence 0.822
+
55. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013034.png ; $R / r = \sqrt { 2 }$ ; confidence 0.993
  
56. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003081.png ; $\sum _ { i = 1 } ^ { n } \psi ( r _ { i } ) \vec { x } _ { i } = \vec { 0 }$ ; confidence 0.424
+
56. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014055.png ; $m \geq 1$ ; confidence 0.993
  
57. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007037.png ; $m ( x + y + x y + x ^ { 2 } y + x y ^ { 2 } ) = L ^ { \prime } ( 0 , E _ { 15 } )$ ; confidence 0.983
+
57. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013065.png ; $\theta < \pi / 2 + \epsilon$ ; confidence 0.993
  
58. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100102.png ; $\epsilon = ( \epsilon 0 , \dots , \epsilon _ { \gamma } )$ ; confidence 0.171
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032058.png ; $E_p ( N ) = \frac { \alpha \operatorname { log } ( \frac { 1 - \beta } { \alpha } ) + ( 1 - \alpha ) \operatorname { log } ( \frac { \beta } { 1 - \alpha } ) } { ( p - q ) \operatorname { log } ( q / p ) }.$ ; confidence 0.993
  
59. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520148.png ; $\varepsilon _ { A , K [ \lambda ] } = \{ e _ { i } ^ { n _ { i } } \}$ ; confidence 0.537
+
59. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001056.png ; $Z ( x ( n ) ) = \frac { z ( z - 1 ) } { ( z + 2 ) ^ { 3 } ( z + 3 ) } =$ ; confidence 0.993
  
60. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001074.png ; $x _ { 3 } = f ( x ^ { \prime } ) , x ^ { \prime } = ( x _ { 1 } , x _ { 2 } )$ ; confidence 0.954
+
60. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030146.png ; $f \in \Omega ^ { \prime }$ ; confidence 0.993
  
61. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001036.png ; $M : = \{ \theta : \theta \in C ^ { 3 } , \theta . \theta = 1 \}$ ; confidence 0.765
+
61. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024065.png ; $( t , u ) \mapsto f ( t , u )$ ; confidence 0.993
  
62. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001044.png ; $F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.936
+
62. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w1200703.png ; $f : \mathbf{R} ^ { 2 n } \rightarrow \mathbf{R}$ ; confidence 0.993
  
63. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p1301204.png ; $\frac { 1 } { 2 } ( c ( D ) - s ( D ) + \operatorname { com } ( D ) )$ ; confidence 0.994
+
63. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510149.png ; $\mathcal{P} = \{ \mathbf{u} \in V : \sigma ( \mathbf{u} ) = 0 \},$ ; confidence 0.993
  
64. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005081.png ; $\mu = \frac { y ^ { T } H y \cdot s ^ { T } B s } { ( s ^ { T } y ) ^ { 2 } }$ ; confidence 0.758
+
64. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004042.png ; $( g - g_0 ) \psi ( t )$ ; confidence 0.993
  
65. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016018.png ; $R _ { nd } ( \Omega ) = C ^ { \infty } ( \Omega ) ^ { N } / I _ { nd }$ ; confidence 0.841
+
65. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040038.png ; $E G$ ; confidence 0.993
  
66. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004030.png ; $X _ { g } = \operatorname { Sp } ( 2 g , Z ) \backslash H _ { g }$ ; confidence 0.844
+
66. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003025.png ; $\{ \mathcal{R} ^ { * } \}$ ; confidence 0.993
  
67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011013.png ; $\partial _ { i } f = \frac { f - s _ { i } f } { x _ { i } - x _ { i } + 1 }$ ; confidence 0.967
+
67. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019023.png ; $\varphi ( [ 0 , t ] , x ) \subset N$ ; confidence 0.993
  
68. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004044.png ; $\lambda = h _ { \lambda _ { 1 } } \ldots h _ { \lambda _ { l } }$ ; confidence 0.456
+
68. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001027.png ; $\Phi _ { 1 } \prec \Phi _ { 2 }$ ; confidence 0.993
  
69. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004045.png ; $\lambda = e _ { \lambda _ { 1 } } \cdots e _ { \lambda _ { l } }$ ; confidence 0.385
+
69. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015028.png ; $A + K \in \Phi ( X , Y )$ ; confidence 0.993
  
70. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150134.png ; $\varphi / / G : ( G \times G _ { x } S ) / / G \rightarrow X / / G$ ; confidence 0.425
+
70. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010016.png ; $\gamma = 1 / 2$ ; confidence 0.993
  
71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016022.png ; $( U ^ { i _ { 1 } } \otimes \ldots \otimes U ^ { i _ { d } } ) ( f ) =$ ; confidence 0.462
+
71. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d1202601.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \xi _ { k }$ ; confidence 0.993
  
72. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048055.png ; $E _ { 2 } ^ { p A } = H ^ { p } ( B ) \otimes H _ { S } ^ { q } ( D _ { \pi } )$ ; confidence 0.273
+
72. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004045.png ; $\sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 } \neq 0$ ; confidence 0.993
  
73. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051086.png ; $\sigma ( u ) = g ( u _ { 1 } ) \oplus \ldots \oplus g ( u _ { m } )$ ; confidence 0.698
+
73. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044750/g0447504.png ; $( k \times k )$ ; confidence 0.993
  
74. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026023.png ; $f = ( 0 , \delta _ { t } \tilde { \otimes } f ^ { n } ) _ { n \in N }$ ; confidence 0.229
+
74. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520235.png ; $R ( S A S ^ { - 1 } , S B ) = S R ( A , B )$ ; confidence 0.993
  
75. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062024.png ; $\int _ { 0 } ^ { \infty } | y ( x , \lambda ) | ^ { 2 } d x < \infty$ ; confidence 0.999
+
75. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003063.png ; $L ^ { 2 } ( \mathcal{R} )$ ; confidence 0.993
  
76. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620137.png ; $\phi ( . , \lambda ) + m + ( \lambda ) \theta ( . , \lambda )$ ; confidence 0.715
+
76. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h1300607.png ; $T _ { n } f \in M ( k )$ ; confidence 0.993
  
77. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340198.png ; $\alpha _ { H _ { 3 } } - \alpha _ { H _ { 2 } } - \alpha _ { H _ { 1 } }$ ; confidence 0.962
+
77. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002047.png ; $Z = [ 0,1 ]$ ; confidence 0.993
  
78. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050130.png ; $\sigma _ { T } ( A , X ) = \hat { A } ( M _ { \sigma _ { T } } ( B , X ) )$ ; confidence 0.484
+
78. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007059.png ; $T \ll N ^ { 2 }$ ; confidence 0.993
  
79. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007046.png ; $J ( z ) = \sum _ { n } \operatorname { Tr } ( e | v _ { n } ) q ^ { n }$ ; confidence 0.109
+
79. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150164.png ; $A \in \Phi _ { + } ( X , Y )$ ; confidence 0.993
  
80. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013089.png ; $( T , X ) = 0 = \operatorname { Ext } _ { \gamma } ^ { 1 } ( T , X )$ ; confidence 0.465
+
80. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b1302509.png ; $\angle \Omega C A$ ; confidence 0.993
  
81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201305.png ; $\frac { \partial M } { \partial x _ { n } } = \Lambda ^ { n } M$ ; confidence 0.850
+
81. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018064.png ; $E s ^ { 2 } + 2 F s t + G t ^ { 2 } \in C ^ { \infty } ( M ) [ s , t ]$ ; confidence 0.993
  
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140111.png ; $H ^ { \infty } + C = \{ f + g : f \in C ( T ) , g \in H ^ { \infty } \}$ ; confidence 0.842
+
82. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015026.png ; $f \in \mathcal{C} ( \mathbf{T} )$ ; confidence 0.993
  
83. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408035.png ; $\pi _ { n } ( A , A \cap B , * ) \rightarrow \pi _ { n } ( X , B , * )$ ; confidence 0.736
+
83. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060107.png ; $f ( k )$ ; confidence 0.993
  
84. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020030.png ; $g ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } \phi ( z _ { j } )$ ; confidence 0.658
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013088.png ; $f = \varphi F$ ; confidence 0.993
  
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021086.png ; $t ( G ) = t ( G / e ) + ( x - 1 ) ^ { r ( G ) - r ( G - \epsilon ) } t ( G - e )$ ; confidence 0.190
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240179.png ; $\eta _ { i j } = \mu + \alpha _ { i } + \beta _ { j } + \gamma _ { i j }$ ; confidence 0.993
  
86. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005072.png ; $Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) \sim Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } )$ ; confidence 0.991
+
86. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005026.png ; $.0$ ; confidence 0.993
  
87. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007035.png ; $w \rightarrow \sigma = s + i t = e ^ { - ( w - \phi _ { 0 } ) \pi }$ ; confidence 0.653
+
87. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010044.png ; $\gamma \geq 3 / 2$ ; confidence 0.993
  
88. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004016.png ; $\Delta ( G ) \leq \chi ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.991
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008046.png ; $- \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d L } \operatorname { ln } \frac { f ( L ) } { g ( L ; m , s ) } \frac { d L } { d s } +$ ; confidence 0.993
  
89. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006012.png ; $T _ { A } M = \operatorname { Hom } ( C ^ { \infty } ( M , R ) , A )$ ; confidence 0.922
+
89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300127.png ; $K K$ ; confidence 0.993
  
90. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006020.png ; $T _ { A } U _ { i } = U _ { i } \times N ^ { m } \subset T _ { A } R ^ { m }$ ; confidence 0.510
+
90. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o1200509.png ; $w : \mathbf{R} _ { + } \rightarrow \mathbf{R} _ { + }$ ; confidence 0.993
  
91. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300807.png ; $u ( x , t ) = U = f _ { g } ( \theta _ { 1 } , \ldots , \theta _ { g } )$ ; confidence 0.584
+
91. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019039.png ; $[ L ^ { \prime } ]$ ; confidence 0.993
  
92. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009057.png ; $\varphi = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } )$ ; confidence 0.798
+
92. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019065.png ; $\mathbf{v} _ { 1 } = [ \alpha _ { 1 } , q _ { 1 } ]$ ; confidence 0.993
  
93. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001038.png ; $x ( n ) = \sum ( \text { residues of } z ^ { n - 1 } _ { \Re ( z ) } )$ ; confidence 0.283
+
93. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840148.png ; $\mathcal{D} ( T ) = \mathcal{K}$ ; confidence 0.993
  
94. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003039.png ; $Z [ f ( t + m ) ] ( t , w ) = e ^ { 2 \pi i m w ^ { \prime } } Z [ f ] ( t , w )$ ; confidence 0.623
+
94. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007044.png ; $d w / d Z$ ; confidence 0.993
  
95. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003054.png ; $( Z h ) ( t , w ) = \int _ { 0 } ^ { 1 } ( Z R ) ( t - s , w ) ( Z f ) ( s , w ) d s$ ; confidence 0.974
+
95. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013032.png ; $d n / d t$ ; confidence 0.993
  
96. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110130.png ; $\mu _ { N _ { k } } ( x ) = \sum _ { i = 1 } ^ { k } \mu _ { i N _ { i } } ( x )$ ; confidence 0.656
+
96. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010051.png ; $\varphi \in L ^ { \infty } ( D , d A )$ ; confidence 0.993
  
97. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011064.png ; $R ( x ) = \int _ { 0 } ^ { \infty } \frac { 1 } { 1 + z } e ^ { - z x } d z$ ; confidence 0.996
+
97. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013013.png ; $\delta W = 0$ ; confidence 0.993
  
98. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013024.png ; $H ( r , \theta ) \rightarrow ( 1 / r ) H ( 1 / r ^ { 2 } , \theta )$ ; confidence 0.998
+
98. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008015.png ; $\rho _ { i } = 1$ ; confidence 0.993
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
+
99. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003017.png ; $( \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.993
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
+
100. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014038.png ; $| \zeta | > 1 , | \zeta ^ { \prime } | > 1.$ ; confidence 0.993
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040577.png ; $\frac { \varphi , \varphi \rightarrow \psi } { \psi }$ ; confidence 0.996
+
101. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001046.png ; $m \circ d = g$ ; confidence 0.993
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040452.png ; $\psi _ { 0 } , \ldots , \psi _ { n - 1 } \vDash _ { K } \varphi$ ; confidence 0.369
+
102. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003067.png ; $\{ H ^ { * } B V \}$ ; confidence 0.993
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040459.png ; $\operatorname { Mod } ^ { * } L D ( K ) = ( SPP _ { U } K ) ^ { * } L$ ; confidence 0.335
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050115.png ; $\frac { \partial } { \partial s } U ( t , s ) v = U ( t , s ) A ( s ) v.$ ; confidence 0.993
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006041.png ; $\partial ( \alpha ) = \operatorname { deg } ( \alpha )$ ; confidence 0.846
+
104. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003019.png ; $3 \mu \nu = \mu + \nu = 1$ ; confidence 0.993
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008062.png ; $L ^ { 2 } ( \Omega ) \times ( H ^ { 1 } ( \Omega ) ) ^ { \prime }$ ; confidence 0.999
+
105. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p1300905.png ; $B ( x _ { 0 } , r )$ ; confidence 0.993
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010060.png ; $D ( \Delta ) = H _ { \diamond } ^ { 1 } \cap H ^ { 2 } ( \Omega )$ ; confidence 0.205
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012960/a01296045.png ; $\alpha = 1$ ; confidence 0.993
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201103.png ; $\varphi ( \alpha , 0,1 ) = 0 , \varphi ( \alpha , 0,2 ) = 1$ ; confidence 0.942
+
107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041048.png ; $d \mu _ { 1 } = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta } d x$ ; confidence 0.993
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032026.png ; $R _ { + 1 } ^ { ( i ) } ( z ) = \frac { l R _ { j } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.149
+
108. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015071.png ; $f \in C ( X )$ ; confidence 0.993
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018018.png ; $\alpha _ { 1 } ( S _ { n } - S ) + \alpha _ { 2 } ( S _ { n + 1 } - S ) = 0$ ; confidence 0.442
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060112.png ; $\alpha > 1$ ; confidence 0.993
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180146.png ; $RCA _ { n } = SP \{ \Re d _ { n } ( U ) : U _ { 1 s } a \text { set } \}$ ; confidence 0.077
+
110. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005032.png ; $C = C _ { f }$ ; confidence 0.993
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a1202005.png ; $L _ { 0 } ( X ) = \{ A \in L ( X ) : \operatorname { dom } A = X \}$ ; confidence 0.786
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029033.png ; $A \cap A ^ { \prime }$ ; confidence 0.993
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020016.png ; $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$ ; confidence 0.483
+
112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b1205202.png ; $F : \mathbf{R} ^ { N } \rightarrow \mathbf{R} ^ { N }$ ; confidence 0.993
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023061.png ; $w ^ { q } = w _ { 1 } ^ { q _ { 1 } } \ldots w _ { \gamma } ^ { q _ { R } }$ ; confidence 0.116
+
113. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062095.png ; $q ( x ) = x ^ { 2 }$ ; confidence 0.993
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023080.png ; $k \rightarrow \infty \sqrt [ \alpha _ { k } ] { k } \leq 1$ ; confidence 0.889
+
114. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d1300202.png ; $\alpha ( B )$ ; confidence 0.993
  
115. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003049.png ; $\| t g ( t ) \| _ { 2 } \| \gamma g ( \gamma ) \| _ { 2 } = \infty$ ; confidence 0.496
+
115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290146.png ; $\operatorname { dim } A \geq 2$ ; confidence 0.993
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005021.png ; $f ( z ) = \sum _ { \gamma = 0 } ^ { \infty } P _ { N } ( z - z _ { 0 } )$ ; confidence 0.394
+
116. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754801.png ; $p \supset ( q \supset p )$ ; confidence 0.993
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009013.png ; $p ( u , t ) = 1 + \alpha _ { 1 } ( t ) u + \alpha _ { 2 } ( t ) u ^ { 2 } +$ ; confidence 0.976
+
117. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001020.png ; $\operatorname{Edge}( D )$ ; confidence 0.993
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026022.png ; $\delta = \operatorname { exp } ( - 2 \pi \rho / \omega )$ ; confidence 0.997
+
118. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020165.png ; $p : Z \rightarrow X$ ; confidence 0.993
  
119. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015025.png ; $\frac { 1 } { 1 + \sqrt { n } } ( x \sqrt { n } + \frac { 1 } { 2 } )$ ; confidence 0.995
+
119. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006094.png ; $\xi : C ^ { \infty } ( M , \mathbf{R} ) \rightarrow C ^ { \infty } ( M , N )$ ; confidence 0.993
  
120. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120100.png ; $B _ { 1,1 } ^ { 1 } \subset A ^ { * } \subset B _ { 2,1 } ^ { 1 / 2 }$ ; confidence 0.792
+
120. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002071.png ; $\nu < N - 1$ ; confidence 0.993
  
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202208.png ; $\phi \in \operatorname { Span } ( 1 , v _ { j } , | v | ^ { 2 } )$ ; confidence 0.856
+
121. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002021.png ; $\operatorname{mor}( W , X )$ ; confidence 0.993
  
122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301706.png ; $C ( t ) = S ( t ) N ( d _ { 1 } ) - K e ^ { - \gamma ( T - t ) } N ( d _ { 2 } )$ ; confidence 0.597
+
122. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v1100608.png ; $\Delta ^ { 2 } u \equiv \frac { \partial ^ { 4 } u } { \partial x ^ { 4 } } + 2 \frac { \partial ^ { 4 } u } { \partial x ^ { 2 } \partial y ^ { 2 } } + \frac { \partial ^ { 4 } u } { \partial y ^ { 4 } }$ ; confidence 0.993
  
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032089.png ; $( a _ { m } ) ^ { k } \leq ( a _ { n } ) ^ { i } \leq ( a _ { m } ) ^ { k + 1 }$ ; confidence 0.593
+
123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w1200803.png ; $( q , p )$ ; confidence 0.993
  
124. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036015.png ; $\epsilon = ( p _ { X } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) / 2 m$ ; confidence 0.891
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027085.png ; $w \in Y ^ { * }$ ; confidence 0.993
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200160.png ; $r ( \lambda ) = \lambda - \lambda ( h _ { i } ) \alpha _ { i }$ ; confidence 0.930
+
125. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g04435078.png ; $\gamma ( F )$ ; confidence 0.993
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
+
126. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008025.png ; $E_{ [ 0 , \sigma ] } A ( f ) \Omega \neq 0$ ; confidence 0.993
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420159.png ; $\lambda _ { W } : V \otimes W \rightarrow W \otimes V$ ; confidence 0.988
+
127. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018053.png ; $A \subset \mathbf{R} ^ { 2 }$ ; confidence 0.993
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050019.png ; $Z _ { 0 } ^ { \phi } ( t ) : = \{ s : M _ { s } - W _ { s } = 0 , s \leq t \}$ ; confidence 0.363
+
128. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007018.png ; $F ( 2,4 ) = \pi _ { 1 } ( L ( 5,2 ) )$ ; confidence 0.993
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030081.png ; $A = \{ a _ { 1 } ^ { \pm 1 } , \ldots , a _ { \infty } ^ { \pm 1 } \}$ ; confidence 0.128
+
129. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210018.png ; $( \chi _ { n } ^ { 2 } - n ) / \sqrt { 2 n }$ ; confidence 0.993
  
130. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004030.png ; $= 4 \operatorname { log } 2 + 2 - \frac { 4 } { \pi } ( 2 G + 1 )$ ; confidence 1.000
+
130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140132.png ; $\phi , \psi \in L ^ { \infty }$ ; confidence 0.993
  
131. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007062.png ; $H ^ { n } ( C , M ) = \operatorname { Ext } _ { Z C } ^ { n } ( Z , M )$ ; confidence 0.380
+
131. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006040.png ; $\Gamma : Y \rightarrow J ^ { 1 } Y$ ; confidence 0.993
  
132. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180406.png ; $\tilde { \nabla } ^ { \mathscr { Y } } W ( \mathfrak { g } )$ ; confidence 0.129
+
132. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008032.png ; $K : H \rightarrow H$ ; confidence 0.993
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180260.png ; $\nabla : \otimes ^ { r } E \rightarrow \otimes ^ { + 1 } E$ ; confidence 0.455
+
133. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028085.png ; $D _ { \epsilon } = \{ z : z \in D , \rho ( z , \partial D ) > \epsilon \}$ ; confidence 0.993
  
134. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583064.png ; $A = ( I + T ) ( I - T ) ^ { - 1 } , \quad 1 \notin \sigma _ { p } ( T )$ ; confidence 0.920
+
134. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180165.png ; $\mu ( M )$ ; confidence 0.993
  
135. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302304.png ; $( L _ { + } ^ { \prime } , L ^ { \prime } - , L _ { 0 } ^ { \prime } )$ ; confidence 0.332
+
135. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017011.png ; $Z _ { 2 } ( G )$ ; confidence 0.993
  
136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028069.png ; $\pi ( K \times L ) \rightarrow \pi ( K ) \otimes \pi ( L )$ ; confidence 0.998
+
136. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017050.png ; $k ( e ^ { - i \lambda } ) = \sum _ { j = 0 } ^ { \infty } K _ { j } e ^ { - i \lambda j }$ ; confidence 0.993
  
137. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080138.png ; $\sigma ( F ^ { \prime } ( c ) ) \subset \Delta \cup \{ 1 \}$ ; confidence 0.991
+
137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036030.png ; $\epsilon ( i , j , k , l )$ ; confidence 0.993
  
138. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012069.png ; $\phi _ { 2 } \circ \phi _ { 1 } = \phi _ { 3 } \circ \phi _ { 4 }$ ; confidence 0.921
+
138. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025071.png ; $1 \leq 1 \leq p$ ; confidence 0.993
  
139. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016041.png ; $C ( S ) \otimes \pi _ { 0 } ( T ) + \pi _ { 0 } ( S ) \otimes C ( T )$ ; confidence 0.886
+
139. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222050.png ; $n - h - 1 - \nu$ ; confidence 0.993
  
140. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016021.png ; $\| f _ { n } \| \downarrow \text { dist } ( f , C ( S ) + C ( T ) )$ ; confidence 0.932
+
140. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008017.png ; $\nu : = \operatorname { min } \{ m , n \}$ ; confidence 0.993
  
141. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028024.png ; $F ( f ) = F _ { \phi } ( f ) = \int _ { \Gamma } f ( z ) \phi ( z ) d z$ ; confidence 0.999
+
141. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012048.png ; $\varphi : Z \rightarrow Z$ ; confidence 0.993
  
142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030011.png ; $b : R _ { + } \times R ^ { n } \rightarrow L ( R ^ { n } , R ^ { n } )$ ; confidence 0.989
+
142. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001027.png ; $\frac { \partial u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { \partial \eta ^ { \prime } } =$ ; confidence 0.993
  
143. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030013.png ; $g : R _ { + } \times R ^ { m } \rightarrow L ( R ^ { m } , R ^ { m } )$ ; confidence 0.224
+
143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006035.png ; $J ^ { 1 } Y$ ; confidence 0.993
  
144. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012034.png ; $g _ { j } = \sum _ { i = 1 } ^ { M } f _ { i } h _ { j } , j = 1 , \ldots , N$ ; confidence 0.398
+
144. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300102.png ; $\operatorname { com }( D )$ ; confidence 0.993
  
145. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230119.png ; $\Delta = \gamma d x _ { 1 } \wedge \ldots \wedge d x _ { n }$ ; confidence 0.618
+
145. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009031.png ; $A = G$ ; confidence 0.993
  
146. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e1300601.png ; $d ( f , g ) = \operatorname { sup } \{ d ( f c , g c ) : c \in C \}$ ; confidence 0.534
+
146. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200703.png ; $\mathcal{L} ( V )$ ; confidence 0.993
  
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009048.png ; $| f ( \zeta ) | \leq \operatorname { Aexp } ( B | \zeta | )$ ; confidence 0.594
+
147. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190196.png ; $\Phi _ { 1 } = ( h _ { 1 } , h _ { 3 } , p , W _ { 1 } ^ { + } )$ ; confidence 0.993
  
148. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009019.png ; $\zeta z = \zeta _ { 1 } z _ { 1 } + \ldots + \zeta _ { n } z _ { n }$ ; confidence 0.920
+
148. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006017.png ; $A _ { y } \in \Gamma ( y )$ ; confidence 0.993
  
149. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981
+
149. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019046.png ; $( X \psi ) ( x ) = x \psi ( x )$ ; confidence 0.993
  
150. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021011.png ; $\{ z \in C : | z | < \epsilon \} \backslash ( - \infty , 0 ]$ ; confidence 0.922
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013055.png ; $L ( \Lambda _ { 0 } )$ ; confidence 0.993
  
151. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023047.png ; $K _ { x } \in \wedge ^ { k + 1 } T _ { X } ^ { * } M \otimes T _ { X } M$ ; confidence 0.074
+
151. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240286.png ; $1 - \alpha$ ; confidence 0.993
  
152. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023062.png ; $i _ { K } ( \omega \otimes X ) = i _ { K } ( \omega ) \otimes X$ ; confidence 0.988
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202303.png ; $f \in C ( \partial D )$ ; confidence 0.993
  
153. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024028.png ; $\dot { x } ( t - g _ { 1 } ( t ) ) , \ldots , \dot { x } ( t - g ( t ) ) )$ ; confidence 0.583
+
153. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290203.png ; $0 \leq i \leq d - 1$ ; confidence 0.993
  
154. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003048.png ; $I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.956
+
154. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007011.png ; $1 \leq i \leq n - 1$ ; confidence 0.993
  
155. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007040.png ; $K O _ { m } ( R \pi ) = Z _ { m } ^ { \pi } / i ^ { * } Z _ { m + 1 } ^ { \pi }$ ; confidence 0.224
+
155. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003026.png ; $\operatorname { dim } M = 2$ ; confidence 0.993
  
156. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g0433705.png ; $D f ( x _ { 0 } , h ) = \frac { d } { d t } f ( x _ { 0 } + t h ) | _ { t = 0 } =$ ; confidence 0.875
+
156. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012026.png ; $f \phi = 0$ ; confidence 0.993
  
157. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005041.png ; $\theta \in \Theta _ { 1 } \subset \Theta - \Theta _ { 0 }$ ; confidence 0.973
+
157. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090399.png ; $L ( \mu )$ ; confidence 0.993
  
158. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005036.png ; $a ( - k ) = \overline { a ( k ) } , b ( - k ) = \overline { b ( k ) }$ ; confidence 0.228
+
158. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021059.png ; $B _ { m } = R$ ; confidence 0.993
  
159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090188.png ; $L _ { p } ( 1 - s , \chi ) = G _ { \chi } ( u ^ { s } - 1 ) / ( u ^ { s } - 1 )$ ; confidence 0.903
+
159. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005058.png ; $E ( A ) = \frac { 1 } { 2 } \int _ { G } | \nabla A | ^ { 2 } d x + \frac { 1 } { 4 } \int _ { G } ( | A | ^ { 2 } - 1 ) ^ { 2 } d x.$ ; confidence 0.993
  
160. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200101.png ; $F = ( F _ { 1 } , \dots , F _ { N } ) : C ^ { * } \rightarrow C ^ { * }$ ; confidence 0.134
+
160. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602048.png ; $X _ { 2 } = 0$ ; confidence 0.993
  
161. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001010.png ; $\langle L ^ { ( 1 ) } \rangle = - A ^ { 3 } \langle L \rangle$ ; confidence 0.420
+
161. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110234.png ; $H ( X ) \leq 1$ ; confidence 0.993
  
162. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557801.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } K _ { i \tau } ( x ) f ( x ) d x$ ; confidence 0.995
+
162. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049046.png ; $r ( p _ { i } ) = r ( p _ { 0 } ) + i$ ; confidence 0.993
  
163. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002065.png ; $x = x ^ { + } x ^ { - } , \quad x ^ { + } \wedge ( x ^ { - } ) ^ { - 1 } = e$ ; confidence 0.902
+
163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120300/s1203001.png ; $\operatorname{Map}_{*}( B _ { G } , X )$ ; confidence 0.993
  
164. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700019.png ; $\lambda x x \equiv \lambda x x \not \equiv \lambda x y$ ; confidence 0.493
+
164. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009070.png ; $M \times \mathfrak { g } \rightarrow M$ ; confidence 0.993
  
165. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006073.png ; $\langle \lambda | T ( z ) | \lambda ^ { \prime } \rangle$ ; confidence 0.994
+
165. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008058.png ; $( l _ { 1 } - k ^ { 2 } ) f _ { 1 } = 0$ ; confidence 0.993
  
166. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010051.png ; $L _ { \gamma , n } ^ { 1 } \leq L _ { \gamma , \overline { n } }$ ; confidence 0.322
+
166. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520284.png ; $\rho ( \xi ) = ( E _ { \xi } h _ { 0 } , h _ { 0 } )$ ; confidence 0.993
  
167. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006064.png ; $a _ { i - 1 } = \lfloor \frac { m _ { i - 1 } } { m _ { i } } \rfloor$ ; confidence 0.742
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031051.png ; $\{ x \in X : f ( x ) \neq 0 \}$ ; confidence 0.993
  
168. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013010.png ; $f ( X ) = a _ { n } X ^ { n } + a _ { n - 1 } X ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.445
+
168. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111015.png ; $( \alpha , \alpha ^ { \prime } )$ ; confidence 0.993
  
169. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953
+
169. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n1200206.png ; $\mathcal{M} ( E )$ ; confidence 0.993
  
170. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003097.png ; $e _ { 0 } = y _ { 0 } - \vec { x } _ { 0 } ^ { \star } \vec { \theta }$ ; confidence 0.343
+
170. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017068.png ; $1 \leq j , k \leq n$ ; confidence 0.993
  
171. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222012.png ; $\Omega ^ { 1 } \wedge \ldots \wedge \Omega ^ { m } \neq 0$ ; confidence 0.858
+
171. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004079.png ; $p ( x , \xi )$ ; confidence 0.993
  
172. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013074.png ; $\frac { d N } { d t } = \lambda N ( 1 - ( \frac { N } { K } ) ^ { x } )$ ; confidence 0.206
+
172. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002016.png ; $k _ { \mu } = \operatorname { log } L _ { \mu }$ ; confidence 0.993
  
173. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013036.png ; $\tau ( G ) = ( - 1 ) ^ { s + t } \operatorname { det } ( L ^ { * } )$ ; confidence 0.990
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008075.png ; $f \in H ^ { 1 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.993
  
174. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005094.png ; $\sup_{t \in [0,T]} ||B(t)||_X <\infty$ ; confidence 0.993
  
175. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020028.png ; $\mathfrak { g } \ni X , Y \mapsto \{ j X , j Y \} - j ( [ X , Y ] )$ ; confidence 0.650
+
175. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007055.png ; $\operatorname { ln } q ^ { \prime } = \frac { s } { \pi } P \int _ { 0 } ^ { 1 } \frac { \theta ^ { \prime } ( s ^ { \prime } ) d s ^ { \prime } } { s ^ { \prime } ( s ^ { \prime } - s ) }.$ ; confidence 0.993
  
176. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260252.png ; $\sigma = B ^ { \perp } \cap C ^ { \prime } \cap N ^ { \perp }$ ; confidence 0.997
+
176. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033110/d03311035.png ; $i > j$ ; confidence 0.993
  
177. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003055.png ; $G ( x ) \partial ^ { 5 } \nmid \partial x ^ { 4 } \partial t$ ; confidence 0.468
+
177. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007050.png ; $SGL_n( \mathbf{Z} A )$ ; confidence 0.993
  
178. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060149.png ; $S : \mathfrak { E } \rightarrow \hat { \mathfrak { C } }$ ; confidence 0.477
+
178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023080.png ; $\mathcal{L} _ { K } = \mathcal{L} ( K ) \in \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.993
  
179. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006052.png ; $C ^ { \infty } ( \Omega ) \cap W ^ { k } E _ { \Phi } ( \Omega )$ ; confidence 0.998
+
179. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200207.png ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) = \tau,$ ; confidence 0.993
  
180. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014014.png ; $| \epsilon _ { n } | \leq \frac { 1 } { 2 ( \theta - 1 ) ^ { 2 } }$ ; confidence 0.773
+
180. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008044.png ; $d ( w | v ) = 1$ ; confidence 0.993
  
181. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786
+
181. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009028.png ; $E _ { 1 } ( k )$ ; confidence 0.993
  
182. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201707.png ; $\delta _ { A , B } = \{ X \in B ( H ) : \delta _ { A , B } ( X ) = 0 \}$ ; confidence 0.748
+
182. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003023.png ; $0 < b \leq 1 / 2$ ; confidence 0.993
  
183. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001081.png ; $S ( C ) ^ { \mathscr { O } } = H \operatorname { exp } C ^ { d }$ ; confidence 0.069
+
183. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012029.png ; $L ( p _ { 1 } , p _ { 2 } , p _ { 3 } )$ ; confidence 0.993
  
184. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001099.png ; $\mathfrak { h } = \{ X \in \mathfrak { g } : \tau ( X ) = X \}$ ; confidence 0.925
+
184. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170132.png ; $M ( n + k )$ ; confidence 0.993
  
185. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004013.png ; $\lambda _ { 1 } \geq \frac { \pi \dot { y } _ { 0 } ^ { 2 } } { A }$ ; confidence 0.172
+
185. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027032.png ; $= \frac { 1 } { ( p + 1 ) \pi } \int _ { - \pi } ^ { \pi } \left[ f ( x + t ) \operatorname { sin } \frac { 2 n + 1 - p } { 2 } t \frac { \operatorname { sin } ( p + 1 ) t / 2 } { 2 \operatorname { sin } ^ { 2 } t / 2 } \right] d t,$ ; confidence 0.993
  
186. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004072.png ; $\lambda _ { 2 } ( \Omega ) \nmid \lambda _ { 1 } ( \Omega )$ ; confidence 0.690
+
186. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022033.png ; $\varepsilon \, ( M , s )$ ; confidence 0.993
  
187. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070151.png ; $= \int _ { T } d m ( t ) F ( t ) \overline { G ( t ) } = ( F , G ) _ { H }$ ; confidence 0.993
+
187. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009044.png ; $\operatorname { lim } _ { x \rightarrow \eta } \mu _ { x } ^ { \Omega } = \delta _ { \eta }$ ; confidence 0.993
  
188. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070116.png ; $f ( x ) = L F : = \int _ { T } F ( t ) \overline { h ( t , x ) } d m ( t )$ ; confidence 0.984
+
188. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203403.png ; $( L _ { + } , L _ { - } )$ ; confidence 0.993
  
189. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008065.png ; $f ( p ) = L g : = \int _ { T } g ( t ) \overline { h ( t , p ) } d m ( t )$ ; confidence 0.822
+
189. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017049.png ; $f : K _ { 0 } \rightarrow K _ { 1 }$ ; confidence 0.993
  
190. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004058.png ; $\overline { D } _ { S } \rightarrow \overline { D } _ { T }$ ; confidence 0.534
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050108.png ; $\mathcal{L} ( Y ) = \mathcal{L} ( Y , Y )$ ; confidence 0.993
  
191. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014014.png ; $M _ { \lambda } = ( Q _ { ( \lambda _ { i } , \lambda _ { j } ) } )$ ; confidence 0.455
+
191. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020139.png ; $\Lambda ( F ) \neq \theta$ ; confidence 0.993
  
192. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004043.png ; $s _ { \lambda } = \sum _ { \mu } K _ { \lambda \mu } m _ { \mu }$ ; confidence 0.990
+
192. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232706.png ; $A \subseteq B$ ; confidence 0.993
  
193. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004011.png ; $\lambda = \operatorname { det } ( x _ { i } ^ { \lambda } )$ ; confidence 0.591
+
193. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007055.png ; $g = q ^ { H }$ ; confidence 0.993
  
194. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s1303704.png ; $x ( t + ) = \operatorname { lim } _ { s \downarrow t } x ( s )$ ; confidence 0.862
+
194. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022010.png ; $\Delta ^ { ( p ) }$ ; confidence 0.993
  
195. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602019.png ; $\Phi ^ { + } ( t _ { 0 } ) - \Phi ^ { - } ( t _ { 0 } ) = \phi ( t _ { 0 } )$ ; confidence 0.487
+
195. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130390/s1303908.png ; $\eta ( n ) = n$ ; confidence 0.993
  
196. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054034.png ; $w ( \alpha ) = x ( \alpha ) y ( - \alpha ^ { - 1 } ) x ( \alpha )$ ; confidence 0.832
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017022.png ; $\operatorname { lim } _ { t \rightarrow + \infty } \Omega ( t ) = 0$ ; confidence 0.993
  
197. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025024.png ; $h ( x ) = \frac { ( 1 - x ^ { 2 } ) ^ { \pm 1 / 2 } } { \rho _ { m } ( x ) }$ ; confidence 0.921
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010205.png ; $z \neq 0$ ; confidence 0.993
  
198. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026028.png ; $( L ^ { 2 } ) ^ { - } \supset ( L ^ { 2 } ) \supset ( L ^ { 2 } ) ^ { + }$ ; confidence 0.991
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021052.png ; $L = L ( \lambda )$ ; confidence 0.993
  
199. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340166.png ; $U _ { i } = \varphi _ { i } ( ( \pm \infty , 0 ) \times S ^ { 1 } )$ ; confidence 0.998
+
199. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008021.png ; $s - 1$ ; confidence 0.993
  
200. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002035.png ; $| n | = \operatorname { min } _ { 1 \leq i \leq d } | n _ { i } |$ ; confidence 0.413
+
200. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007022.png ; $\mathbf{v} ( M _ { 1 } , M _ { 2 } ) = \mathbf{v} ( M _ { 1 } ) \mathbf{v} ( M _ { 2 } ) , M _ { 1 } , M _ { 2 } \in \Gamma.$ ; confidence 0.993
  
201. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005038.png ; $\operatorname { Ran } D _ { A } = \operatorname { Ker } D$ ; confidence 0.569
+
201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018082.png ; $E G - F ^ { 2 } > 0$ ; confidence 0.993
  
202. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300501.png ; $\Lambda \equiv \Lambda [ e ] \equiv \Lambda _ { N } [ e ]$ ; confidence 0.884
+
202. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003071.png ; $t ( z ) p ( z ) + q ( z ) v ( z ) = 1$ ; confidence 0.993
  
203. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006053.png ; $\mu ( N ) = - \frac { \partial E ^ { TF } ( N ) } { \partial N }$ ; confidence 0.533
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110790/b11079040.png ; $2 / 3$ ; confidence 0.993
  
204. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013037.png ; $X = \{ C : \operatorname { Hom } _ { \Lambda } ( C , Y ) = 0 \}$ ; confidence 0.907
+
204. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008023.png ; $K ( x , y ) = \overline { K ( y , x ) } , K ( x , x ) \geq 0,$ ; confidence 0.993
  
205. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013088.png ; $\operatorname { Ext } _ { \mathscr { H } } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022082.png ; $j \geq 1$ ; confidence 0.993
  
206. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013030.png ; $F = \{ C : \operatorname { Hom } _ { \Lambda } ( T , C ) = 0 \}$ ; confidence 0.896
+
206. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015017.png ; $\xi ^ { i } ( x )$ ; confidence 0.993
  
207. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013070.png ; $( T , ) : D ^ { b } ( \Lambda ) \rightarrow D ^ { b } ( \Gamma )$ ; confidence 0.335
+
207. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008096.png ; $\chi = ( k _ { B } T ) ^ { - 1 } \operatorname { exp } ( 2 J / k _ { B } T )$ ; confidence 0.993
  
208. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014065.png ; $: G 1 _ { Q } ( d ) \times A _ { Q } ( d ) \rightarrow A _ { Q } ( d )$ ; confidence 0.120
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040753.png ; $\mathfrak{M} \in \operatorname{Mod} _ { \mathcal{S} _{P \cup R}}( \Sigma ( P , R ) )$ ; confidence 0.993
  
209. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408036.png ; $\pi _ { n } ( X ; A , B , * ) = \pi _ { n - 1 } ( \Omega ( X ; A , B ) , * )$ ; confidence 0.641
+
209. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225907.png ; $f : Y \rightarrow X$ ; confidence 0.993
  
210. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020029.png ; $g _ { 1 } ( k ) = \sum _ { j = 1 } ^ { n } \phi _ { j } ( k ) z _ { j } ^ { k }$ ; confidence 0.960
+
210. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018045.png ; $( X , \mathcal{B} , m )$ ; confidence 0.993
  
211. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020227.png ; $\Phi : \partial U \rightarrow E ^ { n + 1 } \backslash 0$ ; confidence 0.421
+
211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510111.png ; $\gamma ( v ) = 1$ ; confidence 0.993
  
212. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006020.png ; $p B _ { 2 n } \equiv p - 1 ( \operatorname { mod } p ^ { k + 1 } )$ ; confidence 0.840
+
212. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019032.png ; $\{ a , b \} \equiv \{ c , d \}$ ; confidence 0.993
  
213. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003086.png ; $\| x ^ { * } + x ^ { \perp } \| = \| x ^ { * } \| + \| x ^ { \perp } \|$ ; confidence 0.672
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034061.png ; $f ( z ) = \sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k } , \quad | z | < 1,$ ; confidence 0.993
  
214. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w1200107.png ; $\{ z ^ { n } ( \frac { d } { d z } ) ^ { m } : n \in Z , m \in N _ { 0 } \}$ ; confidence 0.913
+
214. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003034.png ; $\operatorname{Hom}_{ \mathcal{K} } ( H ^ { * } ( Y , \mathbf{F} _ { p } ) , H ^ { * } ( X , \mathbf{F} _ { p } ) )$ ; confidence 0.993
  
215. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008091.png ; $\vec { d \Omega } _ { n } = P _ { + } ^ { n / N } ( \frac { d w } { w } )$ ; confidence 0.122
+
215. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005047.png ; $\operatorname{Aut} \Gamma = G$ ; confidence 0.993
  
216. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009059.png ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$ ; confidence 0.591
+
216. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008010.png ; $\rho = \sum _ { p = 1 } ^ { P } \rho _ { p }$ ; confidence 0.993
  
217. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001092.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.940
+
217. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002026.png ; $A = \{ x : f ( x ) \neq 0 \}$ ; confidence 0.993
  
218. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003038.png ; $D _ { A } : \Gamma ( V _ { + } ) \rightarrow \Gamma ( V _ { - } )$ ; confidence 0.998
+
218. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g04435028.png ; $F = F ( x )$ ; confidence 0.993
  
219. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003051.png ; $( Z f ) ( t , w ) = \overline { ( Z f ) } ( t , - w ) = ( Z f ) ( - t , - w )$ ; confidence 0.967
+
219. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l1200401.png ; $\partial _ { t } u + \partial _ { x } f ( u ) = 0.$ ; confidence 0.993
  
220. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001042.png ; $\overline { U } _ { 1 } = \{ x ^ { ( 2 ) } : 0 \leq i < p ^ { m } - 1 \}$ ; confidence 0.666
+
220. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203006.png ; $X ( 0 ) = x _ { 0 }$ ; confidence 0.993
  
221. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001071.png ; $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ ; confidence 0.974
+
221. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007024.png ; $g ( n ) \overline { h ( n ) }$ ; confidence 0.993
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240524.png ; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727
+
222. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041054.png ; $\int _ { - 1 } ^ { 1 } \frac { \operatorname { ln } \mu _ { 0 } ^ { \prime } ( x ) } { \sqrt { 1 - x ^ { 2 } } } d x > - \infty.$ ; confidence 0.993
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240280.png ; $\hat { \sigma } \hat { \psi } = \| d \| ( MS _ { e } ) ^ { 1 / 2 }$ ; confidence 0.563
+
223. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011036.png ; $f : E ( \vec { G } ) \rightarrow \mathbf{Z} _ { 4 } ^ { * }$ ; confidence 0.993
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040233.png ; $E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.426
+
224. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017055.png ; $0$ ; confidence 0.993
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300409.png ; $\lambda ^ { F m } ( \varphi 0 , \dots , \varphi _ { m } - 1 )$ ; confidence 0.080
+
225. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010112.png ; $\tau ( W , M _ { 0 } ) = \tau ( W ^ { \prime } , M _ { 0 } )$ ; confidence 0.993
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050161.png ; $Z _ { G } ( y ) = \sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n }$ ; confidence 0.914
+
226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001025.png ; $\frac { \partial u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { \partial \xi ^ { \prime } } =$ ; confidence 0.993
  
227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050260.png ; $\pi _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } P _ { C } ^ { \# } ( n )$ ; confidence 0.369
+
227. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004017.png ; $= \sum _ { k = 1 } ^ { \infty } \frac { \operatorname { sin } ( k z ) } { k ^ { 2 } },$ ; confidence 0.993
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050181.png ; $\zeta _ { A } ( z ) = \sum _ { n = 1 } ^ { \infty } a ( n ) n ^ { - z }$ ; confidence 0.696
+
228. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003049.png ; $\{ \lambda : u _ { \lambda } \equiv 0 \}$ ; confidence 0.993
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005041.png ; $\| ( \lambda - A ( t ) ) ^ { - 1 } \| \leq M / ( 1 + | \lambda | )$ ; confidence 0.999
+
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005025.png ; $\mathcal{H} ( U )$ ; confidence 0.993
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060118.png ; $Z _ { G } ( y ) = \sum _ { r = 0 } ^ { \infty } G ^ { \# } ( r ) y ^ { r }$ ; confidence 0.977
+
230. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004012.png ; $\chi ^ { \prime } ( G ) \leq 3 \Delta ( G ) / 2$ ; confidence 0.993
  
231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008051.png ; $\frac { d ^ { 2 } u } { d t ^ { 2 } } + A ( t ) u = f ( t ) , t \in [ 0 , T ]$ ; confidence 0.999
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070118.png ; $\frac { d u } { d t } = A ( t , u ) u + f ( t , u )$ ; confidence 0.993
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007088.png ; $\operatorname { log } \operatorname { log } n ) ^ { 3 }$ ; confidence 1.000
+
232. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003090.png ; $H ^ { * } B E$ ; confidence 0.993
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007048.png ; $\alpha = \frac { b \sigma ( a ) } { \alpha \varphi ( b ) }$ ; confidence 0.156
+
233. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029056.png ; $\mathcal{T} ( u )$ ; confidence 0.993
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007055.png ; $A _ { \alpha } ( x ) = \operatorname { card } \{ n \leq x :$ ; confidence 0.861
+
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020041.png ; $\mathcal{M} = \theta H ^ { 2 }$ ; confidence 0.993
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010033.png ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879
+
235. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030093.png ; $i \geq 1$ ; confidence 0.993
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030013.png ; $\theta _ { X } : ( T V , d ) \rightarrow C \times \Omega X$ ; confidence 0.645
+
236. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004042.png ; $0 = \mu _ { 1 } ( \Omega ) < \mu _ { 2 } ( \Omega ) \leq \mu _ { 3 } ( \Omega ) \leq \dots$ ; confidence 0.993
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015035.png ; $\operatorname { Ker } ( \text { ad } ) = \mathfrak { g }$ ; confidence 0.422
+
237. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012065.png ; $\phi _ { 2 } \circ \phi _ { 1 } = \phi _ { 3 }$ ; confidence 0.993
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981
+
238. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140127.png ; $q _ { R } ( v ) > 0$ ; confidence 0.993
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020052.png ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { \gamma _ { m } }$ ; confidence 0.493
+
239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200108.png ; $R : U \rightarrow X$ ; confidence 0.993
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022042.png ; $X \mapsto \square _ { R } \operatorname { Mod } ( X , C )$ ; confidence 0.689
+
240. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003033.png ; $F _ { K } : \xi + i \eta \rightarrow K \xi + i \eta$ ; confidence 0.993
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025019.png ; $[ a _ { 1 } , \alpha _ { 2 } ] = L ( a _ { 1 } , a _ { 2 } ) \in L ( V , V )$ ; confidence 0.468
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005062.png ; $t \in ( 0 , T ]$ ; confidence 0.993
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302809.png ; $| a _ { n } + 1 - b _ { n } + 1 | < \frac { 1 } { 2 } | a _ { n } - b _ { n } |$ ; confidence 0.793
+
242. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003049.png ; $( Z f ) ( t , w ) = - ( Z f ) ( - t , - w ).$ ; confidence 0.993
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027080.png ; $r _ { P } : K _ { P } ^ { * } / K _ { P } ^ { * 2 } \rightarrow C ^ { * }$ ; confidence 0.385
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012010/a01201067.png ; $m > 2$ ; confidence 0.993
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010013.png ; $( A F ) _ { n } ( X ) = \int d x _ { n } + 1 F _ { n } + 1 ( X , x _ { n } + 1 )$ ; confidence 0.296
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010058.png ; $A = - \Delta$ ; confidence 0.993
  
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040182.png ; $\Sigma _ { n = 1 } ^ { \infty } | x ^ { * } ( x _ { n } ) | < \infty$ ; confidence 0.339
+
245. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026031.png ; $\rho ( x y ) = x \rho ( y )$ ; confidence 0.993
  
246. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006040.png ; $| \mu - \lambda | \leq \| V \| \cdot \| V ^ { - 1 } \| \| E \|$ ; confidence 0.735
+
246. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130113.png ; $p \ll 1$ ; confidence 0.993
  
247. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006021.png ; $l _ { 2 } U = \frac { \partial ^ { 2 } U } { \partial t ^ { 2 } }$ ; confidence 0.078
+
247. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840112.png ; $[ \mathcal{L} _ { + } , \mathcal{L} _ { - } ] = \{ 0 \}$ ; confidence 0.993
  
248. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220174.png ; $CH ^ { m } ( X ) \rightarrow H _ { B } ^ { 2 m } ( X _ { C } , Z ( m ) )$ ; confidence 0.242
+
248. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026035.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \alpha _ { k }$ ; confidence 0.993
  
249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012015.png ; $\tau _ { t , v } : T _ { p } M \rightarrow T _ { \gamma ( t ) } M$ ; confidence 0.673
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011830/a0118304.png ; $\alpha , \beta$ ; confidence 0.993
  
250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b1201307.png ; $\| f \| _ { p , G } ^ { p } = \int | f ( z ) | ^ { p } d A ( z ) < \infty$ ; confidence 0.687
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050279.png ; $G ^ { \# } ( n )$ ; confidence 0.993
  
251. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012015.png ; $| g ( t _ { 1 } ) - g ( t _ { 2 } ) | \leq | f ( t _ { 1 } ) - f ( t _ { 2 } ) |$ ; confidence 0.982
+
251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040161.png ; $\epsilon = 0$ ; confidence 0.993
  
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027059.png ; $a _ { x } = b _ { x } + \sum _ { 0 } ^ { x } a _ { x } - j p _ { j } , n = 0,1$ ; confidence 0.304
+
252. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013032.png ; $e ( F ( 4 ) | F )$ ; confidence 0.993
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043065.png ; $\Delta y = y \otimes 1 + 1 \otimes y , \varepsilon y = 0$ ; confidence 0.364
+
253. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001022.png ; $x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } - t ^ { 2 }$ ; confidence 0.993
  
254. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023032.png ; $\operatorname { St } _ { G } ( u ) = \{ g \in G : u ^ { g } = u \}$ ; confidence 0.828
+
254. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100104.png ; $K _ { E } ( V ) = \sqrt { V _ { - } } ( - \Delta + E ) ^ { - 1 } \sqrt { V _ { - } }.$ ; confidence 0.993
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052038.png ; $B _ { + } = B _ { c } + \frac { ( y - B _ { c } s ) s ^ { T } } { s ^ { T } s }$ ; confidence 0.758
+
255. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734043.png ; $\Phi ( z )$ ; confidence 0.993
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052023.png ; $x _ { + } = x _ { c } - F ^ { \prime } ( x _ { 0 } ) ^ { - 1 } F ( x _ { c } )$ ; confidence 0.887
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026066.png ; $u : A \rightarrow A _ { 1 }$ ; confidence 0.993
  
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b1205208.png ; $x _ { + } = x _ { c } - F ^ { \prime } ( x _ { c } ) ^ { - 1 } F ( x _ { c } )$ ; confidence 0.831
+
257. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015055.png ; $A \in \Phi ( X )$ ; confidence 0.993
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005039.png ; $N _ { Aut } \Gamma ( G ) = G . \operatorname { Aut } ( G , S )$ ; confidence 0.349
+
258. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004018.png ; $\varphi ( x , w ) = w ( x )$ ; confidence 0.993
  
259. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180223.png ; $\in A ^ { 2 } \varepsilon \otimes A ^ { 2 } \varepsilon$ ; confidence 0.493
+
259. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v09603018.png ; $1.614 \mu$ ; confidence 0.993
  
260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025012.png ; $z _ { k } ^ { T } ( t ) = ( z _ { k , 1 } ( t ) , \dots , z _ { k , p } ( t ) )$ ; confidence 0.380
+
260. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017017.png ; $\omega _ { \alpha + 1 } ( G ) / \omega _ { \alpha } ( G ) = \omega ( G / \omega _ { \alpha } ( G ) ) , \, \omega _ { \lambda } ( G ) = \cup _ { \beta < \lambda } \omega _ { \beta } ( G ),$ ; confidence 0.993
  
261. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029025.png ; $\| g \| = \operatorname { max } _ { x \in [ i , b ] } | g ( x ) |$ ; confidence 0.061
+
261. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007054.png ; $u _ { j } : = ( u , \varphi _ { j } ) _ { 0 }$ ; confidence 0.993
  
262. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011041.png ; $r _ { i } s _ { j } \in C _ { j } ( i + j ) \operatorname { mod } 2$ ; confidence 0.122
+
262. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300107.png ; $\operatorname { gcd } ( f , \partial f / \partial x )$ ; confidence 0.993
  
263. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020013.png ; $\sum _ { \mathfrak { W } = 1 } ^ { \mathfrak { N } } m ^ { - s }$ ; confidence 0.221
+
263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026037.png ; $( L ^ { 2 } ) ^ { - }$ ; confidence 0.993
  
264. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202002.png ; $S _ { \| H } ( s ) = \sum _ { m \in M } a _ { m } e ^ { - \lambda m s }$ ; confidence 0.116
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025024.png ; $q \leq 32$ ; confidence 0.993
  
265. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031015.png ; $f ( T ) g ( T ) = ( f g ) ( T ) , f ( \sigma ( T ) ) = \sigma ( f ( T ) )$ ; confidence 0.997
+
265. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002026.png ; $\max p _ { i } \rightarrow 0$ ; confidence 0.993
  
266. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e1300109.png ; $f ^ { \rho } = \alpha _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m }$ ; confidence 0.441
+
266. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014042.png ; $H = S$ ; confidence 0.993
  
267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230193.png ; $E ( L ) \equiv ( 1 + \Omega d S ) ^ { k } \Omega d ( L \Delta )$ ; confidence 0.550
+
267. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620149.png ; $q ( x ) = q _ { 1 } ( x ) + q _ { 2 } ( x )$ ; confidence 0.993
  
268. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230154.png ; $\sigma _ { t } ^ { k } = \phi _ { t } ^ { k } \circ \sigma ^ { k }$ ; confidence 0.998
+
268. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018012.png ; $\mu ( x , y )$ ; confidence 0.992
  
269. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004018.png ; $b _ { k } = - i h ^ { - 1 } H _ { 0 } ( x _ { k } ) t - i H _ { 1 } ( x _ { k } ) t$ ; confidence 0.987
+
269. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005051.png ; $\{ V ( n , \alpha ) \}$ ; confidence 0.992
  
270. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300907.png ; $U _ { n + 1 } ( x ) U _ { n - 1 } ( x ) - U _ { n } ^ { 2 } ( x ) = ( - 1 ) ^ { n }$ ; confidence 0.925
+
270. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017043.png ; $H _ { y } ( t ) = H _ { \epsilon } ( t )$ ; confidence 0.992
  
271. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009067.png ; $R ( p ; k , n ) = p ^ { - 1 } q ^ { n + 1 } F _ { n + 2 } ( \frac { p } { q } )$ ; confidence 0.992
+
271. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017036.png ; $V _ { t } = C ( t )$ ; confidence 0.992
  
272. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100135.png ; $\operatorname { supp } T = \{ x _ { 1 } , \dots , x _ { N } \}$ ; confidence 0.482
+
272. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006096.png ; $A ( x ) = 2 \Gamma _ { 2 x } ( 2 x , 0 )$ ; confidence 0.992
  
273. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008037.png ; $\varphi ( g ) = ( \xi , \eta ) ( g ) : = ( \pi ( g ) \xi , \eta )$ ; confidence 0.995
+
273. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900151.png ; $H = \oplus _ { p = 1 } ^ { \infty } L _ { 2 } ( Z _ { p  } , \mu , H _ { p } ),$ ; confidence 0.992
  
274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110158.png ; $R ^ { n } - i \Delta \cap \{ | \eta | \geq \varepsilon \}$ ; confidence 0.735
+
274. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601059.png ; $\tau ( W , M _ { 1 } ) = 0$ ; confidence 0.992
  
275. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021021.png ; $L _ { 0 } ( u ^ { \lambda } ) = \pi ( \lambda ) z ^ { \lambda }$ ; confidence 0.992
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150069.png ; $p = 0$ ; confidence 0.992
  
276. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290153.png ; $( f , \phi ) : ( X , L , \tau ) \rightarrow ( Y , M , \sigma )$ ; confidence 0.997
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270129.png ; $s = 1 / 2$ ; confidence 0.992
  
277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290141.png ; $( f , \phi ) ^ { \leftarrow } : L ^ { X } \leftarrow M ^ { Y }$ ; confidence 0.983
+
277. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020112.png ; $( p , q ) : \Gamma ( F ) \rightarrow X$ ; confidence 0.992
  
278. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001011.png ; $\{ 1 , \alpha , \alpha ^ { 2 } , \dots , \alpha ^ { n - 1 } \}$ ; confidence 0.424
+
278. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021030.png ; $\dot { x } ( t - \tau _ { i } )$ ; confidence 0.992
  
279. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001041.png ; $f = x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \ldots + a _ { 1 } x + a _ { 0 }$ ; confidence 0.444
+
279. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015072.png ; $C ^ { \infty } ( \Omega )$ ; confidence 0.992
  
280. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030104.png ; $\sum _ { j = m } ^ { \infty } f _ { j } ( x ) \varepsilon ^ { j }$ ; confidence 0.880
+
280. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051031.png ; $\nabla f ( x ^ { * } ) = 0$ ; confidence 0.992
  
281. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005054.png ; $A ( \xi , \tau ) = \rho e ^ { i \langle ( K , \xi ) + W \tau ) }$ ; confidence 0.471
+
281. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026025.png ; $\Gamma ( L ^ { 2 } ( \mathbf{R} ) )$ ; confidence 0.992
  
282. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602031.png ; $Y _ { 1 } = X _ { 1 } + P Y _ { 2 } , \quad Y _ { 2 } = X _ { 2 } + C Y _ { 1 }$ ; confidence 0.995
+
282. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028013.png ; $U \supset K$ ; confidence 0.992
  
283. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001023.png ; $\frac { 1 } { x } \cdot \sum _ { n \leq x } f ( n ) = c x ^ { i * } 0$ ; confidence 0.084
+
283. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002031.png ; $I_2$ ; confidence 0.992
  
284. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001021.png ; $\sigma ( t ) = \int _ { t ^ { - n } g \Phi } ^ { \infty } ( s ) d s$ ; confidence 0.480
+
284. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025029.png ; $f \in C ^ { \infty } ( \Omega )$ ; confidence 0.992
  
285. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001079.png ; $\lambda ( L ( G _ { 1 } ) ) \leq d _ { \lambda } ( L ( G _ { 2 } ) )$ ; confidence 0.859
+
285. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120090/i1200908.png ; $( M ^ { 2 n + 1 } , \xi )$ ; confidence 0.992
  
286. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030165.png ; $\phi * : K _ { 0 } ( R \otimes C [ \Gamma ] ) \rightarrow C$ ; confidence 0.423
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029037.png ; $D _ { A }$ ; confidence 0.992
  
287. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080105.png ; $= \operatorname { tanh } [ \frac { H + 2 m J } { k _ { B } T } ]$ ; confidence 0.961
+
287. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170105.png ; $N = \{ p : ( p , p ) _ { M } = 0 \}$ ; confidence 0.992
  
288. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008046.png ; $\operatorname { lim } _ { H \rightarrow 0 } m ( T , H ) = 0$ ; confidence 0.998
+
288. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260167.png ; $\alpha : P \rightarrow B$ ; confidence 0.992
  
289. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008069.png ; $Z = \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 }$ ; confidence 0.447
+
289. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m1301806.png ; $\mu ( x , y ) = 0$ ; confidence 0.992
  
290. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003034.png ; $\| \alpha \square \alpha ^ { * } \| = \| \alpha \| ^ { 2 }$ ; confidence 0.678
+
290. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230116.png ; $( ( X ^ { \prime } , B ^ { \prime } ) , f ^ { \prime } )$ ; confidence 0.992
  
291. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003090.png ; $z \mapsto z - 2 \{ a a z \} + \{ \alpha \{ a z \alpha \} a \}$ ; confidence 0.219
+
291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026092.png ; $X \subset M ( A )$ ; confidence 0.992
  
292. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002047.png ; $\operatorname { var } ( X ) \sim \overline { \Delta }$ ; confidence 0.910
+
292. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602070.png ; $H _ { \infty }$ ; confidence 0.992
  
293. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020211.png ; $| I | \alpha > \int _ { I } | u ( \vartheta ) | d \vartheta$ ; confidence 0.595
+
293. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047560/h04756054.png ; $f : M \rightarrow M ^ { \prime }$ ; confidence 0.992
  
294. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008085.png ; $\langle z , w \rangle = \sum _ { j = 1 } ^ { x } z _ { j } w _ { j }$ ; confidence 0.181
+
294. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070103.png ; $\| f _ { n } - f \| _ { 1 } \rightarrow 0$ ; confidence 0.992
  
295. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840185.png ; $\rho ( \lambda ) = \sum _ { j = 1 } ^ { \kappa } [ d _ { j } / 2 ]$ ; confidence 0.917
+
295. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023028.png ; $\overline { N E } ( X / S )$ ; confidence 0.992
  
296. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l1300801.png ; $P _ { 1 } , \ldots , P _ { m } \in Z [ x _ { 1 } , \ldots , x _ { N } ]$ ; confidence 0.105
+
296. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003059.png ; $r ( z ) = \sum _ { i = 1 } ^ { 2 n - 1 } s _ { i } z ^ { - i }$ ; confidence 0.992
  
297. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005050.png ; $( x ^ { 0 } ) ^ { 2 } - \sum _ { t } ( x ^ { t } ) ^ { 2 } = 1 , \quad t > 0$ ; confidence 0.980
+
297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030035.png ; $n = \operatorname { dim } ( \mathcal{H} ) \geq 2$ ; confidence 0.992
  
298. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130100.png ; $f , g _ { 1 } , \dots , g _ { w } \in Z [ X _ { 1 } , \dots , X _ { N } ]$ ; confidence 0.174
+
298. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022073.png ; $\operatorname { det } ( \Delta + z )$ ; confidence 0.992
  
299. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010041.png ; $\tilde { f } ( \xi ) = \int _ { R ^ { n } } f ( x ) e ^ { i \xi x } d x$ ; confidence 0.664
+
299. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013027.png ; $\theta \in S$ ; confidence 0.992
  
300. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009026.png ; $P ( D ) ( E ^ { * } g ) = ( P ( D ) ( E ) ) ^ { * } g = \delta _ { 0 } * g = g$ ; confidence 0.390
+
300. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023052.png ; $N _ { 1 } ( X / S )$ ; confidence 0.992

Latest revision as of 19:21, 29 March 2020

List

1. a120310111.png ; $M ( C ( S ) , \alpha , G )$ ; confidence 0.994

2. z12001090.png ; $M = K , \overline { U } _ { 1 } , U _ { - 1 } , U _ { 2 } , U _ { 3 } , U _ { 5 }$ ; confidence 0.994

3. b13010069.png ; $\widetilde{T} ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } / ( 1 + | z | ^ { 2 } ) ^ { 2 }$ ; confidence 0.994

4. w13010030.png ; $f : \mathbf{R} _ { + } \rightarrow \mathbf{R} _ { + }$ ; confidence 0.994

5. k055840216.png ; $\sigma ( T ) \cap \{ | \rho | = 1 \} = \emptyset$ ; confidence 0.994

6. d12006016.png ; $T ( f ) ( x , t ) = f ( q x , t ) , \quad x , q \in \mathbf{R} , q \neq 0.$ ; confidence 0.994

7. s13002042.png ; $\overline { U M } = \{ u \in U M : l ( - u ) < \infty \} \cup U ^ { + } \partial M$ ; confidence 0.994

8. i13007029.png ; $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , k _ { 0 } )$ ; confidence 0.994

9. p13010033.png ; $\operatorname { log } | P ( z ) | \leq \int _ { K } \operatorname { log } | P ( \zeta ) | d \mu _ { z } ( \zeta ) , P \in \mathcal{P}.$ ; confidence 0.994

10. f13013011.png ; $M \subset E _ { 2 }$ ; confidence 0.994

11. f12014020.png ; $1 \leq \lambda \leq \infty$ ; confidence 0.994

12. q130050102.png ; $h ( \mathbf{T} )$ ; confidence 0.993

13. l1300904.png ; $\delta ^ { i } \lambda ^ { j }$ ; confidence 0.993

14. l12017029.png ; $R _ { i } \rightarrow R _ { i } ^ { - 1 }$ ; confidence 0.993

15. b12021091.png ; $\alpha \in \Pi$ ; confidence 0.993

16. d12029083.png ; $x \in [ 0,1 ]$ ; confidence 0.993

17. g12005044.png ; $\tau = \varepsilon ^ { 2 } t.$ ; confidence 0.993

18. w13008079.png ; $u _ { k } \in \mathcal{M} =$ ; confidence 0.993

19. m13025031.png ; $( u , f v )$ ; confidence 0.993

20. r13008024.png ; $| K ( x , y ) | ^ { 2 } \leq K ( x , x ) K ( y , y ).$ ; confidence 0.993

21. a120280133.png ; $M ^ { U } ( E )$ ; confidence 0.993

22. b1205602.png ; $\lambda _ { 1 } = \lambda _ { 1 } ( M )$ ; confidence 0.993

23. g12004068.png ; $( x , \xi ) \in \Gamma$ ; confidence 0.993

24. b120440107.png ; $b \mapsto b ^ { G }$ ; confidence 0.993

25. q12001086.png ; $( \pi , C , \mathcal{H} , J )$ ; confidence 0.993

26. m130230140.png ; $( ( X _ { 0 } , B _ { 0 } ) , f _ { 0 } ) = ( ( X , B ) , f )$ ; confidence 0.993

27. r130070151.png ; $= \int _ { T } d m ( t ) F ( t ) \overline { G ( t ) } = ( F , G ) _ { \mathcal{H} }.$ ; confidence 0.993

28. h13012019.png ; $( E _ { 1 } , E _ { 2 } )$ ; confidence 0.993

29. d03289090.png ; $\Lambda ( n )$ ; confidence 0.993

30. c130070265.png ; $2 g - 2 = \nu _ { 1 } ( 2 g _ { 1 } - 2 ) + \mathfrak { D } _ { 1 }.$ ; confidence 0.993

31. h13002067.png ; $q , r , d \in \mathbf{N}$ ; confidence 0.993

32. c1101607.png ; $\equiv$ ; confidence 0.993

33. m12011046.png ; $p : M \rightarrow S ^ { 1 }$ ; confidence 0.993

34. f12011045.png ; $F _ { j } ( z ) e ^ { - i z \zeta }$ ; confidence 0.993

35. l12014029.png ; $A \in L _ { 0 } ( X )$ ; confidence 0.993

36. r13007075.png ; $( f , f ) = 0$ ; confidence 0.993

37. e035000108.png ; $\pi \{ ( x , y ) : \rho ( x , y ) \leq \epsilon / 2 \} = 1.$ ; confidence 0.993

38. a01148089.png ; $n = 5$ ; confidence 0.993

39. a130060124.png ; $\mathcal{F}$ ; confidence 0.993

40. n12002082.png ; $m \mapsto V _ { F } ( m )$ ; confidence 0.993

41. a1302707.png ; $\{ Y _ { n } \} \subset Y$ ; confidence 0.993

42. b12022029.png ; $u ( t , x )$ ; confidence 0.993

43. m13022085.png ; $c = 24$ ; confidence 0.993

44. a12026039.png ; $\nu :\mathbf{N} \rightarrow \mathbf{N}$ ; confidence 0.993

45. e12019097.png ; $\sqrt { \sigma ( x , x ) }$ ; confidence 0.993

46. a12012029.png ; $\mu _ { i } > 0$ ; confidence 0.993

47. c130070201.png ; $s T = M ( T ) ^ { \mu }$ ; confidence 0.993

48. f1302808.png ; $B = \{ \mathbf{r} : \mathbf{r} \leq \mathbf{b} \}$ ; confidence 0.993

49. h04751231.png ; $0 < \alpha _ { i } \leq 1$ ; confidence 0.993

50. a12018081.png ; $\operatorname { ln } ( 1 + t ) = t - t ^ { 2 } / 2 + t ^ { 3 } / 3 - \dots$ ; confidence 0.993

51. b13030091.png ; $B ( m , n , 0 ) = F _ { m }$ ; confidence 0.993

52. l12007043.png ; $1 \leq i \leq j \leq k$ ; confidence 0.993

53. h13005041.png ; $\frac { d ^ { 2 } \psi } { d x ^ { 2 } } + [ \lambda \rho ( x , t ) - u ( x , t ) ] \psi = 0 , - \infty < x < \infty ,$ ; confidence 0.993

54. c13015021.png ; $\mathcal{N} ( \mathcal{D} ( \Omega ) )$ ; confidence 0.993

55. w13013034.png ; $R / r = \sqrt { 2 }$ ; confidence 0.993

56. p12014055.png ; $m \geq 1$ ; confidence 0.993

57. d13013065.png ; $\theta < \pi / 2 + \epsilon$ ; confidence 0.993

58. a13032058.png ; $E_p ( N ) = \frac { \alpha \operatorname { log } ( \frac { 1 - \beta } { \alpha } ) + ( 1 - \alpha ) \operatorname { log } ( \frac { \beta } { 1 - \alpha } ) } { ( p - q ) \operatorname { log } ( q / p ) }.$ ; confidence 0.993

59. z13001056.png ; $Z ( x ( n ) ) = \frac { z ( z - 1 ) } { ( z + 2 ) ^ { 3 } ( z + 3 ) } =$ ; confidence 0.993

60. w120030146.png ; $f \in \Omega ^ { \prime }$ ; confidence 0.993

61. f12024065.png ; $( t , u ) \mapsto f ( t , u )$ ; confidence 0.993

62. w1200703.png ; $f : \mathbf{R} ^ { 2 n } \rightarrow \mathbf{R}$ ; confidence 0.993

63. s130510149.png ; $\mathcal{P} = \{ \mathbf{u} \in V : \sigma ( \mathbf{u} ) = 0 \},$ ; confidence 0.993

64. e13004042.png ; $( g - g_0 ) \psi ( t )$ ; confidence 0.993

65. s13040038.png ; $E G$ ; confidence 0.993

66. l12003025.png ; $\{ \mathcal{R} ^ { * } \}$ ; confidence 0.993

67. c13019023.png ; $\varphi ( [ 0 , t ] , x ) \subset N$ ; confidence 0.993

68. i12001027.png ; $\Phi _ { 1 } \prec \Phi _ { 2 }$ ; confidence 0.993

69. f12015028.png ; $A + K \in \Phi ( X , Y )$ ; confidence 0.993

70. l12010016.png ; $\gamma = 1 / 2$ ; confidence 0.993

71. d1202601.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \xi _ { k }$ ; confidence 0.993

72. w13004045.png ; $\sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 } \neq 0$ ; confidence 0.993

73. g0447504.png ; $( k \times k )$ ; confidence 0.993

74. n067520235.png ; $R ( S A S ^ { - 1 } , S B ) = S R ( A , B )$ ; confidence 0.993

75. z13003063.png ; $L ^ { 2 } ( \mathcal{R} )$ ; confidence 0.993

76. h1300607.png ; $T _ { n } f \in M ( k )$ ; confidence 0.993

77. e12002047.png ; $Z = [ 0,1 ]$ ; confidence 0.993

78. e13007059.png ; $T \ll N ^ { 2 }$ ; confidence 0.993

79. f120150164.png ; $A \in \Phi _ { + } ( X , Y )$ ; confidence 0.993

80. b1302509.png ; $\angle \Omega C A$ ; confidence 0.993

81. c12018064.png ; $E s ^ { 2 } + 2 F s t + G t ^ { 2 } \in C ^ { \infty } ( M ) [ s , t ]$ ; confidence 0.993

82. t13015026.png ; $f \in \mathcal{C} ( \mathbf{T} )$ ; confidence 0.993

83. i130060107.png ; $f ( k )$ ; confidence 0.993

84. b12013088.png ; $f = \varphi F$ ; confidence 0.993

85. a130240179.png ; $\eta _ { i j } = \mu + \alpha _ { i } + \beta _ { j } + \gamma _ { i j }$ ; confidence 0.993

86. v13005026.png ; $.0$ ; confidence 0.993

87. l12010044.png ; $\gamma \geq 3 / 2$ ; confidence 0.993

88. a13008046.png ; $- \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d L } \operatorname { ln } \frac { f ( L ) } { g ( L ; m , s ) } \frac { d L } { d s } +$ ; confidence 0.993

89. c120300127.png ; $K K$ ; confidence 0.993

90. o1200509.png ; $w : \mathbf{R} _ { + } \rightarrow \mathbf{R} _ { + }$ ; confidence 0.993

91. c13019039.png ; $[ L ^ { \prime } ]$ ; confidence 0.993

92. b13019065.png ; $\mathbf{v} _ { 1 } = [ \alpha _ { 1 } , q _ { 1 } ]$ ; confidence 0.993

93. k055840148.png ; $\mathcal{D} ( T ) = \mathcal{K}$ ; confidence 0.993

94. v13007044.png ; $d w / d Z$ ; confidence 0.993

95. m12013032.png ; $d n / d t$ ; confidence 0.993

96. b13010051.png ; $\varphi \in L ^ { \infty } ( D , d A )$ ; confidence 0.993

97. w13013013.png ; $\delta W = 0$ ; confidence 0.993

98. i12008015.png ; $\rho _ { i } = 1$ ; confidence 0.993

99. g13003017.png ; $( \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.993

100. f12014038.png ; $| \zeta | > 1 , | \zeta ^ { \prime } | > 1.$ ; confidence 0.993

101. e12001046.png ; $m \circ d = g$ ; confidence 0.993

102. l12003067.png ; $\{ H ^ { * } B V \}$ ; confidence 0.993

103. a120050115.png ; $\frac { \partial } { \partial s } U ( t , s ) v = U ( t , s ) A ( s ) v.$ ; confidence 0.993

104. o13003019.png ; $3 \mu \nu = \mu + \nu = 1$ ; confidence 0.993

105. p1300905.png ; $B ( x _ { 0 } , r )$ ; confidence 0.993

106. a01296045.png ; $\alpha = 1$ ; confidence 0.993

107. s13041048.png ; $d \mu _ { 1 } = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta } d x$ ; confidence 0.993

108. p12015071.png ; $f \in C ( X )$ ; confidence 0.993

109. a130060112.png ; $\alpha > 1$ ; confidence 0.993

110. d12005032.png ; $C = C _ { f }$ ; confidence 0.993

111. a01029033.png ; $A \cap A ^ { \prime }$ ; confidence 0.993

112. b1205202.png ; $F : \mathbf{R} ^ { N } \rightarrow \mathbf{R} ^ { N }$ ; confidence 0.993

113. s13062095.png ; $q ( x ) = x ^ { 2 }$ ; confidence 0.993

114. d1300202.png ; $\alpha ( B )$ ; confidence 0.993

115. b130290146.png ; $\operatorname { dim } A \geq 2$ ; confidence 0.993

116. p0754801.png ; $p \supset ( q \supset p )$ ; confidence 0.993

117. j13001020.png ; $\operatorname{Edge}( D )$ ; confidence 0.993

118. v120020165.png ; $p : Z \rightarrow X$ ; confidence 0.993

119. w12006094.png ; $\xi : C ^ { \infty } ( M , \mathbf{R} ) \rightarrow C ^ { \infty } ( M , N )$ ; confidence 0.993

120. v12002071.png ; $\nu < N - 1$ ; confidence 0.993

121. e12002021.png ; $\operatorname{mor}( W , X )$ ; confidence 0.993

122. v1100608.png ; $\Delta ^ { 2 } u \equiv \frac { \partial ^ { 4 } u } { \partial x ^ { 4 } } + 2 \frac { \partial ^ { 4 } u } { \partial x ^ { 2 } \partial y ^ { 2 } } + \frac { \partial ^ { 4 } u } { \partial y ^ { 4 } }$ ; confidence 0.993

123. w1200803.png ; $( q , p )$ ; confidence 0.993

124. a13027085.png ; $w \in Y ^ { * }$ ; confidence 0.993

125. g04435078.png ; $\gamma ( F )$ ; confidence 0.993

126. m13008025.png ; $E_{ [ 0 , \sigma ] } A ( f ) \Omega \neq 0$ ; confidence 0.993

127. w12018053.png ; $A \subset \mathbf{R} ^ { 2 }$ ; confidence 0.993

128. f13007018.png ; $F ( 2,4 ) = \pi _ { 1 } ( L ( 5,2 ) )$ ; confidence 0.993

129. c02210018.png ; $( \chi _ { n } ^ { 2 } - n ) / \sqrt { 2 n }$ ; confidence 0.993

130. t120140132.png ; $\phi , \psi \in L ^ { \infty }$ ; confidence 0.993

131. e12006040.png ; $\Gamma : Y \rightarrow J ^ { 1 } Y$ ; confidence 0.993

132. r13008032.png ; $K : H \rightarrow H$ ; confidence 0.993

133. d12028085.png ; $D _ { \epsilon } = \{ z : z \in D , \rho ( z , \partial D ) > \epsilon \}$ ; confidence 0.993

134. m130180165.png ; $\mu ( M )$ ; confidence 0.993

135. w12017011.png ; $Z _ { 2 } ( G )$ ; confidence 0.993

136. w13017050.png ; $k ( e ^ { - i \lambda } ) = \sum _ { j = 0 } ^ { \infty } K _ { j } e ^ { - i \lambda j }$ ; confidence 0.993

137. b12036030.png ; $\epsilon ( i , j , k , l )$ ; confidence 0.993

138. c13025071.png ; $1 \leq 1 \leq p$ ; confidence 0.993

139. m06222050.png ; $n - h - 1 - \nu$ ; confidence 0.993

140. l13008017.png ; $\nu : = \operatorname { min } \{ m , n \}$ ; confidence 0.993

141. h12012048.png ; $\varphi : Z \rightarrow Z$ ; confidence 0.993

142. b12001027.png ; $\frac { \partial u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { \partial \eta ^ { \prime } } =$ ; confidence 0.993

143. e12006035.png ; $J ^ { 1 } Y$ ; confidence 0.993

144. j1300102.png ; $\operatorname { com }( D )$ ; confidence 0.993

145. h13009031.png ; $A = G$ ; confidence 0.993

146. k1200703.png ; $\mathcal{L} ( V )$ ; confidence 0.993

147. e120190196.png ; $\Phi _ { 1 } = ( h _ { 1 } , h _ { 3 } , p , W _ { 1 } ^ { + } )$ ; confidence 0.993

148. e12006017.png ; $A _ { y } \in \Gamma ( y )$ ; confidence 0.993

149. w12019046.png ; $( X \psi ) ( x ) = x \psi ( x )$ ; confidence 0.993

150. a13013055.png ; $L ( \Lambda _ { 0 } )$ ; confidence 0.993

151. a130240286.png ; $1 - \alpha$ ; confidence 0.993

152. a1202303.png ; $f \in C ( \partial D )$ ; confidence 0.993

153. b130290203.png ; $0 \leq i \leq d - 1$ ; confidence 0.993

154. c12007011.png ; $1 \leq i \leq n - 1$ ; confidence 0.993

155. h12003026.png ; $\operatorname { dim } M = 2$ ; confidence 0.993

156. h12012026.png ; $f \phi = 0$ ; confidence 0.993

157. w120090399.png ; $L ( \mu )$ ; confidence 0.993

158. w12021059.png ; $B _ { m } = R$ ; confidence 0.993

159. g12005058.png ; $E ( A ) = \frac { 1 } { 2 } \int _ { G } | \nabla A | ^ { 2 } d x + \frac { 1 } { 4 } \int _ { G } ( | A | ^ { 2 } - 1 ) ^ { 2 } d x.$ ; confidence 0.993

160. h04602048.png ; $X _ { 2 } = 0$ ; confidence 0.993

161. w120110234.png ; $H ( X ) \leq 1$ ; confidence 0.993

162. s13049046.png ; $r ( p _ { i } ) = r ( p _ { 0 } ) + i$ ; confidence 0.993

163. s1203001.png ; $\operatorname{Map}_{*}( B _ { G } , X )$ ; confidence 0.993

164. l12009070.png ; $M \times \mathfrak { g } \rightarrow M$ ; confidence 0.993

165. o13008058.png ; $( l _ { 1 } - k ^ { 2 } ) f _ { 1 } = 0$ ; confidence 0.993

166. n067520284.png ; $\rho ( \xi ) = ( E _ { \xi } h _ { 0 } , h _ { 0 } )$ ; confidence 0.993

167. a12031051.png ; $\{ x \in X : f ( x ) \neq 0 \}$ ; confidence 0.993

168. c02111015.png ; $( \alpha , \alpha ^ { \prime } )$ ; confidence 0.993

169. n1200206.png ; $\mathcal{M} ( E )$ ; confidence 0.993

170. l12017068.png ; $1 \leq j , k \leq n$ ; confidence 0.993

171. g12004079.png ; $p ( x , \xi )$ ; confidence 0.993

172. n12002016.png ; $k _ { \mu } = \operatorname { log } L _ { \mu }$ ; confidence 0.993

173. a12008075.png ; $f \in H ^ { 1 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.993

174. a12005094.png ; $\sup_{t \in [0,T]} ||B(t)||_X <\infty$ ; confidence 0.993

175. v13007055.png ; $\operatorname { ln } q ^ { \prime } = \frac { s } { \pi } P \int _ { 0 } ^ { 1 } \frac { \theta ^ { \prime } ( s ^ { \prime } ) d s ^ { \prime } } { s ^ { \prime } ( s ^ { \prime } - s ) }.$ ; confidence 0.993

176. d03311035.png ; $i > j$ ; confidence 0.993

177. z13007050.png ; $SGL_n( \mathbf{Z} A )$ ; confidence 0.993

178. f12023080.png ; $\mathcal{L} _ { K } = \mathcal{L} ( K ) \in \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.993

179. r1200207.png ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) = \tau,$ ; confidence 0.993

180. d11008044.png ; $d ( w | v ) = 1$ ; confidence 0.993

181. i13009028.png ; $E _ { 1 } ( k )$ ; confidence 0.993

182. z13003023.png ; $0 < b \leq 1 / 2$ ; confidence 0.993

183. p13012029.png ; $L ( p _ { 1 } , p _ { 2 } , p _ { 3 } )$ ; confidence 0.993

184. c120170132.png ; $M ( n + k )$ ; confidence 0.993

185. d03027032.png ; $= \frac { 1 } { ( p + 1 ) \pi } \int _ { - \pi } ^ { \pi } \left[ f ( x + t ) \operatorname { sin } \frac { 2 n + 1 - p } { 2 } t \frac { \operatorname { sin } ( p + 1 ) t / 2 } { 2 \operatorname { sin } ^ { 2 } t / 2 } \right] d t,$ ; confidence 0.993

186. b11022033.png ; $\varepsilon \, ( M , s )$ ; confidence 0.993

187. p13009044.png ; $\operatorname { lim } _ { x \rightarrow \eta } \mu _ { x } ^ { \Omega } = \delta _ { \eta }$ ; confidence 0.993

188. s1203403.png ; $( L _ { + } , L _ { - } )$ ; confidence 0.993

189. l12017049.png ; $f : K _ { 0 } \rightarrow K _ { 1 }$ ; confidence 0.993

190. a120050108.png ; $\mathcal{L} ( Y ) = \mathcal{L} ( Y , Y )$ ; confidence 0.993

191. v120020139.png ; $\Lambda ( F ) \neq \theta$ ; confidence 0.993

192. c0232706.png ; $A \subseteq B$ ; confidence 0.993

193. q12007055.png ; $g = q ^ { H }$ ; confidence 0.993

194. s12022010.png ; $\Delta ^ { ( p ) }$ ; confidence 0.993

195. s1303908.png ; $\eta ( n ) = n$ ; confidence 0.993

196. a12017022.png ; $\operatorname { lim } _ { t \rightarrow + \infty } \Omega ( t ) = 0$ ; confidence 0.993

197. a110010205.png ; $z \neq 0$ ; confidence 0.993

198. b12021052.png ; $L = L ( \lambda )$ ; confidence 0.993

199. k12008021.png ; $s - 1$ ; confidence 0.993

200. e12007022.png ; $\mathbf{v} ( M _ { 1 } , M _ { 2 } ) = \mathbf{v} ( M _ { 1 } ) \mathbf{v} ( M _ { 2 } ) , M _ { 1 } , M _ { 2 } \in \Gamma.$ ; confidence 0.993

201. c12018082.png ; $E G - F ^ { 2 } > 0$ ; confidence 0.993

202. h13003071.png ; $t ( z ) p ( z ) + q ( z ) v ( z ) = 1$ ; confidence 0.993

203. b11079040.png ; $2 / 3$ ; confidence 0.993

204. r13008023.png ; $K ( x , y ) = \overline { K ( y , x ) } , K ( x , x ) \geq 0,$ ; confidence 0.993

205. a11022082.png ; $j \geq 1$ ; confidence 0.993

206. e12015017.png ; $\xi ^ { i } ( x )$ ; confidence 0.993

207. i12008096.png ; $\chi = ( k _ { B } T ) ^ { - 1 } \operatorname { exp } ( 2 J / k _ { B } T )$ ; confidence 0.993

208. a130040753.png ; $\mathfrak{M} \in \operatorname{Mod} _ { \mathcal{S} _{P \cup R}}( \Sigma ( P , R ) )$ ; confidence 0.993

209. c0225907.png ; $f : Y \rightarrow X$ ; confidence 0.993

210. d12018045.png ; $( X , \mathcal{B} , m )$ ; confidence 0.993

211. s130510111.png ; $\gamma ( v ) = 1$ ; confidence 0.993

212. e12019032.png ; $\{ a , b \} \equiv \{ c , d \}$ ; confidence 0.993

213. b12034061.png ; $f ( z ) = \sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k } , \quad | z | < 1,$ ; confidence 0.993

214. l12003034.png ; $\operatorname{Hom}_{ \mathcal{K} } ( H ^ { * } ( Y , \mathbf{F} _ { p } ) , H ^ { * } ( X , \mathbf{F} _ { p } ) )$ ; confidence 0.993

215. c13005047.png ; $\operatorname{Aut} \Gamma = G$ ; confidence 0.993

216. q12008010.png ; $\rho = \sum _ { p = 1 } ^ { P } \rho _ { p }$ ; confidence 0.993

217. u13002026.png ; $A = \{ x : f ( x ) \neq 0 \}$ ; confidence 0.993

218. g04435028.png ; $F = F ( x )$ ; confidence 0.993

219. l1200401.png ; $\partial _ { t } u + \partial _ { x } f ( u ) = 0.$ ; confidence 0.993

220. d1203006.png ; $X ( 0 ) = x _ { 0 }$ ; confidence 0.993

221. e13007024.png ; $g ( n ) \overline { h ( n ) }$ ; confidence 0.993

222. s13041054.png ; $\int _ { - 1 } ^ { 1 } \frac { \operatorname { ln } \mu _ { 0 } ^ { \prime } ( x ) } { \sqrt { 1 - x ^ { 2 } } } d x > - \infty.$ ; confidence 0.993

223. p12011036.png ; $f : E ( \vec { G } ) \rightarrow \mathbf{Z} _ { 4 } ^ { * }$ ; confidence 0.993

224. p12017055.png ; $0$ ; confidence 0.993

225. h046010112.png ; $\tau ( W , M _ { 0 } ) = \tau ( W ^ { \prime } , M _ { 0 } )$ ; confidence 0.993

226. b12001025.png ; $\frac { \partial u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { \partial \xi ^ { \prime } } =$ ; confidence 0.993

227. c13004017.png ; $= \sum _ { k = 1 } ^ { \infty } \frac { \operatorname { sin } ( k z ) } { k ^ { 2 } },$ ; confidence 0.993

228. g13003049.png ; $\{ \lambda : u _ { \lambda } \equiv 0 \}$ ; confidence 0.993

229. b12005025.png ; $\mathcal{H} ( U )$ ; confidence 0.993

230. v12004012.png ; $\chi ^ { \prime } ( G ) \leq 3 \Delta ( G ) / 2$ ; confidence 0.993

231. a120070118.png ; $\frac { d u } { d t } = A ( t , u ) u + f ( t , u )$ ; confidence 0.993

232. l12003090.png ; $H ^ { * } B E$ ; confidence 0.993

233. f13029056.png ; $\mathcal{T} ( u )$ ; confidence 0.993

234. b12020041.png ; $\mathcal{M} = \theta H ^ { 2 }$ ; confidence 0.993

235. b13030093.png ; $i \geq 1$ ; confidence 0.993

236. r13004042.png ; $0 = \mu _ { 1 } ( \Omega ) < \mu _ { 2 } ( \Omega ) \leq \mu _ { 3 } ( \Omega ) \leq \dots$ ; confidence 0.993

237. d12012065.png ; $\phi _ { 2 } \circ \phi _ { 1 } = \phi _ { 3 }$ ; confidence 0.993

238. t130140127.png ; $q _ { R } ( v ) > 0$ ; confidence 0.993

239. f1200108.png ; $R : U \rightarrow X$ ; confidence 0.993

240. t12003033.png ; $F _ { K } : \xi + i \eta \rightarrow K \xi + i \eta$ ; confidence 0.993

241. a12005062.png ; $t \in ( 0 , T ]$ ; confidence 0.993

242. z13003049.png ; $( Z f ) ( t , w ) = - ( Z f ) ( - t , - w ).$ ; confidence 0.993

243. a01201067.png ; $m > 2$ ; confidence 0.993

244. a12010058.png ; $A = - \Delta$ ; confidence 0.993

245. m13026031.png ; $\rho ( x y ) = x \rho ( y )$ ; confidence 0.993

246. m120130113.png ; $p \ll 1$ ; confidence 0.993

247. k055840112.png ; $[ \mathcal{L} _ { + } , \mathcal{L} _ { - } ] = \{ 0 \}$ ; confidence 0.993

248. d12026035.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \alpha _ { k }$ ; confidence 0.993

249. a0118304.png ; $\alpha , \beta$ ; confidence 0.993

250. a130050279.png ; $G ^ { \# } ( n )$ ; confidence 0.993

251. b120040161.png ; $\epsilon = 0$ ; confidence 0.993

252. s13013032.png ; $e ( F ( 4 ) | F )$ ; confidence 0.993

253. q12001022.png ; $x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } - t ^ { 2 }$ ; confidence 0.993

254. l120100104.png ; $K _ { E } ( V ) = \sqrt { V _ { - } } ( - \Delta + E ) ^ { - 1 } \sqrt { V _ { - } }.$ ; confidence 0.993

255. b01734043.png ; $\Phi ( z )$ ; confidence 0.993

256. a12026066.png ; $u : A \rightarrow A _ { 1 }$ ; confidence 0.993

257. f12015055.png ; $A \in \Phi ( X )$ ; confidence 0.993

258. f12004018.png ; $\varphi ( x , w ) = w ( x )$ ; confidence 0.993

259. v09603018.png ; $1.614 \mu$ ; confidence 0.993

260. w12017017.png ; $\omega _ { \alpha + 1 } ( G ) / \omega _ { \alpha } ( G ) = \omega ( G / \omega _ { \alpha } ( G ) ) , \, \omega _ { \lambda } ( G ) = \cup _ { \beta < \lambda } \omega _ { \beta } ( G ),$ ; confidence 0.993

261. r13007054.png ; $u _ { j } : = ( u , \varphi _ { j } ) _ { 0 }$ ; confidence 0.993

262. f1300107.png ; $\operatorname { gcd } ( f , \partial f / \partial x )$ ; confidence 0.993

263. s12026037.png ; $( L ^ { 2 } ) ^ { - }$ ; confidence 0.993

264. a12025024.png ; $q \leq 32$ ; confidence 0.993

265. j13002026.png ; $\max p _ { i } \rightarrow 0$ ; confidence 0.993

266. p12014042.png ; $H = S$ ; confidence 0.993

267. s130620149.png ; $q ( x ) = q _ { 1 } ( x ) + q _ { 2 } ( x )$ ; confidence 0.993

268. m13018012.png ; $\mu ( x , y )$ ; confidence 0.992

269. i12005051.png ; $\{ V ( n , \alpha ) \}$ ; confidence 0.992

270. w13017043.png ; $H _ { y } ( t ) = H _ { \epsilon } ( t )$ ; confidence 0.992

271. b13017036.png ; $V _ { t } = C ( t )$ ; confidence 0.992

272. i13006096.png ; $A ( x ) = 2 \Gamma _ { 2 x } ( 2 x , 0 )$ ; confidence 0.992

273. v096900151.png ; $H = \oplus _ { p = 1 } ^ { \infty } L _ { 2 } ( Z _ { p } , \mu , H _ { p } ),$ ; confidence 0.992

274. h04601059.png ; $\tau ( W , M _ { 1 } ) = 0$ ; confidence 0.992

275. a01150069.png ; $p = 0$ ; confidence 0.992

276. a120270129.png ; $s = 1 / 2$ ; confidence 0.992

277. v120020112.png ; $( p , q ) : \Gamma ( F ) \rightarrow X$ ; confidence 0.992

278. d13021030.png ; $\dot { x } ( t - \tau _ { i } )$ ; confidence 0.992

279. c13015072.png ; $C ^ { \infty } ( \Omega )$ ; confidence 0.992

280. b12051031.png ; $\nabla f ( x ^ { * } ) = 0$ ; confidence 0.992

281. s12026025.png ; $\Gamma ( L ^ { 2 } ( \mathbf{R} ) )$ ; confidence 0.992

282. d12028013.png ; $U \supset K$ ; confidence 0.992

283. w12002031.png ; $I_2$ ; confidence 0.992

284. m13025029.png ; $f \in C ^ { \infty } ( \Omega )$ ; confidence 0.992

285. i1200908.png ; $( M ^ { 2 n + 1 } , \xi )$ ; confidence 0.992

286. a01029037.png ; $D _ { A }$ ; confidence 0.992

287. c120170105.png ; $N = \{ p : ( p , p ) _ { M } = 0 \}$ ; confidence 0.992

288. m130260167.png ; $\alpha : P \rightarrow B$ ; confidence 0.992

289. m1301806.png ; $\mu ( x , y ) = 0$ ; confidence 0.992

290. m130230116.png ; $( ( X ^ { \prime } , B ^ { \prime } ) , f ^ { \prime } )$ ; confidence 0.992

291. m13026092.png ; $X \subset M ( A )$ ; confidence 0.992

292. h04602070.png ; $H _ { \infty }$ ; confidence 0.992

293. h04756054.png ; $f : M \rightarrow M ^ { \prime }$ ; confidence 0.992

294. r130070103.png ; $\| f _ { n } - f \| _ { 1 } \rightarrow 0$ ; confidence 0.992

295. m13023028.png ; $\overline { N E } ( X / S )$ ; confidence 0.992

296. h13003059.png ; $r ( z ) = \sum _ { i = 1 } ^ { 2 n - 1 } s _ { i } z ^ { - i }$ ; confidence 0.992

297. c12030035.png ; $n = \operatorname { dim } ( \mathcal{H} ) \geq 2$ ; confidence 0.992

298. s12022073.png ; $\operatorname { det } ( \Delta + z )$ ; confidence 0.992

299. p12013027.png ; $\theta \in S$ ; confidence 0.992

300. m13023052.png ; $N _ { 1 } ( X / S )$ ; confidence 0.992

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/14. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/14&oldid=44424