Difference between revisions of "Bochner integral"
(TeX-ed article.) |
m (Made improvements to the clarity of the exposition.) |
||
Line 1: | Line 1: | ||
− | An integral of a function with values in a Banach space with respect to a scalar-valued measure. It belongs to the family of so-called ''strong integrals'' | + | An integral of a function with values in a Banach space with respect to a scalar-valued measure. It belongs to the family of so-called [[Strong integral|''strong integrals'']]. |
− | Let $ F(X;E,\mathfrak{B},\mu) $ denote the vector space of functions $ | + | Let $ \mathcal{F}(X;E,\mathfrak{B},\mu) $ denote the vector space (over $ \mathbb{R} $ or $ \mathbb{C} $) of functions $ f: E \to X $, where: |
+ | * $ X $ is a Banach space (resp. real or complex). | ||
+ | * $ (E,\mathfrak{B},\mu) $ is a measure space, with $ \mu $ a $ \sigma $-additive scalar-valued measure on a $ \sigma $-algebra $ \mathfrak{B} $ on $ E $. | ||
+ | |||
+ | A function $ s \in \mathcal{F} $ is called ''simple'' if and only if for some $ n \in \mathbb{N} $, there exist distinct vectors $ x_{1},\ldots,x_{n} \in X $ and pairwise-disjoint $ \mathfrak{B} $-measurable subsets $ B_{1},\ldots,B_{n} $ of $ E $, each with finite $ \mu $-measure, such that $ \displaystyle s(t) = \sum_{i = 1}^{n} {\chi_{B_{i}}}(t) \cdot x_{i} $ for every $ t \in E $, in which case we define the Bochner-integral of $ s $ by | ||
$$ | $$ | ||
− | \ | + | \int_{E} s ~ \mathrm{d}{\mu} \stackrel{\text{df}}{=} \sum_{i = 1}^{n} \mu(B_{i}) \cdot x_{i}. |
− | |||
− | \ | ||
− | |||
− | |||
− | \ | ||
$$ | $$ | ||
− | A function $ | + | A function $ f \in \mathcal{F} $ is called ''strongly measurable'' if and only if there exists a sequence $ (s_{n})_{n \in \mathbb{N}} $ of simple functions such that $ \displaystyle \lim_{n \to \infty} \| f(\bullet) - {s_{n}}(\bullet) \|_{X} = 0 $ pointwise almost-everywhere on $ E $ (we call this an ''approximating sequence'' for $ f $), in which case the scalar-valued function $ \| f(\bullet) \|_{X}: E \to [0,\infty) $ is $ \mathfrak{B} $-measurable. |
− | |||
− | |||
− | |||
− | A function $ | + | A function $ f \in \mathcal{F} $ is called ''Bochner-integrable'' if and only if it is strongly measurable and for some sequence $ (s_{n})_{n \in \mathbb{N}} $ of simple functions, we have |
$$ | $$ | ||
− | \lim_{n \to \infty} \int_{E} \| | + | \lim_{n \to \infty} \int_{E} \| f(t) - {s_{n}}(t) \|_{X} ~ \mathrm{d}{\mu(t)} = 0, |
$$ | $$ | ||
− | + | in which case we define the Bochner-integral of $ f $ over a $ \mathfrak{B} $-measurable subset $ B $ of $ E $ by | |
$$ | $$ | ||
− | \int_{B} | + | \int_{B} f ~ \mathrm{d}{\mu} \stackrel{\text{df}}{=} \lim_{n \to \infty} \int_{E} \chi_{B} \cdot s_{n} ~ \mathrm{d}{\mu}. |
$$ | $$ | ||
− | + | This limit is taken with respect to the norm-topology on $ X $. It exists and is independent of the choice of the sequence $ (s_{n})_{n \in \mathbb{N}} $. | |
− | '''Criterion for Bochner-integrability:''' For a strongly | + | '''Criterion for Bochner-integrability:''' For a (strongly measurable) function $ f \in \mathcal{F} $ to be Bochner-integrable, it is necessary and sufficient for its pointwise-norm to be integrable, i.e., |
$$ | $$ | ||
− | \int_{E} \| | + | \int_{E} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)} < \infty. |
$$ | $$ | ||
− | The set of Bochner-integrable functions | + | The set of Bochner-integrable functions is a vector subspace $ \mathcal{L} $ of $ \mathcal{F} $, and the Bochner-integral is a linear operator from $ \mathcal{L} $ to $ X $. |
'''Properties of Bochner-integrals:''' | '''Properties of Bochner-integrals:''' | ||
− | 1) $ \displaystyle \left\| \int_{B} | + | (1) $ \displaystyle \left\| \int_{B} f ~ \mathrm{d}{\mu} \right\|_{X} \leq \int_{B} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)} $ for every $ f \in \mathcal{L} $ and $ B \in \mathfrak{B} $. |
− | 2) | + | (2) The Bochner integral for a fixed $ f \in \mathcal{L} $ is a $ \sigma $-additive and $ \mu $-absolutely continuous set-function on $ \mathfrak{B} $, i.e., |
$$ | $$ | ||
− | \int_{\bigcup_{i = 1}^{\infty} B_{i}} | + | \int_{\bigcup_{i = 1}^{\infty} B_{i}} f ~ \mathrm{d}{\mu} = \sum_{i = 1}^{\infty} \int_{B_{i}} f ~ \mathrm{d}{\mu} |
$$ | $$ | ||
− | + | for every sequence $ (B_{i})_{i \in \mathbb{N}} $ of pairwise-disjoint $ \mathfrak{B} $-measurable subsets of $ E $, each with finite $ \mu $-measure, and | |
− | |||
− | |||
$$ | $$ | ||
− | + | \forall \epsilon > 0, ~ \exists \delta > 0, ~ \forall B \in \mathfrak{B}: \quad | |
− | \ | + | \mu(B) < \delta \quad \Longrightarrow \quad \left\| \int_{B} f ~ \mathrm{d}{\mu} \right\|_{X} < \epsilon. |
$$ | $$ | ||
− | 4) The space $ \mathcal{L} $ is | + | (3) If |
+ | * $ (f_{n})_{n \in \mathbb{N}} $ is a sequence in $ \mathcal{L} $ that converges pointwise almost-everywhere on $ B \in \mathfrak{B} $ to some $ f \in \mathcal{F} $, | ||
+ | * $ \| {f_{n}}(\bullet) \|_{X} \leq g $ pointwise almost-everywhere on $ B $ for some $ \mathfrak{B} $-measurable function $ g: E \to [0,\infty) $, and | ||
+ | * $ \displaystyle \int_{B} g ~ \mathrm{d}{\mu} < \infty $, | ||
+ | then $ f \in \mathcal{L} $ and $ \displaystyle \lim_{n \to \infty} \int_{B} f_{n} ~ \mathrm{d}{\mu} = \int_{B} f ~ \mathrm{d}{\mu} $. | ||
+ | |||
+ | (4) The vector space $ \mathcal{L} $ is [[Convergence in norm|complete]] with respect to the norm $ \| \bullet \|_{\mathcal{L}} $ defined by | ||
$$ | $$ | ||
− | \| | + | \forall f \in \mathcal{L}: \quad |
+ | \| f \|_{\mathcal{L}} \stackrel{\text{df}}{=} \int_{E} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)}. | ||
$$ | $$ | ||
− | 5) If $ T $ is a closed linear operator from a Banach space $ X $ to another $ Y $, and if | + | (5) If $ T $ is a closed linear operator from a Banach space $ X $ to another $ Y $, and if $ f \in \mathcal{L}(X;E,\mathfrak{B},\mu) $ and $ T \circ f \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $, then |
− | $ | ||
− | |||
− | T \circ | ||
− | |||
− | then | ||
$$ | $$ | ||
\forall B \in \mathfrak{B}: \quad | \forall B \in \mathfrak{B}: \quad | ||
− | \int_{B} T | + | \int_{B} T \circ f ~ \mathrm{d}{\mu} = T \! \left( \int_{B} f ~ \mathrm{d}{\mu} \right). |
$$ | $$ | ||
− | If $ T $ is bounded, then the condition | + | If $ T $ is bounded, then the condition $ T \circ f \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $ is automatically fulfilled ([[#References|[3]]]–[[#References|[5]]]). |
− | $ | ||
− | T \circ | ||
− | |||
− | is automatically fulfilled ([[#References|[3]]]–[[#References|[5]]]). | ||
− | The Bochner integral was introduced by S. Bochner [[#References|[1]]]. Equivalent definitions were given by T. Hildebrandt [[#References|[2]]] and N. Dunford (the $ D_{0} $-integral). | + | The Bochner-integral was introduced by S. Bochner in [[#References|[1]]]. Equivalent definitions were given by T. Hildebrandt in [[#References|[2]]] and by N. Dunford (the $ D_{0} $-integral). |
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind” ''Fund. Math.'', '''20''' (1933), pp. 262–276.</TD></TR> | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind”, ''Fund. Math.'', '''20''' (1933), pp. 262–276.</TD></TR> |
− | <TR><TD valign="top">[2]</TD> <TD valign="top"> T.H. Hildebrandt, “Integration in abstract spaces” ''Bull. Amer. Math. Soc.'', '''59''' (1953), pp. 111–139.</TD></TR> | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> T.H. Hildebrandt, “Integration in abstract spaces”, ''Bull. Amer. Math. Soc.'', '''59''' (1953), pp. 111–139.</TD></TR> |
<TR><TD valign="top">[3]</TD> <TD valign="top"> K. Yosida, “Functional analysis”, Springer (1980), Ch. 8, §1.</TD></TR> | <TR><TD valign="top">[3]</TD> <TD valign="top"> K. Yosida, “Functional analysis”, Springer (1980), Ch. 8, §1.</TD></TR> | ||
− | <TR><TD valign="top">[4]</TD> <TD valign="top"> E. Hille | + | <TR><TD valign="top">[4]</TD> <TD valign="top"> E. Hille and R.S. Phillips, “Functional analysis and semi-groups”, Amer. Math. Soc. (1957).</TD></TR> |
− | <TR><TD valign="top">[5]</TD> <TD valign="top"> N. Dunford | + | <TR><TD valign="top">[5]</TD> <TD valign="top"> N. Dunford and J.T. Schwartz, “Linear operators. General theory”, '''1''', Interscience (1958).</TD></TR> |
</table> | </table> | ||
====Comments==== | ====Comments==== | ||
− | A simple function is also called a step function. A good recent textbook on integrals with values in a Banach space is [[#References|[a1]]]; [[#References|[a4]]] is specifically about the Bochner-integral. | + | |
+ | A simple function is also called a ''step-function''. A good recent textbook on integrals with values in a Banach space is [[#References|[a1]]]; [[#References|[a4]]] is specifically about the Bochner-integral. | ||
====References==== | ====References==== | ||
+ | |||
<table> | <table> | ||
− | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Diestel | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Diestel and J.J. Uhl, Jr., “Vector measures”, ''Math. Surveys'', '''15''', Amer. Math. Soc. (1977).</TD></TR> |
<TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, “Integration”, North-Holland (1967).</TD></TR> | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, “Integration”, North-Holland (1967).</TD></TR> | ||
<TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Bourbaki, “Elements of mathematics. Integration”, Addison-Wesley (1975), Ch. 6, 7, 8 (translated from French).</TD></TR> | <TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Bourbaki, “Elements of mathematics. Integration”, Addison-Wesley (1975), Ch. 6, 7, 8 (translated from French).</TD></TR> | ||
<TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Mikusiński, “The Bochner integral”, Acad. Press (1978).</TD></TR> | <TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Mikusiński, “The Bochner integral”, Acad. Press (1978).</TD></TR> | ||
</table> | </table> |
Latest revision as of 21:30, 26 April 2016
An integral of a function with values in a Banach space with respect to a scalar-valued measure. It belongs to the family of so-called strong integrals.
Let $ \mathcal{F}(X;E,\mathfrak{B},\mu) $ denote the vector space (over $ \mathbb{R} $ or $ \mathbb{C} $) of functions $ f: E \to X $, where:
- $ X $ is a Banach space (resp. real or complex).
- $ (E,\mathfrak{B},\mu) $ is a measure space, with $ \mu $ a $ \sigma $-additive scalar-valued measure on a $ \sigma $-algebra $ \mathfrak{B} $ on $ E $.
A function $ s \in \mathcal{F} $ is called simple if and only if for some $ n \in \mathbb{N} $, there exist distinct vectors $ x_{1},\ldots,x_{n} \in X $ and pairwise-disjoint $ \mathfrak{B} $-measurable subsets $ B_{1},\ldots,B_{n} $ of $ E $, each with finite $ \mu $-measure, such that $ \displaystyle s(t) = \sum_{i = 1}^{n} {\chi_{B_{i}}}(t) \cdot x_{i} $ for every $ t \in E $, in which case we define the Bochner-integral of $ s $ by $$ \int_{E} s ~ \mathrm{d}{\mu} \stackrel{\text{df}}{=} \sum_{i = 1}^{n} \mu(B_{i}) \cdot x_{i}. $$
A function $ f \in \mathcal{F} $ is called strongly measurable if and only if there exists a sequence $ (s_{n})_{n \in \mathbb{N}} $ of simple functions such that $ \displaystyle \lim_{n \to \infty} \| f(\bullet) - {s_{n}}(\bullet) \|_{X} = 0 $ pointwise almost-everywhere on $ E $ (we call this an approximating sequence for $ f $), in which case the scalar-valued function $ \| f(\bullet) \|_{X}: E \to [0,\infty) $ is $ \mathfrak{B} $-measurable.
A function $ f \in \mathcal{F} $ is called Bochner-integrable if and only if it is strongly measurable and for some sequence $ (s_{n})_{n \in \mathbb{N}} $ of simple functions, we have $$ \lim_{n \to \infty} \int_{E} \| f(t) - {s_{n}}(t) \|_{X} ~ \mathrm{d}{\mu(t)} = 0, $$ in which case we define the Bochner-integral of $ f $ over a $ \mathfrak{B} $-measurable subset $ B $ of $ E $ by $$ \int_{B} f ~ \mathrm{d}{\mu} \stackrel{\text{df}}{=} \lim_{n \to \infty} \int_{E} \chi_{B} \cdot s_{n} ~ \mathrm{d}{\mu}. $$ This limit is taken with respect to the norm-topology on $ X $. It exists and is independent of the choice of the sequence $ (s_{n})_{n \in \mathbb{N}} $.
Criterion for Bochner-integrability: For a (strongly measurable) function $ f \in \mathcal{F} $ to be Bochner-integrable, it is necessary and sufficient for its pointwise-norm to be integrable, i.e., $$ \int_{E} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)} < \infty. $$
The set of Bochner-integrable functions is a vector subspace $ \mathcal{L} $ of $ \mathcal{F} $, and the Bochner-integral is a linear operator from $ \mathcal{L} $ to $ X $.
Properties of Bochner-integrals:
(1) $ \displaystyle \left\| \int_{B} f ~ \mathrm{d}{\mu} \right\|_{X} \leq \int_{B} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)} $ for every $ f \in \mathcal{L} $ and $ B \in \mathfrak{B} $.
(2) The Bochner integral for a fixed $ f \in \mathcal{L} $ is a $ \sigma $-additive and $ \mu $-absolutely continuous set-function on $ \mathfrak{B} $, i.e., $$ \int_{\bigcup_{i = 1}^{\infty} B_{i}} f ~ \mathrm{d}{\mu} = \sum_{i = 1}^{\infty} \int_{B_{i}} f ~ \mathrm{d}{\mu} $$ for every sequence $ (B_{i})_{i \in \mathbb{N}} $ of pairwise-disjoint $ \mathfrak{B} $-measurable subsets of $ E $, each with finite $ \mu $-measure, and $$ \forall \epsilon > 0, ~ \exists \delta > 0, ~ \forall B \in \mathfrak{B}: \quad \mu(B) < \delta \quad \Longrightarrow \quad \left\| \int_{B} f ~ \mathrm{d}{\mu} \right\|_{X} < \epsilon. $$
(3) If
- $ (f_{n})_{n \in \mathbb{N}} $ is a sequence in $ \mathcal{L} $ that converges pointwise almost-everywhere on $ B \in \mathfrak{B} $ to some $ f \in \mathcal{F} $,
- $ \| {f_{n}}(\bullet) \|_{X} \leq g $ pointwise almost-everywhere on $ B $ for some $ \mathfrak{B} $-measurable function $ g: E \to [0,\infty) $, and
- $ \displaystyle \int_{B} g ~ \mathrm{d}{\mu} < \infty $,
then $ f \in \mathcal{L} $ and $ \displaystyle \lim_{n \to \infty} \int_{B} f_{n} ~ \mathrm{d}{\mu} = \int_{B} f ~ \mathrm{d}{\mu} $.
(4) The vector space $ \mathcal{L} $ is complete with respect to the norm $ \| \bullet \|_{\mathcal{L}} $ defined by $$ \forall f \in \mathcal{L}: \quad \| f \|_{\mathcal{L}} \stackrel{\text{df}}{=} \int_{E} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)}. $$
(5) If $ T $ is a closed linear operator from a Banach space $ X $ to another $ Y $, and if $ f \in \mathcal{L}(X;E,\mathfrak{B},\mu) $ and $ T \circ f \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $, then $$ \forall B \in \mathfrak{B}: \quad \int_{B} T \circ f ~ \mathrm{d}{\mu} = T \! \left( \int_{B} f ~ \mathrm{d}{\mu} \right). $$ If $ T $ is bounded, then the condition $ T \circ f \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $ is automatically fulfilled ([3]–[5]).
The Bochner-integral was introduced by S. Bochner in [1]. Equivalent definitions were given by T. Hildebrandt in [2] and by N. Dunford (the $ D_{0} $-integral).
References
[1] | S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind”, Fund. Math., 20 (1933), pp. 262–276. |
[2] | T.H. Hildebrandt, “Integration in abstract spaces”, Bull. Amer. Math. Soc., 59 (1953), pp. 111–139. |
[3] | K. Yosida, “Functional analysis”, Springer (1980), Ch. 8, §1. |
[4] | E. Hille and R.S. Phillips, “Functional analysis and semi-groups”, Amer. Math. Soc. (1957). |
[5] | N. Dunford and J.T. Schwartz, “Linear operators. General theory”, 1, Interscience (1958). |
Comments
A simple function is also called a step-function. A good recent textbook on integrals with values in a Banach space is [a1]; [a4] is specifically about the Bochner-integral.
References
[a1] | J. Diestel and J.J. Uhl, Jr., “Vector measures”, Math. Surveys, 15, Amer. Math. Soc. (1977). |
[a2] | A.C. Zaanen, “Integration”, North-Holland (1967). |
[a3] | N. Bourbaki, “Elements of mathematics. Integration”, Addison-Wesley (1975), Ch. 6, 7, 8 (translated from French). |
[a4] | J. Mikusiński, “The Bochner integral”, Acad. Press (1978). |
Bochner integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bochner_integral&oldid=38644