Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/4"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 4 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 4 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740146.png ; $\alpha \rightarrow \dot { b }$ ; confidence 0.200
+
1. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120413.png ; $( x , x ^ { \prime } ) = x ^ { \prime } ( x )$ ; confidence 0.998
  
2. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $e \in E$ ; confidence 0.839
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022530/c02253040.png ; $\pi _ { 1 } ( M )$ ; confidence 0.998
  
3. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740324.png ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403
+
3. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120445.png ; $( F , \sigma ( F , G ) ) ^ { \prime }$ ; confidence 0.998
  
4. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740318.png ; $Z [ X _ { é } : e \in E$ ; confidence 0.114
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012068.png ; $p ^ { * } > 0$ ; confidence 0.998
  
5. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007011.png ; $1 \leq i \leq n - 1$ ; confidence 0.993
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016096.png ; $( A - \sigma I ) ^ { - 1 }$ ; confidence 0.998
  
6. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007055.png ; $Ab ^ { Z C } \approx Ab ^ { C }$ ; confidence 0.662
+
6. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120493.png ; $X ^ { * } = ( X ^ { \prime } , \beta ( X ^ { \prime } , X ) )$ ; confidence 0.998
  
7. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020920/c02092013.png ; $\Omega _ { 0 } \times \{ x _ { 0 }$ ; confidence 0.971
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016035.png ; $\frac { d A } { d t } = f ( u ) ( 1 - A ) - b A$ ; confidence 0.998
  
8. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020920/c02092043.png ; $x = x ^ { 0 }$ ; confidence 0.989
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013022.png ; $\phi ( x , t , z ) =$ ; confidence 0.998
  
9. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890175.png ; $F ^ { - } ( \zeta _ { 0 } )$ ; confidence 0.984
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130083.png ; $( m - i ) \times ( m - i )$ ; confidence 0.998
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890110.png ; $\psi = \psi ( s )$ ; confidence 0.998
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091018.png ; $m = 1$ ; confidence 0.998
  
11. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c0209509.png ; $u ( x _ { 0 } ) = u _ { 0 }$ ; confidence 0.932
+
11. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559034.png ; $z = \phi _ { 1 } ( t )$ ; confidence 0.998
  
12. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c02095032.png ; $L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$ ; confidence 0.358
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240217.png ; $\operatorname { dim } ( \omega ) = r - q$ ; confidence 0.998
  
13. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020960/c02096032.png ; $y _ { n + 1 } = y _ { n } + \frac { h } { 2 } ( f _ { n + 1 } + f _ { n } )$ ; confidence 0.957
+
13. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l0585902.png ; $\mu : ( x , y ) \rightarrow x y ^ { - 1 }$ ; confidence 0.998
  
14. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104082.png ; $- w$ ; confidence 0.598
+
14. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590470.png ; $F ( x , y , \lambda ) = ( x - \mu ) ( x ^ { 2 } + y ^ { 3 } + \lambda y ^ { 2 } - 6 \lambda x y )$ ; confidence 0.998
  
15. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104057.png ; $- u _ { 3 }$ ; confidence 0.803
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150031.png ; $l ( D ) \geq \operatorname { deg } ( D ) - p + 1$ ; confidence 0.998
  
16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081096.png ; $\int _ { t _ { 0 } } ^ { t _ { 1 } } \overline { y } ( t ) \xi ( t ) d t = 0$ ; confidence 0.998
  
17. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021060/c02106028.png ; $V ( t ) = - V ( s )$ ; confidence 1.000
+
17. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590104.png ; $L ( G / H ) \cong L ( G ) / L ( H )$ ; confidence 0.998
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005021.png ; $\Gamma$ ; confidence 0.974
+
18. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524031.png ; $0 \leq x \leq n$ ; confidence 0.998
  
19. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021100/c02110012.png ; $x \in \operatorname { Dom } A$ ; confidence 0.300
+
19. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082097.png ; $\alpha ( \beta ( X ) ) = X$ ; confidence 0.998
  
20. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021130/c02113024.png ; $\partial I ^ { p }$ ; confidence 0.973
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022069.png ; $H = L _ { 2 } [ 0 , \infty )$ ; confidence 0.998
  
21. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021180/c021180110.png ; $E \| X _ { k } \| ^ { 3 + \alpha } < \infty$ ; confidence 0.604
+
21. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120186.png ; $( F , \Omega )$ ; confidence 0.998
  
22. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110130/c11013026.png ; $f \in C ^ { k }$ ; confidence 0.918
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002047.png ; $q \equiv 3 ( \operatorname { mod } 4 )$ ; confidence 0.998
  
23. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014022.png ; $2 \leq n < \infty$ ; confidence 0.998
  
24. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c1101705.png ; $D _ { p }$ ; confidence 0.949
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160027.png ; $\frac { 1 } { x + y \sqrt { D } } = x - y \sqrt { D }$ ; confidence 0.998
  
25. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884
+
25. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872099.png ; $L = L _ { k } / Z ( L _ { k } )$ ; confidence 0.998
  
26. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a1200204.png ; $f : A \rightarrow X$ ; confidence 0.998
  
27. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021480/c02148045.png ; $b \neq 0$ ; confidence 1.000
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032033.png ; $R _ { 0 } ^ { ( s + 1 ) } ( z )$ ; confidence 0.998
  
28. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150017.png ; $y ^ { \prime \prime } - y > f ( x )$ ; confidence 1.000
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160014.png ; $O _ { K }$ ; confidence 0.998
  
29. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021520/c02152013.png ; $V ( \Lambda ^ { \prime } ) \otimes V ( \Lambda ^ { \prime \prime } )$ ; confidence 0.996
+
29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008059.png ; $s = R - L$ ; confidence 0.998
  
30. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215505.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a0108405.png ; $( A x , y ) = ( x , A ^ { * } y )$ ; confidence 0.998
  
31. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157044.png ; $\chi \pi _ { \alpha }$ ; confidence 0.268
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a0114506.png ; $k ( x , y )$ ; confidence 0.998
  
32. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157034.png ; $\pi _ { 0 }$ ; confidence 0.537
+
32. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427018.png ; $C ( V , f )$ ; confidence 0.998
  
33. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160021.png ; $A$ ; confidence 0.992
+
33. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a1102201.png ; $( X _ { t } ) _ { t \in T }$ ; confidence 0.998
  
34. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798
+
34. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472082.png ; $\Gamma \times E \rightarrow E$ ; confidence 0.998
  
35. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162068.png ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012046.png ; $( 0 , y ) \in J$ ; confidence 0.998
  
36. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162091.png ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082050.png ; $\alpha ^ { \prime } : F ( X ) \rightarrow Y$ ; confidence 0.998
  
37. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620209.png ; $B G$ ; confidence 0.998
+
37. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406040.png ; $G ( y )$ ; confidence 0.998
  
38. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162087.png ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856
+
38. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h047410161.png ; $R ^ { G }$ ; confidence 0.998
  
39. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021650/c02165039.png ; $E X ^ { 2 n } < \infty$ ; confidence 0.974
+
39. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764057.png ; $A ^ { 3 }$ ; confidence 0.998
  
40. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021650/c02165011.png ; $t _ { k } \in R ^ { 1 }$ ; confidence 0.998
+
40. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160036.png ; $5 = ( 2 + \sqrt { - 1 } ) ( 2 - \sqrt { - 1 } )$ ; confidence 0.998
  
41. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021720/c02172031.png ; $b _ { k } ^ { \prime } = ( - 1 ) ^ { k + 1 } b _ { k }$ ; confidence 0.930
+
41. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868026.png ; $\Gamma ( G )$ ; confidence 0.998
  
42. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c02176012.png ; $X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$ ; confidence 0.670
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a1104609.png ; $T \equiv \frac { \mu B ^ { 2 } } { 4 \pi }$ ; confidence 0.998
  
43. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c0217608.png ; $p ( x ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } \sigma ^ { 2 } } \operatorname { exp } \{ - \frac { 1 } { 2 \sigma ^ { 2 } } ( x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } ) \}$ ; confidence 0.970
+
43. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011021.png ; $A ( 4 , n )$ ; confidence 0.998
  
44. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070146.png ; $k ( C ^ { * } )$ ; confidence 0.992
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007063.png ; $- 1 / 25$ ; confidence 0.998
  
45. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055061.png ; $\partial X ^ { \prime \prime } = X \cup X ^ { \prime }$ ; confidence 0.998
  
46. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218501.png ; $\tau = \tau ( E )$ ; confidence 0.992
+
46. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797060.png ; $\Delta : G \rightarrow G \times G$ ; confidence 0.998
  
47. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
+
47. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590142.png ; $B \times E \rightarrow B E$ ; confidence 0.998
  
48. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c02203033.png ; $C _ { \omega }$ ; confidence 0.073
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010067.png ; $f \in L ^ { 2 } ( \Omega )$ ; confidence 0.998
  
49. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903
+
49. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020690/c02069021.png ; $80$ ; confidence 0.998
  
50. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476
+
50. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103037.png ; $\Phi _ { k } ( G )$ ; confidence 0.998
  
51. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081042.png ; $L ^ { * } ( \psi ) = 0$ ; confidence 0.998
  
52. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016016.png ; $j = 1 : n$ ; confidence 0.980
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220084.png ; $0 \leq t \leq 1$ ; confidence 0.998
  
53. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110210/c11021043.png ; $T ( 0 ) = 0$ ; confidence 0.574
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164088.png ; $b _ { 1 } ( V ) = 2 q ( V )$ ; confidence 0.998
  
54. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020072.png ; $\lambda \in \Lambda$ ; confidence 0.954
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046059.png ; $y = P ( x )$ ; confidence 0.998
  
55. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180141.png ; $( U )$ ; confidence 0.998
  
56. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229022.png ; $+ \frac { 1 } { 2 } \sum _ { 0 < u \leq \sqrt { x / 3 } } ( [ \sqrt { x - 2 u ^ { 2 } } ] - u ) + O ( \sqrt { x } )$ ; confidence 0.498
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068013.png ; $F ( z )$ ; confidence 0.998
  
57. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222907.png ; $\theta \leq 1 / 2$ ; confidence 0.991
+
57. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140124.png ; $R = K Q$ ; confidence 0.998
  
58. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022330/c0223301.png ; $a ( r )$ ; confidence 0.924
+
58. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925088.png ; $\operatorname { dim } ( 1 - t ) V = 1$ ; confidence 0.998
  
59. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237023.png ; $N = L . L$ ; confidence 0.482
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086015.png ; $\phi \in M ^ { * }$ ; confidence 0.998
  
60. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237063.png ; $Q / Z$ ; confidence 0.664
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a11046014.png ; $T \equiv \mu B ^ { 2 } / 4 \pi$ ; confidence 0.998
  
61. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022400/c02240053.png ; $( k \times n )$ ; confidence 1.000
+
61. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065570/m06557033.png ; $h ( X _ { 2 } ) = 1$ ; confidence 0.998
  
62. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242028.png ; $\phi ( x ) = [ ( 1 - x ) ( 1 + x ) ] ^ { 1 / 2 }$ ; confidence 0.999
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559035.png ; $0 \leq t < \tau _ { 1 }$ ; confidence 0.998
  
63. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242026.png ; $\phi ( x ) \equiv 1$ ; confidence 0.999
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060029.png ; $p = - 1$ ; confidence 0.998
  
64. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242019.png ; $\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
+
64. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797082.png ; $\pi ( G , K ) = \sum _ { i = 0 } ^ { \infty } \pi _ { i } ( G ) \otimes K$ ; confidence 0.998
  
65. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022450/c0224501.png ; $x ( t ) : R \rightarrow R ^ { n }$ ; confidence 0.947
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600147.png ; $( \alpha )$ ; confidence 0.998
  
66. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $20$ ; confidence 0.225
+
66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007018.png ; $945$ ; confidence 0.998
  
67. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250014.png ; $j \leq n$ ; confidence 0.544
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590413.png ; $A = \pi ^ { - 1 } ( x )$ ; confidence 0.998
  
68. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022530/c02253039.png ; $[ \gamma ]$ ; confidence 1.000
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068043.png ; $\theta _ { 2 } < 1$ ; confidence 0.998
  
69. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022570/c0225705.png ; $x \in D _ { A }$ ; confidence 0.542
+
69. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100191.png ; $p ( k )$ ; confidence 0.998
  
70. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022570/c0225702.png ; $x _ { n } \in D _ { A }$ ; confidence 0.553
+
70. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070059.png ; $H ^ { 2 } ( X , \Theta ) = 0$ ; confidence 0.998
  
71. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660300.png ; $K ( f )$ ; confidence 0.998
+
71. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696091.png ; $c ( \eta ) \neq 0$ ; confidence 0.998
  
72. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660241.png ; $C = C ( f )$ ; confidence 0.996
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024079.png ; $( i , j , k )$ ; confidence 0.998
  
73. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660281.png ; $f : D \rightarrow \Omega$ ; confidence 1.000
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031036.png ; $C ( E )$ ; confidence 0.998
  
74. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c02266075.png ; $\mu ( E ) = \mu _ { 1 } ( E ) = 0$ ; confidence 0.998
+
74. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771052.png ; $W ( T _ { 0 } , G )$ ; confidence 0.998
  
75. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c02266091.png ; $\mu _ { 2 } ( C R ) = 0$ ; confidence 0.984
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011019.png ; $A ( 2 , n ) = 2 n + 3$ ; confidence 0.998
  
76. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660219.png ; $F = \{ f ( z ) \}$ ; confidence 0.999
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012540/a01254013.png ; $G = 0$ ; confidence 0.998
  
77. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022690/c02269052.png ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152
+
77. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249018.png ; $d ( p ) \geq d ( q )$ ; confidence 0.998
  
78. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022700/c02270026.png ; $g : Y \rightarrow Z$ ; confidence 0.951
+
78. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290148.png ; $\operatorname { dim } A = 1$ ; confidence 0.998
  
79. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110290/c11029014.png ; $Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.764
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160021.png ; $( 1 , \sqrt { D } )$ ; confidence 0.998
  
80. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780429.png ; $\phi ^ { h } ( pt )$ ; confidence 0.800
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a014170143.png ; $f : G \rightarrow V$ ; confidence 0.998
  
81. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780377.png ; $1 B S G$ ; confidence 0.389
+
81. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830260.png ; $\partial _ { i } I \subset I$ ; confidence 0.998
  
82. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278052.png ; $N \gg n$ ; confidence 0.849
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001083.png ; $A ^ { - 1 }$ ; confidence 0.998
  
83. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278060.png ; $B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$ ; confidence 0.775
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020074.png ; $Q ( \lambda ) = \operatorname { det } ( T - \lambda I )$ ; confidence 0.998
  
84. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780545.png ; $B P \square ^ { * } ( B P )$ ; confidence 0.987
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490115.png ; $\tau = 1 / x$ ; confidence 0.998
  
85. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780129.png ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017050.png ; $\Psi ( x )$ ; confidence 0.998
  
86. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863
+
86. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002015.png ; $F ( z ) = P ( e ^ { z } , e ^ { \beta z } )$ ; confidence 0.998
  
87. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780210.png ; $x _ { i } / ( e ^ { x _ { i } } - 1 )$ ; confidence 0.947
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068038.png ; $g ( A ) < \infty$ ; confidence 0.998
  
88. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780302.png ; $( S _ { \omega } ^ { c } ( e ) T ) [ M ] \in Z$ ; confidence 0.570
+
88. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h0476906.png ; $( g h ) x = g ( h x )$ ; confidence 0.998
  
89. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780356.png ; $\Omega$ ; confidence 0.892
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490148.png ; $k = 3,4$ ; confidence 0.998
  
90. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780445.png ; $M U ^ { * } ( X )$ ; confidence 0.986
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110250/a11025017.png ; $\beta = \alpha \frac { E _ { 1 } } { R T _ { \infty } }$ ; confidence 0.998
  
91. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780177.png ; $( n )$ ; confidence 0.998
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002016.png ; $\mu ( X \backslash A ) = 0$ ; confidence 0.998
  
92. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780128.png ; $\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$ ; confidence 0.922
+
92. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082077.png ; $\phi _ { F } : L \rightarrow A$ ; confidence 0.998
  
93. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070029.png ; $( b , c ) \in s$ ; confidence 0.998
  
94. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037042.png ; $X ( t ) - X ( s )$ ; confidence 0.998
  
95. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800161.png ; $\partial N$ ; confidence 0.677
+
95. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559048.png ; $z ^ { \prime } = \phi _ { 1 } ( \tau ^ { \prime } )$ ; confidence 0.998
  
96. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022860/c02286015.png ; $b _ { i + 1 } \ldots b _ { j }$ ; confidence 0.553
+
96. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001072.png ; $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ ; confidence 0.998
  
97. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
+
97. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001078.png ; $1$ ; confidence 0.998
  
98. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022920/c02292048.png ; $V _ { 3 }$ ; confidence 0.998
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420163.png ; $\theta = 1 - \theta$ ; confidence 0.998
  
99. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022920/c02292049.png ; $\operatorname { lm } c _ { 3 } = 0$ ; confidence 0.496
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420118.png ; $H$ ; confidence 0.998
  
100. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c0229306.png ; $\{ x _ { n } > 0 \}$ ; confidence 0.980
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042090.png ; $n > 0$ ; confidence 0.998
  
101. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c02293015.png ; $u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$ ; confidence 0.744
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420121.png ; $y \leq x$ ; confidence 0.998
  
102. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022940/c02294010.png ; $M$ ; confidence 1.000
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013097.png ; $L ( \psi ) = z \psi$ ; confidence 0.998
  
103. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050103.png ; $\operatorname { cd } _ { p } ( X ) \leq \operatorname { cohcd } ( X ) + 1$ ; confidence 0.970
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022035.png ; $r ( S ) \leq r ( T )$ ; confidence 0.998
  
104. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305060.png ; $( U ) = n - 1$ ; confidence 0.999
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240216.png ; $\operatorname { dim } ( \Omega ) = r$ ; confidence 0.998
  
105. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305085.png ; $cd _ { l } ( Spec A )$ ; confidence 0.637
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040170.png ; $A$ ; confidence 0.998
  
106. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023120/c02312031.png ; $x g = \lambda x$ ; confidence 0.984
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043023.png ; $t \rightarrow \infty$ ; confidence 0.998
  
107. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023140/c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200608.png ; $c ( x )$ ; confidence 0.998
  
108. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c02311056.png ; $A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$ ; confidence 0.750
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033016.png ; $N p$ ; confidence 0.998
  
109. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c023110101.png ; $Z G$ ; confidence 0.957
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110360/a11036013.png ; $n > 1$ ; confidence 0.998
  
110. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315041.png ; $f : S ^ { m } \rightarrow S ^ { n }$ ; confidence 0.195
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017016.png ; $b ( t ) = F ( t ) + \int _ { 0 } ^ { t } K ( t - s ) b ( s ) d s$ ; confidence 0.998
  
111. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150291.png ; $\pi _ { n } ( E ) = \pi$ ; confidence 0.997
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149058.png ; $D ( x _ { 0 } ) = 0$ ; confidence 0.998
  
112. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315068.png ; $\square ^ { 1 } P ^ { i } = P$ ; confidence 0.776
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209097.png ; $Z ( A ) = A \cap Z ( R )$ ; confidence 0.998
  
113. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150156.png ; $i ^ { * } ( \phi ) = 0$ ; confidence 0.997
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970244.png ; $L ( f )$ ; confidence 0.998
  
114. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150259.png ; $\beta \circ \beta = 0$ ; confidence 0.978
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a01301081.png ; $D ^ { 0 } f = f$ ; confidence 0.998
  
115. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150187.png ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180116.png ; $H _ { k + 1 } ( f ( M ) )$ ; confidence 0.998
  
116. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023180/c0231806.png ; $\pi ^ { 1 } ( X )$ ; confidence 0.999
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014300/a0143001.png ; $\epsilon - \delta$ ; confidence 0.998
  
117. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301504.png ; $C ^ { \infty } ( D ( \Omega ) )$ ; confidence 0.935
+
117. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001094.png ; $V ^ { * } - V$ ; confidence 0.998
  
118. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250173.png ; $\beta _ { 0 }$ ; confidence 0.851
+
118. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013099.png ; $m _ { 1 } \in M _ { 1 }$ ; confidence 0.998
  
119. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250187.png ; $[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$ ; confidence 0.729
+
119. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539022.png ; $\delta ^ { * } = \delta ^ { * } ( x )$ ; confidence 0.998
  
120. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232708.png ; $\overline { \overline { A } } = \vec { A }$ ; confidence 0.649
+
120. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539024.png ; $\pi ( d \theta ) = \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.998
  
121. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338015.png ; $\phi \in \Phi$ ; confidence 0.995
+
121. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037025.png ; $0 < \epsilon < i ( \theta _ { 0 } )$ ; confidence 0.998
  
122. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380197.png ; $F \subset U$ ; confidence 0.980
+
122. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758025.png ; $\int _ { 0 } ^ { 1 } \frac { 1 - G ( s ) } { F ( s ) - s } d s < \infty$ ; confidence 0.998
  
123. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338044.png ; $x 0$ ; confidence 0.689
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085036.png ; $\operatorname { dim } ( V / K ) = 1$ ; confidence 0.998
  
124. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380172.png ; $C ( S ^ { n } )$ ; confidence 0.498
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290121.png ; $\operatorname { dim } A = 2$ ; confidence 0.998
  
125. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338039.png ; $f \in L _ { 1 } ( G )$ ; confidence 0.969
+
125. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540218.png ; $\nabla ^ { \prime } = \nabla$ ; confidence 0.998
  
126. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530133.png ; $\Pi ^ { N } \tau$ ; confidence 0.183
+
126. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300406.png ; $\psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) }$ ; confidence 0.998
  
127. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023550/c023550235.png ; $\beta Y \backslash Y$ ; confidence 0.989
+
127. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890110.png ; $\psi = \psi ( s )$ ; confidence 0.998
  
128. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023550/c023550175.png ; $X = 0$ ; confidence 0.554
+
128. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620209.png ; $B G$ ; confidence 0.998
  
129. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023550/c023550172.png ; $\overline { f } : \mu X \rightarrow \mu Y$ ; confidence 0.995
+
129. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021650/c02165011.png ; $t _ { k } \in R ^ { 1 }$ ; confidence 0.998
  
130. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023620/c0236203.png ; $| \alpha ( z ) |$ ; confidence 0.916
+
130. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242019.png ; $\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
  
131. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023890/c02389043.png ; $\{ d F _ { i } \} _ { 1 } ^ { m }$ ; confidence 0.930
+
131. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660300.png ; $K ( f )$ ; confidence 0.998
  
132. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100277.png ; $\partial _ { r }$ ; confidence 0.315
+
132. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c02266075.png ; $\mu ( E ) = \mu _ { 1 } ( E ) = 0$ ; confidence 0.998
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100241.png ; $f : K \rightarrow K$ ; confidence 0.997
+
133. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780177.png ; $( n )$ ; confidence 0.998
  
134. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024110/c02411026.png ; $d = ( d _ { n } )$ ; confidence 0.939
+
134. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022920/c02292048.png ; $V _ { 3 }$ ; confidence 0.998
  
135. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412032.png ; $\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$ ; confidence 0.764
+
135. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583071.png ; $i B _ { 0 }$ ; confidence 0.998
  
136. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412084.png ; $\int _ { - \infty } ^ { \infty } ( P ( x ) / Q ( x ) ) d x$ ; confidence 0.988
+
136. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010417.png ; $\rho < 1$ ; confidence 0.998
  
137. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412065.png ; $J ( s ) = \operatorname { lim } J _ { N } ( s ) = 2 ( 2 \pi ) ^ { s - 1 } \zeta ( 1 - s ) \operatorname { sin } \frac { \pi s } { 2 }$ ; confidence 0.964
+
137. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027170/c02717082.png ; $q = 59$ ; confidence 0.998
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412030.png ; $f ( z ) = 1 / ( e ^ { z } - 1 )$ ; confidence 0.999
+
138. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830239.png ; $G ( G / F _ { 1 } ) = G _ { 1 }$ ; confidence 0.998
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416048.png ; $O _ { A } = O _ { D } / J | _ { A }$ ; confidence 0.748
+
139. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d03191048.png ; $x _ { 2 } ( t )$ ; confidence 0.998
  
140. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c1103302.png ; $DT ( S )$ ; confidence 0.583
+
140. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d03191051.png ; $x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$ ; confidence 0.998
  
141. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c1103309.png ; $p _ { i } \in S$ ; confidence 0.931
+
141. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031920/d03192079.png ; $0 < l < n$ ; confidence 0.998
  
142. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024450/c0244507.png ; $U ( A ) \subset Y$ ; confidence 0.995
+
142. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201093.png ; $n - m$ ; confidence 0.998
  
143. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024510/c0245107.png ; $P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$ ; confidence 0.724
+
143. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032920/d03292042.png ; $\sigma > h$ ; confidence 0.998
  
144. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452065.png ; $x _ { 0 } \in V ^ { n }$ ; confidence 0.974
+
144. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372050.png ; $\gamma _ { k } < \sigma < 1$ ; confidence 0.998
  
145. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024540/c0245407.png ; $\dot { \phi } = \omega$ ; confidence 0.997
+
145. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d03399055.png ; $y ^ { \prime } ( b ) + v ( b ) y ( b ) = \gamma ( b )$ ; confidence 0.998
  
146. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024670/c02467021.png ; $A _ { 3 }$ ; confidence 0.999
+
146. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e1300407.png ; $U _ { 0 } ( t )$ ; confidence 0.998
  
147. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c02473061.png ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913
+
147. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026092.png ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.998
  
148. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c024730113.png ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947
+
148. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716049.png ; $\Delta J =$ ; confidence 0.998
  
149. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180209.png ; $\varepsilon$ ; confidence 0.504
+
149. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038130/f0381302.png ; $G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$ ; confidence 0.998
  
150. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
+
150. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040190/f04019037.png ; $V ( x _ { 0 } )$ ; confidence 0.998
  
151. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180506.png ; $N = N \times \{ 1 \} \times \{ 0 \}$ ; confidence 1.000
+
151. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033018.png ; $f ^ { - 1 } ( f ( x ) ) \cap U$ ; confidence 0.998
  
152. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
+
152. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069087.png ; $\{ \xi _ { f } : f \in H \}$ ; confidence 0.998
  
153. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180152.png ; $\gamma$ ; confidence 0.764
+
153. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041170/f04117026.png ; $K = D$ ; confidence 0.998
  
154. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180182.png ; $\tau _ { 2 } \Theta = - \Theta$ ; confidence 0.618
+
154. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180102.png ; $0 < p _ { n } \rightarrow 0$ ; confidence 0.998
  
155. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c02478054.png ; $f ^ { \prime } ( z _ { 0 } )$ ; confidence 0.967
+
155. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g04434018.png ; $d f ( X )$ ; confidence 0.998
  
156. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780240.png ; $0 < \beta \leq 2 \pi$ ; confidence 0.997
+
156. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090122.png ; $\psi _ { k } ( \xi )$ ; confidence 0.998
  
157. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
+
157. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046320/h046320114.png ; $H ^ { p } ( G )$ ; confidence 0.998
  
158. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780245.png ; $\operatorname { arg } z = c$ ; confidence 0.995
+
158. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h04721043.png ; $\Sigma _ { n } ^ { 0 }$ ; confidence 0.998
  
159. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024790/c02479065.png ; $f ( \zeta )$ ; confidence 0.995
+
159. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i0506506.png ; $D = L _ { 1 } / D ( L _ { 0 } )$ ; confidence 0.998
  
160. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480058.png ; $D \subset D _ { 1 }$ ; confidence 0.990
+
160. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004046.png ; $\partial D \times D$ ; confidence 0.998
  
161. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024820/c02482046.png ; $\leq ( n + 1 ) ( n + 2 ) / 2$ ; confidence 0.994
+
161. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054090/j05409038.png ; $x = B x + g$ ; confidence 0.998
  
162. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424
+
162. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054200/j05420048.png ; $f _ { 0 } ( \Delta )$ ; confidence 0.998
  
163. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c02485065.png ; $A . B$ ; confidence 0.944
+
163. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040145.png ; $M ^ { ( 2 ) }$ ; confidence 0.998
  
164. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
+
164. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055040/k05504059.png ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$ ; confidence 0.998
  
165. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489056.png ; $\mu ( d )$ ; confidence 1.000
+
165. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110190/k11019069.png ; $P = Q$ ; confidence 0.998
  
166. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248905.png ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849
+
166. https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010135.png ; $p : X \rightarrow S$ ; confidence 0.998
  
167. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024900/c02490030.png ; $q = p ^ { r }$ ; confidence 0.892
+
167. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998
  
168. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024990/c02499018.png ; $\int _ { - \pi } ^ { \pi } f ( x ) d x = 0$ ; confidence 0.988
+
168. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058210/l05821012.png ; $- \operatorname { log } | \zeta |$ ; confidence 0.998
  
169. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025020/c02502055.png ; $r \uparrow 1$ ; confidence 0.659
+
169. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058210/l05821045.png ; $0 < r < \operatorname { tanh } \pi / 4$ ; confidence 0.998
  
170. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019046.png ; $X = R ^ { n }$ ; confidence 0.975
+
170. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510198.png ; $0 \leq p \leq n / 2$ ; confidence 0.998
  
171. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449
+
171. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059170/l059170161.png ; $H ^ { k }$ ; confidence 0.998
  
172. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c02513010.png ; $f _ { 2 } \circ f _ { 1 } ^ { - 1 }$ ; confidence 0.997
+
172. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935092.png ; $Y ( t ) = X ( t ) C$ ; confidence 0.998
  
173. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140162.png ; $X \in V ( B )$ ; confidence 0.996
+
173. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019071.png ; $d ( A )$ ; confidence 0.998
  
174. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140160.png ; $E = T B$ ; confidence 0.999
+
174. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060250/l06025052.png ; $m = n = 1$ ; confidence 0.998
  
175. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140196.png ; $X : B \rightarrow T B$ ; confidence 0.984
+
175. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200304.png ; $f _ { \theta } ( x )$ ; confidence 0.998
  
176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025150/c02515011.png ; $Y \in T _ { y } ( P )$ ; confidence 0.991
+
176. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m06392082.png ; $n \geq 9$ ; confidence 0.998
  
177. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025170/c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
+
177. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690064.png ; $G \rightarrow A$ ; confidence 0.998
  
178. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518080.png ; $f _ { x } ^ { - 1 }$ ; confidence 0.443
+
178. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067760/n06776016.png ; $N ( A ^ { * } ) = \{ 0 \}$ ; confidence 0.998
  
179. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414
+
179. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068350/o068350148.png ; $\phi \in D ( A )$ ; confidence 0.998
  
180. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
+
180. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072300/p0723004.png ; $F ( H )$ ; confidence 0.998
  
181. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019044.png ; $T ( M )$ ; confidence 0.884
+
181. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072830/p072830109.png ; $\sigma _ { i j } ( t )$ ; confidence 0.998
  
182. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025350/c025350104.png ; $B \rightarrow H$ ; confidence 0.991
+
182. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073750/p0737503.png ; $p _ { i } ( \xi ) \in H ^ { 4 i } ( B )$ ; confidence 0.998
  
183. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025350/c025350101.png ; $E _ { 1 } \rightarrow E _ { 1 }$ ; confidence 0.970
+
183. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515035.png ; $\alpha _ { 0 } \in A$ ; confidence 0.998
  
184. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025420/c025420100.png ; $\neg \neg \exists x R \supset \exists x R$ ; confidence 0.760
+
184. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014049.png ; $\gamma \in R$ ; confidence 0.998
  
185. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c0254401.png ; $\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$ ; confidence 0.687
+
185. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310127.png ; $R ^ { 12 } R ^ { 13 } R ^ { 23 } = R ^ { 23 } R ^ { 13 } R ^ { 12 }$ ; confidence 0.998
  
186. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835
+
186. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q076840162.png ; $P _ { k } ( x )$ ; confidence 0.998
  
187. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544057.png ; $\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$ ; confidence 0.915
+
187. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081110/r08111011.png ; $p \leq \epsilon / 3$ ; confidence 0.998
  
188. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025450/c02545035.png ; $T ^ { * }$ ; confidence 0.527
+
188. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081150/r0811504.png ; $\frac { d ^ { 2 } x } { d \tau ^ { 2 } } - \lambda ( 1 - x ^ { 2 } ) \frac { d x } { d \tau } + x = 0$ ; confidence 0.998
  
189. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547051.png ; $\alpha \wedge ( d \alpha ) ^ { n }$ ; confidence 0.989
+
189. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081420/r08142047.png ; $\phi \in E ^ { \prime }$ ; confidence 0.998
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547063.png ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858
+
190. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082080/r08208036.png ; $- \infty \leq \lambda < \mu \leq \infty$ ; confidence 0.998
  
191. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547031.png ; $\alpha \wedge ( d \alpha ) ^ { s } ( x ) \neq 0$ ; confidence 0.978
+
191. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269033.png ; $| \chi | < \pi$ ; confidence 0.998
  
192. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020014.png ; $W ^ { m + 1 }$ ; confidence 0.972
+
192. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004027.png ; $s _ { \lambda } = \sum _ { T } x ^ { T }$ ; confidence 0.998
  
193. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
+
193. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086360/s086360102.png ; $B ( r ) = \int _ { 0 } ^ { \infty } J _ { 0 } ( \lambda r ) d F ( \lambda )$ ; confidence 0.998
  
194. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025600/c02560048.png ; $u ^ { k } = u ^ { k - 1 } - \Delta \lambda _ { k } \phi ^ { \prime } ( u ^ { k - 1 } ) ^ { - 1 } \phi ( u ^ { 0 } )$ ; confidence 0.687
+
194. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086380/s0863808.png ; $s _ { 1 } - t _ { 1 } = s _ { 2 } - t _ { 2 }$ ; confidence 0.998
  
195. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025600/c02560042.png ; $\frac { d u } { d \lambda } = - \phi ^ { \prime } ( u ) ^ { - 1 } \phi ( u ^ { 0 } )$ ; confidence 0.984
+
195. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s1202804.png ; $\overline { f } : X \rightarrow Y$ ; confidence 0.998
  
196. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025640/c0256402.png ; $\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$ ; confidence 0.788
+
196. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090900/s09090088.png ; $\xi = \infty \in \partial D$ ; confidence 0.998
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565066.png ; $D \subset R$ ; confidence 0.995
+
197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005033.png ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.998
  
198. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
+
198. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009023.png ; $f ^ { - 1 } ( S )$ ; confidence 0.998
  
199. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025710/c02571015.png ; $f ^ { - 1 } ( F )$ ; confidence 0.999
+
199. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326078.png ; $d = 6$ ; confidence 0.998
  
200. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025710/c0257107.png ; $U = U ( x _ { 0 } )$ ; confidence 0.991
+
200. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326038.png ; $( X ) \in M$ ; confidence 0.998
  
201. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572034.png ; $y _ { 0 } = A _ { x }$ ; confidence 0.344
+
201. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200142.png ; $m > - 1$ ; confidence 0.998
  
202. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572035.png ; $B \circ A$ ; confidence 0.963
+
202. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095440/u09544020.png ; $U ( \epsilon )$ ; confidence 0.998
  
203. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572060.png ; $x - y \in U$ ; confidence 0.997
+
203. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020116.png ; $f ( z ) \in K$ ; confidence 0.998
  
204. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583071.png ; $i B _ { 0 }$ ; confidence 0.998
+
204. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020147.png ; $( f ) \subseteq V ( f )$ ; confidence 0.998
  
205. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025890/c02589013.png ; $( T ^ { * } ( t ) = T ( t ) )$ ; confidence 0.991
+
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080124.png ; $T _ { 1 } \sim \Lambda$ ; confidence 0.998
  
206. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025920/c02592019.png ; $631$ ; confidence 0.381
+
206. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099030/y099030101.png ; $\pi _ { 1 } : P _ { 1 } \rightarrow S ^ { 4 }$ ; confidence 0.998
  
207. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597042.png ; $e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$ ; confidence 0.182
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055057.png ; $\phi : G \times X \rightarrow X$ ; confidence 0.998
  
208. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010134.png ; $\mathfrak { A } _ { E }$ ; confidence 0.121
+
208. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120248.png ; $| z | > \sigma$ ; confidence 0.998
  
209. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010308.png ; $v _ { ( E ) } = v$ ; confidence 0.188
+
209. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120328.png ; $F ( z ) \equiv 0$ ; confidence 0.998
  
210. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010417.png ; $\rho < 1$ ; confidence 0.998
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a01067025.png ; $d x = f ( x , t ) d t + g ( x , t ) d w$ ; confidence 0.998
  
211. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010468.png ; $P s$ ; confidence 0.529
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008032.png ; $R ( s ) \ll 1$ ; confidence 0.998
  
212. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010588.png ; $J ( \alpha )$ ; confidence 1.000
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011016.png ; $A ( 0 , n ) = n + 1$ ; confidence 0.998
  
213. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004021.png ; $\tau > 0$ ; confidence 0.998
  
214. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010556.png ; $d y _ { t } = h ( x _ { t } ) d t + d w _ { t } ^ { 0 }$ ; confidence 0.993
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121064.png ; $y ^ { \prime \prime } + \lambda ^ { 2 } q ( x ) y = 0$ ; confidence 0.998
  
215. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604071.png ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869
+
215. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l058720146.png ; $p = 2,3,5$ ; confidence 0.998
  
216. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604027.png ; $P Q$ ; confidence 0.981
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020020.png ; $q ( T ) \neq 0$ ; confidence 0.998
  
217. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604025.png ; $A _ { n } : E _ { n } \rightarrow F _ { n }$ ; confidence 0.561
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033012.png ; $p = 1 / 100$ ; confidence 0.998
  
218. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026230/c02623020.png ; $c _ { 1 } = f ^ { \prime } ( 0 ) = 1$ ; confidence 0.991
+
218. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690117.png ; $U ( k )$ ; confidence 0.998
  
219. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026230/c02623013.png ; $\int _ { - \pi } ^ { \pi } d \mu ( \theta ) = 1$ ; confidence 0.969
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008068.png ; $L ( H ^ { 1 } ( \Omega ) , L ^ { 2 } ( \Omega ) )$ ; confidence 0.998
  
220. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026250/c0262508.png ; $( f _ { 1 } + f _ { 2 } ) ( x ) = f _ { 1 } ( x ) + f _ { 2 } ( x )$ ; confidence 0.957
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043010.png ; $\tau ( H ) = \operatorname { min } \{ t > 0 : \tau ( t ) \in H \}$ ; confidence 0.998
  
221. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c110400102.png ; $M ^ { \perp } = \{ x \in G$ ; confidence 0.985
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103307.png ; $F ( x )$ ; confidence 0.998
  
222. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026390/c026390117.png ; $r _ { u } \times r _ { v } \neq 0$ ; confidence 0.643
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008036.png ; $S ( 0 ) = 1$ ; confidence 0.998
  
223. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148041.png ; $x ^ { 2 } - 2 = ( x + \sqrt { 2 } ) ( x - \sqrt { 2 } )$ ; confidence 0.998
  
224. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643025.png ; $F [ f ] = \frac { F [ g ] } { 1 - \sqrt { 2 \pi } F [ K ] }$ ; confidence 0.997
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182079.png ; $\Delta < 0$ ; confidence 0.998
  
225. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $X _ { 1 }$ ; confidence 0.237
+
225. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018016.png ; $\lambda \neq 0,1$ ; confidence 0.998
  
226. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137074.png ; $1 \leq i \leq m$ ; confidence 0.998
  
227. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646046.png ; $\{ x _ { k } \}$ ; confidence 0.963
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a11035018.png ; $\phi _ { \lambda } ^ { \mu } ( x ) \phi _ { \lambda } ^ { \mu } ( y )$ ; confidence 0.998
  
228. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819
+
228. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631020.png ; $\Delta ( A )$ ; confidence 0.998
  
229. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
+
229. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660149.png ; $I ( f )$ ; confidence 0.998
  
230. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646017.png ; $i _ { k } = k - n [ k / n ] + 1$ ; confidence 0.964
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068049.png ; $\alpha + \beta = n$ ; confidence 0.998
  
231. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c0264808.png ; $\alpha _ { i } : A _ { i } \rightarrow X$ ; confidence 0.918
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018027.png ; $e ^ { - s } = z$ ; confidence 0.998
  
232. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648027.png ; $\pi _ { i } : S \rightarrow A$ ; confidence 0.579
+
232. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004037.png ; $H _ { 1 } = H$ ; confidence 0.998
  
233. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007043.png ; $\sigma ( d ) / d < \alpha$ ; confidence 0.998
  
234. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041079.png ; $A ^ { * } B$ ; confidence 0.976
+
234. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c02478090.png ; $f ^ { - 1 } ( z )$ ; confidence 0.998
  
235. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201806.png ; $( T _ { n } )$ ; confidence 0.998
  
236. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041077.png ; $B _ { 1 }$ ; confidence 0.988
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012061.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n } { | \lambda _ { n } | } = b$ ; confidence 0.998
  
237. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080102.png ; $f = \operatorname { max } f ( x )$ ; confidence 0.998
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146076.png ; $H ^ { * } ( X )$ ; confidence 0.998
  
239. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265803.png ; $\eta _ { Y | X } ^ { 2 } = 1 - E [ \frac { D ( Y | X ) } { D Y } ]$ ; confidence 0.635
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a0108101.png ; $l ( y ) = 0$ ; confidence 0.998
  
240. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026600/c026600121.png ; $\operatorname { lm } z ( x ) = 1$ ; confidence 0.908
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013038.png ; $\gamma _ { n } = 1 / n$ ; confidence 0.998
  
241. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110440/c11044082.png ; $C ( n ) = 0$ ; confidence 1.000
+
241. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092900/t09290046.png ; $B \leq P < G$ ; confidence 0.998
  
242. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026830/c02683020.png ; $\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$ ; confidence 0.960
+
242. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539042.png ; $D = \{ d _ { 1 } , d _ { 2 } \}$ ; confidence 0.998
  
243. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026870/c02687095.png ; $D U$ ; confidence 0.990
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200804.png ; $( x , t ) \in \partial \Omega \times [ 0 , T ]$ ; confidence 0.998
  
244. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026870/c026870129.png ; $( \nabla _ { X } U ) _ { p }$ ; confidence 0.933
+
244. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074640/p07464043.png ; $E \rightarrow B$ ; confidence 0.998
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026870/c026870106.png ; $e _ { i } = \partial / \partial x ^ { i } | _ { p }$ ; confidence 0.599
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008018.png ; $u ( x , t )$ ; confidence 0.998
  
246. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011530/a01153018.png ; $\alpha ^ { \beta }$ ; confidence 0.998
  
247. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877
+
247. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090229.png ; $\nabla ( \lambda ) ^ { * }$ ; confidence 0.998
  
248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025017.png ; $Y _ { j } = i$ ; confidence 0.850
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450248.png ; $V ( B )$ ; confidence 0.998
  
249. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698053.png ; $E _ { 8 }$ ; confidence 0.860
+
249. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i052350101.png ; $R ^ { G } \subset R$ ; confidence 0.998
  
250. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041044.png ; $\pi : X \rightarrow X ^ { \prime }$ ; confidence 0.998
  
251. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c0270004.png ; $E _ { e } ^ { t X } 1$ ; confidence 0.078
+
251. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090360.png ; $G _ { K } ( V ) = G$ ; confidence 0.998
  
252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763
+
252. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082095.png ; $\alpha ( F ( X , Y ) ) = G ( \alpha ( X ) , \alpha ( Y ) )$ ; confidence 0.998
  
253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026032.png ; $V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$ ; confidence 0.626
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058014.png ; $O ( h ^ { k + 2 } )$ ; confidence 0.998
  
254. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110490/c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300171.png ; $\Delta _ { 1 } ( 1 ) = 1$ ; confidence 0.998
  
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016014.png ; $A = M - N$ ; confidence 0.998
  
256. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202805.png ; $X *$ ; confidence 0.383
+
256. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700229.png ; $K \subseteq A ( V )$ ; confidence 0.998
  
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $F T op$ ; confidence 0.332
+
257. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120181.png ; $( n , n )$ ; confidence 0.998
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027170/c02717082.png ; $q = 59$ ; confidence 0.998
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050100.png ; $L ( Y , X )$ ; confidence 0.998
  
259. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $7$ ; confidence 0.254
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600262.png ; $> 0$ ; confidence 0.998
  
260. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180172.png ; $M _ { k } = C _ { k }$ ; confidence 0.997
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450187.png ; $D = \{ z : | z | < 1 \}$ ; confidence 0.998
  
261. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180181.png ; $E _ { x } ( s )$ ; confidence 0.467
+
261. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830222.png ; $F \subset F _ { 1 } \subset G$ ; confidence 0.998
  
262. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718064.png ; $H ( K )$ ; confidence 0.395
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021049.png ; $\omega = 0$ ; confidence 0.998
  
263. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721080.png ; $N = \mu / ( n + 1 )$ ; confidence 0.992
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480121.png ; $g ( x )$ ; confidence 0.998
  
264. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721040.png ; $P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$ ; confidence 0.718
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012048.png ; $( x , y ) \in J$ ; confidence 0.998
  
265. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027240/c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010072.png ; $w ( x ) > 0$ ; confidence 0.998
  
266. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
+
266. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530609.png ; $\mathfrak { g } = \mathfrak { k } + \mathfrak { P }$ ; confidence 0.998
  
267. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149023.png ; $k > 4$ ; confidence 0.998
  
268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030069.png ; $n = \infty$ ; confidence 1.000
+
268. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074640/p07464011.png ; $\phi : U \times G \rightarrow \pi ^ { - 1 } ( U )$ ; confidence 0.998
  
269. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030087.png ; $T _ { 1 } ( H )$ ; confidence 0.995
+
269. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110070/m1100702.png ; $k = 1,2$ ; confidence 0.998
  
270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030042.png ; $u : H \rightarrow H ^ { \prime }$ ; confidence 0.987
+
270. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120503.png ; $\{ F / H , H ^ { 0 } \}$ ; confidence 0.998
  
271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007050.png ; $b > 1$ ; confidence 0.998
  
272. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320130.png ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009022.png ; $0 < \tau \leq 1$ ; confidence 0.998
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760
+
273. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009091.png ; $R ( t ^ { \lambda } )$ ; confidence 0.998
  
274. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480102.png ; $( \sigma ^ { t } f ) ( t ^ { \prime } ) = f ( t + t ^ { \prime } )$ ; confidence 1.000
+
274. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017015.png ; $b ( t )$ ; confidence 0.998
  
275. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110500/c11050032.png ; $H C ^ { 0 } ( A )$ ; confidence 0.945
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016078.png ; $[ A M ^ { - 1 } ] [ M x ] = b$ ; confidence 0.998
  
276. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027570/c02757085.png ; $z$ ; confidence 0.525
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006010.png ; $\beta ( A , B )$ ; confidence 0.998
  
277. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c02760032.png ; $( u = const )$ ; confidence 0.538
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121015.png ; $v ( z ) , w _ { 1 } ( z )$ ; confidence 0.998
  
278. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c0276008.png ; $- \infty < z < \infty$ ; confidence 0.577
+
278. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590177.png ; $L ( B )$ ; confidence 0.998
  
279. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276205.png ; $F \in L ^ { * }$ ; confidence 0.961
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081065.png ; $U _ { j } ^ { * } ( \xi ) = 0$ ; confidence 0.998
  
280. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081093.png ; $y ( t ) , \xi ( t )$ ; confidence 0.998
  
281. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002056.png ; $D x$ ; confidence 0.713
+
281. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590332.png ; $f ^ { - 1 } ( s _ { 0 } ) = X _ { 0 }$ ; confidence 0.998
  
282. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020144.png ; $\operatorname { gr } D _ { X }$ ; confidence 0.395
+
282. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120335.png ; $F ( z , \zeta )$ ; confidence 0.998
  
283. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029012.png ; $f : X \rightarrow Y$ ; confidence 0.998
  
284. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $V _ { V }$ ; confidence 0.082
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a1201202.png ; $( A , B )$ ; confidence 0.998
  
285. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a010820106.png ; $\phi : X \rightarrow G ( B )$ ; confidence 0.998
  
286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020174.png ; $( US )$ ; confidence 0.980
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186076.png ; $\Gamma ( U , O _ { X } )$ ; confidence 0.998
  
287. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002050.png ; $( L )$ ; confidence 0.982
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a1100605.png ; $A , B \subset F$ ; confidence 0.998
  
288. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488
+
288. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590276.png ; $\operatorname { lim } f ( z ) = \infty$ ; confidence 0.998
  
289. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002017.png ; $0 \leq k < 1$ ; confidence 0.997
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006054.png ; $L ( X , Y )$ ; confidence 0.998
  
290. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $2$ ; confidence 0.110
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160020.png ; $( \operatorname { mod } 4 )$ ; confidence 0.998
  
291. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110020/d11002099.png ; $f : S \rightarrow C$ ; confidence 0.674
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040233.png ; $H ( 2,2 )$ ; confidence 0.998
  
292. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110040/d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008022.png ; $\xi = \pm \frac { \omega } { c } \sqrt { 1 - ( \frac { \eta c } { \omega } ) ^ { 2 } }$ ; confidence 0.998
  
293. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025016.png ; $u _ { n } + 1 - k$ ; confidence 0.616
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060033.png ; $p = \pm 2$ ; confidence 0.998
  
294. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804
+
294. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155053.png ; $\phi : G \rightarrow H$ ; confidence 0.998
  
295. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a01067018.png ; $\zeta ( t )$ ; confidence 0.998
  
296. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110090/d11009089.png ; $D \subseteq g H g ^ { - 1 }$ ; confidence 0.970
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020089.png ; $\phi : A \rightarrow B$ ; confidence 0.998
  
297. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062019.png ; $\alpha \in C \cup \{ \infty \}$ ; confidence 0.176
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480118.png ; $g ( m )$ ; confidence 0.998
  
298. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070037.png ; $\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.952
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055059.png ; $( X ^ { \prime \prime } , \phi ^ { \prime \prime } )$ ; confidence 0.998
  
299. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700139.png ; $\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$ ; confidence 0.541
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013490/a0134906.png ; $k > 0$ ; confidence 0.998
  
300. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030790/d0307909.png ; $\lambda ^ { m }$ ; confidence 0.955
+
300. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960139.png ; $\delta _ { i } \in \Delta$ ; confidence 0.998

Latest revision as of 09:58, 17 October 2019

List

1. d034120413.png ; $( x , x ^ { \prime } ) = x ^ { \prime } ( x )$ ; confidence 0.998

2. c02253040.png ; $\pi _ { 1 } ( M )$ ; confidence 0.998

3. d034120445.png ; $( F , \sigma ( F , G ) ) ^ { \prime }$ ; confidence 0.998

4. a12012068.png ; $p ^ { * } > 0$ ; confidence 0.998

5. a11016096.png ; $( A - \sigma I ) ^ { - 1 }$ ; confidence 0.998

6. d034120493.png ; $X ^ { * } = ( X ^ { \prime } , \beta ( X ^ { \prime } , X ) )$ ; confidence 0.998

7. a12016035.png ; $\frac { d A } { d t } = f ( u ) ( 1 - A ) - b A$ ; confidence 0.998

8. a13013022.png ; $\phi ( x , t , z ) =$ ; confidence 0.998

9. a01130083.png ; $( m - i ) \times ( m - i )$ ; confidence 0.998

10. a01091018.png ; $m = 1$ ; confidence 0.998

11. s08559034.png ; $z = \phi _ { 1 } ( t )$ ; confidence 0.998

12. a130240217.png ; $\operatorname { dim } ( \omega ) = r - q$ ; confidence 0.998

13. l0585902.png ; $\mu : ( x , y ) \rightarrow x y ^ { - 1 }$ ; confidence 0.998

14. s085590470.png ; $F ( x , y , \lambda ) = ( x - \mu ) ( x ^ { 2 } + y ^ { 3 } + \lambda y ^ { 2 } - 6 \lambda x y )$ ; confidence 0.998

15. a01150031.png ; $l ( D ) \geq \operatorname { deg } ( D ) - p + 1$ ; confidence 0.998

16. a01081096.png ; $\int _ { t _ { 0 } } ^ { t _ { 1 } } \overline { y } ( t ) \xi ( t ) d t = 0$ ; confidence 0.998

17. l058590104.png ; $L ( G / H ) \cong L ( G ) / L ( H )$ ; confidence 0.998

18. u09524031.png ; $0 \leq x \leq n$ ; confidence 0.998

19. f04082097.png ; $\alpha ( \beta ( X ) ) = X$ ; confidence 0.998

20. a11022069.png ; $H = L _ { 2 } [ 0 , \infty )$ ; confidence 0.998

21. d034120186.png ; $( F , \Omega )$ ; confidence 0.998

22. a11002047.png ; $q \equiv 3 ( \operatorname { mod } 4 )$ ; confidence 0.998

23. a13014022.png ; $2 \leq n < \infty$ ; confidence 0.998

24. a01160027.png ; $\frac { 1 } { x + y \sqrt { D } } = x - y \sqrt { D }$ ; confidence 0.998

25. l05872099.png ; $L = L _ { k } / Z ( L _ { k } )$ ; confidence 0.998

26. a1200204.png ; $f : A \rightarrow X$ ; confidence 0.998

27. a11032033.png ; $R _ { 0 } ^ { ( s + 1 ) } ( z )$ ; confidence 0.998

28. a01160014.png ; $O _ { K }$ ; confidence 0.998

29. a13008059.png ; $s = R - L$ ; confidence 0.998

30. a0108405.png ; $( A x , y ) = ( x , A ^ { * } y )$ ; confidence 0.998

31. a0114506.png ; $k ( x , y )$ ; confidence 0.998

32. j05427018.png ; $C ( V , f )$ ; confidence 0.998

33. a1102201.png ; $( X _ { t } ) _ { t \in T }$ ; confidence 0.998

34. p07472082.png ; $\Gamma \times E \rightarrow E$ ; confidence 0.998

35. a12012046.png ; $( 0 , y ) \in J$ ; confidence 0.998

36. a01082050.png ; $\alpha ^ { \prime } : F ( X ) \rightarrow Y$ ; confidence 0.998

37. m06406040.png ; $G ( y )$ ; confidence 0.998

38. h047410161.png ; $R ^ { G }$ ; confidence 0.998

39. r07764057.png ; $A ^ { 3 }$ ; confidence 0.998

40. a01160036.png ; $5 = ( 2 + \sqrt { - 1 } ) ( 2 - \sqrt { - 1 } )$ ; confidence 0.998

41. l05868026.png ; $\Gamma ( G )$ ; confidence 0.998

42. a1104609.png ; $T \equiv \frac { \mu B ^ { 2 } } { 4 \pi }$ ; confidence 0.998

43. a12011021.png ; $A ( 4 , n )$ ; confidence 0.998

44. a13007063.png ; $- 1 / 25$ ; confidence 0.998

45. a01055061.png ; $\partial X ^ { \prime \prime } = X \cup X ^ { \prime }$ ; confidence 0.998

46. h04797060.png ; $\Delta : G \rightarrow G \times G$ ; confidence 0.998

47. l058590142.png ; $B \times E \rightarrow B E$ ; confidence 0.998

48. a12010067.png ; $f \in L ^ { 2 } ( \Omega )$ ; confidence 0.998

49. c02069021.png ; $80$ ; confidence 0.998

50. r08103037.png ; $\Phi _ { k } ( G )$ ; confidence 0.998

51. a01081042.png ; $L ^ { * } ( \psi ) = 0$ ; confidence 0.998

52. a01220084.png ; $0 \leq t \leq 1$ ; confidence 0.998

53. a01164088.png ; $b _ { 1 } ( V ) = 2 q ( V )$ ; confidence 0.998

54. a01046059.png ; $y = P ( x )$ ; confidence 0.998

55. a130180141.png ; $( U )$ ; confidence 0.998

56. a01068013.png ; $F ( z )$ ; confidence 0.998

57. t130140124.png ; $R = K Q$ ; confidence 0.998

58. l05925088.png ; $\operatorname { dim } ( 1 - t ) V = 1$ ; confidence 0.998

59. a01086015.png ; $\phi \in M ^ { * }$ ; confidence 0.998

60. a11046014.png ; $T \equiv \mu B ^ { 2 } / 4 \pi$ ; confidence 0.998

61. m06557033.png ; $h ( X _ { 2 } ) = 1$ ; confidence 0.998

62. s08559035.png ; $0 \leq t < \tau _ { 1 }$ ; confidence 0.998

63. a01060029.png ; $p = - 1$ ; confidence 0.998

64. h04797082.png ; $\pi ( G , K ) = \sum _ { i = 0 } ^ { \infty } \pi _ { i } ( G ) \otimes K$ ; confidence 0.998

65. a011600147.png ; $( \alpha )$ ; confidence 0.998

66. a13007018.png ; $945$ ; confidence 0.998

67. s085590413.png ; $A = \pi ^ { - 1 } ( x )$ ; confidence 0.998

68. a01068043.png ; $\theta _ { 2 } < 1$ ; confidence 0.998

69. w098100191.png ; $p ( k )$ ; confidence 0.998

70. d03070059.png ; $H ^ { 2 } ( X , \Theta ) = 0$ ; confidence 0.998

71. e03696091.png ; $c ( \eta ) \neq 0$ ; confidence 0.998

72. a13024079.png ; $( i , j , k )$ ; confidence 0.998

73. a12031036.png ; $C ( E )$ ; confidence 0.998

74. w09771052.png ; $W ( T _ { 0 } , G )$ ; confidence 0.998

75. a12011019.png ; $A ( 2 , n ) = 2 n + 3$ ; confidence 0.998

76. a01254013.png ; $G = 0$ ; confidence 0.998

77. d03249018.png ; $d ( p ) \geq d ( q )$ ; confidence 0.998

78. b130290148.png ; $\operatorname { dim } A = 1$ ; confidence 0.998

79. a01160021.png ; $( 1 , \sqrt { D } )$ ; confidence 0.998

80. a014170143.png ; $f : G \rightarrow V$ ; confidence 0.998

81. d031830260.png ; $\partial _ { i } I \subset I$ ; confidence 0.998

82. a11001083.png ; $A ^ { - 1 }$ ; confidence 0.998

83. a12020074.png ; $Q ( \lambda ) = \operatorname { det } ( T - \lambda I )$ ; confidence 0.998

84. a011490115.png ; $\tau = 1 / x$ ; confidence 0.998

85. a12017050.png ; $\Psi ( x )$ ; confidence 0.998

86. g13002015.png ; $F ( z ) = P ( e ^ { z } , e ^ { \beta z } )$ ; confidence 0.998

87. a01068038.png ; $g ( A ) < \infty$ ; confidence 0.998

88. h0476906.png ; $( g h ) x = g ( h x )$ ; confidence 0.998

89. a011490148.png ; $k = 3,4$ ; confidence 0.998

90. a11025017.png ; $\beta = \alpha \frac { E _ { 1 } } { R T _ { \infty } }$ ; confidence 0.998

91. a13002016.png ; $\mu ( X \backslash A ) = 0$ ; confidence 0.998

92. f04082077.png ; $\phi _ { F } : L \rightarrow A$ ; confidence 0.998

93. a01070029.png ; $( b , c ) \in s$ ; confidence 0.998

94. a11037042.png ; $X ( t ) - X ( s )$ ; confidence 0.998

95. s08559048.png ; $z ^ { \prime } = \phi _ { 1 } ( \tau ^ { \prime } )$ ; confidence 0.998

96. t12001072.png ; $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ ; confidence 0.998

97. t12001078.png ; $1$ ; confidence 0.998

98. a110420163.png ; $\theta = 1 - \theta$ ; confidence 0.998

99. a110420118.png ; $H$ ; confidence 0.998

100. a11042090.png ; $n > 0$ ; confidence 0.998

101. a110420121.png ; $y \leq x$ ; confidence 0.998

102. a13013097.png ; $L ( \psi ) = z \psi$ ; confidence 0.998

103. a12022035.png ; $r ( S ) \leq r ( T )$ ; confidence 0.998

104. a130240216.png ; $\operatorname { dim } ( \Omega ) = r$ ; confidence 0.998

105. a110040170.png ; $A$ ; confidence 0.998

106. a01043023.png ; $t \rightarrow \infty$ ; confidence 0.998

107. a1200608.png ; $c ( x )$ ; confidence 0.998

108. a11033016.png ; $N p$ ; confidence 0.998

109. a11036013.png ; $n > 1$ ; confidence 0.998

110. a12017016.png ; $b ( t ) = F ( t ) + \int _ { 0 } ^ { t } K ( t - s ) b ( s ) d s$ ; confidence 0.998

111. a01149058.png ; $D ( x _ { 0 } ) = 0$ ; confidence 0.998

112. a01209097.png ; $Z ( A ) = A \cap Z ( R )$ ; confidence 0.998

113. a012970244.png ; $L ( f )$ ; confidence 0.998

114. a01301081.png ; $D ^ { 0 } f = f$ ; confidence 0.998

115. a013180116.png ; $H _ { k + 1 } ( f ( M ) )$ ; confidence 0.998

116. a0143001.png ; $\epsilon - \delta$ ; confidence 0.998

117. b13001094.png ; $V ^ { * } - V$ ; confidence 0.998

118. b11013099.png ; $m _ { 1 } \in M _ { 1 }$ ; confidence 0.998

119. b01539022.png ; $\delta ^ { * } = \delta ^ { * } ( x )$ ; confidence 0.998

120. b01539024.png ; $\pi ( d \theta ) = \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.998

121. b11037025.png ; $0 < \epsilon < i ( \theta _ { 0 } )$ ; confidence 0.998

122. b01758025.png ; $\int _ { 0 } ^ { 1 } \frac { 1 - G ( s ) } { F ( s ) - s } d s < \infty$ ; confidence 0.998

123. b11085036.png ; $\operatorname { dim } ( V / K ) = 1$ ; confidence 0.998

124. b130290121.png ; $\operatorname { dim } A = 2$ ; confidence 0.998

125. c020540218.png ; $\nabla ^ { \prime } = \nabla$ ; confidence 0.998

126. c1300406.png ; $\psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) }$ ; confidence 0.998

127. c020890110.png ; $\psi = \psi ( s )$ ; confidence 0.998

128. c021620209.png ; $B G$ ; confidence 0.998

129. c02165011.png ; $t _ { k } \in R ^ { 1 }$ ; confidence 0.998

130. c02242019.png ; $\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998

131. c022660300.png ; $K ( f )$ ; confidence 0.998

132. c02266075.png ; $\mu ( E ) = \mu _ { 1 } ( E ) = 0$ ; confidence 0.998

133. c022780177.png ; $( n )$ ; confidence 0.998

134. c02292048.png ; $V _ { 3 }$ ; confidence 0.998

135. c02583071.png ; $i B _ { 0 }$ ; confidence 0.998

136. c026010417.png ; $\rho < 1$ ; confidence 0.998

137. c02717082.png ; $q = 59$ ; confidence 0.998

138. d031830239.png ; $G ( G / F _ { 1 } ) = G _ { 1 }$ ; confidence 0.998

139. d03191048.png ; $x _ { 2 } ( t )$ ; confidence 0.998

140. d03191051.png ; $x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$ ; confidence 0.998

141. d03192079.png ; $0 < l < n$ ; confidence 0.998

142. d03201093.png ; $n - m$ ; confidence 0.998

143. d03292042.png ; $\sigma > h$ ; confidence 0.998

144. d03372050.png ; $\gamma _ { k } < \sigma < 1$ ; confidence 0.998

145. d03399055.png ; $y ^ { \prime } ( b ) + v ( b ) y ( b ) = \gamma ( b )$ ; confidence 0.998

146. e1300407.png ; $U _ { 0 } ( t )$ ; confidence 0.998

147. e12026092.png ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.998

148. e03716049.png ; $\Delta J =$ ; confidence 0.998

149. f0381302.png ; $G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$ ; confidence 0.998

150. f04019037.png ; $V ( x _ { 0 } )$ ; confidence 0.998

151. f04033018.png ; $f ^ { - 1 } ( f ( x ) ) \cap U$ ; confidence 0.998

152. f04069087.png ; $\{ \xi _ { f } : f \in H \}$ ; confidence 0.998

153. f04117026.png ; $K = D$ ; confidence 0.998

154. f110180102.png ; $0 < p _ { n } \rightarrow 0$ ; confidence 0.998

155. g04434018.png ; $d f ( X )$ ; confidence 0.998

156. g045090122.png ; $\psi _ { k } ( \xi )$ ; confidence 0.998

157. h046320114.png ; $H ^ { p } ( G )$ ; confidence 0.998

158. h04721043.png ; $\Sigma _ { n } ^ { 0 }$ ; confidence 0.998

159. i0506506.png ; $D = L _ { 1 } / D ( L _ { 0 } )$ ; confidence 0.998

160. i12004046.png ; $\partial D \times D$ ; confidence 0.998

161. j05409038.png ; $x = B x + g$ ; confidence 0.998

162. j05420048.png ; $f _ { 0 } ( \Delta )$ ; confidence 0.998

163. j130040145.png ; $M ^ { ( 2 ) }$ ; confidence 0.998

164. k05504059.png ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$ ; confidence 0.998

165. k11019069.png ; $P = Q$ ; confidence 0.998

166. k056010135.png ; $p : X \rightarrow S$ ; confidence 0.998

167. l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998

168. l05821012.png ; $- \operatorname { log } | \zeta |$ ; confidence 0.998

169. l05821045.png ; $0 < r < \operatorname { tanh } \pi / 4$ ; confidence 0.998

170. l058510198.png ; $0 \leq p \leq n / 2$ ; confidence 0.998

171. l059170161.png ; $H ^ { k }$ ; confidence 0.998

172. l05935092.png ; $Y ( t ) = X ( t ) C$ ; confidence 0.998

173. l06019071.png ; $d ( A )$ ; confidence 0.998

174. l06025052.png ; $m = n = 1$ ; confidence 0.998

175. m1200304.png ; $f _ { \theta } ( x )$ ; confidence 0.998

176. m06392082.png ; $n \geq 9$ ; confidence 0.998

177. n06690064.png ; $G \rightarrow A$ ; confidence 0.998

178. n06776016.png ; $N ( A ^ { * } ) = \{ 0 \}$ ; confidence 0.998

179. o068350148.png ; $\phi \in D ( A )$ ; confidence 0.998

180. p0723004.png ; $F ( H )$ ; confidence 0.998

181. p072830109.png ; $\sigma _ { i j } ( t )$ ; confidence 0.998

182. p0737503.png ; $p _ { i } ( \xi ) \in H ^ { 4 i } ( B )$ ; confidence 0.998

183. p07515035.png ; $\alpha _ { 0 } \in A$ ; confidence 0.998

184. p13014049.png ; $\gamma \in R$ ; confidence 0.998

185. q076310127.png ; $R ^ { 12 } R ^ { 13 } R ^ { 23 } = R ^ { 23 } R ^ { 13 } R ^ { 12 }$ ; confidence 0.998

186. q076840162.png ; $P _ { k } ( x )$ ; confidence 0.998

187. r08111011.png ; $p \leq \epsilon / 3$ ; confidence 0.998

188. r0811504.png ; $\frac { d ^ { 2 } x } { d \tau ^ { 2 } } - \lambda ( 1 - x ^ { 2 } ) \frac { d x } { d \tau } + x = 0$ ; confidence 0.998

189. r08142047.png ; $\phi \in E ^ { \prime }$ ; confidence 0.998

190. r08208036.png ; $- \infty \leq \lambda < \mu \leq \infty$ ; confidence 0.998

191. r08269033.png ; $| \chi | < \pi$ ; confidence 0.998

192. s12004027.png ; $s _ { \lambda } = \sum _ { T } x ^ { T }$ ; confidence 0.998

193. s086360102.png ; $B ( r ) = \int _ { 0 } ^ { \infty } J _ { 0 } ( \lambda r ) d F ( \lambda )$ ; confidence 0.998

194. s0863808.png ; $s _ { 1 } - t _ { 1 } = s _ { 2 } - t _ { 2 }$ ; confidence 0.998

195. s1202804.png ; $\overline { f } : X \rightarrow Y$ ; confidence 0.998

196. s09090088.png ; $\xi = \infty \in \partial D$ ; confidence 0.998

197. t13005033.png ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.998

198. t13009023.png ; $f ^ { - 1 } ( S )$ ; confidence 0.998

199. t09326078.png ; $d = 6$ ; confidence 0.998

200. t09326038.png ; $( X ) \in M$ ; confidence 0.998

201. t120200142.png ; $m > - 1$ ; confidence 0.998

202. u09544020.png ; $U ( \epsilon )$ ; confidence 0.998

203. v096020116.png ; $f ( z ) \in K$ ; confidence 0.998

204. v096020147.png ; $( f ) \subseteq V ( f )$ ; confidence 0.998

205. w130080124.png ; $T _ { 1 } \sim \Lambda$ ; confidence 0.998

206. y099030101.png ; $\pi _ { 1 } : P _ { 1 } \rightarrow S ^ { 4 }$ ; confidence 0.998

207. a01055057.png ; $\phi : G \times X \rightarrow X$ ; confidence 0.998

208. d034120248.png ; $| z | > \sigma$ ; confidence 0.998

209. d034120328.png ; $F ( z ) \equiv 0$ ; confidence 0.998

210. a01067025.png ; $d x = f ( x , t ) d t + g ( x , t ) d w$ ; confidence 0.998

211. a11008032.png ; $R ( s ) \ll 1$ ; confidence 0.998

212. a12011016.png ; $A ( 0 , n ) = n + 1$ ; confidence 0.998

213. a12004021.png ; $\tau > 0$ ; confidence 0.998

214. a01121064.png ; $y ^ { \prime \prime } + \lambda ^ { 2 } q ( x ) y = 0$ ; confidence 0.998

215. l058720146.png ; $p = 2,3,5$ ; confidence 0.998

216. a12020020.png ; $q ( T ) \neq 0$ ; confidence 0.998

217. a11033012.png ; $p = 1 / 100$ ; confidence 0.998

218. h047690117.png ; $U ( k )$ ; confidence 0.998

219. a12008068.png ; $L ( H ^ { 1 } ( \Omega ) , L ^ { 2 } ( \Omega ) )$ ; confidence 0.998

220. a01043010.png ; $\tau ( H ) = \operatorname { min } \{ t > 0 : \tau ( t ) \in H \}$ ; confidence 0.998

221. a0103307.png ; $F ( x )$ ; confidence 0.998

222. a12008036.png ; $S ( 0 ) = 1$ ; confidence 0.998

223. a01148041.png ; $x ^ { 2 } - 2 = ( x + \sqrt { 2 } ) ( x - \sqrt { 2 } )$ ; confidence 0.998

224. a01182079.png ; $\Delta < 0$ ; confidence 0.998

225. a12018016.png ; $\lambda \neq 0,1$ ; confidence 0.998

226. a01137074.png ; $1 \leq i \leq m$ ; confidence 0.998

227. a11035018.png ; $\phi _ { \lambda } ^ { \mu } ( x ) \phi _ { \lambda } ^ { \mu } ( y )$ ; confidence 0.998

228. q07631020.png ; $\Delta ( A )$ ; confidence 0.998

229. c022660149.png ; $I ( f )$ ; confidence 0.998

230. a01068049.png ; $\alpha + \beta = n$ ; confidence 0.998

231. a01018027.png ; $e ^ { - s } = z$ ; confidence 0.998

232. s13004037.png ; $H _ { 1 } = H$ ; confidence 0.998

233. a13007043.png ; $\sigma ( d ) / d < \alpha$ ; confidence 0.998

234. c02478090.png ; $f ^ { - 1 } ( z )$ ; confidence 0.998

235. a1201806.png ; $( T _ { n } )$ ; confidence 0.998

236. a01012061.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n } { | \lambda _ { n } | } = b$ ; confidence 0.998

237. a130080102.png ; $f = \operatorname { max } f ( x )$ ; confidence 0.998

238. a01146076.png ; $H ^ { * } ( X )$ ; confidence 0.998

239. a0108101.png ; $l ( y ) = 0$ ; confidence 0.998

240. a12013038.png ; $\gamma _ { n } = 1 / n$ ; confidence 0.998

241. t09290046.png ; $B \leq P < G$ ; confidence 0.998

242. b01539042.png ; $D = \{ d _ { 1 } , d _ { 2 } \}$ ; confidence 0.998

243. a1200804.png ; $( x , t ) \in \partial \Omega \times [ 0 , T ]$ ; confidence 0.998

244. p07464043.png ; $E \rightarrow B$ ; confidence 0.998

245. a12008018.png ; $u ( x , t )$ ; confidence 0.998

246. a01153018.png ; $\alpha ^ { \beta }$ ; confidence 0.998

247. w120090229.png ; $\nabla ( \lambda ) ^ { * }$ ; confidence 0.998

248. a011450248.png ; $V ( B )$ ; confidence 0.998

249. i052350101.png ; $R ^ { G } \subset R$ ; confidence 0.998

250. a11041044.png ; $\pi : X \rightarrow X ^ { \prime }$ ; confidence 0.998

251. w120090360.png ; $G _ { K } ( V ) = G$ ; confidence 0.998

252. f04082095.png ; $\alpha ( F ( X , Y ) ) = G ( \alpha ( X ) , \alpha ( Y ) )$ ; confidence 0.998

253. a01058014.png ; $O ( h ^ { k + 2 } )$ ; confidence 0.998

254. a011300171.png ; $\Delta _ { 1 } ( 1 ) = 1$ ; confidence 0.998

255. a11016014.png ; $A = M - N$ ; confidence 0.998

256. d030700229.png ; $K \subseteq A ( V )$ ; confidence 0.998

257. d034120181.png ; $( n , n )$ ; confidence 0.998

258. a120050100.png ; $L ( Y , X )$ ; confidence 0.998

259. a011600262.png ; $> 0$ ; confidence 0.998

260. a011450187.png ; $D = \{ z : | z | < 1 \}$ ; confidence 0.998

261. d031830222.png ; $F \subset F _ { 1 } \subset G$ ; confidence 0.998

262. a01021049.png ; $\omega = 0$ ; confidence 0.998

263. a011480121.png ; $g ( x )$ ; confidence 0.998

264. a12012048.png ; $( x , y ) \in J$ ; confidence 0.998

265. a11010072.png ; $w ( x ) > 0$ ; confidence 0.998

266. i0530609.png ; $\mathfrak { g } = \mathfrak { k } + \mathfrak { P }$ ; confidence 0.998

267. a01149023.png ; $k > 4$ ; confidence 0.998

268. p07464011.png ; $\phi : U \times G \rightarrow \pi ^ { - 1 } ( U )$ ; confidence 0.998

269. m1100702.png ; $k = 1,2$ ; confidence 0.998

270. d034120503.png ; $\{ F / H , H ^ { 0 } \}$ ; confidence 0.998

271. a13007050.png ; $b > 1$ ; confidence 0.998

272. b12009022.png ; $0 < \tau \leq 1$ ; confidence 0.998

273. w12009091.png ; $R ( t ^ { \lambda } )$ ; confidence 0.998

274. a12017015.png ; $b ( t )$ ; confidence 0.998

275. a11016078.png ; $[ A M ^ { - 1 } ] [ M x ] = b$ ; confidence 0.998

276. a11006010.png ; $\beta ( A , B )$ ; confidence 0.998

277. a01121015.png ; $v ( z ) , w _ { 1 } ( z )$ ; confidence 0.998

278. l058590177.png ; $L ( B )$ ; confidence 0.998

279. a01081065.png ; $U _ { j } ^ { * } ( \xi ) = 0$ ; confidence 0.998

280. a01081093.png ; $y ( t ) , \xi ( t )$ ; confidence 0.998

281. s085590332.png ; $f ^ { - 1 } ( s _ { 0 } ) = X _ { 0 }$ ; confidence 0.998

282. d034120335.png ; $F ( z , \zeta )$ ; confidence 0.998

283. a01029012.png ; $f : X \rightarrow Y$ ; confidence 0.998

284. a1201202.png ; $( A , B )$ ; confidence 0.998

285. a010820106.png ; $\phi : X \rightarrow G ( B )$ ; confidence 0.998

286. d03186076.png ; $\Gamma ( U , O _ { X } )$ ; confidence 0.998

287. a1100605.png ; $A , B \subset F$ ; confidence 0.998

288. s085590276.png ; $\operatorname { lim } f ( z ) = \infty$ ; confidence 0.998

289. a12006054.png ; $L ( X , Y )$ ; confidence 0.998

290. a01160020.png ; $( \operatorname { mod } 4 )$ ; confidence 0.998

291. a110040233.png ; $H ( 2,2 )$ ; confidence 0.998

292. a11008022.png ; $\xi = \pm \frac { \omega } { c } \sqrt { 1 - ( \frac { \eta c } { \omega } ) ^ { 2 } }$ ; confidence 0.998

293. a01060033.png ; $p = \pm 2$ ; confidence 0.998

294. d03155053.png ; $\phi : G \rightarrow H$ ; confidence 0.998

295. a01067018.png ; $\zeta ( t )$ ; confidence 0.998

296. a01020089.png ; $\phi : A \rightarrow B$ ; confidence 0.998

297. a011480118.png ; $g ( m )$ ; confidence 0.998

298. a01055059.png ; $( X ^ { \prime \prime } , \phi ^ { \prime \prime } )$ ; confidence 0.998

299. a0134906.png ; $k > 0$ ; confidence 0.998

300. e036960139.png ; $\delta _ { i } \in \Delta$ ; confidence 0.998

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/4. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/4&oldid=43822