Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/18"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 18 out of 19 with 300 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.)
 
(AUTOMATIC EDIT of page 18 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
+
1. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082480/r08248050.png ; $\alpha \in \Phi$ ; confidence 0.839
  
2. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png ; $E \subset X = R ^ { \prime }$ ; confidence 0.250
+
2. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797087.png ; $A _ { x } < \infty$ ; confidence 0.839
  
3. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076850/q07685043.png ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081040.png ; $\psi ( t )$ ; confidence 0.839
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030045.png ; $C \times \Omega g \circ \theta X$ ; confidence 0.250
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450239.png ; $k _ { 0 } ( B )$ ; confidence 0.839
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040612.png ; $97$ ; confidence 0.250
+
5. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $e \in E$ ; confidence 0.839
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030016.png ; $X _ { n } + 1$ ; confidence 0.249
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130093.png ; $\hat { M } \rightarrow M$ ; confidence 0.839
  
7. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png ; $C$ ; confidence 0.838
  
8. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838
  
9. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076500/q07650033.png ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248
+
9. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001043.png ; $\| \delta x \| f \| x \| \approx \epsilon . k ( A )$ ; confidence 0.247
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110015.png ; $x \rightarrow \vec { a x }$ ; confidence 0.838
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024069.png ; $y _ { i j k }$ ; confidence 0.838
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052057.png ; $\overline { \operatorname { lim } } _ { k } \rightarrow 0 | \alpha ( h ) | > 1$ ; confidence 0.247
+
12. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868028.png ; $2 \pi i H _ { \alpha }$ ; confidence 0.838
  
13. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016041.png ; $x = f ( \overline { u } )$ ; confidence 0.838
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040526.png ; $Co _ { Alg } FMod ^ { * } L _ { D } A$ ; confidence 0.246
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a014170108.png ; $j ( x , \gamma \gamma ^ { \prime } ) = j ( x , \gamma ) j ( x \gamma , \gamma ^ { \prime } )$ ; confidence 0.838
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010217.png ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138028.png ; $( \mathfrak { A } = \mathfrak { B } )$ ; confidence 0.837
  
16. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008026.png ; $s = \eta c / \omega$ ; confidence 0.837
  
17. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007026.png ; $\leq K _ { 0 } \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T$ ; confidence 0.837
  
18. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081027.png ; $l ^ { * } ( \xi ) = 0$ ; confidence 0.837
  
19. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q R$ ; confidence 0.245
+
19. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837
  
20. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099011.png ; $V _ { Q }$ ; confidence 0.244
+
20. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106707.png ; $\hat { y } - y$ ; confidence 0.244
+
21. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085620/s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058031.png ; $k = 2 , v _ { 1 } = 5 / 12 , v v = 2 / 3 , v - 1 = - 1 / 12$ ; confidence 0.243
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010251.png ; $\| v \| = \| A x - \hat { \lambda } x \| _ { 2 } \leq \epsilon \| A \| _ { 2 } \| x \| _ { 2 }$ ; confidence 0.243
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010301.png ; $f ^ { ( r ) } ( \lambda )$ ; confidence 0.837
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010207.png ; $\operatorname { min } _ { i } | \hat { \lambda } - \lambda _ { i } | \leq \rho ( | T ^ { - 1 } | | \delta A | | T | )$ ; confidence 0.242
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240168.png ; $\alpha , = 0$ ; confidence 0.837
  
25. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040227.png ; $\Gamma \approx \Delta \operatorname { mod } e l s _ { K } \varphi \approx \psi \text { iff } E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.241
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081062.png ; $y , \xi \in C ^ { n } ( \Delta )$ ; confidence 0.837
  
26. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
+
26. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631062.png ; $\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.837
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004050.png ; $\mathfrak { A } = \langle A , F \rangle$ ; confidence 0.241
+
27. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472038.png ; $\operatorname { Pic } ( S )$ ; confidence 0.837
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010110.png ; $A N = \operatorname { max } _ { 1 } \leq i _ { j } \leq n | \alpha _ { \xi } j |$ ; confidence 0.241
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040144.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
+
29. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012045.png ; $S _ { \alpha } = W _ { 1 } , \quad W _ { \alpha } = W _ { 1 } , \quad 0 \leq \alpha < \infty$ ; confidence 0.837
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239
+
30. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970117.png ; $e : K \rightarrow A$ ; confidence 0.837
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033019.png ; $\operatorname { log } \beta _ { \gamma }$ ; confidence 0.836
  
32. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013043.png ; $h _ { \theta } ^ { * } = \nabla h ( \theta ^ { * } )$ ; confidence 0.836
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008023.png ; $\alpha ( u , v ) = \int _ { \Omega } [ \sum _ { i , j = 1 } ^ { m } \alpha _ { i , j } \frac { \partial u } { \partial x _ { i } } \frac { \partial \sigma } { \partial x _ { j } } + c ( x ) u v ] d x$ ; confidence 0.237
+
33. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590113.png ; $( L ( G ) )$ ; confidence 0.836
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237
+
34. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836
  
35. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $X _ { 1 }$ ; confidence 0.237
+
35. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015013.png ; $S \succ S _ { y }$ ; confidence 0.236
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040284.png ; $\square x \rightarrow y$ ; confidence 0.836
  
37. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
+
37. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m064510104.png ; $X \rightarrow H$ ; confidence 0.836
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240370.png ; $2$ ; confidence 0.235
+
38. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876026.png ; $( \psi _ { k i } ( g ) )$ ; confidence 0.835
  
39. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047070/h0470704.png ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235
+
39. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380102.png ; $x \& \overline { y } \vee z \vee x \& y$ ; confidence 0.835
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040163.png ; $\langle A , F \rangle$ ; confidence 0.234
+
40. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077670/r07767020.png ; $SL ( 1 , D )$ ; confidence 0.835
  
41. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
+
41. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120200.png ; $\operatorname { Ext } _ { \Psi } ^ { n - p } ( X ; F )$ ; confidence 0.835
  
42. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317062.png ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052023.png ; $\| A \| _ { E } = ( \sum a _ { i j } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.835
  
43. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
+
43. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
  
44. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233
+
44. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010229.png ; $\frac { \| x ^ { 2 } - x ^ { i } \| } { \| x ^ { i } \| } \leq \frac { \psi } { \operatorname { min } _ { j \neq i } | \lambda _ { i } - \lambda _ { j } | - 2 \psi }$ ; confidence 0.233
+
45. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835
  
46. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $C A$ ; confidence 0.232
+
46. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024083.png ; $= \mathfrak { g }$ ; confidence 0.835
  
47. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
+
47. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851088.png ; $82$ ; confidence 0.834
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004024.png ; $\Delta \operatorname { log } \varphi$ ; confidence 0.232
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017042.png ; $\int _ { 0 } ^ { + \infty } \beta ( \sigma , s ^ { * } ) e ^ { - \int _ { 0 } ^ { \sigma } \mu ( s , S ^ { * } ) d s } d \sigma = 1$ ; confidence 0.834
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052049.png ; $A _ { k } ^ { \psi } = A _ { 2 k - 1 } ^ { \varphi - 1 } + A _ { 2 k } ^ { \varphi - 1 } , \quad A _ { k } ^ { 0 } \equiv \alpha _ { k }$ ; confidence 0.231
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086026.png ; $\prod$ ; confidence 0.834
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006044.png ; $P _ { q } ^ { \dagger } ( n ) = \frac { 1 } { n } \sum _ { r | n } \mu ( r ) q ^ { n / r }$ ; confidence 0.230
+
50. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002028.png ; $( d / d z ) f _ { l }$ ; confidence 0.834
  
51. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240429.png ; $\Theta$ ; confidence 0.834
  
52. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650252.png ; $\forall x _ { k }$ ; confidence 0.834
  
53. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
+
53. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004022.png ; $\Delta H _ { D } \psi$ ; confidence 0.230
+
54. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412503.png ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834
  
55. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
+
55. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r077640100.png ; $X$ ; confidence 0.834
  
56. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164043.png ; $| C + K _ { V } |$ ; confidence 0.834
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210112.png ; $( \omega ) = P _ { 1 } ^ { \alpha _ { 1 } } 1 ^ { \square } \ldots P _ { n } ^ { \alpha _ { R } }$ ; confidence 0.228
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450133.png ; $p ^ { 5 } g - 6$ ; confidence 0.833
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240536.png ; $Z _ { 23 }$ ; confidence 0.228
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300161.png ; $\Delta i + 1$ ; confidence 0.833
  
59. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $n + = n - = n$ ; confidence 0.228
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833
  
60. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
+
60. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068010.png ; $f _ { i } ( \alpha ) = \sum _ { 0 \leq a _ { i } \leq n } e ^ { 2 \pi i \alpha _ { i } }$ ; confidence 0.226
+
61. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833
  
62. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226
+
62. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259032.png ; $B = 0$ ; confidence 0.833
  
63. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060130.png ; $90 > 1$ ; confidence 0.833
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012015.png ; $P _ { X } ( z ) = \frac { 1 } { n ! } ( z - \alpha ) ( z - \alpha - n h ) ^ { \gamma - 1 }$ ; confidence 0.226
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046038.png ; $D \subset C$ ; confidence 0.833
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032018.png ; $e ^ { Z }$ ; confidence 0.225
+
65. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120240.png ; $\gamma$ ; confidence 0.833
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040415.png ; $\operatorname { Aod } ^ { * } L _ { D }$ ; confidence 0.225
+
66. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l059250100.png ; $UL ( n , K )$ ; confidence 0.833
  
67. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $20$ ; confidence 0.225
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054034.png ; $w ( \alpha ) = x ( \alpha ) y ( - \alpha ^ { - 1 } ) x ( \alpha )$ ; confidence 0.832
  
68. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490109.png ; $f ( x ) = \sum _ { i = - p } ^ { \infty } \alpha _ { i } \tau ^ { i } = \sum _ { i = - p } ^ { \infty } \alpha _ { i } ( x - x _ { 0 } ) ^ { i / \alpha }$ ; confidence 0.832
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105503.png ; $g \in G$ ; confidence 0.223
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024082.png ; $\partial L = a$ ; confidence 0.832
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016098.png ; $K$ ; confidence 0.223
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380165.png ; $\& , \vee , \rightarrow , \sim , \overline { \square } , + , 1$ ; confidence 0.832
  
71. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590541.png ; $\dot { x } = A x + f ( x )$ ; confidence 0.832
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003012.png ; $x - a | < b - a$ ; confidence 0.223
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068037.png ; $d ( A _ { i } )$ ; confidence 0.832
  
73. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
+
73. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023012.png ; $L ( G )$ ; confidence 0.832
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050159.png ; $c ^ { - 2 }$ ; confidence 0.222
+
74. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015580/b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012038.png ; $\{ \lambda _ { n } \} \in \Lambda _ { \alpha }$ ; confidence 0.221
+
75. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832
  
76. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380157.png ; $\& , \vee , \rightarrow , \overline { \square } , 0,1$ ; confidence 0.832
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $X \equiv 0$ ; confidence 0.220
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380170.png ; $s > 1$ ; confidence 0.832
  
78. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080740/r0807408.png ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220
+
78. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960186.png ; $W _ { K }$ ; confidence 0.832
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012025.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } ( n ! ) ^ { - \alpha } a _ { n } z ^ { n } , \quad \underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } \leq r$ ; confidence 0.220
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219
+
80. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225022.png ; $\partial M$ ; confidence 0.831
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219
+
81. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020082.png ; $3$ ; confidence 0.218
+
82. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831
  
83. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $Z _ { h }$ ; confidence 0.217
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007095.png ; $\frac { \partial u } { \partial t } = L ( t , x , D _ { x } ) u + f ( t , x ) \text { in } [ 0 , T ] \times \Omega$ ; confidence 0.831
  
84. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008073.png ; $\left. \begin{array} { c } { ( \frac { d ^ { 2 } u } { d t ^ { 2 } } , v ) _ { L ^ { 2 } } + a ( u , v ) = ( f ( t ) , v ) _ { L ^ { 2 } } } \\ { \text { a.e.t } \in [ 0 , T ] , v \in V } \\ { u ( 0 ) = u _ { 0 } , \frac { d u } { d t } ( 0 ) = u _ { 1 } } \end{array} \right.$ ; confidence 0.217
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046041.png ; $L \subset D$ ; confidence 0.831
  
85. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010070.png ; $K ( M )$ ; confidence 0.831
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012032.png ; $S _ { a }$ ; confidence 0.216
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160105.png ; $p _ { i }$ ; confidence 0.830
  
87. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
+
87. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103085.png ; $k _ { S }$ ; confidence 0.830
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040808.png ; $^ { * } L D S$ ; confidence 0.214
+
88. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023140/c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
+
89. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090770/s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020063.png ; $21 / 21$ ; confidence 0.212
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149012.png ; $P _ { k } ( x _ { 1 } , \ldots , x _ { n } ) , \ldots , P _ { 0 } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.830
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103206.png ; $u _ { m + 1 } ^ { ( 1 ) } = u _ { m }$ ; confidence 0.212
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105021.png ; $f : Z \rightarrow S$ ; confidence 0.830
  
92. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340202.png ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a0109304.png ; $\frac { d \rho } { d t } + \rho \operatorname { div } V = 0$ ; confidence 0.829
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040661.png ; $= \{ M e _ { S _ { i } }$ ; confidence 0.212
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010800/a01080022.png ; $\pi$ ; confidence 0.829
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004085.png ; $\{ 21 , n \}$ ; confidence 0.211
+
94. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120184.png ; $( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$ ; confidence 0.829
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007015.png ; $x _ { k } \in X$ ; confidence 0.211
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201104.png ; $\varphi ( \alpha , 0 , i ) = \alpha \text { for } i \geq 3 , \varphi ( \alpha , b , i ) = \varphi ( \alpha , \varphi ( \alpha , b - 1 , i ) , i - 1 ) \text { for } i \geq 1 , b \geq 1$ ; confidence 0.829
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070120.png ; $11 / \alpha$ ; confidence 0.210
+
96. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012290/a01229012.png ; $k ^ { n }$ ; confidence 0.829
  
97. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110078.png ; $f ( \alpha + l ) = \alpha + \phi ( l )$ ; confidence 0.829
  
98. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010264.png ; $1 / m$ ; confidence 0.829
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091014.png ; $C _ { 1 }$ ; confidence 0.829
  
100. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006027.png ; $A ; \in A$ ; confidence 0.829
  
101. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
+
101. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764034.png ; $Z . E _ { i } \leq 0$ ; confidence 0.829
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020048.png ; $B \in Ob \mathfrak { A } _ { 1 }$ ; confidence 0.209
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150054.png ; $\pi i$ ; confidence 0.829
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240502.png ; $Z _ { i j }$ ; confidence 0.208
+
103. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541057.png ; $H \subset U$ ; confidence 0.829
  
104. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
+
104. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100387.png ; $K _ { 2 }$ ; confidence 0.828
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103208.png ; $+ h \sum _ { j = 1 } ^ { i - 1 } A _ { j } ( h T ) [ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { n j } ^ { ( j ) } + 1 ]$ ; confidence 0.207
+
105. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015720/b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020049.png ; $A , C \in Ob A _ { 1 }$ ; confidence 0.207
+
106. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431097.png ; $| x$ ; confidence 0.207
+
107. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828
  
108. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f042060121.png ; $\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$ ; confidence 0.207
+
108. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300044.png ; $D _ { n } X _ { 1 }$ ; confidence 0.828
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013046.png ; $P _ { \theta } * ( X _ { n } - 1 , d x )$ ; confidence 0.207
+
109. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010052.png ; $i ^ { p }$ ; confidence 0.206
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002036.png ; $g \mapsto g ^ { t }$ ; confidence 0.827
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010060.png ; $D ( \Delta ) = H _ { \diamond } ^ { 1 } \cap H ^ { 2 } ( \Omega )$ ; confidence 0.205
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021031.png ; $\| \omega \| ^ { 2 } = i \sum _ { j = 1 } ^ { g } ( A _ { j } \overline { B } _ { j } - B _ { j } \overline { A } _ { j } ) \geq 0$ ; confidence 0.827
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205
+
112. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016650/b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
+
113. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
  
114. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380296.png ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204
+
114. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075830/p0758301.png ; $a \vee b$ ; confidence 0.827
  
115. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t09430077.png ; $\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$ ; confidence 0.204
+
115. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010162.png ; $\hat { \kappa } ( A )$ ; confidence 0.201
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022081.png ; $f ( h ) = g ( ( h , h _ { 1 } ) , \ldots , ( h , h _ { j } ) )$ ; confidence 0.827
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060149.png ; $P _ { E } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.201
+
117. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h04741036.png ; $E ^ { G }$ ; confidence 0.827
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022086.png ; $\alpha _ { j k }$ ; confidence 0.201
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013052.png ; $\overline { \theta } _ { n } = \overline { \theta } _ { n - 1 } + \frac { 1 } { n } ( \theta _ { n - 1 } - \overline { \theta } _ { n - 1 } )$ ; confidence 0.827
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040641.png ; $\langle M e _ { S } _ { P } \mathfrak { M } / \Omega F _ { S } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } / \Omega F _ { S } _ { P } \mathfrak { M } \rangle$ ; confidence 0.201
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610106.png ; $A \in A$ ; confidence 0.826
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040655.png ; $S _ { P } , \mathfrak { M } = \operatorname { mng } _ { P } , \mathfrak { N } \circ h$ ; confidence 0.200
+
120. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200
+
121. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826
  
122. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740146.png ; $\alpha \rightarrow \dot { b }$ ; confidence 0.200
+
122. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590585.png ; $\| x \| = \rho$ ; confidence 0.826
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007061.png ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \cap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199
+
123. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451091.png ; $\operatorname { Pic } X / S$ ; confidence 0.826
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a1106404.png ; $S U M \leftarrow + \backslash B \leftarrow 04 ^ { - 68 < 71 ^ { - } 29.9 }$ ; confidence 0.199
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081074.png ; $\alpha ( t ) , \alpha , \beta , \gamma , \delta$ ; confidence 0.826
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970198.png ; $\hat { W } \square _ { \infty } ^ { \gamma }$ ; confidence 0.199
+
125. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306039.png ; $( k , a , n ) \rightarrow k a n$ ; confidence 0.826
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010273.png ; $( A \otimes I + I \otimes B ^ { T } ) \operatorname { vect } ( X ) = \operatorname { vect } ( C )$ ; confidence 0.199
+
126. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016034.png ; $Q ( x _ { k } )$ ; confidence 0.825
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004045.png ; $a$ ; confidence 0.199
+
127. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770010.png ; $\pi : G \rightarrow G / H$ ; confidence 0.825
  
128. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; $\sigma _ { k }$ ; confidence 0.198
+
128. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h04793027.png ; $x = [ u ]$ ; confidence 0.825
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040271.png ; $Mod ^ { * } S _ { D }$ ; confidence 0.198
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052039.png ; $1 / 2 < | \alpha _ { n } | \leq 1$ ; confidence 0.825
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021090.png ; $A _ { k } ^ { \prime } = \int _ { a _ { k } } \omega _ { 3 } , \quad B _ { k } ^ { \prime } = \int _ { b _ { k } } \omega _ { 3 } , \quad k = 1 , \ldots , g$ ; confidence 0.197
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010252.png ; $\delta A = - r x ^ { * } / \| x \| _ { 2 } ^ { 2 }$ ; confidence 0.825
  
131. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197
+
131. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530104.png ; $S ^ { r - 1 } \subset R ^ { r }$ ; confidence 0.825
  
132. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196
+
132. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120432.png ; $A ^ { 0 }$ ; confidence 0.825
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055030.png ; $g = e$ ; confidence 0.195
+
133. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797070.png ; $\delta = m ^ { * }$ ; confidence 0.825
  
134. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315041.png ; $f : S ^ { m } \rightarrow S ^ { n }$ ; confidence 0.195
+
134. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868099.png ; $G _ { 0 } / L ( \mathfrak { g } )$ ; confidence 0.825
  
135. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
+
135. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120173.png ; $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$ ; confidence 0.824
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001010.png ; $\delta _ { a }$ ; confidence 0.195
+
136. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650494.png ; $\Leftrightarrow \{ \alpha : \mathfrak { F } ( d _ { 1 } ( \alpha ) , \ldots , d _ { k } ( \alpha ) ) = T \} \in \Phi$ ; confidence 0.824
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020040.png ; $Z ^ { x } , B ^ { x } , H ^ { x }$ ; confidence 0.194
+
137. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030112.png ; $\overline { k } = C$ ; confidence 0.824
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022046.png ; $v$ ; confidence 0.193
+
138. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851075.png ; $N _ { \alpha , \beta } \in k$ ; confidence 0.824
  
139. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
+
139. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830371.png ; $\partial A / \partial u \neq 0$ ; confidence 0.824
  
140. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083330/s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110069.png ; $( A )$ ; confidence 0.824
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012071.png ; $( x ^ { * } , y ^ { * } , p ^ { * } )$ ; confidence 0.824
  
142. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192
+
142. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590111.png ; $\alpha = \phi ( 1 )$ ; confidence 0.824
  
143. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110490/c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050011.png ; $Q _ { p }$ ; confidence 0.823
  
144. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041046.png ; $X ^ { \prime }$ ; confidence 0.823
  
145. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120432.png ; $\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$ ; confidence 0.191
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012050.png ; $z | > 1$ ; confidence 0.823
  
146. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
+
146. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035720/e0357202.png ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004059.png ; $\phi _ { L } ^ { * } \hat { \lambda } = d _ { 1 } d _ { 2 } \lambda \Leftrightarrow \phi _ { L } \phi _ { L } = d _ { 1 } d _ { 2 } id A$ ; confidence 0.191
+
147. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560134.png ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823
  
148. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650184.png ; $\phi ( a ) = \phi ( b )$ ; confidence 0.823
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010013.png ; $e ^ { - t A _ { X } } = \operatorname { lim } _ { n \rightarrow \infty } ( I + \frac { t } { n } A ) ^ { - n } x = S ( t ) x , \forall x \in X$ ; confidence 0.189
+
149. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301306.png ; $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$ ; confidence 0.822
  
150. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471055.png ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040133.png ; $\Lambda _ { D } T$ ; confidence 0.189
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822
  
152. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010308.png ; $v _ { ( E ) } = v$ ; confidence 0.188
+
152. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063090/m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822
  
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040192.png ; $\mathfrak { A } ^ { * } S = \mathfrak { A }$ ; confidence 0.188
+
153. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013041.png ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822
  
154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040280.png ; $\Gamma \dagger _ { D } \Delta ( \varphi , \psi )$ ; confidence 0.188
+
154. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052050.png ; $A _ { 1 } ^ { m } = A _ { N }$ ; confidence 0.187
+
155. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018017.png ; $20,21,22$ ; confidence 0.822
  
156. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022052.png ; $W ^ { T }$ ; confidence 0.822
  
157. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210116.png ; $d [ ( \omega ) ] = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.821
  
158. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637012.png ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103006.png ; $H * \Omega X$ ; confidence 0.821
  
159. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079056.png ; $1 + 21$ ; confidence 0.821
  
160. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780231.png ; $\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$ ; confidence 0.185
+
160. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590124.png ; $| b | < 1$ ; confidence 0.821
  
161. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
+
161. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043580/g04358023.png ; $f _ { \zeta } ( \lambda )$ ; confidence 0.821
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101008.png ; $V ^ { \ominus }$ ; confidence 0.185
+
162. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103207.png ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185
+
163. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r08205056.png ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060127.png ; $T ^ { \# } ( n ) \sim C _ { 0 } g _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.184
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016017.png ; $x \rightarrow F ( x ) = M ^ { - 1 } ( N x + b )$ ; confidence 0.821
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071046.png ; $p = \{ r \in R : r x = 0 \}$ ; confidence 0.183
+
165. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016068.png ; $\eta = \lambda _ { \operatorname { min } } / ( \lambda _ { \operatorname { max } } - \lambda _ { \operatorname { min } } )$ ; confidence 0.821
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183
+
166. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852083.png ; $K$ ; confidence 0.821
  
167. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530133.png ; $\Pi ^ { N } \tau$ ; confidence 0.183
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a0107607.png ; $( v ^ { 2 } + \omega ^ { 2 } x ^ { 2 } ) / 2$ ; confidence 0.821
  
168. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
+
168. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859049.png ; $l _ { 8 } ( h ) = g h$ ; confidence 0.821
  
169. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091016.png ; $C$ ; confidence 0.820
  
170. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597042.png ; $e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$ ; confidence 0.182
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450108.png ; $G _ { n } ^ { \gamma } \geq r ( n - r + 1 ) - ( r - 1 ) g$ ; confidence 0.820
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030031.png ; $f _ { \alpha } : S ^ { n _ { \alpha } } \rightarrow X _ { n _ { \alpha } }$ ; confidence 0.182
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200605.png ; $\Omega = R ^ { m }$ ; confidence 0.820
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a0102909.png ; $\pi X : \alpha X \rightarrow X$ ; confidence 0.180
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511035.png ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240282.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { q } d _ { i } z _ { i }$ ; confidence 0.180
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169909.png ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820
  
174. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180
+
174. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162091.png ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820
  
175. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043340/g04334048.png ; $\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$ ; confidence 0.180
+
175. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; $Z \in X$ ; confidence 0.820
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a11017042.png ; $\hat { H } ^ { \prime }$ ; confidence 0.179
+
176. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197046.png ; $U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$ ; confidence 0.179
+
177. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010118.png ; $X ( T ) \otimes _ { Z } R$ ; confidence 0.820
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179
+
178. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024054.png ; $1 / 2 tr$ ; confidence 0.820
  
179. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $A _ { i \psi }$ ; confidence 0.179
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220107.png ; $( L _ { 1 } , P _ { 1 } )$ ; confidence 0.819
  
180. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p0728502.png ; $_ { k }$ ; confidence 0.179
+
180. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925041.png ; $V _ { i + 1 } / V _ { i }$ ; confidence 0.819
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040129.png ; $\tilde { \varphi } _ { L } : \tilde { A } \rightarrow P ^ { 1 }$ ; confidence 0.179
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006075.png ; $u \in D ( S ^ { 2 } )$ ; confidence 0.819
  
182. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062019.png ; $\alpha \in C \cup \{ \infty \}$ ; confidence 0.176
+
182. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014044.png ; $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ ; confidence 0.819
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001030.png ; $\frac { \delta x } { \| x \| } \leq \frac { k ( A ) } { 1 - k ( A ) \frac { \| \delta A \| } { \| A \| } } ( \frac { \| \delta A \| } { \| A \| } + \frac { \| \delta b \| } { \| b \| } )$ ; confidence 0.176
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160082.png ; $k ^ { \prime }$ ; confidence 0.819
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040688.png ; $F m _ { F }$ ; confidence 0.175
+
184. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $C$ ; confidence 0.175
+
185. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076810/q07681026.png ; $\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$ ; confidence 0.819
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210131.png ; $L ( \mathfrak { a } ^ { - 1 } ) - \operatorname { dim } \Omega ( \mathfrak { a } ) = d [ \mathfrak { a } ] - \mathfrak { g } + 1$ ; confidence 0.174
+
186. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081370/r08137016.png ; $\alpha \in I$ ; confidence 0.819
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017030.png ; $R = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) \Pi ( \alpha ) d \alpha$ ; confidence 0.819
  
188. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040790.png ; $g = g ^ { \prime }$ ; confidence 0.819
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a1103704.png ; $X ( t v ) , X ( t _ { 1 } ) - X ( t _ { 0 } ) , \ldots , X ( t _ { x } ) - X ( t _ { x } - 1 )$ ; confidence 0.172
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010019.png ; $x \notin D ( A )$ ; confidence 0.819
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
+
190. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e110070100.png ; $K = 0$ ; confidence 0.818
  
191. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024025.png ; $n _ { s } + n _ { u } = n$ ; confidence 0.172
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022063.png ; $h _ { 1 } , h _ { 2 }$ ; confidence 0.818
  
192. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068010.png ; $x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$ ; confidence 0.172
+
192. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
  
193. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s08703096.png ; $\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$ ; confidence 0.172
+
193. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022031.png ; $\mathfrak { c } _ { 1 } , \ldots , \mathfrak { c } _ { p }$ ; confidence 0.172
+
194. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338502.png ; $x \square ^ { j }$ ; confidence 0.818
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050239.png ; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu , n } ) \text { as } n \rightarrow \infty$ ; confidence 0.172
+
195. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690130.png ; $SL ( n + 1 )$ ; confidence 0.818
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016048.png ; $r _ { 2 }$ ; confidence 0.172
+
196. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696011.png ; $\Sigma \subset F$ ; confidence 0.818
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a0107007.png ; $v$ ; confidence 0.172
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150060.png ; $\alpha j k$ ; confidence 0.817
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040193.png ; $\tilde { \Omega } _ { D } F$ ; confidence 0.172
+
198. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797043.png ; $P _ { U ( \mathfrak { g } ) } = \mathfrak { g }$ ; confidence 0.817
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022012.png ; $w ^ { r } v$ ; confidence 0.171
+
199. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051150/i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012075.png ; $a _ { U _ { 2 } }$ ; confidence 0.171
+
200. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057110/l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104202.png ; $E ( X _ { 1 } ) = 0 \quad \text { and } \quad E ( X _ { n } + 1 | X _ { 1 } , \ldots , X _ { n } ) = 0$ ; confidence 0.170
+
201. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081940/r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817
  
202. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335708.png ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170
+
202. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606408.png ; $V ( \alpha )$ ; confidence 0.817
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024067.png ; $e _ { j k }$ ; confidence 0.169
+
203. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960194.png ; $y ^ { ( n ) } + \alpha _ { 1 } y ^ { ( n - 1 ) } + \ldots + \alpha _ { n } y = 0$ ; confidence 0.817
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068093.png ; $L f \theta$ ; confidence 0.169
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055010.png ; $\phi ( g , x ) = \phi _ { g } ( x )$ ; confidence 0.817
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040313.png ; $\epsilon _ { 2,0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { i , 1 } ^ { A } ( \alpha , b , c , d ) \text { for all } i < m$ ; confidence 0.169
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240312.png ; $SS _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j } ) ^ { 2 }$ ; confidence 0.817
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101805.png ; $\alpha _ { k } , b , z$ ; confidence 0.168
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095048.png ; $\Omega ^ { i }$ ; confidence 0.816
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046010.png ; $\operatorname { lim } _ { \| x \| \rightarrow 0 } \| h \| ^ { - 1 } \| f ( a + h ) - f ( a ) - \delta f ( a , h ) \| = 0$ ; confidence 0.167
+
207. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013050.png ; $( T , ) : \operatorname { mod } \Lambda \rightarrow$ ; confidence 0.816
  
208. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a01243088.png ; $f$ ; confidence 0.816
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040337.png ; $\operatorname { tg } E ( \lambda x _ { 0 } , \ldots , x _ { x } - 1 , \lambda y 0 , \ldots , y _ { n } - 1 )$ ; confidence 0.167
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816
  
210. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087790/s08779013.png ; $RP ^ { \infty }$ ; confidence 0.165
+
210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053093.png ; $( r - r _ { P } - 1 )$ ; confidence 0.816
  
211. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015043.png ; $\operatorname { Ad } ( G ) X = \{ \operatorname { Ad } ( g ) X : g \in G \}$ ; confidence 0.816
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046052.png ; $\overline { D }$ ; confidence 0.164
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169906.png ; $V _ { M }$ ; confidence 0.816
  
213. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055027.png ; $O ( n ) / ( O ( m ) \times O ( n - m ) )$ ; confidence 0.816
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010150.png ; $\frac { \| ( A + \delta A ) ^ { + } - A ^ { + } \| } { \| A ^ { + } \| _ { 2 } } \leq \mu \frac { k ( A ) \frac { \| \delta A \| _ { 2 } } { \| A \| _ { 2 } } } { 1 - k ( A ) \frac { \| \delta A \| _ { 2 } } { \| ^ { A } \| _ { 2 } } }$ ; confidence 0.162
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013042.png ; $( h _ { \theta } ^ { * } - \frac { I } { 2 } ) V + V ( h _ { \theta } ^ { * } - \frac { I } { 2 } ) ^ { T } = R ( \theta ^ { * } )$ ; confidence 0.816
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002017.png ; $N$ ; confidence 0.161
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052059.png ; $\overline { \operatorname { lim } } _ { k \rightarrow 0 } | A ( h ) | < \infty$ ; confidence 0.815
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021034.png ; $i ( \omega , \overline { \pi } ) = \sum _ { j = 1 } ^ { g } ( A _ { j } B _ { j } ^ { \prime } - B _ { j } A _ { j } ^ { \prime } ) = 0$ ; confidence 0.815
  
217. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050790/i05079039.png ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160
+
217. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087400/s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004014.png ; $D = \{ F m , \dagger _ { D } )$ ; confidence 0.159
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040754.png ; $_ { R } , \mathfrak { M } ( r ) = \operatorname { mng } _ { P \cup R } , \mathfrak { M } ( \varphi _ { r } )$ ; confidence 0.815
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130059.png ; $S ^ { n }$ ; confidence 0.815
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032010.png ; $u _ { m } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h T ) u _ { m } +$ ; confidence 0.159
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193049.png ; $G / H$ ; confidence 0.815
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020054.png ; $\left. \begin{array} { r c c } { R } & { \stackrel { \mu \pi _ { 1 } } { \rightarrow } } & { A } \\ { \mu \pi _ { 2 } \downarrow } & { \square } & { \downarrow \alpha } \\ { B } & { \rightarrow } & { X } \end{array} \right.$ ; confidence 0.157
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055066.png ; $B _ { G }$ ; confidence 0.815
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040255.png ; $D _ { c } = A _ { c } - A _ { c } ^ { \varnothing }$ ; confidence 0.157
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450177.png ; $X ( C )$ ; confidence 0.814
  
224. https://www.encyclopediaofmath.org/legacyimages/z/z099/z099250/z09925023.png ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021089.png ; $A _ { k } = \int _ { a _ { k } } \omega _ { 1 } , \quad B _ { k } = \int _ { b _ { k } } \omega _ { 1 }$ ; confidence 0.814
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001025.png ; $\| \delta x \| \leq \| A ^ { - 1 } \delta A \| \| _ { x } \| + \| A ^ { - 1 } \delta A \| _ { \| } \delta x \| + \| A ^ { - 1 } \delta b \|$ ; confidence 0.156
+
225. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007048.png ; $\alpha = \frac { b \sigma ( a ) } { \alpha \varphi ( b ) }$ ; confidence 0.156
+
226. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814
  
227. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005014.png ; $t \in [ 0 , T ]$ ; confidence 0.814
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040244.png ; $x + \operatorname { tg } E ( K ( x ) , L ( x ) )$ ; confidence 0.154
+
228. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072140/p07214067.png ; $\Phi _ { 1 } ( s _ { 0 } ) = \Phi _ { 2 } ( s _ { 0 } )$ ; confidence 0.814
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040461.png ; $^ { \times } L D ( K ) = S P P _ { U } K$ ; confidence 0.152
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037017.png ; $X _ { 2 }$ ; confidence 0.814
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040634.png ; $S _ { P } ^ { \mathfrak { D } \mathfrak { I } }$ ; confidence 0.152
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060011.png ; $C ^ { 2 }$ ; confidence 0.814
  
231. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022690/c02269052.png ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152
+
231. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014060.png ; $M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = M _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040102.png ; $G$ ; confidence 0.152
+
232. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852051.png ; $D ^ { 2 } g$ ; confidence 0.814
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010108.png ; $p = \operatorname { max } _ { 1 \leq i \leq n } \frac { | b _ { i } - \sum _ { j = 1 } ^ { n } \alpha _ { i } x _ { j } | } { B N + A N \cdot \sum _ { j = 1 } ^ { n } | x _ { j } | }$ ; confidence 0.152
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a010810107.png ; $x , \psi \in C _ { n } ^ { 1 } ( \Delta )$ ; confidence 0.814
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600198.png ; $N _ { 0 }$ ; confidence 0.151
+
234. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $F \mu$ ; confidence 0.813
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032026.png ; $R _ { + 1 } ^ { ( i ) } ( z ) = \frac { l R _ { j } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.149
+
235. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050910/i05091079.png ; $Y _ { n k }$ ; confidence 0.813
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240314.png ; $\hat { \beta } = ( X ^ { \prime } X ) ^ { - 1 } X ^ { \prime } y$ ; confidence 0.148
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a01067012.png ; $\tilde { \eta } = \eta + \zeta$ ; confidence 0.813
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020061.png ; $H _ { 2 / / } \otimes l _ { 1 } ( A , B )$ ; confidence 0.148
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005098.png ; $A ( . )$ ; confidence 0.813
  
238. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061130/l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
+
238. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016085.png ; $\hat { A } \tilde { x } = \tilde { b }$ ; confidence 0.148
+
239. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812
  
240. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147
+
240. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022740/c02274052.png ; $c _ { i j } ^ { k }$ ; confidence 0.812
  
241. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680082.png ; $\{ \tau _ { j } ^ { e } \} \in G _ { I }$ ; confidence 0.146
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058018.png ; $a > 0$ ; confidence 0.812
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a0106808.png ; $n = \alpha _ { 1 } + \ldots + \alpha _ { k } , \quad \alpha _ { i } \in A _ { i } , \quad A = \{ A _ { 1 } , A _ { 2 } , \ldots \}$ ; confidence 0.144
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008074.png ; $u \in L ^ { 2 } ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap H ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.811
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010118.png ; $A \in R ^ { m \times n }$ ; confidence 0.144
+
243. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014089.png ; $Q _ { 0 } = \{ 1 , \ldots , n \}$ ; confidence 0.811
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040412.png ; $Mod ^ { * } L D = S P Mod ^ { * } L D$ ; confidence 0.144
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001028.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.811
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020084.png ; $r$ ; confidence 0.144
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012290/a01229021.png ; $GL ( n , k )$ ; confidence 0.811
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297077.png ; $\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$ ; confidence 0.144
+
246. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png ; $SU ( 2 )$ ; confidence 0.811
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010164.png ; $\tilde { \varepsilon } [ ( 1 + \eta \tilde { k } ) \alpha + \beta \gamma ]$ ; confidence 0.144
+
247. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064540/m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811
  
248. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780134.png ; $F = p t$ ; confidence 0.143
+
248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811
  
249. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143
+
249. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081160/r08116074.png ; $t + \tau$ ; confidence 0.811
  
250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
+
250. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070049.png ; $H ^ { 1 } ( X , \Theta )$ ; confidence 0.811
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040113.png ; $T , \varphi \operatorname { lo } \psi$ ; confidence 0.142
+
251. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058690/l05869039.png ; $R ^ { n } \times T ^ { m }$ ; confidence 0.811
  
252. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010195.png ; $\| ( \hat { \lambda } I - A ) ^ { - 1 } \delta A \| > 1$ ; confidence 0.810
  
253. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740112.png ; $R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$ ; confidence 0.142
+
253. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120225.png ; $Y \subset X = C P ^ { 1 }$ ; confidence 0.810
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240331.png ; $p _ { 1 }$ ; confidence 0.141
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a1201209.png ; $B = ( b _ { i j } )$ ; confidence 0.810
  
255. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677096.png ; $5 + 7 n$ ; confidence 0.141
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001024.png ; $\delta x = A ^ { - 1 } ( - \delta A x - \delta A \delta x + \delta b )$ ; confidence 0.810
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a011210112.png ; $\operatorname { Ai } ( x ) = \frac { 1 } { \pi \sqrt { 3 } } \sqrt { x } K _ { 1 / 3 } ( \frac { 2 } { 3 } x ^ { 2 / 3 } )$ ; confidence 0.810
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070107.png ; $\{ B _ { j } ( t , x , D _ { x } ) \} _ { j = 1 } ^ { \infty }$ ; confidence 0.140
+
257. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120555.png ; $f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$ ; confidence 0.810
  
258. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162010.png ; $f ( x ) - P _ { n } ^ { 0 } ( x )$ ; confidence 0.810
  
259. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s08633021.png ; $\sigma _ { d x } ( A )$ ; confidence 0.138
+
259. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
+
260. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120119.png ; $H ^ { n - r } ( M ^ { n } , X )$ ; confidence 0.810
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008049.png ; $\operatorname { ln } 1 d s$ ; confidence 0.137
+
261. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120469.png ; $\operatorname { ln } x _ { x } = 0$ ; confidence 0.810
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016054.png ; $p _ { k } - 1$ ; confidence 0.137
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043018.png ; $= P \{ \tau ( H ) \leq t , \xi ( \tau ( H ) ) = h | \xi ( 0 ) = i \}$ ; confidence 0.810
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040613.png ; $h : F m _ { P } \rightarrow M e _ { S _ { P } } \mathfrak { M }$ ; confidence 0.136
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300202.png ; $T ; X \rightarrow X$ ; confidence 0.809
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png ; $3 + 5$ ; confidence 0.136
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029015.png ; $f _ { \alpha } : \alpha X \rightarrow \alpha Y$ ; confidence 0.809
  
265. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png ; $Q _ { A }$ ; confidence 0.136
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024061.png ; $k = 1 , \ldots , K$ ; confidence 0.809
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809
  
267. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
+
267. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110040/d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809
  
268. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132
+
268. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031540/d03154015.png ; $G r$ ; confidence 0.809
  
269. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911037.png ; $p i n$ ; confidence 0.132
+
269. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006023.png ; $= \frac { 1 } { 2 } \operatorname { sup } \sum _ { i = 1 } ^ { I } \sum _ { j = 1 } ^ { J } \operatorname { Pr } ( A _ { i } \cap B _ { j } ) - P ( A _ { i } ) P ( B _ { j } )$ ; confidence 0.132
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001069.png ; $b$ ; confidence 0.809
  
271. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041052.png ; $( K _ { X ^ { \prime } } + ( n - 2 ) L ^ { \prime } ) . C \geq 0$ ; confidence 0.809
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031018.png ; $22 ^ { x }$ ; confidence 0.131
+
272. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082017.png ; $H _ { A }$ ; confidence 0.809
  
273. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $L \cup O$ ; confidence 0.130
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086033.png ; $M ^ { * }$ ; confidence 0.809
  
274. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081980/r08198090.png ; $\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$ ; confidence 0.130
+
274. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769083.png ; $G \times _ { H } F$ ; confidence 0.809
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032032.png ; $u _ { M } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h \lambda ) u _ { m }$ ; confidence 0.130
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028062.png ; $N P$ ; confidence 0.809
  
276. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040463.png ; $Fi _ { D } A$ ; confidence 0.809
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001065.png ; $0$ ; confidence 0.129
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017045.png ; $\mu ( \alpha , x ) = \mu _ { 0 } ( \alpha )$ ; confidence 0.808
  
278. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064180/m064180110.png ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128
+
278. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146083.png ; $Z \sim _ { \tau } Z ^ { \prime }$ ; confidence 0.808
  
279. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
+
279. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970133.png ; $( A , m _ { A } , e _ { A } )$ ; confidence 0.808
  
280. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008061.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A ( t ) } & { 0 } \end{array} \right)$ ; confidence 0.808
  
281. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010134.png ; $\mathfrak { A } _ { E }$ ; confidence 0.121
+
281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001043.png ; $\chi \lambda$ ; confidence 0.808
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043022.png ; $p _ { k A } ^ { * } ( t ) = 1 , \quad h \in H ; \quad p _ { i A } ^ { * } ( t ) = 0 , \quad i , h \in H , i \neq h$ ; confidence 0.120
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012066.png ; $\{ \mu _ { n } \}$ ; confidence 0.808
  
283. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
+
283. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930299.png ; $Z / p$ ; confidence 0.808
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040336.png ; $E ( x _ { 0 } , y _ { 0 } ) , \ldots , E ( x _ { x } - 1 , y _ { n } - 1 ) \operatorname { t } _ { D }$ ; confidence 0.118
+
284. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087280/s087280193.png ; $m = E X ( s )$ ; confidence 0.808
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006060.png ; $P _ { R } ^ { \dagger f } ( n ) = \frac { 1 } { n } q ^ { n } + O ( \frac { 1 } { n } q ^ { n / 2 } ) \text { as } n \rightarrow \infty$ ; confidence 0.118
+
285. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427015.png ; $u , v \in V$ ; confidence 0.808
  
286. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140169.png ; $q _ { A }$ ; confidence 0.118
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070103.png ; $R ^ { n }$ ; confidence 0.807
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041012.png ; $K _ { S } \otimes L$ ; confidence 0.807
  
288. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206068.png ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117
+
288. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110040/r11004022.png ; $k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$ ; confidence 0.807
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040186.png ; $( A / S 2 DF , F / S 2 DF )$ ; confidence 0.116
+
289. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143031.png ; $E / E ^ { \prime }$ ; confidence 0.807
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012032.png ; $\left. \begin{array} { l } { x \sum _ { j = i } ^ { N } \beta _ { j } v _ { j } } \\ { \text { ject to } \sum _ { j = 1 } ^ { n } \alpha _ { j } v _ { j } \leq \mu _ { i } } \\ { v _ { j } \geq 0 } \end{array} \right.$ ; confidence 0.116
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160032.png ; $Q ( \sqrt { - 5 } )$ ; confidence 0.807
  
291. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740318.png ; $Z [ X _ { é } : e \in E$ ; confidence 0.114
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024027.png ; $Y = X B + E$ ; confidence 0.807
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043021.png ; $p _ { i A } ^ { * } ( t + 1 ) = \sum _ { j \in S } p _ { j } p _ { i A } ^ { * } ( t ) , \quad t \geq 0 , \quad i \in S \backslash H , \quad h \in H$ ; confidence 0.114
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650272.png ; $\Omega f$ ; confidence 0.806
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032023.png ; $B _ { j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { s + 1 } } R _ { l + 1 } ^ { ( s + 1 ) } ( z ) \lambda _ { l j } ^ { ( s + 1 ) }$ ; confidence 0.113
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040385.png ; $\Omega \cup F = \cup _ { F \in F } \Omega F$ ; confidence 0.806
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040520.png ; $d ^ { * } L D$ ; confidence 0.112
+
294. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066490/n06649018.png ; $f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$ ; confidence 0.806
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008010.png ; $\sum _ { i , j = 1 } ^ { m } \alpha _ { i , j } ( x ) \xi _ { i } \xi _ { j } \geq \delta | \xi | ^ { 2 }$ ; confidence 0.112
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052021.png ; $\| F _ { M } \| _ { E } \leq f ( n ) \| A \| _ { E }$ ; confidence 0.806
  
296. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $2$ ; confidence 0.110
+
296. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010011.png ; $T$ ; confidence 0.806
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043026.png ; $q _ { k h } = 1 , \quad h \in H ; \quad q _ { k } = 0 , \quad i , h \in H , i \neq h$ ; confidence 0.109
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099033.png ; $r _ { i } = \partial _ { i } r$ ; confidence 0.806
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004045.png ; $\Gamma \operatorname { tg } \varphi$ ; confidence 0.107
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081054.png ; $\Delta = [ t _ { 0 } , t _ { 1 } ] \subset I$ ; confidence 0.805
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040548.png ; $v$ ; confidence 0.106
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040311.png ; $\alpha , b , c , d \in A$ ; confidence 0.805
  
300. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046080/h04608018.png ; $| x _ { \mathfrak { j } } | \leq M$ ; confidence 0.106
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008065.png ; $v _ { 0 } = i A ( t ) ^ { 1 / 2 } u$ ; confidence 0.805

Latest revision as of 09:58, 17 October 2019

List

1. r08248050.png ; $\alpha \in \Phi$ ; confidence 0.839

2. h04797087.png ; $A _ { x } < \infty$ ; confidence 0.839

3. a01081040.png ; $\psi ( t )$ ; confidence 0.839

4. a011450239.png ; $k _ { 0 } ( B )$ ; confidence 0.839

5. c020740328.png ; $e \in E$ ; confidence 0.839

6. a01130093.png ; $\hat { M } \rightarrow M$ ; confidence 0.839

7. a1300102.png ; $C$ ; confidence 0.838

8. a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838

9. m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838

10. a01110015.png ; $x \rightarrow \vec { a x }$ ; confidence 0.838

11. a13024069.png ; $y _ { i j k }$ ; confidence 0.838

12. l05868028.png ; $2 \pi i H _ { \alpha }$ ; confidence 0.838

13. a12016041.png ; $x = f ( \overline { u } )$ ; confidence 0.838

14. a014170108.png ; $j ( x , \gamma \gamma ^ { \prime } ) = j ( x , \gamma ) j ( x \gamma , \gamma ^ { \prime } )$ ; confidence 0.838

15. a01138028.png ; $( \mathfrak { A } = \mathfrak { B } )$ ; confidence 0.837

16. a11008026.png ; $s = \eta c / \omega$ ; confidence 0.837

17. a12007026.png ; $\leq K _ { 0 } \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T$ ; confidence 0.837

18. a01081027.png ; $l ^ { * } ( \xi ) = 0$ ; confidence 0.837

19. k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837

20. l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837

21. s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837

22. s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837

23. a110010301.png ; $f ^ { ( r ) } ( \lambda )$ ; confidence 0.837

24. a130240168.png ; $\alpha , = 0$ ; confidence 0.837

25. a01081062.png ; $y , \xi \in C ^ { n } ( \Delta )$ ; confidence 0.837

26. q07631062.png ; $\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.837

27. p07472038.png ; $\operatorname { Pic } ( S )$ ; confidence 0.837

28. a130040144.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837

29. a01012045.png ; $S _ { \alpha } = W _ { 1 } , \quad W _ { \alpha } = W _ { 1 } , \quad 0 \leq \alpha < \infty$ ; confidence 0.837

30. h047970117.png ; $e : K \rightarrow A$ ; confidence 0.837

31. a01033019.png ; $\operatorname { log } \beta _ { \gamma }$ ; confidence 0.836

32. a12013043.png ; $h _ { \theta } ^ { * } = \nabla h ( \theta ^ { * } )$ ; confidence 0.836

33. l058590113.png ; $( L ( G ) )$ ; confidence 0.836

34. d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836

35. j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836

36. a130040284.png ; $\square x \rightarrow y$ ; confidence 0.836

37. m064510104.png ; $X \rightarrow H$ ; confidence 0.836

38. l05876026.png ; $( \psi _ { k i } ( g ) )$ ; confidence 0.835

39. a011380102.png ; $x \& \overline { y } \vee z \vee x \& y$ ; confidence 0.835

40. r07767020.png ; $SL ( 1 , D )$ ; confidence 0.835

41. d034120200.png ; $\operatorname { Ext } _ { \Psi } ^ { n - p } ( X ; F )$ ; confidence 0.835

42. a01052023.png ; $\| A \| _ { E } = ( \sum a _ { i j } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.835

43. b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835

44. c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835

45. c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835

46. d12024083.png ; $= \mathfrak { g }$ ; confidence 0.835

47. l05851088.png ; $82$ ; confidence 0.834

48. a12017042.png ; $\int _ { 0 } ^ { + \infty } \beta ( \sigma , s ^ { * } ) e ^ { - \int _ { 0 } ^ { \sigma } \mu ( s , S ^ { * } ) d s } d \sigma = 1$ ; confidence 0.834

49. a01086026.png ; $\prod$ ; confidence 0.834

50. g13002028.png ; $( d / d z ) f _ { l }$ ; confidence 0.834

51. a130240429.png ; $\Theta$ ; confidence 0.834

52. a011650252.png ; $\forall x _ { k }$ ; confidence 0.834

53. e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834

54. f0412503.png ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834

55. r077640100.png ; $X$ ; confidence 0.834

56. a01164043.png ; $| C + K _ { V } |$ ; confidence 0.834

57. a011450133.png ; $p ^ { 5 } g - 6$ ; confidence 0.833

58. a011300161.png ; $\Delta i + 1$ ; confidence 0.833

59. a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833

60. b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833

61. d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833

62. m06259032.png ; $B = 0$ ; confidence 0.833

63. a130060130.png ; $90 > 1$ ; confidence 0.833

64. a01046038.png ; $D \subset C$ ; confidence 0.833

65. d034120240.png ; $\gamma$ ; confidence 0.833

66. l059250100.png ; $UL ( n , K )$ ; confidence 0.833

67. s13054034.png ; $w ( \alpha ) = x ( \alpha ) y ( - \alpha ^ { - 1 } ) x ( \alpha )$ ; confidence 0.832

68. a011490109.png ; $f ( x ) = \sum _ { i = - p } ^ { \infty } \alpha _ { i } \tau ^ { i } = \sum _ { i = - p } ^ { \infty } \alpha _ { i } ( x - x _ { 0 } ) ^ { i / \alpha }$ ; confidence 0.832

69. a01024082.png ; $\partial L = a$ ; confidence 0.832

70. a011380165.png ; $\& , \vee , \rightarrow , \sim , \overline { \square } , + , 1$ ; confidence 0.832

71. s085590541.png ; $\dot { x } = A x + f ( x )$ ; confidence 0.832

72. a01068037.png ; $d ( A _ { i } )$ ; confidence 0.832

73. d11023012.png ; $L ( G )$ ; confidence 0.832

74. b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832

75. w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832

76. a011380157.png ; $\& , \vee , \rightarrow , \overline { \square } , 0,1$ ; confidence 0.832

77. a011380170.png ; $s > 1$ ; confidence 0.832

78. e036960186.png ; $W _ { K }$ ; confidence 0.832

79. a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831

80. d03225022.png ; $\partial M$ ; confidence 0.831

81. i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831

82. s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831

83. a12007095.png ; $\frac { \partial u } { \partial t } = L ( t , x , D _ { x } ) u + f ( t , x ) \text { in } [ 0 , T ] \times \Omega$ ; confidence 0.831

84. a01046041.png ; $L \subset D$ ; confidence 0.831

85. a11010070.png ; $K ( M )$ ; confidence 0.831

86. a120160105.png ; $p _ { i }$ ; confidence 0.830

87. r08103085.png ; $k _ { S }$ ; confidence 0.830

88. c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830

89. s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830

90. a01149012.png ; $P _ { k } ( x _ { 1 } , \ldots , x _ { n } ) , \ldots , P _ { 0 } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.830

91. a01105021.png ; $f : Z \rightarrow S$ ; confidence 0.830

92. a0109304.png ; $\frac { d \rho } { d t } + \rho \operatorname { div } V = 0$ ; confidence 0.829

93. a01080022.png ; $\pi$ ; confidence 0.829

94. d034120184.png ; $( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$ ; confidence 0.829

95. a1201104.png ; $\varphi ( \alpha , 0 , i ) = \alpha \text { for } i \geq 3 , \varphi ( \alpha , b , i ) = \varphi ( \alpha , \varphi ( \alpha , b - 1 , i ) , i - 1 ) \text { for } i \geq 1 , b \geq 1$ ; confidence 0.829

96. a01229012.png ; $k ^ { n }$ ; confidence 0.829

97. a01110078.png ; $f ( \alpha + l ) = \alpha + \phi ( l )$ ; confidence 0.829

98. a110010264.png ; $1 / m$ ; confidence 0.829

99. a01091014.png ; $C _ { 1 }$ ; confidence 0.829

100. a11006027.png ; $A ; \in A$ ; confidence 0.829

101. r07764034.png ; $Z . E _ { i } \leq 0$ ; confidence 0.829

102. a01150054.png ; $\pi i$ ; confidence 0.829

103. u09541057.png ; $H \subset U$ ; confidence 0.829

104. b110100387.png ; $K _ { 2 }$ ; confidence 0.828

105. b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828

106. d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828

107. l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828

108. s08300044.png ; $D _ { n } X _ { 1 }$ ; confidence 0.828

109. y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828

110. a11002036.png ; $g \mapsto g ^ { t }$ ; confidence 0.827

111. a01021031.png ; $\| \omega \| ^ { 2 } = i \sum _ { j = 1 } ^ { g } ( A _ { j } \overline { B } _ { j } - B _ { j } \overline { A } _ { j } ) \geq 0$ ; confidence 0.827

112. c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827

113. p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827

114. p0758301.png ; $a \vee b$ ; confidence 0.827

115. s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827

116. a11022081.png ; $f ( h ) = g ( ( h , h _ { 1 } ) , \ldots , ( h , h _ { j } ) )$ ; confidence 0.827

117. h04741036.png ; $E ^ { G }$ ; confidence 0.827

118. a12013052.png ; $\overline { \theta } _ { n } = \overline { \theta } _ { n - 1 } + \frac { 1 } { n } ( \theta _ { n - 1 } - \overline { \theta } _ { n - 1 } )$ ; confidence 0.827

119. a110610106.png ; $A \in A$ ; confidence 0.826

120. c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826

121. o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826

122. s085590585.png ; $\| x \| = \rho$ ; confidence 0.826

123. m06451091.png ; $\operatorname { Pic } X / S$ ; confidence 0.826

124. a01081074.png ; $\alpha ( t ) , \alpha , \beta , \gamma , \delta$ ; confidence 0.826

125. i05306039.png ; $( k , a , n ) \rightarrow k a n$ ; confidence 0.826

126. a11016034.png ; $Q ( x _ { k } )$ ; confidence 0.825

127. h04770010.png ; $\pi : G \rightarrow G / H$ ; confidence 0.825

128. h04793027.png ; $x = [ u ]$ ; confidence 0.825

129. a01052039.png ; $1 / 2 < | \alpha _ { n } | \leq 1$ ; confidence 0.825

130. a110010252.png ; $\delta A = - r x ^ { * } / \| x \| _ { 2 } ^ { 2 }$ ; confidence 0.825

131. s130530104.png ; $S ^ { r - 1 } \subset R ^ { r }$ ; confidence 0.825

132. d034120432.png ; $A ^ { 0 }$ ; confidence 0.825

133. h04797070.png ; $\delta = m ^ { * }$ ; confidence 0.825

134. l05868099.png ; $G _ { 0 } / L ( \mathfrak { g } )$ ; confidence 0.825

135. d034120173.png ; $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$ ; confidence 0.824

136. a011650494.png ; $\Leftrightarrow \{ \alpha : \mathfrak { F } ( d _ { 1 } ( \alpha ) , \ldots , d _ { k } ( \alpha ) ) = T \} \in \Phi$ ; confidence 0.824

137. r081030112.png ; $\overline { k } = C$ ; confidence 0.824

138. l05851075.png ; $N _ { \alpha , \beta } \in k$ ; confidence 0.824

139. d031830371.png ; $\partial A / \partial u \neq 0$ ; confidence 0.824

140. a01110069.png ; $( A )$ ; confidence 0.824

141. a12012071.png ; $( x ^ { * } , y ^ { * } , p ^ { * } )$ ; confidence 0.824

142. s085590111.png ; $\alpha = \phi ( 1 )$ ; confidence 0.824

143. a11050011.png ; $Q _ { p }$ ; confidence 0.823

144. a11041046.png ; $X ^ { \prime }$ ; confidence 0.823

145. a01012050.png ; $z | > 1$ ; confidence 0.823

146. e0357202.png ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823

147. p075560134.png ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823

148. a011650184.png ; $\phi ( a ) = \phi ( b )$ ; confidence 0.823

149. t1301306.png ; $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$ ; confidence 0.822

150. a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822

151. b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822

152. m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822

153. m11013041.png ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822

154. s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822

155. a01018017.png ; $20,21,22$ ; confidence 0.822

156. a01022052.png ; $W ^ { T }$ ; confidence 0.822

157. a010210116.png ; $d [ ( \omega ) ] = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.821

158. a1103006.png ; $H * \Omega X$ ; confidence 0.821

159. a01079056.png ; $1 + 21$ ; confidence 0.821

160. s085590124.png ; $| b | < 1$ ; confidence 0.821

161. g04358023.png ; $f _ { \zeta } ( \lambda )$ ; confidence 0.821

162. l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821

163. r08205056.png ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821

164. a11016017.png ; $x \rightarrow F ( x ) = M ^ { - 1 } ( N x + b )$ ; confidence 0.821

165. a11016068.png ; $\eta = \lambda _ { \operatorname { min } } / ( \lambda _ { \operatorname { max } } - \lambda _ { \operatorname { min } } )$ ; confidence 0.821

166. l05852083.png ; $K$ ; confidence 0.821

167. a0107607.png ; $( v ^ { 2 } + \omega ^ { 2 } x ^ { 2 } ) / 2$ ; confidence 0.821

168. l05859049.png ; $l _ { 8 } ( h ) = g h$ ; confidence 0.821

169. a01091016.png ; $C$ ; confidence 0.820

170. a011450108.png ; $G _ { n } ^ { \gamma } \geq r ( n - r + 1 ) - ( r - 1 ) g$ ; confidence 0.820

171. a1200605.png ; $\Omega = R ^ { m }$ ; confidence 0.820

172. b01511035.png ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820

173. b0169909.png ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820

174. c02162091.png ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820

175. d130060103.png ; $Z \in X$ ; confidence 0.820

176. e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820

177. m063010118.png ; $X ( T ) \otimes _ { Z } R$ ; confidence 0.820

178. d12024054.png ; $1 / 2 tr$ ; confidence 0.820

179. a110220107.png ; $( L _ { 1 } , P _ { 1 } )$ ; confidence 0.819

180. l05925041.png ; $V _ { i + 1 } / V _ { i }$ ; confidence 0.819

181. a12006075.png ; $u \in D ( S ^ { 2 } )$ ; confidence 0.819

182. t13014044.png ; $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ ; confidence 0.819

183. a01160082.png ; $k ^ { \prime }$ ; confidence 0.819

184. c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819

185. q07681026.png ; $\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$ ; confidence 0.819

186. r08137016.png ; $\alpha \in I$ ; confidence 0.819

187. a12017030.png ; $R = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) \Pi ( \alpha ) d \alpha$ ; confidence 0.819

188. a130040790.png ; $g = g ^ { \prime }$ ; confidence 0.819

189. a12010019.png ; $x \notin D ( A )$ ; confidence 0.819

190. e110070100.png ; $K = 0$ ; confidence 0.818

191. a11022063.png ; $h _ { 1 } , h _ { 2 }$ ; confidence 0.818

192. c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818

193. c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818

194. d0338502.png ; $x \square ^ { j }$ ; confidence 0.818

195. h047690130.png ; $SL ( n + 1 )$ ; confidence 0.818

196. e03696011.png ; $\Sigma \subset F$ ; confidence 0.818

197. a01150060.png ; $\alpha j k$ ; confidence 0.817

198. h04797043.png ; $P _ { U ( \mathfrak { g } ) } = \mathfrak { g }$ ; confidence 0.817

199. i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817

200. l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817

201. r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817

202. l0606408.png ; $V ( \alpha )$ ; confidence 0.817

203. e036960194.png ; $y ^ { ( n ) } + \alpha _ { 1 } y ^ { ( n - 1 ) } + \ldots + \alpha _ { n } y = 0$ ; confidence 0.817

204. a01055010.png ; $\phi ( g , x ) = \phi _ { g } ( x )$ ; confidence 0.817

205. a130240312.png ; $SS _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j } ) ^ { 2 }$ ; confidence 0.817

206. a01095048.png ; $\Omega ^ { i }$ ; confidence 0.816

207. t13013050.png ; $( T , ) : \operatorname { mod } \Lambda \rightarrow$ ; confidence 0.816

208. a01243088.png ; $f$ ; confidence 0.816

209. b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816

210. s13053093.png ; $( r - r _ { P } - 1 )$ ; confidence 0.816

211. a12015043.png ; $\operatorname { Ad } ( G ) X = \{ \operatorname { Ad } ( g ) X : g \in G \}$ ; confidence 0.816

212. b0169906.png ; $V _ { M }$ ; confidence 0.816

213. a01055027.png ; $O ( n ) / ( O ( m ) \times O ( n - m ) )$ ; confidence 0.816

214. a12013042.png ; $( h _ { \theta } ^ { * } - \frac { I } { 2 } ) V + V ( h _ { \theta } ^ { * } - \frac { I } { 2 } ) ^ { T } = R ( \theta ^ { * } )$ ; confidence 0.816

215. a01052059.png ; $\overline { \operatorname { lim } } _ { k \rightarrow 0 } | A ( h ) | < \infty$ ; confidence 0.815

216. a01021034.png ; $i ( \omega , \overline { \pi } ) = \sum _ { j = 1 } ^ { g } ( A _ { j } B _ { j } ^ { \prime } - B _ { j } A _ { j } ^ { \prime } ) = 0$ ; confidence 0.815

217. s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815

218. a130040754.png ; $_ { R } , \mathfrak { M } ( r ) = \operatorname { mng } _ { P \cup R } , \mathfrak { M } ( \varphi _ { r } )$ ; confidence 0.815

219. a01130059.png ; $S ^ { n }$ ; confidence 0.815

220. a01193049.png ; $G / H$ ; confidence 0.815

221. a01055066.png ; $B _ { G }$ ; confidence 0.815

222. a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814

223. a011450177.png ; $X ( C )$ ; confidence 0.814

224. a01021089.png ; $A _ { k } = \int _ { a _ { k } } \omega _ { 1 } , \quad B _ { k } = \int _ { b _ { k } } \omega _ { 1 }$ ; confidence 0.814

225. n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814

226. s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814

227. a12005014.png ; $t \in [ 0 , T ]$ ; confidence 0.814

228. p07214067.png ; $\Phi _ { 1 } ( s _ { 0 } ) = \Phi _ { 2 } ( s _ { 0 } )$ ; confidence 0.814

229. a11037017.png ; $X _ { 2 }$ ; confidence 0.814

230. a01060011.png ; $C ^ { 2 }$ ; confidence 0.814

231. t13014060.png ; $M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = M _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814

232. l05852051.png ; $D ^ { 2 } g$ ; confidence 0.814

233. a010810107.png ; $x , \psi \in C _ { n } ^ { 1 } ( \Delta )$ ; confidence 0.814

234. f12009069.png ; $F \mu$ ; confidence 0.813

235. i05091079.png ; $Y _ { n k }$ ; confidence 0.813

236. a01067012.png ; $\tilde { \eta } = \eta + \zeta$ ; confidence 0.813

237. a12005098.png ; $A ( . )$ ; confidence 0.813

238. p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812

239. r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812

240. c02274052.png ; $c _ { i j } ^ { k }$ ; confidence 0.812

241. a01058018.png ; $a > 0$ ; confidence 0.812

242. a12008074.png ; $u \in L ^ { 2 } ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap H ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.811

243. t13014089.png ; $Q _ { 0 } = \{ 1 , \ldots , n \}$ ; confidence 0.811

244. a11001028.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.811

245. a01229021.png ; $GL ( n , k )$ ; confidence 0.811

246. t12001035.png ; $SU ( 2 )$ ; confidence 0.811

247. m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811

248. q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811

249. r08116074.png ; $t + \tau$ ; confidence 0.811

250. d03070049.png ; $H ^ { 1 } ( X , \Theta )$ ; confidence 0.811

251. l05869039.png ; $R ^ { n } \times T ^ { m }$ ; confidence 0.811

252. a110010195.png ; $\| ( \hat { \lambda } I - A ) ^ { - 1 } \delta A \| > 1$ ; confidence 0.810

253. d034120225.png ; $Y \subset X = C P ^ { 1 }$ ; confidence 0.810

254. a1201209.png ; $B = ( b _ { i j } )$ ; confidence 0.810

255. a11001024.png ; $\delta x = A ^ { - 1 } ( - \delta A x - \delta A \delta x + \delta b )$ ; confidence 0.810

256. a011210112.png ; $\operatorname { Ai } ( x ) = \frac { 1 } { \pi \sqrt { 3 } } \sqrt { x } K _ { 1 / 3 } ( \frac { 2 } { 3 } x ^ { 2 / 3 } )$ ; confidence 0.810

257. d034120555.png ; $f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$ ; confidence 0.810

258. a01162010.png ; $f ( x ) - P _ { n } ^ { 0 } ( x )$ ; confidence 0.810

259. i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810

260. d034120119.png ; $H ^ { n - r } ( M ^ { n } , X )$ ; confidence 0.810

261. d034120469.png ; $\operatorname { ln } x _ { x } = 0$ ; confidence 0.810

262. a01043018.png ; $= P \{ \tau ( H ) \leq t , \xi ( \tau ( H ) ) = h | \xi ( 0 ) = i \}$ ; confidence 0.810

263. a1300202.png ; $T ; X \rightarrow X$ ; confidence 0.809

264. a01029015.png ; $f _ { \alpha } : \alpha X \rightarrow \alpha Y$ ; confidence 0.809

265. a13024061.png ; $k = 1 , \ldots , K$ ; confidence 0.809

266. b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809

267. d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809

268. d03154015.png ; $G r$ ; confidence 0.809

269. q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809

270. a11001069.png ; $b$ ; confidence 0.809

271. a11041052.png ; $( K _ { X ^ { \prime } } + ( n - 2 ) L ^ { \prime } ) . C \geq 0$ ; confidence 0.809

272. f04082017.png ; $H _ { A }$ ; confidence 0.809

273. a01086033.png ; $M ^ { * }$ ; confidence 0.809

274. h04769083.png ; $G \times _ { H } F$ ; confidence 0.809

275. a11028062.png ; $N P$ ; confidence 0.809

276. a130040463.png ; $Fi _ { D } A$ ; confidence 0.809

277. a12017045.png ; $\mu ( \alpha , x ) = \mu _ { 0 } ( \alpha )$ ; confidence 0.808

278. a01146083.png ; $Z \sim _ { \tau } Z ^ { \prime }$ ; confidence 0.808

279. h047970133.png ; $( A , m _ { A } , e _ { A } )$ ; confidence 0.808

280. a12008061.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A ( t ) } & { 0 } \end{array} \right)$ ; confidence 0.808

281. i13001043.png ; $\chi \lambda$ ; confidence 0.808

282. a01012066.png ; $\{ \mu _ { n } \}$ ; confidence 0.808

283. h047930299.png ; $Z / p$ ; confidence 0.808

284. s087280193.png ; $m = E X ( s )$ ; confidence 0.808

285. j05427015.png ; $u , v \in V$ ; confidence 0.808

286. a120070103.png ; $R ^ { n }$ ; confidence 0.807

287. a11041012.png ; $K _ { S } \otimes L$ ; confidence 0.807

288. r11004022.png ; $k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$ ; confidence 0.807

289. r08143031.png ; $E / E ^ { \prime }$ ; confidence 0.807

290. a01160032.png ; $Q ( \sqrt { - 5 } )$ ; confidence 0.807

291. a13024027.png ; $Y = X B + E$ ; confidence 0.807

292. a011650272.png ; $\Omega f$ ; confidence 0.806

293. a130040385.png ; $\Omega \cup F = \cup _ { F \in F } \Omega F$ ; confidence 0.806

294. n06649018.png ; $f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$ ; confidence 0.806

295. a01052021.png ; $\| F _ { M } \| _ { E } \leq f ( n ) \| A \| _ { E }$ ; confidence 0.806

296. t13010011.png ; $T$ ; confidence 0.806

297. a01099033.png ; $r _ { i } = \partial _ { i } r$ ; confidence 0.806

298. a01081054.png ; $\Delta = [ t _ { 0 } , t _ { 1 } ] \subset I$ ; confidence 0.805

299. a130040311.png ; $\alpha , b , c , d \in A$ ; confidence 0.805

300. a12008065.png ; $v _ { 0 } = i A ( t ) ^ { 1 / 2 } u$ ; confidence 0.805

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/18. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/18&oldid=43925