Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/11"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 11 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005034.png ; $H = \{ \sigma \in \operatorname { Aut } \Gamma : v ^ { \sigma } = v \}$ ; confidence 0.477
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009017.png ; $\frac { \partial f ( z , t ) } { \partial t } = - z f ^ { \prime } ( z , t ) \frac { 1 + k z } { 1 - k z },$ ; confidence 0.996
  
2. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211015.png ; $P \{ \chi _ { k - 1 } ^ { 2 } \geq \chi _ { k - 1 } ^ { 2 } ( \alpha ) \} = \alpha$ ; confidence 0.655
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007085.png ; $\delta \in ( 0 , \eta ) \cap ( 0 , \rho ]$ ; confidence 0.996
  
3. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010022.png ; $( C ) \int _ { X } f d m = \sum _ { i = 1 } ^ { n } ( a _ { i } - a _ { i - 1 } ) m ( B _ { i } )$ ; confidence 0.349
+
3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203203.png ; $( \Omega , \mathcal A , \mu )$ ; confidence 0.996
  
4. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014023.png ; $\forall 1 \leq i \leq r \exists 1 \leq j \leq r : A _ { i } ^ { T } = A _ { j }$ ; confidence 0.933
+
4. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100164.png ; $f ^ { * } d \theta$ ; confidence 0.996
  
5. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160138.png ; $[ ( t ( n ) ) ^ { Q ( 1 ) } ] = \operatorname { DSPACE } [ ( t ( n ) ) ^ { Q ( 1 ) } ]$ ; confidence 0.490
+
5. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007062.png ; $L = 800$ ; confidence 0.996
  
6. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180201.png ; $S ^ { 2 } \varepsilon \otimes S ^ { 2 } E \subset \varnothing ^ { 4 } E$ ; confidence 0.068
+
6. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023140/c02314089.png ; $H \subset G$ ; confidence 0.996
  
7. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019048.png ; $A = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.641
+
7. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003015.png ; $\Psi ( x , \theta ) = ( \partial / \partial \theta ) \rho ( x , \theta )$ ; confidence 0.996
  
8. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210142.png ; $\theta _ { \tau _ { N } } = \theta + h \tau _ { \overline { N } } ^ { - 1 / 2 }$ ; confidence 0.103
+
8. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007062.png ; $\operatorname{maxdeg} f _ { j } \leq B ( m , D , n )$ ; confidence 0.996
  
9. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026056.png ; $( L _ { h k } V ) _ { j } ^ { n + 1 } \leq 0,1 \leq j \leq J - 1,0 \leq n \leq N - 1$ ; confidence 0.559
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025015.png ; $L ( x , y ) z = \{ x y z \}$ ; confidence 0.996
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026074.png ; $\frac { d } { d t } U _ { k } = F _ { k } ( t , U _ { k } ) , 0 < t , U _ { k } ( 0 ) = u ^ { 0 } h$ ; confidence 0.179
+
10. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018061.png ; $y \vee x = 1$ ; confidence 0.996
  
11. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300905.png ; $F _ { \nu } + R _ { \nu } - m _ { \nu } w _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.706
+
11. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o070070127.png ; $\leq 100$ ; confidence 0.996
  
12. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302701.png ; $V _ { n , p } ( f , x ) = \frac { 1 } { p + 1 } \sum _ { k = n - p } ^ { n } S _ { k } ( f , x )$ ; confidence 0.847
+
12. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006034.png ; $h ( z ) ( \phi , G ( z ) \phi ) \equiv$ ; confidence 0.996
  
13. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008063.png ; $E ( a , R ) = \{ x \in B : \frac { | 1 - ( x , a ) | ^ { 2 } } { 1 - \| x \| ^ { 2 } } < R \}$ ; confidence 0.363
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050104.png ; $( t , s ) \in \Delta = \{ ( t , s ) : 0 \leq s \leq t \leq T \}$ ; confidence 0.996
  
14. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014020.png ; $T _ { N } ( x ) = \operatorname { cos } ( n \operatorname { arccos } x )$ ; confidence 0.863
+
14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180180.png ; $g ^ { - 1 } \{ p , q , r , s \} = g ^ { - 1 } \{ p , q \} g ^ { - 1 } \{ r , s \} = g ^ { - 1 } \{ r , s \} g ^ { - 1 } \{ p , q \}$ ; confidence 0.996
  
15. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017039.png ; $\lambda _ { k } \geq \frac { 4 \pi k } { A } \text { for } k = 1,2 , \ldots$ ; confidence 0.567
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b1202009.png ; $S: f ( z ) \rightarrow z f ( z )$ ; confidence 0.996
  
16. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d1102202.png ; $L y \equiv y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0$ ; confidence 0.815
+
16. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011084.png ; $( 0,1 ]$ ; confidence 0.996
  
17. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029024.png ; $\sum _ { q = 1 } ^ { Q } q f ( q ) \leq c \sum _ { q = 1 } ^ { Q } \varphi ( q ) f ( q )$ ; confidence 0.831
+
17. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m1301808.png ; $\mu ( x , x ) = 1$ ; confidence 0.996
  
18. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007022.png ; $v ( M _ { 1 } , M _ { 2 } ) = v ( M _ { 1 } ) v ( M _ { 2 } ) , M _ { 1 } , M _ { 2 } \in \Gamma$ ; confidence 0.993
+
18. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090449.png ; $G ( m , 1 , n )$ ; confidence 0.996
  
19. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005022.png ; $\int _ { 0 } ^ { 1 } \nu ( x + ( y - x ) t ) t ^ { - \alpha } ( 1 - t ) ^ { - \beta } d t$ ; confidence 0.994
+
19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006027.png ; $( 1 \pm z \overline z ) ^ { 2 } w _ { z \overline z } \pm n ( n + 1 ) w = 0$ ; confidence 0.996 ; die overlines sind nicht ganz klar
  
20. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230162.png ; $= \int _ { M } \sigma ^ { k + 1 } ^ { * } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ]$ ; confidence 0.342
+
20. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007034.png ; $\phi _ { \omega } ( z ) = \frac { | z - \omega | ^ { 2 } } { 1 - | z | ^ { 2 } },$ ; confidence 0.996
  
21. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027020.png ; $\Lambda _ { m } ^ { \alpha , \beta , r , s } \sim \operatorname { log }$ ; confidence 0.374
+
21. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005047.png ; $\Omega _ { k } ( R )$ ; confidence 0.996
  
22. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010018.png ; $u ( x ) = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * \tau _ { n } ( x )$ ; confidence 0.292
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032016.png ; $R _ { 0 } ^ { ( i ) } ( z )$ ; confidence 0.996
  
23. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023037.png ; $[ D _ { 1 } , D _ { 2 } ] = D _ { 1 } D _ { 2 } - ( - 1 ) ^ { k _ { 1 } k _ { 2 } } D _ { 2 } D _ { 1 }$ ; confidence 0.990
+
23. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007041.png ; $H _ { + } = R ( A ^ { 1 / 2 } )$ ; confidence 0.996
  
24. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023082.png ; $L : \Omega ( M , T M ) \rightarrow \operatorname { Der } \Omega ( M )$ ; confidence 0.909
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010173.png ; $A ^ { + }$ ; confidence 0.996
  
25. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290156.png ; $( f , \phi ) ^ { \leftarrow } | _ { \sigma } : \tau \leftarrow \sigma$ ; confidence 0.946
+
25. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002047.png ; $( B u , u ) > 0$ ; confidence 0.996
  
26. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004032.png ; $( \partial _ { t } - \sum _ { j = 1 } ^ { n } \partial _ { x _ { j } } ^ { 2 } ) u = 0$ ; confidence 0.733
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120230/b12023074.png ; $( E , M )$ ; confidence 0.996
  
27. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004047.png ; $( x ^ { 0 } , \xi ^ { 0 } ) \in \Omega \times ( R ^ { n } \backslash \{ 0 \} )$ ; confidence 0.761
+
27. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019028.png ; $C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.996
  
28. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005010.png ; $\psi = \psi _ { 0 } + f ( y ) e ^ { i \langle \langle k , x \rangle + \mu t }$ ; confidence 0.281
+
28. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016041.png ; $1 \leq i \leq t$ ; confidence 0.996
  
29. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002073.png ; $\varphi ( n ) = n - \frac { n } { p _ { 1 } } - \ldots - \frac { n } { p _ { k } } +$ ; confidence 0.757
+
29. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026046.png ; $\Delta V _ { j } = h ^ { - 1 } ( V _ { j } - V _ { j - 1 } )$ ; confidence 0.996
  
30. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006074.png ; $\operatorname { dim } ( P ) \leq \operatorname { max } \{ 2 , | A | \}$ ; confidence 1.000
+
30. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007014.png ; $f ( n ) = g ( n ) \overline { h ( n ) } / q$ ; confidence 0.996
  
31. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005086.png ; $\int _ { s } ^ { \infty } ( 1 + | x | ) | R _ { - } ^ { \prime } ( x ) | d x < \infty$ ; confidence 0.367
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370138.png ; $R ( X )$ ; confidence 0.996
  
32. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005079.png ; $\int _ { s } ^ { \infty } | R _ { + } ^ { \prime } ( x ) | ( 1 + | x | ) d x < \infty$ ; confidence 0.595
+
32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051091.png ; $\mathcal{N} = \{\mathbf u \in \mathbf V : \sigma ( \mathbf u ) > 0 \}.$ ; confidence 0.996 FIN QUI
  
33. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020173.png ; $U _ { \tau } ^ { * } = \operatorname { sup } _ { 0 } \leq t < \tau | U _ { t } |$ ; confidence 0.902
+
33. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002014.png ; $x ( y \vee z ) t = x y t \vee x z t,$ ; confidence 0.996
  
34. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004097.png ; $P _ { K } ( v , z ) = \frac { P _ { K } ( v , z ) - 1 } { ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } }$ ; confidence 0.722
+
34. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062070.png ; $A = \operatorname { Re } m _ { 0 } ( i )$ ; confidence 0.996
  
35. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007059.png ; $\rightarrow \omega ( 1 - | F ( z ) | ) / ( 1 - | z | ) = d ( \omega ) < \infty$ ; confidence 0.872
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081039.png ; $x ( t )$ ; confidence 0.996
  
36. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006046.png ; $\left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right)$ ; confidence 0.953
+
36. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023078.png ; $A ( p \times p )$ ; confidence 0.996
  
37. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006056.png ; $| F | = \left( \begin{array} { l } { x } \\ { k } \end{array} \right)$ ; confidence 0.649
+
37. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064420/m0644209.png ; $q = \operatorname { exp } ( 2 \pi i z )$ ; confidence 0.996
  
38. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020119.png ; $M ^ { \perp } = \{ x \in G : | x | \wedge | m | = \text { efor all } m \in M \}$ ; confidence 0.389
+
38. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300403.png ; $G : = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k + 1 ) ^ { 2 } } \cong$ ; confidence 0.996
  
39. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000186.png ; $\lambda x \cdot f ( x ) = \{ ( b , \beta ) : b \in f ( \beta ) \} \in D _ { A }$ ; confidence 0.561
+
39. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090364.png ; $\Lambda ( V ) \neq \Lambda$ ; confidence 0.996
  
40. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700041.png ; $y ( \lambda z z ) \equiv y ( \lambda x x ) \not \equiv w ( \lambda x x )$ ; confidence 0.504
+
40. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007081.png ; $\| f \|$ ; confidence 0.996
  
41. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000198.png ; $[ [ \lambda x \cdot M ] ] _ { \rho } = \lambda d [ [ M ] ] _ { \rho ( x : = d ) }$ ; confidence 0.178
+
41. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010030.png ; $f _ { 1 } \leq f _ { 2 }$ ; confidence 0.996
  
42. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003010.png ; $f ^ { * } \in \text { Homalg } ( H ^ { * } ( Y , F _ { p } ) , H ^ { * } ( X , F _ { p } ) )$ ; confidence 0.183
+
42. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200209.png ; $C ( q , \dot { q } ) \dot { q }$ ; confidence 0.996
  
43. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007038.png ; $y _ { j } = \sum _ { i = j } ^ { k } p _ { j } \ldots p _ { i - 1 } m _ { i } r ^ { j - i - 1 }$ ; confidence 0.318
+
43. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700070.png ; $F X = X$ ; confidence 0.996
  
44. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010024.png ; $= L _ { \gamma , n } ^ { c } \int _ { R ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.808
+
44. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002037.png ; $\mu _ { k } \geq 0$ ; confidence 0.996
  
45. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140148.png ; $( z , \zeta ) = z _ { 1 } + z _ { 2 } \zeta _ { 2 } + \ldots + z _ { n } \zeta _ { n }$ ; confidence 0.975
+
45. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015030.png ; $\pi : G ( S ) \rightarrow G ( x )$ ; confidence 0.996
  
46. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011044.png ; $J _ { x - \phi } ( 2 \sqrt { x } ) = x ^ { - ( x + b ) / 2 } G _ { 02 } ^ { 10 } ( x | a , b )$ ; confidence 0.166
+
46. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001060.png ; $B = B ^ { * }$ ; confidence 0.996
  
47. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002034.png ; $\mu ^ { \prime } ( d x ) = \operatorname { exp } ( \alpha , x ) \mu ( d x )$ ; confidence 0.578
+
47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016063.png ; $\Phi = B B ^ { \prime }$ ; confidence 0.996
  
48. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300607.png ; $\frac { \partial u } { \partial n } = 0 \text { in } \partial \Omega$ ; confidence 0.933
+
48. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510129.png ; $\gamma ( v ) > \gamma ( u )$ ; confidence 0.996
  
49. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663036.png ; $H _ { p } ^ { r } ( \Omega ) = H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( \Omega )$ ; confidence 0.325
+
49. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011015.png ; $\int _ { \sigma ( \gamma ) } f ( z ) d z = 0.$ ; confidence 0.996
  
50. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001017.png ; $U = \sqrt { g L \alpha \delta \theta _ { 0 } } , \quad t = \frac { U } { L }$ ; confidence 0.960
+
50. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700098.png ; $\mathbf{zero}_{?} \mathbf{c}_{0}=\mathbf{true}$ ; confidence 0.996
  
51. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001021.png ; $r : = | x | \rightarrow \infty , \alpha ^ { \prime } : = \frac { x } { r }$ ; confidence 0.682
+
51. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301501.png ; $z ( \Gamma , t ) = x + i y$ ; confidence 0.996
  
52. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002017.png ; $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$ ; confidence 0.982
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022044.png ; $s : C \rightarrow X$ ; confidence 0.996
  
53. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002015.png ; $\int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } =$ ; confidence 0.373
+
53. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050105.png ; $b \neq x$ ; confidence 0.996
  
54. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200209.png ; $F ( x ) = \frac { x ^ { - \alpha } ( 1 + x ) ^ { 2 \alpha - c } } { \Gamma ( c ) } x$ ; confidence 0.092
+
54. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007019.png ; $t \mapsto \theta - t$ ; confidence 0.996
  
55. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007028.png ; $\operatorname { lim } _ { x \rightarrow \infty } M ( u _ { x } ) = M ( u )$ ; confidence 0.314
+
55. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040450/f04045028.png ; $U \subset \mathbf{R} ^ { 2 }$ ; confidence 0.996
  
56. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548017.png ; $\mathfrak { M } = < M , D ; \& ^ { * } , V ^ { * } , \supset ^ { * } , \neg ^ { * } >$ ; confidence 0.538
+
56. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q1200505.png ; $D F$ ; confidence 0.996
  
57. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080102.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$ ; confidence 0.996
+
57. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900183.png ; $\{ \zeta \rightarrow T _ { n } ( \zeta ) \}$ ; confidence 0.996
  
58. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008066.png ; $K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E$ ; confidence 0.981
+
58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015019.png ; $\pi ( \xi ) \eta = \xi \eta$ ; confidence 0.996
  
59. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041066.png ; $Q _ { n } ( z ) / T _ { n } ( z ) \rightrightarrows 2 / \phi ^ { \prime } ( z )$ ; confidence 0.210
+
59. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004030.png ; $c = 1 / 4$ ; confidence 0.996
  
60. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045075.png ; $f _ { S } = 1 - \frac { 3 \sum _ { i = 1 } ^ { n } | R _ { i } - S _ { i } | } { n ^ { 2 } - 1 }$ ; confidence 0.905
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031052.png ; $B ( K ) / M ( K )$ ; confidence 0.996
  
61. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047019.png ; $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$ ; confidence 0.710
+
61. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900147.png ; $L _ { 2 } ( Z _ { p } , \mu , H _ { p } )$ ; confidence 0.996
  
62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049039.png ; $\frac { | \nabla ( A ) | } { | N _ { k } + 1 | } \geq \frac { | A | } { | N _ { k } | }$ ; confidence 0.614
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320129.png ; $( M , \mathcal{O} _ { M } )$ ; confidence 0.996
  
63. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305007.png ; $\left( \begin{array} { l } { [ n ] } \\ { n / 2 } \end{array} \right)$ ; confidence 0.691
+
63. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120139.png ; $Q _ { \mathcal{F} } ( R )$ ; confidence 0.996
  
64. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230147.png ; $X A X ^ { \prime } \sim L _ { 1 } ^ { ( 1 ) } ( f _ { 1 } , \frac { \dot { k } } { 2 } )$ ; confidence 0.384
+
64. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900135.png ; $\phi ( x ^ { * } x ) < \infty$ ; confidence 0.996
  
65. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306504.png ; $\Phi _ { n + 1 } ( z ) = z \Phi _ { n } ( z ) + \rho _ { n + 1 } \Phi _ { n } ^ { * } ( z )$ ; confidence 0.591
+
65. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004015.png ; $\{ U _ { \xi } : \xi < \kappa \}$ ; confidence 0.996
  
66. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007052.png ; $j g ( z ) = \frac { 1 } { q } + \alpha _ { 1 } ( g ) q + \alpha _ { 2 } ( g ) q ^ { 2 } +$ ; confidence 0.542
+
66. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001069.png ; $\sum _ { i = 1 } ^ { n + 1 } x _ { i } d y _ { i } - y _ { i } d x _ { i }$ ; confidence 0.996
  
67. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011022.png ; $Y ( T _ { A } ) = \{ N _ { E } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \}$ ; confidence 0.377
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302306.png ; $Q : H \rightarrow V$ ; confidence 0.996
  
68. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011018.png ; $T ( T _ { A } ) = \{ M _ { A } : \operatorname { Ext } _ { A } ^ { 1 } ( T , M ) = 0 \}$ ; confidence 0.896
+
68. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080167.png ; $\Gamma \varphi$ ; confidence 0.996
  
69. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011019.png ; $Y ( T _ { A } ) = \{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \}$ ; confidence 0.638
+
69. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w1201704.png ; $\omega ( G ) = G$ ; confidence 0.996
  
70. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140131.png ; $\operatorname { lim } _ { t \rightarrow 0 } - \phi ( e ^ { i t } \zeta )$ ; confidence 0.606
+
70. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003021.png ; $\| \mu \| = | \mu | ( \Omega )$ ; confidence 0.996
  
71. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140139.png ; $\operatorname { dist } _ { \lambda } ( \phi , \phi _ { \lambda } ) = 0$ ; confidence 0.965
+
71. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015020.png ; $\eta \in \mathcal{A}$ ; confidence 0.996
  
72. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002013.png ; $\hat { f } ( y ) = \int _ { - \infty } ^ { \infty } f ( x ) e ^ { - 2 \pi i x y } d x$ ; confidence 0.724
+
72. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025031.png ; $0 - 1$ ; confidence 0.996
  
73. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
+
73. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211019.png ; $F ( x , \theta )$ ; confidence 0.996
  
74. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001020.png ; $\psi ( a ( z ) ( \frac { d } { d z } ) ^ { n } , b ( z ) ( \frac { d } { d z } ) ^ { m } ) =$ ; confidence 0.324
+
74. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o1300101.png ; $D \subset \mathbf{R} ^ { 3 }$ ; confidence 0.996
  
75. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007091.png ; $f ( A ) = ( 2 \pi ) ^ { - k } \int _ { R ^ { k } } ^ { i \xi A } \hat { f } ( \xi ) d \xi$ ; confidence 0.458
+
75. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005013.png ; $E G \rightarrow B G$ ; confidence 0.996
  
76. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080159.png ; $( \overline { \partial } + \mu \partial + \overline { A } ) \psi = 0$ ; confidence 0.960
+
76. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602037.png ; $P + \Delta P$ ; confidence 0.996
  
77. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080104.png ; $\frac { \partial F } { \partial \alpha _ { j } } = \oint _ { B _ { j } } d S$ ; confidence 0.661
+
77. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014034.png ; $f \in C ( B _ { R } )$ ; confidence 0.996
  
78. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008020.png ; $R _ { g } ( \lambda ) = \prod _ { i = 0 } ^ { 2 g } ( \lambda - \lambda _ { i } )$ ; confidence 0.460
+
78. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021011.png ; $\Delta ^ { + } \subset \Delta$ ; confidence 0.996
  
79. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005022.png ; $\mathfrak { D } = \operatorname { Hom } _ { R } ( \Omega _ { k } ( R ) , R )$ ; confidence 0.941
+
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034018.png ; $\frac { 1 } { 3 \sqrt { n } } < K _ { n } < \frac { 2 \sqrt { \operatorname { log } n } } { \sqrt { n } }.$ ; confidence 0.996
  
80. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013011.png ; $H _ { n } ( r , \theta ) = r ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.981
+
80. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020030.png ; $T \rightarrow \infty$ ; confidence 0.996
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024066.png ; $y _ { i j k } = \mu + \alpha _ { i } + \beta _ { j } + \gamma _ { i j } + e _ { j k }$ ; confidence 0.384
+
81. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022031.png ; $\Lambda ( M , s )$ ; confidence 0.996
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040335.png ; $E ( x , y ) \nmid _ { D } E ( y , x ) , \quad E ( x , y ) , E ( y , z ) | _ { D } E ( x , z )$ ; confidence 0.078
+
82. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048027.png ; $H _ { S } ^ { * } ( D )$ ; confidence 0.996
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005048.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } ( A ( t ) ^ { - 1 } - A ( s ) ^ { - 1 } ) \| \leq$ ; confidence 0.979
+
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037091.png ; $O( \operatorname { log } n )$ ; confidence 0.996
  
84. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007061.png ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \cap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199
+
84. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003011.png ; $\operatorname { supp } ( \psi _ { N } ) = [ 0,2 N - 1 ]$ ; confidence 0.996
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007092.png ; $- A ( s ) ( \lambda - A ( s ) ) ^ { - 1 } \frac { d A ( s ) ^ { - 1 } } { d s } \| \leq$ ; confidence 0.992
+
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001056.png ; $\mathcal{F} _ { 3 }$ ; confidence 0.996
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017022.png ; $\operatorname { lim } _ { t \rightarrow + \infty } \Omega ( t ) = 0$ ; confidence 0.993
+
86. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010116.png ; $\operatorname { dim } ( \mathcal{O} ) = 4$ ; confidence 0.996
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017030.png ; $R = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) \Pi ( \alpha ) d \alpha$ ; confidence 0.819
+
87. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001079.png ; $\mathcal{F} _ { \tau } \subset \mathcal{F} _ { 3 } \subset \mathcal{S}$ ; confidence 0.996
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202304.png ; $\int _ { \partial D } f z _ { 1 } ^ { m } d z _ { 1 } = 0 , \quad m = 0,1 , \dots$ ; confidence 0.651
+
88. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010107.png ; $n \geq 0$ ; confidence 0.996
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026019.png ; $a _ { m p } r \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ ; confidence 0.187
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013027.png ; $\phi = \phi _ { - } \phi _ { + }$ ; confidence 0.996
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280172.png ; $\pi ( a ) M ^ { U } ( [ t , \infty ) ) \subseteq M ^ { U } ( [ t + s , \infty ) )$ ; confidence 0.631
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013024.png ; $g ( z )$ ; confidence 0.996
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200302.png ; $\{ e ^ { 2 \pi i m b x } g ( x - n a ) : n , m \in Z \} = \{ g _ { x } , m : n , m \in Z \}$ ; confidence 0.130
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007080.png ; $\sigma ( n ) > \sigma ( m )$ ; confidence 0.996
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809
+
92. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004038.png ; $\rho \in C ^ { 2 } ( \overline { \Omega } )$ ; confidence 0.996
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009059.png ; $g ( z ) = z e ^ { \int _ { 0 } ^ { z } \frac { p _ { 0 } ( t ) - 1 } { t } d t } _ { \in S }$ ; confidence 0.215
+
93. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023095.png ; $R - F R F ^ { * } = G J G ^ { * }$ ; confidence 0.996
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220250.png ; $r _ { D } : H _ { M } ^ { i } ( X , Q ( j ) ) \rightarrow H _ { H } ^ { i } ( X , Q ( j ) )$ ; confidence 0.860
+
94. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010077.png ; $\lambda ^ { p } ( M ^ { 1 } ( G ) )$ ; confidence 0.996
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016047.png ; $x _ { 3 } ^ { \prime } = p _ { 2 } q _ { 1 } , x _ { 4 } ^ { \prime } = p _ { 2 } q _ { 2 }$ ; confidence 0.985
+
95. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663062.png ; $0 < r - s < k$ ; confidence 0.996
  
96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016046.png ; $x _ { 1 } ^ { \prime } = p _ { 1 } q _ { 1 } , x _ { 2 } ^ { \prime } = p _ { 1 } q _ { 2 }$ ; confidence 0.711
+
96. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007076.png ; $\| f \| = 0$ ; confidence 0.996
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012029.png ; $f _ { k } ( x ) = h ^ { - 1 } \int _ { R } \varphi ( \frac { t } { h } ) f ( x - t ) d t$ ; confidence 0.194
+
97. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080102.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$ ; confidence 0.996
  
98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022072.png ; $\partial _ { t } \eta ( u ) + \operatorname { div } _ { X } G ( u ) \leq 0$ ; confidence 0.627
+
98. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900124.png ; $P _ { 1 } \in A$ ; confidence 0.996
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040067.png ; $\mathfrak { h } = \mathfrak { h } _ { R } \oplus \mathfrak { h } _ { R }$ ; confidence 0.430
+
99. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008076.png ; $\mathcal{N} = 2$ ; confidence 0.996
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022096.png ; $\| u - q _ { l } \| _ { p , \Omega } \leq C \rho ^ { 2 } | u | _ { p , 2 , \Omega }$ ; confidence 0.133
+
100. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001017.png ; $R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }.$ ; confidence 0.996
  
101. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028030.png ; $[ T ( n ) , \Sigma ^ { \infty } Z ] \rightarrow \overline { H } _ { n } Z$ ; confidence 0.961
+
101. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012027.png ; $\phi \phi = 0$ ; confidence 0.996
  
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051039.png ; $x _ { + } = x _ { c } - ( \nabla ^ { 2 } f ( x _ { c } ) ) ^ { - 1 } \nabla f ( x _ { c } )$ ; confidence 0.698
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042048.png ; $\phi : W \rightarrow Z$ ; confidence 0.996
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029019.png ; $I ( M ) = 1 _ { A } ( M / \mathfrak { q } M ) - e _ { \mathfrak { q } } ^ { 0 } ( M )$ ; confidence 0.217
+
103. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008080.png ; $y ^ { 2 } = P ^ { 2 } - 4 \Lambda ^ { 2 N },$ ; confidence 0.996
  
104. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002071.png ; $\mu ( x ) = m ( x ^ { \prime } ) \times \lambda ( x ^ { \prime \prime } )$ ; confidence 0.832
+
104. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006056.png ; $\varphi \in T _ { A } M$ ; confidence 0.996
  
105. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300407.png ; $\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t$ ; confidence 0.962
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018047.png ; $\zeta ( s )$ ; confidence 0.996
  
106. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180172.png ; $g ^ { - 1 } \{ p , q \} : \otimes ^ { Y + 2 } E \rightarrow \otimes ^ { r } E$ ; confidence 0.461
+
106. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230169.png ; $\Omega ( d L \Delta )$ ; confidence 0.996
  
107. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210133.png ; $L ( \theta ) = N ( 0 , \Gamma ^ { - 1 } ( \theta ) ^ { * } L _ { 2 } ( \theta ) )$ ; confidence 0.959
+
107. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010031.png ; $P ( z ) = m _ { z } ( P ) = \int _ { K } P ( \zeta ) d \mu _ { z } ( \zeta ) , P \in \mathcal{P}.$ ; confidence 0.996
  
108. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021099.png ; $L ( T _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \Gamma h , \Gamma )$ ; confidence 0.970
+
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013027.png ; $\int _ { G } f \overline { \partial } \varphi d A = 0$ ; confidence 0.996
  
109. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014023.png ; $D _ { N } ( x , 1 ) = u ^ { n } + u ^ { - n } = e ^ { i n \alpha } + e ^ { - i n \alpha } =$ ; confidence 0.751
+
109. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033710/d03371051.png ; $\operatorname{Spec}( A )$ ; confidence 0.996
  
110. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d1301709.png ; $\Delta = \sum _ { i = 1 } ^ { n } \partial ^ { 2 } / \partial x _ { i } ^ { 2 }$ ; confidence 0.967
+
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024011.png ; $D_{-}$ ; confidence 0.996
  
111. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017019.png ; $\varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.746
+
111. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583081.png ; $T ( K ) \subset K$ ; confidence 0.996
  
112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028085.png ; $D _ { \epsilon } = \{ z : z \in D , \rho ( z , \partial D ) > \epsilon \}$ ; confidence 0.993
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006025.png ; $X = [ L ^ { 2 } ( \Omega ) ] ^ { p }$ ; confidence 0.996
  
113. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031016.png ; $f ( \lambda ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } \lambda ^ { n }$ ; confidence 0.489
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023016.png ; $\gamma = \{ z _ { 1 } : | z _ { 1 } | = 1 \}$ ; confidence 0.996
  
114. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009022.png ; $F _ { \mu \nu } = g _ { \mu \alpha } g _ { \nu \beta } F ^ { \alpha \beta }$ ; confidence 0.948
+
114. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e12018020.png ; $\mathcal{L} ( M , g )$ ; confidence 0.996
  
115. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011061.png ; $\nabla A + \frac { 1 } { c } \frac { \partial \phi } { \partial t } = 0$ ; confidence 0.858
+
115. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f1201509.png ; $\alpha ( A ) : = \operatorname { dim } N ( A ) < \infty$ ; confidence 0.996
  
116. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500019.png ; $H _ { \epsilon } ( C ) = \operatorname { inf } H _ { \epsilon } ( C , X )$ ; confidence 0.964
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005035.png ; $\theta _ { 0 } \in ( \pi / 2 , \pi )$ ; confidence 0.996
  
117. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
+
117. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051089.png ; $g ( \mathbf{u} ) = \sigma ( \mathbf{u} )$ ; confidence 0.996
  
118. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016034.png ; $\operatorname { Re } ( E ) \nabla ^ { 2 } E = \nabla E \cdot \nabla E$ ; confidence 0.699
+
118. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011068.png ; $\alpha ( x ) = \frac { \Gamma ( \beta + 1 ) \Gamma ( x ) } { \Gamma ( x + \beta + 1 ) },$ ; confidence 0.996
  
119. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f1200406.png ; $f ^ { c \langle \varphi \rangle } : W \rightarrow \overline { R }$ ; confidence 0.548
+
119. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037057.png ; $\operatorname { log } ( L _ { \Omega } ( f ) )$ ; confidence 0.996
  
120. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010010.png ; $\sum _ { n = 1 } ^ { \infty } N _ { p } ( k _ { n } ) N _ { p } , ( l _ { n } ) < \infty$ ; confidence 0.528
+
120. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005064.png ; $\leq \pi / 2$ ; confidence 0.996
  
121. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f1302103.png ; $\| f \| = \operatorname { sup } \{ \| \pi ( f ) \| : \pi \in \Sigma \}$ ; confidence 0.994
+
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031035.png ; $( 1 / p , \delta )$ ; confidence 0.996
  
122. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021057.png ; $B ( G ) = \{ u \in C ^ { G } : u v \in A ( G ) \text { for everyv } \in A ( G ) \}$ ; confidence 0.930
+
122. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034061.png ; $N \geq n - 2$ ; confidence 0.996
  
123. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020014.png ; $e _ { 1 } , \dots , e _ { x } , - ( a _ { 0 } e _ { 1 } + \ldots + a _ { x } - 1 e _ { x } )$ ; confidence 0.231
+
123. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004054.png ; $\xi \in \mathcal{C}$ ; confidence 0.996
  
124. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023070.png ; $[ P + A , P + A ] ^ { \wedge } = 2 [ P , A ] ^ { \wedge } + [ A , A ] ^ { \wedge } = 0$ ; confidence 0.998
+
124. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200205.png ; $x = \operatorname { sinh } ^ { - 2 } t$ ; confidence 0.996
  
125. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023035.png ; $\Omega ( M ) = \oplus _ { k } \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.760
+
125. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013026.png ; $\sum _ { n = 0 } ^ { \infty } \| \lambda \theta ^ { n } \| ^ { 2 } < \infty$ ; confidence 0.996
  
126. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004086.png ; $\operatorname { lim } _ { r \rightarrow 0 } \mu ( B ( x , r ) ) / r ^ { m }$ ; confidence 0.791
+
126. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690013.png ; $E ^ { * } = B$ ; confidence 0.996
  
127. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g1300408.png ; $H ^ { m } ( E \backslash \cup _ { i = 1 } ^ { \infty } f _ { i } ( R ^ { m } ) ) = 0$ ; confidence 0.889
+
127. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007039.png ; $w \rightarrow + \infty$ ; confidence 0.996
  
128. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006044.png ; $D \beta D = \coprod _ { \beta ^ { \prime } \in A } D \beta ^ { \prime }$ ; confidence 0.928
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053010.png ; $M ( \mu )$ ; confidence 0.996
  
129. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012024.png ; $\| f ( x + y ) - f ( x ) - f ( y ) \| \leq \theta ( \| x \| ^ { p } + \| y \| ^ { p } )$ ; confidence 0.911
+
129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004075.png ; $L _ { \infty } = L _ { \infty } ( \mu )$ ; confidence 0.996
  
130. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050102.png ; $\operatorname { log } \alpha _ { n } = o ( \operatorname { log } n )$ ; confidence 0.345
+
130. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540286.png ; $p - 1$ ; confidence 0.996
  
131. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005031.png ; $f ( x , k ) = e ^ { i k x } + \int _ { y } ^ { \infty } A _ { + } ( x , y ) e ^ { i k y } d y$ ; confidence 0.654
+
131. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z1200204.png ; $F _ { 1 } = F _ { 2 } = 1$ ; confidence 0.996
  
132. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007074.png ; $S _ { + } ^ { 2 } : = \{ \alpha : \alpha \in S ^ { 2 } , \alpha , e _ { 3 } > 0 \}$ ; confidence 0.530
+
132. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026037.png ; $( \Omega , \mathcal{A} , \nu )$ ; confidence 0.996
  
133. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007029.png ; $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , k _ { 0 } )$ ; confidence 0.994
+
133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304707.png ; $0 \neq \lambda \in \sigma ( T )$ ; confidence 0.996
  
134. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008030.png ; $( a ^ { 2 } \alpha ^ { - 1 } : b ^ { 2 } \beta ^ { - 1 } : c ^ { 2 } \gamma ^ { - 1 } )$ ; confidence 0.558
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046069.png ; $P ( x )$ ; confidence 0.996
  
135. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010041.png ; $g ( R ( X , Y ) Z , W ) = g ( R ( Z , W ) X , Y ) , R ( X , Y ) Z + R ( Y , Z ) X + R ( Z , X ) Y = 0$ ; confidence 0.977
+
135. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002012.png ; $\theta \in E ^ { * }$ ; confidence 0.996
  
136. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020227.png ; $| \nabla u ( z ) | ^ { 2 } \operatorname { log } \frac { 1 } { | z | } d x d y$ ; confidence 0.996
+
136. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003028.png ; $\angle Q P T = \angle Q P U ^ { \prime } = \alpha$ ; confidence 0.996
  
137. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005019.png ; $\sum _ { j = 1 } ^ { t } \mu _ { * } ^ { - 1 } B _ { j } + \sum _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.646
+
137. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014051.png ; $| f | < h$ ; confidence 0.996
  
138. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008036.png ; $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$ ; confidence 0.569
+
138. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300808.png ; $L _ { 2 } = A _ { 2 } P _ { 2 }$ ; confidence 0.996
  
139. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004013.png ; $w _ { i } ( x _ { 1 } , \ldots , x _ { N } ) = e \text { for everyw } _ { i } \in X$ ; confidence 0.257
+
139. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110146.png ; $2 \pi \sum _ { k = - \infty } ^ { \infty } \delta ( \xi - 2 \pi k )$ ; confidence 0.996
  
140. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004035.png ; $\partial _ { t } ^ { ( k ) } u ( x , t ) = ( - a ) ^ { k } \partial _ { x } ^ { ( k ) }$ ; confidence 0.463
+
140. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300506.png ; $\operatorname{DG}( m , r )$ ; confidence 0.996
  
141. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005067.png ; $- X _ { 0 } ^ { 2 } + \sum X _ { t } ^ { 2 } = 1 = - Y _ { 0 } ^ { 2 } + \sum Y _ { t } ^ { 2 }$ ; confidence 0.968
+
141. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026057.png ; $y \in f ( \Omega )$ ; confidence 0.996
  
142. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005070.png ; $\operatorname { cos } \phi = | - X _ { 0 } Y _ { 0 } + \sum X _ { t } Y _ { t } |$ ; confidence 0.966
+
142. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200181.png ; $\Lambda ( h _ { i } ) \geq 0$ ; confidence 0.996
  
143. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017064.png ; $Q = \langle a _ { 1 } , \dots , a _ { g } | S _ { 1 } , \dots , S _ { n } \rangle$ ; confidence 0.280
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040099.png ; $g ^ { \prime } ( g B , v ) = ( g ^ { \prime } g B , R ( g ^ { \prime } ) v )$ ; confidence 0.996
  
144. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170223.png ; $P = \langle x _ { 1 } , \dots , x _ { 8 } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.372
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040014.png ; $f : E _ { 1 } \rightarrow E _ { 2 }$ ; confidence 0.996
  
145. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017026.png ; $P = \langle x _ { 1 } , \dots , x _ { n } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.292
+
145. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d1201601.png ; $f \in C ( S \times T )$ ; confidence 0.996
  
146. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016035.png ; $X _ { 1 } \sim E _ { Y , n } ( M _ { 1 } , \Sigma _ { 11 } \otimes \Phi , \psi )$ ; confidence 0.490
+
146. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470106.png ; $( X , A )$ ; confidence 0.996
  
147. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016047.png ; $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$ ; confidence 0.981
+
147. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016019.png ; $A A$ ; confidence 0.996
  
148. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020044.png ; $\{ J ( x ) , X \rangle = j ( X ) ( x ) , H _ { j } ( X ) = \alpha ^ { \prime } ( X )$ ; confidence 0.215
+
148. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697065.png ; $1 / 4$ ; confidence 0.996
  
149. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202304.png ; $\operatorname { inf } _ { x \in H } ( f ( x ) + ( 2 T ) ^ { - 1 } \| x \| ^ { 2 } )$ ; confidence 0.868
+
149. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004024.png ; $x ( y \vee z ) t = x y t \vee x z t$ ; confidence 0.996
  
150. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025056.png ; $( \rho _ { \varepsilon } ) _ { \varepsilon > 0 } \subset D ( R ^ { x } )$ ; confidence 0.338
+
150. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c0221008.png ; $\phi ( t ) = ( 1 - 2 i t ) ^ { - n / 2 },$ ; confidence 0.996
  
151. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520364.png ; $x _ { i } = \xi _ { i } ( y _ { i } , \ldots , y _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.393
+
151. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l1200706.png ; $1 \leq i \leq k - 1$ ; confidence 0.996
  
152. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003011.png ; $X ^ { * } Y = \mu X Y + \nu Y X + \frac { 1 } { 6 } \operatorname { Tr } ( X Y )$ ; confidence 0.986
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008025.png ; $f ( L ) = \alpha g ( L ; m , s ) , f ( R ) = \alpha g ( R ; m , s ),$ ; confidence 0.996
  
153. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013026.png ; $\sum _ { n = 0 } ^ { \infty } \| \lambda \theta ^ { n } \| ^ { 2 } < \infty$ ; confidence 0.996
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103303.png ; $r > 0$ ; confidence 0.996
  
154. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010031.png ; $P ( z ) = m _ { z } ( P ) = \int _ { K } P ( \zeta ) d \mu _ { z } ( \zeta ) , P \in P$ ; confidence 0.996
+
154. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004026.png ; $x ( y \wedge z ) t = x y t \wedge x z t$ ; confidence 0.996
  
155. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009016.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$ ; confidence 0.982
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211024.png ; $x _ { 0 } = - \infty$ ; confidence 0.996
  
156. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004054.png ; $s _ { \lambda } = \operatorname { det } ( h _ { \lambda _ { i } - i + j } )$ ; confidence 0.527
+
156. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010042.png ; $b ( x , t , \alpha )$ ; confidence 0.996
  
157. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005061.png ; $A \in \mathfrak { L } ( \mathfrak { H } _ { 1 } , \mathfrak { H } _ { 2 } )$ ; confidence 0.767
+
157. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280128.png ; $g \in H ^ { n , n - 1 } ( U )$ ; confidence 0.996
  
158. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036032.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } n ( Y _ { s } ) d l _ { s } , t \geq 0$ ; confidence 0.571
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030053.png ; $E _ { 0 } = E$ ; confidence 0.996
  
159. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202004.png ; $\lambda = ( \lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0 )$ ; confidence 0.956
+
159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b120320101.png ; $F ( s , t ) = ( s ^ { p } + t ^ { p } ) ^ { 1 / p }.$ ; confidence 0.996
  
160. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021014.png ; $\pi ^ { * } E ( \lambda , D _ { Y } ) \subset E ( \mu ( \lambda ) , D _ { Z } )$ ; confidence 0.981
+
160. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047630/h04763020.png ; $n \geq 7$ ; confidence 0.996
  
161. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340186.png ; $( x _ { 3 } , u _ { 1 } \cup u _ { 2 } \cup \sigma ) \equiv ( x _ { 3 } , u _ { 3 } )$ ; confidence 0.967
+
161. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001075.png ; $( G , \pi , \tau , J )$ ; confidence 0.996
  
162. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064054.png ; $\Omega = \sum _ { r = 1 } ^ { R } ( \alpha _ { r } ^ { 2 } - \beta _ { r } ^ { 2 } )$ ; confidence 0.913
+
162. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013039.png ; $r = | z | < 1$ ; confidence 0.996
  
163. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050124.png ; $0 \rightarrow Y \rightarrow X \rightarrow X / Y \rightarrow 0$ ; confidence 0.974
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007045.png ; $n - 3$ ; confidence 0.996
  
164. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003023.png ; $\zeta = \xi + i \eta = \Phi ( z ) = \int ^ { z } \sqrt { \varphi ( z ) } d z$ ; confidence 0.975
+
164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340165.png ; $\varphi _ { 3 } : ( \infty , 0 ) \times S ^ { 1 } \rightarrow \Sigma$ ; confidence 0.996
  
165. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008021.png ; $F ( x , y ) \in O _ { S } ^ { * } \text { in } ( x , y ) \in O _ { S } \times O _ { S }$ ; confidence 0.777
+
165. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007099.png ; $X ^ { \prime } = 0$ ; confidence 0.996
  
166. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201306.png ; $\frac { \partial M } { \partial y _ { n } } = - M ( \Lambda ^ { t } ) ^ { n }$ ; confidence 0.562
+
166. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012029.png ; $\overline { \phi } = D ( \phi ) \phi D ( \phi )$ ; confidence 0.996
  
167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014025.png ; $( W _ { k } f ) ( t ) = \int _ { 0 } ^ { \infty } k ( t - s ) f ( s ) d s , t \in R _ { + }$ ; confidence 0.913
+
167. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540205.png ; $f , g \in C ^ { \infty } ( M )$ ; confidence 0.996
  
168. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691020.png ; $U h ( x ) = h ( T x ) \quad \text { or } \quad U _ { t } h ( x ) = h ( T _ { t } ( x ) )$ ; confidence 0.921
+
168. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190190.png ; $\mu ( \Phi _ { 1 } ) = \mu ( \Phi _ { 2 } )$ ; confidence 0.996
  
169. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010022.png ; $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ ; confidence 0.941
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002043.png ; $I ^ { \alpha } f$ ; confidence 0.996
  
170. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090294.png ; $\mathfrak { b } ^ { + } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.723
+
170. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602040.png ; $\Delta P$ ; confidence 0.996
  
171. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011044.png ; $\alpha ^ { w } = \int _ { R ^ { 2 n } } \alpha ( X ) 2 ^ { n } \sigma _ { X } d X =$ ; confidence 0.285
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052048.png ; $F ^ { \prime } ( x ^ { * } )$ ; confidence 0.996
  
172. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008045.png ; $\int _ { B _ { j } } d \Omega _ { n } = V _ { i n } \sim ( \vec { V _ { n } } ) _ { i }$ ; confidence 0.454
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031058.png ; $C ( S )$ ; confidence 0.996
  
173. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a0122005.png ; $D \subset M$ ; confidence 0.996
  
174. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001087.png ; $\rho ( v ) = v ^ { \{ 1 \} } \otimes _ { V } v ^ { ( 2 ) } \in V \otimes _ { k } A$ ; confidence 0.135
+
174. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006037.png ; $E _ { 0 } < 0$ ; confidence 0.996
  
175. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010130.png ; $R : X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.852
+
175. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002025.png ; $f \in V$ ; confidence 0.996
  
176. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011028.png ; $\Delta G _ { n } ( x ) \equiv \mu _ { n } ( x ) = \sum 1 _ { \{ f _ { i n } = x \} }$ ; confidence 0.751
+
176. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008083.png ; $\lambda_{-}$ ; confidence 0.996
  
177. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013037.png ; $H ( r , \theta ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , \theta )$ ; confidence 0.997
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450150.png ; $+ 1$ ; confidence 0.996
  
178. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
+
178. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n1200706.png ; $M _ { E } > 0$ ; confidence 0.996
  
179. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780077.png ; $n = 8$ ; confidence 0.996
  
180. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510108.png ; $\gamma ( u )$ ; confidence 0.996
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
+
181. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000147.png ; $\Gamma \vdash ( M N ) : \tau$ ; confidence 0.996
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040144.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837
+
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013058.png ; $A ^ { p }$ ; confidence 0.996
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050177.png ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877
+
183. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006013.png ; $\operatorname { lim } _ { t \rightarrow + \infty } \Phi ( t ) / t = + \infty$ ; confidence 0.996
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005045.png ; $x _ { 1 } , \ldots , \alpha _ { k } , \beta _ { 1 } , \ldots , \beta _ { k }$ ; confidence 0.767
+
184. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100115.png ; $P ( \gamma ) = C ( \gamma )$ ; confidence 0.996
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030031.png ; $f _ { \alpha } : S ^ { n _ { \alpha } } \rightarrow X _ { n _ { \alpha } }$ ; confidence 0.182
+
185. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012095.png ; $\mathcal{M} _ { \infty } ( F )$ ; confidence 0.996
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103205.png ; $y ^ { \prime } = f ( t , y ) , y ( t _ { 0 } ) = y _ { 0 } , t \in [ t _ { 0 } , t _ { e } ]$ ; confidence 0.741
+
186. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190137.png ; $d ( x , y ) = d ( f ( x ) , f ( y ) )$ ; confidence 0.996
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032014.png ; $= \frac { 1 - ( 1 - \theta ) ^ { n } } { \theta } \text { for } \theta > 0$ ; confidence 0.893
+
187. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202405.png ; $u ( x , y ) \rightarrow u [ 1 ] ( x , y )$ ; confidence 0.996
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021084.png ; $M ( \mu ) = U ( \mathfrak { g } ) \otimes U ( \mathfrak { h } ) C ( \mu )$ ; confidence 0.400
+
188. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005039.png ; $\rho ( x , t )$ ; confidence 0.996
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b130040107.png ; $\| f \| _ { \infty } : = \operatorname { sup } \{ | f ( x ) | : x \in X \}$ ; confidence 0.847
+
189. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043022.png ; $B \otimes \underline{} B$ ; confidence 0.996
  
190. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022032.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M ^ { \vee } , 1 - s )$ ; confidence 0.942
+
190. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011032.png ; $( u , v ) \mapsto \mathcal{H} ( u , v )$ ; confidence 0.996
  
191. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220111.png ; $L ( i , m ) = \operatorname { det } _ { Q } H _ { B } ^ { i } ( X / R , R ( i - m ) )$ ; confidence 0.358
+
191. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018081.png ; $1:$ ; confidence 0.996
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014038.png ; $r _ { l } - 2 ( z ) = q _ { l } ( z ) r _ { l } - 1 ( z ) + r _ { l } ( z ) , \quad i = 1,2 ,$ ; confidence 0.399
+
192. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049049.png ; $\sigma _ { 1 } = \sigma _ { 2 }$ ; confidence 0.996
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015056.png ; $d _ { n } ^ { * } \in \cap _ { \subsetneq \in P } L _ { 2 } ( \Omega , A , P )$ ; confidence 0.060
+
193. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260104.png ; $\overline { \alpha }$ ; confidence 0.996
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301207.png ; $f ( t ) = \sum _ { n = - \infty } ^ { \infty } a _ { n } e ^ { i n t } , a _ { 0 } = 0$ ; confidence 0.914
+
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b130040110.png ; $\{ f \in C ( X ) : f \ \text{attains its maximum in} \ X \}$ ; confidence 0.996
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022081.png ; $D _ { \xi } = ( 1 , \xi _ { 1 } , \dots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) R _ { + }$ ; confidence 0.503
+
195. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013021.png ; $\theta = \pi$ ; confidence 0.996
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034024.png ; $\frac { 1 } { 3 e ^ { 1 / 3 } } < K _ { n } ( D ^ { \circ } ) \leq \frac { 1 } { 3 }$ ; confidence 0.967
+
196. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300601.png ; $u ( x , k )$ ; confidence 0.996
  
197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430174.png ; $\partial _ { q , x } ( x ^ { n } y ^ { m } ) = [ n ] _ { q ^ { 2 } } x ^ { n - 1 } y ^ { m }$ ; confidence 0.906
+
197. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306506.png ; $\Phi _ { 0 } = 1$ ; confidence 0.996
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430152.png ; $U _ { q } ( g ) = U _ { q } ( n _ { - } ) \times H _ { \bowtie } U _ { q } ( n _ { + } )$ ; confidence 0.195
+
198. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006096.png ; $1 \leq i , j \leq n$ ; confidence 0.996
  
199. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022034.png ; $| u | _ { p , m , T } = \sum _ { | \alpha | = m } \| D ^ { \alpha } u \| _ { p , T }$ ; confidence 0.332
+
199. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015030.png ; $\eta \rightarrow 0$ ; confidence 0.996
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046034.png ; $R H = ( \oplus _ { b } G _ { = B } b ) \oplus ( \oplus _ { b } G _ { \neq B } b )$ ; confidence 0.330
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a011840147.png ; $i \rightarrow \infty$ ; confidence 0.996
  
201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051060.png ; $s = x _ { + } - x _ { c } , \quad y = \nabla f ( x _ { + } ) - \nabla f ( x _ { c } )$ ; confidence 0.865
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420123.png ; $\mathcal{R} \in H \otimes H$ ; confidence 0.996
  
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010133.png ; $\pi ( \zeta ) = \mu ( \frac { 1 } { ( 1 + \langle , \zeta \rangle ) } )$ ; confidence 0.587
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070263.png ; $E = \nu _ { 1 } E _ { 1 }$ ; confidence 0.996
  
203. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001015.png ; $2 \kappa \Delta c - f _ { 0 } ^ { \prime } ( c ) = \lambda \text { in } V$ ; confidence 0.821
+
203. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034086.png ; $- u ^ { \prime } ( D ^ { 2 } )$ ; confidence 0.996
  
204. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004020.png ; $\zeta ( s , a ) : = \sum _ { k = 0 } ^ { \infty } \frac { 1 } { ( k + a ) ^ { s } }$ ; confidence 0.413
+
204. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080190.png ; $A ( K ) \subset K$ ; confidence 0.996
  
205. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007039.png ; $\operatorname { lim } _ { L } \leftarrow : A ^ { C } \rightarrow A$ ; confidence 0.181
+
205. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310155.png ; $U ( g )$ ; confidence 0.996
  
206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080117.png ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.512
+
206. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033027.png ; $4 u ^ { 2 }$ ; confidence 0.996
  
207. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080102.png ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.682
+
207. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070147.png ; $( f , g ) _ { H }$ ; confidence 0.996
  
208. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c0221004.png ; $p ( x ) = \frac { 1 } { 2 ^ { x / 2 } \Gamma ( n / 2 ) } e ^ { - x / 2 } x ^ { n / 2 - 1 }$ ; confidence 0.732
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380169.png ; $i \neq j$ ; confidence 0.996
  
209. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327031.png ; $A \rightarrow \overline { A } = \operatorname { sp } ( A ) \cap S$ ; confidence 0.324
+
209. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014034.png ; $q ^ { 2 } - 1$ ; confidence 0.996
  
210. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180381.png ; $\tilde { M } \subset R ^ { n } \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.294
+
210. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006062.png ; $M = \operatorname { dim } \mathcal{E}$ ; confidence 0.996
  
211. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180149.png ; $\langle \tilde { \gamma } ( X ) , Y \rangle = g ( X \otimes Y ) \in R$ ; confidence 0.871
+
211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026061.png ; $\nu ( d \omega ) = d x / \sqrt { 2 \pi }$ ; confidence 0.996
  
212. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031026.png ; $\| f \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { \infty }$ ; confidence 0.927
+
212. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003051.png ; $= \int \int _ { \Omega } w ( x , y ) [ A v ( x , y ) ] d x d y.$ ; confidence 0.996
  
213. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020148.png ; $c ^ { T } x + \overline { u } ^ { T } ( A _ { 1 } x - b _ { 1 } ) < \overline { q }$ ; confidence 0.232
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017034.png ; $f ( x ) = \mathcal{G} _ { \alpha } g ( x ) = \int G _ { \alpha } ( x - y ) g ( y ) d y$ ; confidence 0.996
  
214. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302507.png ; $y ( x _ { i } ) = c _ { i } , \quad i = 1 , \dots , n ; \quad x _ { i } \in [ a , b ]$ ; confidence 0.614
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008098.png ; $k = 2$ ; confidence 0.996
  
215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201406.png ; $D _ { n } ( x , a ) = x D _ { n - 1 } ( x , a ) - a D _ { n - 2 } ( x , a ) , \quad n \geq 2$ ; confidence 0.375
+
215. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090135.png ; $\lambda _ { p } ( k _ { \infty } / k ) > 0$ ; confidence 0.996
  
216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019019.png ; $Dom ( - \Delta Dir ) = H _ { 0 } ^ { 1 } ( \Omega ) \cap H ^ { 2 } ( \Omega )$ ; confidence 0.261
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240338.png ; $N ( 0 , \Sigma _ { 1 } )$ ; confidence 0.996
  
217. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017013.png ; $0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq$ ; confidence 0.992
+
217. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013095.png ; $( \epsilon \times \epsilon )$ ; confidence 0.996
  
218. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230122.png ; $d ( z , w ) = \alpha ( z ) \alpha ^ { * } ( w ) - \beta ( z ) \beta ^ { * } ( w )$ ; confidence 0.996
+
218. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g0433706.png ; $= \operatorname { lim } _ { t \rightarrow 0 } \frac { f ( x _ { 0 } + t h ) - f ( x _ { 0 } ) } { t },$ ; confidence 0.996
  
219. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003045.png ; $H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \tilde { M } )$ ; confidence 0.653
+
219. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200302.png ; $\operatorname { Ric } ( \omega ) = \lambda \omega.$ ; confidence 0.996
  
220. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140100.png ; $( \varphi \rightarrow ( \neg \varphi \rightarrow \psi ) ) = 1$ ; confidence 0.997
+
220. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d1201205.png ; $d : G \rightarrow G ^ { \prime }$ ; confidence 0.996
  
221. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240131.png ; $\epsilon _ { l } \in H ^ { 1 } ( X _ { 0 } ( N ) \times X _ { 0 } ( N ) ; K _ { 2 } )$ ; confidence 0.965
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202209.png ; $\int \operatorname { ln } f ( v ) Q ( f ) ( v ) d v \leq 0.$ ; confidence 0.996
  
222. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007030.png ; $\# A / ( \sqrt { q \operatorname { log } q } ) \rightarrow \infty$ ; confidence 0.775
+
222. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006049.png ; $\mu = \mu ( N )$ ; confidence 0.996
  
223. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100127.png ; $\sigma ( L _ { C } ^ { \infty } ( \hat { G } ) , L _ { C } ^ { 1 } ( \hat { G } ) )$ ; confidence 0.508
+
223. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006079.png ; $[ Q , [ \Gamma , \Gamma ] ] = 2 [ [ Q , \Gamma ] , \Gamma ]$ ; confidence 0.996
  
224. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100111.png ; $\lambda _ { G } ^ { p } ( \mu ) = ( \operatorname { supp } \mu ) ^ { - 1 }$ ; confidence 0.182
+
224. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019024.png ; $( u _ { k } , A u _ { l } )$ ; confidence 0.996
  
225. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
+
225. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011098.png ; $\mu ( i , m ) = A \lambda ^ { i } B ( i + c , d - c + 1 ),$ ; confidence 0.996
  
226. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202302.png ; $\Omega ^ { k } ( M ; T M ) = \Gamma ( \wedge ^ { k } T ^ { * } M \otimes T M )$ ; confidence 0.897
+
226. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040135.png ; $( v , z ) = ( \pm i , \pm i )$ ; confidence 0.996
  
227. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024026.png ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ) )$ ; confidence 0.578
+
227. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034077.png ; $u : D ^ { 2 } \rightarrow M$ ; confidence 0.996
  
228. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029065.png ; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ \alpha ( x ) : f ( x ) = y \}$ ; confidence 0.188
+
228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180303.png ; $1 : \mathcal{E} \rightarrow \mathcal{E}$ ; confidence 0.996
  
229. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002047.png ; $( \alpha _ { 1 } \cup \gamma , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.635
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240495.png ; $m = 2$ ; confidence 0.996
  
230. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005011.png ; $u ( x ; 0 ) = \Phi ( x ) , u _ { m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0$ ; confidence 0.706
+
230. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754807.png ; $q \supset ( p \vee q )$ ; confidence 0.996
  
231. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006012.png ; $T _ { n } f ( z ) = \sum _ { m = 0 } ^ { \infty } \gamma _ { n } ( m ) q ^ { m } ( z )$ ; confidence 0.751
+
231. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005053.png ; $y ^ { k } = D ^ { T } f ( x ^ { k + 1 } ) - D ^ { T } f ( x ^ { k } )$ ; confidence 0.996
  
232. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006030.png ; $\tilde { D } = \{ \alpha \in G : \alpha D \alpha ^ { - 1 } \text { is }$ ; confidence 0.629
+
232. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001089.png ; $x y \neq 0$ ; confidence 0.996
  
233. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001047.png ; $\overline { d } _ { \lambda } ( A ) \leq \overline { d } _ { \mu } ( A )$ ; confidence 0.705
+
233. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001011.png ; $d \alpha ( Z , X ) = 0$ ; confidence 0.996
  
234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004013.png ; $\Delta ^ { 2 } \alpha _ { k } = \Delta ( \Delta \alpha _ { k } ) \geq 0$ ; confidence 0.464
+
234. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020178.png ; $t : X \times Y \supset \Gamma ( F ) \rightarrow X$ ; confidence 0.996
  
235. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005064.png ; $H ( \theta , \theta _ { 0 } ) \sim c \| \theta - \theta _ { 0 } \| ^ { 2 }$ ; confidence 0.912
+
235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180484.png ; $( N , \lambda g )$ ; confidence 0.996
  
236. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008067.png ; $H = - J \sum _ { i = 1 } ^ { N } S _ { i } S _ { + 1 } - H \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.429
+
236. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026066.png ; $t \rightarrow \int _ { 0 } ^ { t } ( A _ { s } ^ { * } + A _ { s } ) \Omega d s$ ; confidence 0.996
  
237. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008075.png ; $P = ( P _ { s s ^ { \prime } } ) = ( \langle S | P | S ^ { \prime } \rangle )$ ; confidence 0.497
+
237. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020063.png ; $e _ { t } = \sum _ { \pi } \operatorname { sgn } ( \pi ) \{ \pi t \},$ ; confidence 0.996
  
238. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009045.png ; $\varepsilon \mapsto ( \varepsilon , \ldots , \varepsilon )$ ; confidence 0.520
+
238. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c1301901.png ; $\varphi : \mathbf{R} \times X \rightarrow X$ ; confidence 0.996
  
239. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k1300604.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.948
+
239. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013012.png ; $\Delta H + 2 H ( H ^ { 2 } - K ) = 0$ ; confidence 0.996
  
240. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006024.png ; $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.981
+
240. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003032.png ; $B ^ { 3 }$ ; confidence 0.996
  
241. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300701.png ; $u _ { t } + u _ { X X X X } + u _ { X X } + u u _ { X } = 0 , \quad x \in [ - L / 2 , L / 2 ]$ ; confidence 0.173
+
241. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001028.png ; $\operatorname { lim } _ { t \rightarrow \infty } \Phi _ { 1 } ( t ) / \Phi _ { 2 } ( s t ) = 0$ ; confidence 0.996
  
242. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702066.png ; $H _ { l } ^ { i } ( \overline { X } ) = H ^ { i } ( X , Z _ { l } ) \otimes Q _ { l }$ ; confidence 0.585
+
242. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180443.png ; $B ( g )$ ; confidence 0.996
  
243. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001074.png ; $H _ { N } = \cup \{ m \in Z ^ { n } : 2 ^ { s } j \leq | m _ { j } | < 2 ^ { s } j + 1 \}$ ; confidence 0.365
+
243. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005013.png ; $( x ( T ) , y ( T ) , z ( T ) )$ ; confidence 0.996
  
244. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004022.png ; $L ( x , y ) , D , E \in \operatorname { Inn } \operatorname { Der } A$ ; confidence 0.910
+
244. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e1201905.png ; $\sigma ( x , x ) \neq 0$ ; confidence 0.996
  
245. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008031.png ; $\mu : = \operatorname { min } \{ \operatorname { dim } l , n - 1 \}$ ; confidence 0.959
+
245. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260110.png ; $\beta \ \Omega \ \backslash  \ \Omega$ ; confidence 0.996
  
246. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003011.png ; $\sum _ { i = 1 } ^ { n } [ - \operatorname { ln } f _ { T _ { n } } ( x _ { i } ) ]$ ; confidence 0.986
+
246. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001062.png ; $D _ { R } ^ { \prime } : = D ^ { \prime } \cap B _ { R }$ ; confidence 0.996
  
247. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003011.png ; $\{ \alpha , \alpha ^ { d } , \ldots , \alpha ^ { d ^ { n } } , \ldots \}$ ; confidence 0.316
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012029.png ; $A _ { \mu } ( s )$ ; confidence 0.996
  
248. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260145.png ; $\operatorname { Ext } ( A , B ) = \operatorname { Hom } ( B , Q ( A ) )$ ; confidence 0.978
+
248. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740365.png ; $f : A \rightarrow B$ ; confidence 0.996
  
249. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630124.png ; $u | _ { \partial \Omega } \in H _ { 2 } ^ { \rho } ( \partial \Omega )$ ; confidence 0.873
+
249. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005046.png ; $= - D f ( x ^ { k } ) H _ { k } D ^ { T } f ( x ^ { k } ) < 0,$ ; confidence 0.996
  
250. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010140.png ; $\| f _ { m } \| _ { C } 2 , \lambda \leq \mathfrak { c } _ { 0 } = const > 0$ ; confidence 0.061
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017010/b01701051.png ; $( m \times m )$ ; confidence 0.996
  
251. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006076.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma$ ; confidence 0.971
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013820/a01382017.png ; $\theta \in \Theta$ ; confidence 0.996
  
252. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008011.png ; $x \in R _ { + } , \psi _ { m } ( 0 , k ) = 1 , \psi _ { m } ^ { \prime } ( 0 , k ) = 0$ ; confidence 0.396
+
252. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011064.png ; $R ( x ) = \int _ { 0 } ^ { \infty } \frac { 1 } { 1 + z } e ^ { - z x } d z.$ ; confidence 0.996
  
253. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007012.png ; $( \frac { \partial ^ { 2 } u } { \partial z _ { i } \partial z _ { j } } )$ ; confidence 0.939
+
253. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007037.png ; $i , j > 0$ ; confidence 0.996
  
254. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070144.png ; $\int _ { T } d m ( t ) F ( t ) \int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) =$ ; confidence 0.691
+
254. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d1301706.png ; $- \Delta u = \lambda u \text { in } \Omega,$ ; confidence 0.996
  
255. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070136.png ; $= ( ( F ( . ) , h ( , x ) ) _ { H } , ( h ( \ldots , y ) , h ( . . , x ) ) _ { H } ) _ { H } =$ ; confidence 0.122
+
255. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018014.png ; $R _ { t } = \prod _ { i = 1 } ^ { N } [ 0 , t _ { i } )$ ; confidence 0.996
  
256. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001041.png ; $R _ { S } ^ { * } = \{ x \in Q : | x | _ { v } = 1 , \forall | l _ { v } \notin S \}$ ; confidence 0.096
+
256. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009033.png ; $r ^ { 2 } + b r + c = 0$ ; confidence 0.996
  
257. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201603.png ; $l _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x \text { or } l _ { d } ( f ) = f$ ; confidence 0.575
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202303.png ; $\Lambda \in \mathcal{O} ( n )$ ; confidence 0.996
  
258. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048045.png ; $\chi ( D ) = \sum ( - 1 ) ^ { i } \operatorname { dim } H _ { S } ^ { i } ( D )$ ; confidence 0.914
+
258. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005020.png ; $\Gamma ( A )$ ; confidence 0.996
  
259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049036.png ; $\sum _ { k = 0 } ^ { n ( P ) } \frac { | F \cap N _ { k } | } { | N _ { k } | } \leq 1$ ; confidence 0.350
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012061.png ; $( x ^ { * } , y ^ { * } ) \in \mathcal{J}$ ; confidence 0.996
  
260. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510137.png ; $k \oplus \infty ( L ) = \infty ( L ) \oplus k = \infty ( L \oplus k )$ ; confidence 0.315
+
260. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007050.png ; $O ( L ^ { 8 / 5 } )$ ; confidence 0.996
  
261. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054040.png ; $\operatorname { diag } ( \alpha , \alpha ^ { - 1 } , 1,1 , \ldots )$ ; confidence 0.671
+
261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002052.png ; $b ( u , v ) = b ( v , u )$ ; confidence 0.996
  
262. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026027.png ; $\Gamma ^ { - } \supset \Gamma ( L ^ { 2 } ( R ) ) \supset \Gamma ^ { + }$ ; confidence 0.986
+
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004077.png ; $( L _ { 1 } , L _ { \infty } )$ ; confidence 0.996
  
263. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305904.png ; $c _ { N } = \int _ { 0 } ^ { \infty } t ^ { x } d \psi ( t ) , n = 0 , \pm 1 , \pm 2$ ; confidence 0.304
+
263. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014010.png ; $0 < r < \rho ( x )$ ; confidence 0.996
  
264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340165.png ; $\varphi _ { 3 } : ( \infty , 0 ) \times S ^ { 1 } \rightarrow \Sigma$ ; confidence 0.996
+
264. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200165.png ; $| z | > \rho \in ( 0,1 )$ ; confidence 0.996
  
265. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340167.png ; $\tilde { \Sigma } = \Sigma \backslash \cup _ { i = 1,2,3 } U _ { i }$ ; confidence 0.818
+
265. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240123.png ; $L ( E , 1 ) \neq 0$ ; confidence 0.996
  
266. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064010.png ; $G ( a ) = \operatorname { exp } ( [ \operatorname { log } a ] _ { 0 } )$ ; confidence 0.559
+
266. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302909.png ; $L = [ 0,1 ]$ ; confidence 0.996
  
267. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065030.png ; $\phi _ { N } ( z ) = \frac { \Phi _ { N } ( z ) } { \| \Phi _ { N } \| _ { \mu } }$ ; confidence 0.454
+
267. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017011.png ; $\delta _ { A } ( X )$ ; confidence 0.996
  
268. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008015.png ; $\frac { d } { d t } V _ { t } = P + \delta V _ { t } - \mu _ { X } + t ( S - V _ { t } )$ ; confidence 0.833
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033011.png ; $p ( x )$ ; confidence 0.996
  
269. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050124.png ; $\overline { d ^ { 2 } f } _ { X } : R ^ { n } \times R ^ { n } \rightarrow R$ ; confidence 0.078
+
269. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018076.png ; $A ( \Gamma ) \cong L ^ { 1 } ( G / H )$ ; confidence 0.996
  
270. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050119.png ; $\vec { d ^ { 2 } f _ { x } } : K _ { x } \times T V _ { x } \rightarrow Q _ { x }$ ; confidence 0.194
+
270. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051056.png ; $O ( | E | )$ ; confidence 0.996
  
271. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006070.png ; $E ^ { TF } ( N ) > \sum _ { j = 1 } ^ { K } E _ { atom } ^ { TF } ( N _ { j } , Z _ { j } )$ ; confidence 0.450
+
271. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260251.png ; $\sigma : I ( B ) \cap C ^ { \prime } \cap N ^ { \perp } \rightarrow M ( B )$ ; confidence 0.996
  
272. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006014.png ; $U = \sum _ { 1 \leq i < j \leq K } Z _ { i } Z _ { j } | R _ { i } - R _ { j } | ^ { - 1 }$ ; confidence 0.955
+
272. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017032.png ; $H _ { y } ( t - 1 )$ ; confidence 0.996
  
273. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007031.png ; $= \frac { 1 } { q } + 196884 q + 21493760 q ^ { 2 } + 864299970 q ^ { 3 } +$ ; confidence 0.992
+
273. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062340/m0623405.png ; $X = ( X _ { 1 } , X _ { 2 } )$ ; confidence 0.996
  
274. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013048.png ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , ) : F \rightarrow X$ ; confidence 0.653
+
274. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003082.png ; $R ^ { * } = H ^ { * } B V$ ; confidence 0.996
  
275. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140157.png ; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K l ) \rightarrow Z$ ; confidence 0.497
+
275. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583011.png ; $H = H _ { 0 } \otimes H _ { 1 }$ ; confidence 0.996
  
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013017.png ; $[ \alpha ] = ( \alpha , \alpha ^ { 2 } / 2 , \alpha ^ { 2 } / 3 , \ldots )$ ; confidence 0.800
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055040.png ; $G = \mathbf{R}$ ; confidence 0.996
  
277. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201507.png ; $( \xi \eta _ { 1 } | \eta _ { 2 } ) = ( \eta _ { 1 } | \xi ^ { \# } \eta _ { 2 } )$ ; confidence 0.956
+
277. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024330/c02433072.png ; $A \rightarrow B$ ; confidence 0.996
  
278. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005073.png ; $Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) \sim Y ( Y ( u , x _ { 1 } - x _ { 2 } ) v , x _ { 2 } )$ ; confidence 0.969
+
278. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d031910175.png ; $D \rightarrow D$ ; confidence 0.995
  
279. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110070/v11007011.png ; $V _ { i } = \{ x : \forall j \neq i , d ( x , p _ { i } ) \leq d ( x , p _ { j } ) \}$ ; confidence 0.806
+
279. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026059.png ; $0 \leq n \leq N$ ; confidence 0.995
  
280. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003032.png ; $P _ { \alpha } P _ { \beta } = P _ { \beta } P _ { \alpha } = P _ { \alpha }$ ; confidence 0.998
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029067.png ; $f : \Sigma \rightarrow \Sigma$ ; confidence 0.995
  
281. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110188.png ; $G ^ { \sigma } ( T ) = \operatorname { sup } _ { G ( U ) = 1 } [ T , U ] ^ { 2 }$ ; confidence 0.787
+
281. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007017.png ; $( 0 , \pi )$ ; confidence 0.995
  
282. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009038.png ; $h _ { 1 } \otimes \ldots \otimes h _ { \gamma } \in H ^ { \otimes X }$ ; confidence 0.421
+
282. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003031.png ; $V _ { + } \times V _ { + }$ ; confidence 0.995
  
283. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018068.png ; $r _ { 1 } ( t , s ) = \prod _ { i = 1 } ^ { N } ( t _ { i } / s _ { i } - t _ { i } s _ { i } )$ ; confidence 0.382
+
283. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001064.png ; $J : \mathcal{H} ( \pi ) \rightarrow \mathcal{H} ( \pi )$ ; confidence 0.995
  
284. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006049.png ; $\prod _ { j } H _ { n j } ( \frac { \langle y , f _ { j } \} } { \sqrt { 2 } } )$ ; confidence 0.089
+
284. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005050.png ; $\operatorname { deg } f \geq 2$ ; confidence 0.995
  
285. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010031.png ; $\operatorname { lim } _ { t \rightarrow \infty } f ( t ) = \infty$ ; confidence 0.999
+
285. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017071.png ; $\| \sum _ { j = 0 } ^ { \infty } K _ { j } \| ^ { 2 } = \infty$ ; confidence 0.995
  
286. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w1301401.png ; $( F _ { win } f ) ( \omega , t ) = \int f ( s ) g ( s - t ) e ^ { - i \omega s } d s$ ; confidence 0.457
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006087.png ; $\partial ( \overline { H } ) = \text{# vertices in} \ H$ ; confidence 0.995
  
287. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001097.png ; $\sigma _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.937
+
287. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028041.png ; $[ r ] : P _ { 1 } \rightarrow P _ { 2 }$ ; confidence 0.995
  
288. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001024.png ; $Z ( x ( n + k ) ) = z ^ { k } Z ( x ( n ) ) - \sum _ { r = 0 } ^ { k - 1 } x ( r ) z ^ { k - r }$ ; confidence 0.836
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011790/a01179027.png ; $2 ^ { N }$ ; confidence 0.995
  
289. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001017.png ; $Z ( \alpha x ( n ) + \beta y ( n ) ) = \alpha Z ( x ( n ) ) + \beta Z ( y ( n ) )$ ; confidence 0.841
+
289. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030039.png ; $| B ( 3,4 ) | = 2 ^ { 69 }$ ; confidence 0.995
  
290. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012023.png ; $0 \leq \sigma \leq ( 1 / n ) \operatorname { tan } ^ { 2 } ( \pi / 2 n )$ ; confidence 1.000
+
290. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009075.png ; $A \times \{ \hbar \}$ ; confidence 0.995
  
291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
+
291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020024.png ; $0 \leq d \leq 3$ ; confidence 0.995
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
+
292. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006051.png ; $\gamma = \gamma ^ { \prime }$ ; confidence 0.995
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031081.png ; $\{ z \in A : z \alpha = \alpha z \text { for each } \alpha \in A \}$ ; confidence 0.559
+
293. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003074.png ; $f \in L ^ { 2 } ( \mathcal{R} )$ ; confidence 0.995
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040117.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { D } T )$ ; confidence 0.973
+
294. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o1200502.png ; $\varphi : \mathbf{R} _ { + } \rightarrow \mathbf{R} _ { + }$ ; confidence 0.995
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011026.png ; $T ( i , 0 ) = 0 \text { for } i \geq 1 , T ( i , 1 ) = 2 \text { for } i \geq 1$ ; confidence 0.980
+
295. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008031.png ; $1 \leq p \leq P,$ ; confidence 0.995
  
296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016094.png ; $y = \sum _ { i = 1 } ^ { I } ( n _ { i } \sum _ { j = 1 } ^ { J } z _ { i j } p _ { i j } )$ ; confidence 0.425
+
296. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005020.png ; $V \Gamma = G$ ; confidence 0.995
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180102.png ; $x _ { n + 1 } = u _ { 0 } - \frac { \Delta u _ { 0 } } { \Delta ^ { 2 } u _ { 0 } }$ ; confidence 0.909
+
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046041.png ; $V _ { H }$ ; confidence 0.995
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180116.png ; $\operatorname { co } ( R ) = U \times \operatorname { Rng } ( R )$ ; confidence 0.287
+
298. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024047.png ; $\varepsilon _ { i } > 0$ ; confidence 0.995
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018051.png ; $Alg _ { \operatorname { mod } e l s } ( L ) \subseteq Alg _ { + } ( L )$ ; confidence 0.181
+
299. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005022.png ; $V \Gamma$ ; confidence 0.995
  
300. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020047.png ; $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ ; confidence 0.982
+
300. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007018.png ; $I \subseteq ( 0 , q ]$ ; confidence 0.995

Latest revision as of 19:24, 21 April 2020

List

1. b12009017.png ; $\frac { \partial f ( z , t ) } { \partial t } = - z f ^ { \prime } ( z , t ) \frac { 1 + k z } { 1 - k z },$ ; confidence 0.996

2. a12007085.png ; $\delta \in ( 0 , \eta ) \cap ( 0 , \rho ]$ ; confidence 0.996

3. b1203203.png ; $( \Omega , \mathcal A , \mu )$ ; confidence 0.996

4. p130100164.png ; $f ^ { * } d \theta$ ; confidence 0.996

5. k13007062.png ; $L = 800$ ; confidence 0.996

6. c02314089.png ; $H \subset G$ ; confidence 0.996

7. m12003015.png ; $\Psi ( x , \theta ) = ( \partial / \partial \theta ) \rho ( x , \theta )$ ; confidence 0.996

8. h13007062.png ; $\operatorname{maxdeg} f _ { j } \leq B ( m , D , n )$ ; confidence 0.996

9. a13025015.png ; $L ( x , y ) z = \{ x y z \}$ ; confidence 0.996

10. m13018061.png ; $y \vee x = 1$ ; confidence 0.996

11. o070070127.png ; $\leq 100$ ; confidence 0.996

12. l12006034.png ; $h ( z ) ( \phi , G ( z ) \phi ) \equiv$ ; confidence 0.996

13. a120050104.png ; $( t , s ) \in \Delta = \{ ( t , s ) : 0 \leq s \leq t \leq T \}$ ; confidence 0.996

14. c120180180.png ; $g ^ { - 1 } \{ p , q , r , s \} = g ^ { - 1 } \{ p , q \} g ^ { - 1 } \{ r , s \} = g ^ { - 1 } \{ r , s \} g ^ { - 1 } \{ p , q \}$ ; confidence 0.996

15. b1202009.png ; $S: f ( z ) \rightarrow z f ( z )$ ; confidence 0.996

16. n12011084.png ; $( 0,1 ]$ ; confidence 0.996

17. m1301808.png ; $\mu ( x , x ) = 1$ ; confidence 0.996

18. w120090449.png ; $G ( m , 1 , n )$ ; confidence 0.996

19. b12006027.png ; $( 1 \pm z \overline z ) ^ { 2 } w _ { z \overline z } \pm n ( n + 1 ) w = 0$ ; confidence 0.996 ; die overlines sind nicht ganz klar

20. j13007034.png ; $\phi _ { \omega } ( z ) = \frac { | z - \omega | ^ { 2 } } { 1 - | z | ^ { 2 } },$ ; confidence 0.996

21. z13005047.png ; $\Omega _ { k } ( R )$ ; confidence 0.996

22. a11032016.png ; $R _ { 0 } ^ { ( i ) } ( z )$ ; confidence 0.996

23. r13007041.png ; $H _ { + } = R ( A ^ { 1 / 2 } )$ ; confidence 0.996

24. a110010173.png ; $A ^ { + }$ ; confidence 0.996

25. b11002047.png ; $( B u , u ) > 0$ ; confidence 0.996

26. b12023074.png ; $( E , M )$ ; confidence 0.996

27. d12019028.png ; $C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.996

28. f11016041.png ; $1 \leq i \leq t$ ; confidence 0.996

29. c12026046.png ; $\Delta V _ { j } = h ^ { - 1 } ( V _ { j } - V _ { j - 1 } )$ ; confidence 0.996

30. e13007014.png ; $f ( n ) = g ( n ) \overline { h ( n ) } / q$ ; confidence 0.996

31. a011370138.png ; $R ( X )$ ; confidence 0.996

32. s13051091.png ; $\mathcal{N} = \{\mathbf u \in \mathbf V : \sigma ( \mathbf u ) > 0 \}.$ ; confidence 0.996 FIN QUI

33. l11002014.png ; $x ( y \vee z ) t = x y t \vee x z t,$ ; confidence 0.996

34. s13062070.png ; $A = \operatorname { Re } m _ { 0 } ( i )$ ; confidence 0.996

35. a01081039.png ; $x ( t )$ ; confidence 0.996

36. s12023078.png ; $A ( p \times p )$ ; confidence 0.996

37. m0644209.png ; $q = \operatorname { exp } ( 2 \pi i z )$ ; confidence 0.996

38. c1300403.png ; $G : = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k + 1 ) ^ { 2 } } \cong$ ; confidence 0.996

39. w120090364.png ; $\Lambda ( V ) \neq \Lambda$ ; confidence 0.996

40. r13007081.png ; $\| f \|$ ; confidence 0.996

41. c13010030.png ; $f _ { 1 } \leq f _ { 2 }$ ; confidence 0.996

42. r1200209.png ; $C ( q , \dot { q } ) \dot { q }$ ; confidence 0.996

43. l05700070.png ; $F X = X$ ; confidence 0.996

44. d12002037.png ; $\mu _ { k } \geq 0$ ; confidence 0.996

45. s12015030.png ; $\pi : G ( S ) \rightarrow G ( x )$ ; confidence 0.996

46. g13001060.png ; $B = B ^ { * }$ ; confidence 0.996

47. m12016063.png ; $\Phi = B B ^ { \prime }$ ; confidence 0.996

48. s130510129.png ; $\gamma ( v ) > \gamma ( u )$ ; confidence 0.996

49. h12011015.png ; $\int _ { \sigma ( \gamma ) } f ( z ) d z = 0.$ ; confidence 0.996

50. l05700098.png ; $\mathbf{zero}_{?} \mathbf{c}_{0}=\mathbf{true}$ ; confidence 0.996

51. b1301501.png ; $z ( \Gamma , t ) = x + i y$ ; confidence 0.996

52. a13022044.png ; $s : C \rightarrow X$ ; confidence 0.996

53. q130050105.png ; $b \neq x$ ; confidence 0.996

54. t13007019.png ; $t \mapsto \theta - t$ ; confidence 0.996

55. f04045028.png ; $U \subset \mathbf{R} ^ { 2 }$ ; confidence 0.996

56. q1200505.png ; $D F$ ; confidence 0.996

57. v096900183.png ; $\{ \zeta \rightarrow T _ { n } ( \zeta ) \}$ ; confidence 0.996

58. t12015019.png ; $\pi ( \xi ) \eta = \xi \eta$ ; confidence 0.996

59. z13004030.png ; $c = 1 / 4$ ; confidence 0.996

60. a12031052.png ; $B ( K ) / M ( K )$ ; confidence 0.996

61. v096900147.png ; $L _ { 2 } ( Z _ { p } , \mu , H _ { p } )$ ; confidence 0.996

62. s120320129.png ; $( M , \mathcal{O} _ { M } )$ ; confidence 0.996

63. m120120139.png ; $Q _ { \mathcal{F} } ( R )$ ; confidence 0.996

64. v096900135.png ; $\phi ( x ^ { * } x ) < \infty$ ; confidence 0.996

65. h12004015.png ; $\{ U _ { \xi } : \xi < \kappa \}$ ; confidence 0.996

66. k11001069.png ; $\sum _ { i = 1 } ^ { n + 1 } x _ { i } d y _ { i } - y _ { i } d x _ { i }$ ; confidence 0.996

67. a1302306.png ; $Q : H \rightarrow V$ ; confidence 0.996

68. f120080167.png ; $\Gamma \varphi$ ; confidence 0.996

69. w1201704.png ; $\omega ( G ) = G$ ; confidence 0.996

70. l11003021.png ; $\| \mu \| = | \mu | ( \Omega )$ ; confidence 0.996

71. t12015020.png ; $\eta \in \mathcal{A}$ ; confidence 0.996

72. c13025031.png ; $0 - 1$ ; confidence 0.996

73. c02211019.png ; $F ( x , \theta )$ ; confidence 0.996

74. o1300101.png ; $D \subset \mathbf{R} ^ { 3 }$ ; confidence 0.996

75. w13005013.png ; $E G \rightarrow B G$ ; confidence 0.996

76. h04602037.png ; $P + \Delta P$ ; confidence 0.996

77. m13014034.png ; $f \in C ( B _ { R } )$ ; confidence 0.996

78. b12021011.png ; $\Delta ^ { + } \subset \Delta$ ; confidence 0.996

79. b12034018.png ; $\frac { 1 } { 3 \sqrt { n } } < K _ { n } < \frac { 2 \sqrt { \operatorname { log } n } } { \sqrt { n } }.$ ; confidence 0.996

80. d12020030.png ; $T \rightarrow \infty$ ; confidence 0.996

81. b11022031.png ; $\Lambda ( M , s )$ ; confidence 0.996

82. s13048027.png ; $H _ { S } ^ { * } ( D )$ ; confidence 0.996

83. b12037091.png ; $O( \operatorname { log } n )$ ; confidence 0.996

84. d13003011.png ; $\operatorname { supp } ( \psi _ { N } ) = [ 0,2 N - 1 ]$ ; confidence 0.996

85. t12001056.png ; $\mathcal{F} _ { 3 }$ ; confidence 0.996

86. t120010116.png ; $\operatorname { dim } ( \mathcal{O} ) = 4$ ; confidence 0.996

87. t12001079.png ; $\mathcal{F} _ { \tau } \subset \mathcal{F} _ { 3 } \subset \mathcal{S}$ ; confidence 0.996

88. t120010107.png ; $n \geq 0$ ; confidence 0.996

89. a13013027.png ; $\phi = \phi _ { - } \phi _ { + }$ ; confidence 0.996

90. a13013024.png ; $g ( z )$ ; confidence 0.996

91. a13007080.png ; $\sigma ( n ) > \sigma ( m )$ ; confidence 0.996

92. c12004038.png ; $\rho \in C ^ { 2 } ( \overline { \Omega } )$ ; confidence 0.996

93. d12023095.png ; $R - F R F ^ { * } = G J G ^ { * }$ ; confidence 0.996

94. f13010077.png ; $\lambda ^ { p } ( M ^ { 1 } ( G ) )$ ; confidence 0.996

95. n06663062.png ; $0 < r - s < k$ ; confidence 0.996

96. r13007076.png ; $\| f \| = 0$ ; confidence 0.996

97. r130080102.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$ ; confidence 0.996

98. v096900124.png ; $P _ { 1 } \in A$ ; confidence 0.996

99. w13008076.png ; $\mathcal{N} = 2$ ; confidence 0.996

100. y12001017.png ; $R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }.$ ; confidence 0.996

101. h12012027.png ; $\phi \phi = 0$ ; confidence 0.996

102. b12042048.png ; $\phi : W \rightarrow Z$ ; confidence 0.996

103. w13008080.png ; $y ^ { 2 } = P ^ { 2 } - 4 \Lambda ^ { 2 N },$ ; confidence 0.996

104. w12006056.png ; $\varphi \in T _ { A } M$ ; confidence 0.996

105. a01018047.png ; $\zeta ( s )$ ; confidence 0.996

106. e120230169.png ; $\Omega ( d L \Delta )$ ; confidence 0.996

107. p13010031.png ; $P ( z ) = m _ { z } ( P ) = \int _ { K } P ( \zeta ) d \mu _ { z } ( \zeta ) , P \in \mathcal{P}.$ ; confidence 0.996

108. b12013027.png ; $\int _ { G } f \overline { \partial } \varphi d A = 0$ ; confidence 0.996

109. d03371051.png ; $\operatorname{Spec}( A )$ ; confidence 0.996

110. b12024011.png ; $D_{-}$ ; confidence 0.996

111. c02583081.png ; $T ( K ) \subset K$ ; confidence 0.996

112. a12006025.png ; $X = [ L ^ { 2 } ( \Omega ) ] ^ { p }$ ; confidence 0.996

113. a12023016.png ; $\gamma = \{ z _ { 1 } : | z _ { 1 } | = 1 \}$ ; confidence 0.996

114. e12018020.png ; $\mathcal{L} ( M , g )$ ; confidence 0.996

115. f1201509.png ; $\alpha ( A ) : = \operatorname { dim } N ( A ) < \infty$ ; confidence 0.996

116. a12005035.png ; $\theta _ { 0 } \in ( \pi / 2 , \pi )$ ; confidence 0.996

117. s13051089.png ; $g ( \mathbf{u} ) = \sigma ( \mathbf{u} )$ ; confidence 0.996

118. z13011068.png ; $\alpha ( x ) = \frac { \Gamma ( \beta + 1 ) \Gamma ( x ) } { \Gamma ( x + \beta + 1 ) },$ ; confidence 0.996

119. b12037057.png ; $\operatorname { log } ( L _ { \Omega } ( f ) )$ ; confidence 0.996

120. l06005064.png ; $\leq \pi / 2$ ; confidence 0.996

121. b12031035.png ; $( 1 / p , \delta )$ ; confidence 0.996

122. s12034061.png ; $N \geq n - 2$ ; confidence 0.996

123. g12004054.png ; $\xi \in \mathcal{C}$ ; confidence 0.996

124. o1200205.png ; $x = \operatorname { sinh } ^ { - 2 } t$ ; confidence 0.996

125. p12013026.png ; $\sum _ { n = 0 } ^ { \infty } \| \lambda \theta ^ { n } \| ^ { 2 } < \infty$ ; confidence 0.996

126. v09690013.png ; $E ^ { * } = B$ ; confidence 0.996

127. v13007039.png ; $w \rightarrow + \infty$ ; confidence 0.996

128. b12053010.png ; $M ( \mu )$ ; confidence 0.996

129. b12004075.png ; $L _ { \infty } = L _ { \infty } ( \mu )$ ; confidence 0.996

130. c020540286.png ; $p - 1$ ; confidence 0.996

131. z1200204.png ; $F _ { 1 } = F _ { 2 } = 1$ ; confidence 0.996

132. e12026037.png ; $( \Omega , \mathcal{A} , \nu )$ ; confidence 0.996

133. s1304707.png ; $0 \neq \lambda \in \sigma ( T )$ ; confidence 0.996

134. a01046069.png ; $P ( x )$ ; confidence 0.996

135. n12002012.png ; $\theta \in E ^ { * }$ ; confidence 0.996

136. l06003028.png ; $\angle Q P T = \angle Q P U ^ { \prime } = \alpha$ ; confidence 0.996

137. m13014051.png ; $| f | < h$ ; confidence 0.996

138. i1300808.png ; $L _ { 2 } = A _ { 2 } P _ { 2 }$ ; confidence 0.996

139. f120110146.png ; $2 \pi \sum _ { k = - \infty } ^ { \infty } \delta ( \xi - 2 \pi k )$ ; confidence 0.996

140. d1300506.png ; $\operatorname{DG}( m , r )$ ; confidence 0.996

141. b13026057.png ; $y \in f ( \Omega )$ ; confidence 0.996

142. b130200181.png ; $\Lambda ( h _ { i } ) \geq 0$ ; confidence 0.996

143. b12040099.png ; $g ^ { \prime } ( g B , v ) = ( g ^ { \prime } g B , R ( g ^ { \prime } ) v )$ ; confidence 0.996

144. b12040014.png ; $f : E _ { 1 } \rightarrow E _ { 2 }$ ; confidence 0.996

145. d1201601.png ; $f \in C ( S \times T )$ ; confidence 0.996

146. c027470106.png ; $( X , A )$ ; confidence 0.996

147. b12016019.png ; $A A$ ; confidence 0.996

148. c02697065.png ; $1 / 4$ ; confidence 0.996

149. l11004024.png ; $x ( y \vee z ) t = x y t \vee x z t$ ; confidence 0.996

150. c0221008.png ; $\phi ( t ) = ( 1 - 2 i t ) ^ { - n / 2 },$ ; confidence 0.996

151. l1200706.png ; $1 \leq i \leq k - 1$ ; confidence 0.996

152. a13008025.png ; $f ( L ) = \alpha g ( L ; m , s ) , f ( R ) = \alpha g ( R ; m , s ),$ ; confidence 0.996

153. a0103303.png ; $r > 0$ ; confidence 0.996

154. l11004026.png ; $x ( y \wedge z ) t = x y t \wedge x z t$ ; confidence 0.996

155. c02211024.png ; $x _ { 0 } = - \infty$ ; confidence 0.996

156. l13010042.png ; $b ( x , t , \alpha )$ ; confidence 0.996

157. d120280128.png ; $g \in H ^ { n , n - 1 } ( U )$ ; confidence 0.996

158. a13030053.png ; $E _ { 0 } = E$ ; confidence 0.996

159. b120320101.png ; $F ( s , t ) = ( s ^ { p } + t ^ { p } ) ^ { 1 / p }.$ ; confidence 0.996

160. h04763020.png ; $n \geq 7$ ; confidence 0.996

161. q12001075.png ; $( G , \pi , \tau , J )$ ; confidence 0.996

162. z13013039.png ; $r = | z | < 1$ ; confidence 0.996

163. c13007045.png ; $n - 3$ ; confidence 0.996

164. s120340165.png ; $\varphi _ { 3 } : ( \infty , 0 ) \times S ^ { 1 } \rightarrow \Sigma$ ; confidence 0.996

165. c13007099.png ; $X ^ { \prime } = 0$ ; confidence 0.996

166. h12012029.png ; $\overline { \phi } = D ( \phi ) \phi D ( \phi )$ ; confidence 0.996

167. c020540205.png ; $f , g \in C ^ { \infty } ( M )$ ; confidence 0.996

168. e120190190.png ; $\mu ( \Phi _ { 1 } ) = \mu ( \Phi _ { 2 } )$ ; confidence 0.996

169. c12002043.png ; $I ^ { \alpha } f$ ; confidence 0.996

170. h04602040.png ; $\Delta P$ ; confidence 0.996

171. b12052048.png ; $F ^ { \prime } ( x ^ { * } )$ ; confidence 0.996

172. a12031058.png ; $C ( S )$ ; confidence 0.996

173. a0122005.png ; $D \subset M$ ; confidence 0.996

174. l12006037.png ; $E _ { 0 } < 0$ ; confidence 0.996

175. b11002025.png ; $f \in V$ ; confidence 0.996

176. i12008083.png ; $\lambda_{-}$ ; confidence 0.996

177. a011450150.png ; $+ 1$ ; confidence 0.996

178. n1200706.png ; $M _ { E } > 0$ ; confidence 0.996

179. b01780077.png ; $n = 8$ ; confidence 0.996

180. s130510108.png ; $\gamma ( u )$ ; confidence 0.996

181. l057000147.png ; $\Gamma \vdash ( M N ) : \tau$ ; confidence 0.996

182. b12013058.png ; $A ^ { p }$ ; confidence 0.996

183. o12006013.png ; $\operatorname { lim } _ { t \rightarrow + \infty } \Phi ( t ) / t = + \infty$ ; confidence 0.996

184. p130100115.png ; $P ( \gamma ) = C ( \gamma )$ ; confidence 0.996

185. m12012095.png ; $\mathcal{M} _ { \infty } ( F )$ ; confidence 0.996

186. e120190137.png ; $d ( x , y ) = d ( f ( x ) , f ( y ) )$ ; confidence 0.996

187. m1202405.png ; $u ( x , y ) \rightarrow u [ 1 ] ( x , y )$ ; confidence 0.996

188. h13005039.png ; $\rho ( x , t )$ ; confidence 0.996

189. b12043022.png ; $B \otimes \underline{} B$ ; confidence 0.996

190. w12011032.png ; $( u , v ) \mapsto \mathcal{H} ( u , v )$ ; confidence 0.996

191. m13018081.png ; $1:$ ; confidence 0.996

192. f04049049.png ; $\sigma _ { 1 } = \sigma _ { 2 }$ ; confidence 0.996

193. m130260104.png ; $\overline { \alpha }$ ; confidence 0.996

194. b130040110.png ; $\{ f \in C ( X ) : f \ \text{attains its maximum in} \ X \}$ ; confidence 0.996

195. d13013021.png ; $\theta = \pi$ ; confidence 0.996

196. i1300601.png ; $u ( x , k )$ ; confidence 0.996

197. s1306506.png ; $\Phi _ { 0 } = 1$ ; confidence 0.996

198. g13006096.png ; $1 \leq i , j \leq n$ ; confidence 0.996

199. e12015030.png ; $\eta \rightarrow 0$ ; confidence 0.996

200. a011840147.png ; $i \rightarrow \infty$ ; confidence 0.996

201. b120420123.png ; $\mathcal{R} \in H \otimes H$ ; confidence 0.996

202. c130070263.png ; $E = \nu _ { 1 } E _ { 1 }$ ; confidence 0.996

203. s12034086.png ; $- u ^ { \prime } ( D ^ { 2 } )$ ; confidence 0.996

204. f120080190.png ; $A ( K ) \subset K$ ; confidence 0.996

205. q076310155.png ; $U ( g )$ ; confidence 0.996

206. s12033027.png ; $4 u ^ { 2 }$ ; confidence 0.996

207. r130070147.png ; $( f , g ) _ { H }$ ; confidence 0.996

208. a011380169.png ; $i \neq j$ ; confidence 0.996

209. d12014034.png ; $q ^ { 2 } - 1$ ; confidence 0.996

210. o13006062.png ; $M = \operatorname { dim } \mathcal{E}$ ; confidence 0.996

211. e12026061.png ; $\nu ( d \omega ) = d x / \sqrt { 2 \pi }$ ; confidence 0.996

212. n13003051.png ; $= \int \int _ { \Omega } w ( x , y ) [ A v ( x , y ) ] d x d y.$ ; confidence 0.996

213. b12017034.png ; $f ( x ) = \mathcal{G} _ { \alpha } g ( x ) = \int G _ { \alpha } ( x - y ) g ( y ) d y$ ; confidence 0.996

214. a13008098.png ; $k = 2$ ; confidence 0.996

215. i130090135.png ; $\lambda _ { p } ( k _ { \infty } / k ) > 0$ ; confidence 0.996

216. a130240338.png ; $N ( 0 , \Sigma _ { 1 } )$ ; confidence 0.996

217. m13013095.png ; $( \epsilon \times \epsilon )$ ; confidence 0.996

218. g0433706.png ; $= \operatorname { lim } _ { t \rightarrow 0 } \frac { f ( x _ { 0 } + t h ) - f ( x _ { 0 } ) } { t },$ ; confidence 0.996

219. k1200302.png ; $\operatorname { Ric } ( \omega ) = \lambda \omega.$ ; confidence 0.996

220. d1201205.png ; $d : G \rightarrow G ^ { \prime }$ ; confidence 0.996

221. b1202209.png ; $\int \operatorname { ln } f ( v ) Q ( f ) ( v ) d v \leq 0.$ ; confidence 0.996

222. t12006049.png ; $\mu = \mu ( N )$ ; confidence 0.996

223. e12006079.png ; $[ Q , [ \Gamma , \Gamma ] ] = 2 [ [ Q , \Gamma ] , \Gamma ]$ ; confidence 0.996

224. w12019024.png ; $( u _ { k } , A u _ { l } )$ ; confidence 0.996

225. z13011098.png ; $\mu ( i , m ) = A \lambda ^ { i } B ( i + c , d - c + 1 ),$ ; confidence 0.996

226. j130040135.png ; $( v , z ) = ( \pm i , \pm i )$ ; confidence 0.996

227. s12034077.png ; $u : D ^ { 2 } \rightarrow M$ ; confidence 0.996

228. c120180303.png ; $1 : \mathcal{E} \rightarrow \mathcal{E}$ ; confidence 0.996

229. a130240495.png ; $m = 2$ ; confidence 0.996

230. p0754807.png ; $q \supset ( p \vee q )$ ; confidence 0.996

231. q12005053.png ; $y ^ { k } = D ^ { T } f ( x ^ { k + 1 } ) - D ^ { T } f ( x ^ { k } )$ ; confidence 0.996

232. l11001089.png ; $x y \neq 0$ ; confidence 0.996

233. k11001011.png ; $d \alpha ( Z , X ) = 0$ ; confidence 0.996

234. v120020178.png ; $t : X \times Y \supset \Gamma ( F ) \rightarrow X$ ; confidence 0.996

235. c120180484.png ; $( N , \lambda g )$ ; confidence 0.996

236. s12026066.png ; $t \rightarrow \int _ { 0 } ^ { t } ( A _ { s } ^ { * } + A _ { s } ) \Omega d s$ ; confidence 0.996

237. s12020063.png ; $e _ { t } = \sum _ { \pi } \operatorname { sgn } ( \pi ) \{ \pi t \},$ ; confidence 0.996

238. c1301901.png ; $\varphi : \mathbf{R} \times X \rightarrow X$ ; confidence 0.996

239. w13013012.png ; $\Delta H + 2 H ( H ^ { 2 } - K ) = 0$ ; confidence 0.996

240. h12003032.png ; $B ^ { 3 }$ ; confidence 0.996

241. i12001028.png ; $\operatorname { lim } _ { t \rightarrow \infty } \Phi _ { 1 } ( t ) / \Phi _ { 2 } ( s t ) = 0$ ; confidence 0.996

242. c120180443.png ; $B ( g )$ ; confidence 0.996

243. f12005013.png ; $( x ( T ) , y ( T ) , z ( T ) )$ ; confidence 0.996

244. e1201905.png ; $\sigma ( x , x ) \neq 0$ ; confidence 0.996

245. m130260110.png ; $\beta \ \Omega \ \backslash \ \Omega$ ; confidence 0.996

246. o13001062.png ; $D _ { R } ^ { \prime } : = D ^ { \prime } \cap B _ { R }$ ; confidence 0.996

247. a13012029.png ; $A _ { \mu } ( s )$ ; confidence 0.996

248. c020740365.png ; $f : A \rightarrow B$ ; confidence 0.996

249. q12005046.png ; $= - D f ( x ^ { k } ) H _ { k } D ^ { T } f ( x ^ { k } ) < 0,$ ; confidence 0.996

250. b01701051.png ; $( m \times m )$ ; confidence 0.996

251. a01382017.png ; $\theta \in \Theta$ ; confidence 0.996

252. z13011064.png ; $R ( x ) = \int _ { 0 } ^ { \infty } \frac { 1 } { 1 + z } e ^ { - z x } d z.$ ; confidence 0.996

253. b13007037.png ; $i , j > 0$ ; confidence 0.996

254. d1301706.png ; $- \Delta u = \lambda u \text { in } \Omega,$ ; confidence 0.996

255. w12018014.png ; $R _ { t } = \prod _ { i = 1 } ^ { N } [ 0 , t _ { i } )$ ; confidence 0.996

256. m12009033.png ; $r ^ { 2 } + b r + c = 0$ ; confidence 0.996

257. s1202303.png ; $\Lambda \in \mathcal{O} ( n )$ ; confidence 0.996

258. g11005020.png ; $\Gamma ( A )$ ; confidence 0.996

259. a12012061.png ; $( x ^ { * } , y ^ { * } ) \in \mathcal{J}$ ; confidence 0.996

260. k13007050.png ; $O ( L ^ { 8 / 5 } )$ ; confidence 0.996

261. b11002052.png ; $b ( u , v ) = b ( v , u )$ ; confidence 0.996

262. b12004077.png ; $( L _ { 1 } , L _ { \infty } )$ ; confidence 0.996

263. m13014010.png ; $0 < r < \rho ( x )$ ; confidence 0.996

264. t120200165.png ; $| z | > \rho \in ( 0,1 )$ ; confidence 0.996

265. e120240123.png ; $L ( E , 1 ) \neq 0$ ; confidence 0.996

266. f1302909.png ; $L = [ 0,1 ]$ ; confidence 0.996

267. p12017011.png ; $\delta _ { A } ( X )$ ; confidence 0.996

268. a01033011.png ; $p ( x )$ ; confidence 0.996

269. d13018076.png ; $A ( \Gamma ) \cong L ^ { 1 } ( G / H )$ ; confidence 0.996

270. s13051056.png ; $O ( | E | )$ ; confidence 0.996

271. m130260251.png ; $\sigma : I ( B ) \cap C ^ { \prime } \cap N ^ { \perp } \rightarrow M ( B )$ ; confidence 0.996

272. w13017032.png ; $H _ { y } ( t - 1 )$ ; confidence 0.996

273. m0623405.png ; $X = ( X _ { 1 } , X _ { 2 } )$ ; confidence 0.996

274. l12003082.png ; $R ^ { * } = H ^ { * } B V$ ; confidence 0.996

275. c02583011.png ; $H = H _ { 0 } \otimes H _ { 1 }$ ; confidence 0.996

276. a01055040.png ; $G = \mathbf{R}$ ; confidence 0.996

277. c02433072.png ; $A \rightarrow B$ ; confidence 0.996

278. d031910175.png ; $D \rightarrow D$ ; confidence 0.995

279. c12026059.png ; $0 \leq n \leq N$ ; confidence 0.995

280. a13029067.png ; $f : \Sigma \rightarrow \Sigma$ ; confidence 0.995

281. k12007017.png ; $( 0 , \pi )$ ; confidence 0.995

282. y12003031.png ; $V _ { + } \times V _ { + }$ ; confidence 0.995

283. q12001064.png ; $J : \mathcal{H} ( \pi ) \rightarrow \mathcal{H} ( \pi )$ ; confidence 0.995

284. f12005050.png ; $\operatorname { deg } f \geq 2$ ; confidence 0.995

285. w13017071.png ; $\| \sum _ { j = 0 } ^ { \infty } K _ { j } \| ^ { 2 } = \infty$ ; confidence 0.995

286. a13006087.png ; $\partial ( \overline { H } ) = \text{# vertices in} \ H$ ; confidence 0.995

287. s12028041.png ; $[ r ] : P _ { 1 } \rightarrow P _ { 2 }$ ; confidence 0.995

288. a01179027.png ; $2 ^ { N }$ ; confidence 0.995

289. b13030039.png ; $| B ( 3,4 ) | = 2 ^ { 69 }$ ; confidence 0.995

290. l12009075.png ; $A \times \{ \hbar \}$ ; confidence 0.995

291. t12020024.png ; $0 \leq d \leq 3$ ; confidence 0.995

292. o13006051.png ; $\gamma = \gamma ^ { \prime }$ ; confidence 0.995

293. z13003074.png ; $f \in L ^ { 2 } ( \mathcal{R} )$ ; confidence 0.995

294. o1200502.png ; $\varphi : \mathbf{R} _ { + } \rightarrow \mathbf{R} _ { + }$ ; confidence 0.995

295. q12008031.png ; $1 \leq p \leq P,$ ; confidence 0.995

296. c13005020.png ; $V \Gamma = G$ ; confidence 0.995

297. b12046041.png ; $V _ { H }$ ; confidence 0.995

298. s12024047.png ; $\varepsilon _ { i } > 0$ ; confidence 0.995

299. c13005022.png ; $V \Gamma$ ; confidence 0.995

300. e13007018.png ; $I \subseteq ( 0 , q ]$ ; confidence 0.995

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/11. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/11&oldid=44421