Namespaces
Variants
Actions

Difference between revisions of "User talk:WikiSysop"

From Encyclopedia of Mathematics
Jump to: navigation, search
m
 
(20 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
Test
 +
 +
==Test external Link 29th January 2015==
 +
123
 +
[http://www.math.uni-bielefeld.de/~rehmann/xyzabc Test Link2]
 +
 +
[http://www.ams.org/publications/math-reviews/math-reviews URL on white list]
 +
 +
[http://www.xmachina.de xmachina]
 +
 +
[http://spon.de]
 +
 +
[http://springer.de]
  
 
==Test Copy&Paste HTML==
 
==Test Copy&Paste HTML==
 
[[Test-copy-paste]]
 
[[Test-copy-paste]]
 
+
Test
 
Test
 
Test
 
==Test Asymptote==
 
==Test Asymptote==
===Tests November 17th===
+
===Test January  12th 2015===
 +
====Case 1 modified====
 +
<asy>
 +
size(0,300);
 +
pair z1=(-1,0);
 +
pair z2=(1,0);
 +
real r=1.5;
 +
path c1=circle(z1,r);
 +
path c2=circle(z2,r);
 +
fill(c1, lightred);
 +
fill(c2, lightgreen);
 +
picture intersection;
 +
fill(intersection,c1,lightred+lightgreen);
 +
clip(intersection,c2);
 +
add(intersection);
 +
draw(c1);
 +
draw(c2);
 +
label("$A$",z1);
 +
label("$B$",z2);
 +
path g=(0,-2)--(0,-0.25);
 +
draw(Label("$A\cap B$",0),g,Arrow);
 +
</asy>
 +
===Tests November 1th===
 +
====Case 1 modified====
 +
<asy>
 +
size(0,200);
 +
pair z1=(-1,0);
 +
pair z2=(1,0);
 +
real r=1.5;
 +
path c1=circle(z1,r);
 +
path c2=circle(z2,r);
 +
fill(c1, lightred);
 +
fill(c2, lightgreen);
 +
picture intersection;
 +
fill(intersection,c1,lightred+lightgreen);
 +
clip(intersection,c2);
 +
add(intersection);
 +
draw(c1);
 +
draw(c2);
 +
label("$A$",z1);
 +
label("$B$",z2);
 +
path g=(0,-2)--(0,-0.25);
 +
draw(Label("$A\cap B$",0),g,Arrow);
 +
</asy>
 
====Case 1====
 
====Case 1====
 
<asy>
 
<asy>
Line 27: Line 83:
 
draw(Label("$A\cap B$",0),g,Arrow);
 
draw(Label("$A\cap B$",0),g,Arrow);
 
</asy>
 
</asy>
====Case 2====
+
 
 +
===Tests November 17th===
 +
====Case 1====
 
<asy>
 
<asy>
int M=30;
+
size(0,400);
real a = 0.07;
+
pair z1=(-1,0);
real a0 = 0.15;
+
pair z2=(1,0);
real b = 0.02;
+
real r=1.5;
real c = 0.6;
+
path c1=circle(z1,r);
real d = -0.2;
+
path c2=circle(z2,r);
real x0 = -0.22;
+
fill(c1, lightred);
real u = 0.2;
+
fill(c2, lightgreen);
real v = 0.32;
+
picture intersection;
 
+
fill(intersection,c1,lightred+lightgreen);
draw ((-0.7,0)--(0.3,0),Arrow);
+
clip(intersection,c2);
draw ((x0,-0.02)--(x0,1.2),Arrow);
+
add(intersection);
 
+
draw(c1);
label("$x$",(0.3,0),E);
+
draw(c2);
label(rotate(90)*"$y$",(x0,1.2),N);
+
label("$A$",z1);
label("$x_0$",(x0,-0.02),S);
+
label("$B$",z2);
 
+
path g=(0,-2)--(0,-0.25);
guide g1; guide g2; guide g3; guide g4; guide g5;
+
draw(Label("$A\cap B$",0),g,Arrow);
for (int k=floor(-0.7M); k<floor(0.3M); ++k) {
+
</asy>
  real x = k/M;
 
  real z = 1+3*x^2;
 
  real y1 = 1/(z-2a-a0)+2b*(1+c*x)+d;
 
  real y2 = 1/(z-a-a0)+b*(1+c*x)+d;
 
  real y3 = 1/(z-a0)+d;
 
  real y4 = 1/(z+a-a0)-b*(1+c*x)+d;
 
  real y5 = 1/(z+2a-a0)-2b*(1+c*x)+d;
 
  g1=g1..(x,y1);
 
  g2=g2..(x,y2);
 
  g3=g3..(x,y3);
 
  g4=g4..(x,y4);
 
  g5=g5..(x,y5);
 
}
 
draw(g1,defaultpen+1);
 
draw(g2,defaultpen+1);
 
draw(g3,defaultpen+1);
 
draw(g4,defaultpen+1);
 
draw(g5,defaultpen+1);
 
 
 
real x = x0;
 
real z = 1+3*x^2;
 
real y1 = 1/(z-2a-a0)+2b*(1+c*x)+d;
 
real y2 = 1/(z-a-a0)+b*(1+c*x)+d;
 
real y3 = 1/(z-a0)+d;
 
real y4 = 1/(z+a-a0)-b*(1+c*x)+d;
 
real y5 = 1/(z+2a-a0)-2b*(1+c*x)+d;
 
path g = (x,y1)..(x-u,y2)..(x-v,y3)..(x-u,y4)..(x,y5);
 
draw( g );
 
 
 
pair w = (0.1,-0.6);
 
 
 
pair p = point(g,0.5);
 
dot ( p );
 
draw( p--p-0.5w, dashed );
 
label(rotate(90)*"$\Psi_{x_0}(y)$",p-0.5w,N);
 
 
 
draw( (x,y2)--(x-u,y2) );
 
draw( (x,y3)--(x-v,y3) );
 
draw( (x,y4)--(x-u,y4) );
 
 
 
draw( (x-u,y2+0.05)--(x-u,y4-0.05) );
 
draw( (x-v,y2+0.1)--(x-v,y4-0.1) );
 
 
 
real x = -0.15;
 
real z = 1+3*x^2;
 
real y4 = 1/(z+a-a0)-b*(1+c*x)+d;
 
dot( (x,y4) );
 
draw( (x,y4)--(x,y4)+w, dashed );
 
label("$\scriptstyle \underline f_\alpha(x)$",(x,y4)+w,SE);
 
  
real x = -0.05;
 
real z = 1+3*x^2;
 
real y3 = 1/(z-a0)+d;
 
dot( (x,y3) );
 
draw( (x,y3)--(x,y3)+w, dashed );
 
label("$\scriptstyle \underline f_1(x)=\overline f_1(x)$",(x,y3)+w,SE);
 
 
real x = 0.05;
 
real z = 1+3*x^2;
 
real y2 = 1/(z-a-a0)+b*(1+c*x)+d;
 
dot( (x,y2) );
 
draw( (x,y2)--(x,y2)+w, dashed );
 
label("$\scriptstyle \overline f_\alpha(x)$",(x,y2)+w,SE);
 
 
label("\small Fig. a4: Non-precise function",(x0,-0.2));
 
 
shipout(scale(250,120)*currentpicture);
 
</asy>
 
 
===Tests November 4th===
 
===Tests November 4th===
 
====Case 1====
 
====Case 1====
Line 456: Line 447:
  
 
.
 
.
 +
==Legacy Images==
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055130/k0551304.png" />

Latest revision as of 09:10, 12 September 2017

Test

Test external Link 29th January 2015

123 Test Link2

URL on white list

xmachina

[1]

[2]

Test Copy&Paste HTML

Test-copy-paste Test Test

Test Asymptote

Test January 12th 2015

Case 1 modified

Tests November 1th

Case 1 modified

Case 1

Tests November 17th

Case 1

Tests November 4th

Case 1

Case 2

Case 3

Tests October 27th

Case 1

Case 2

Case 3

Case 4

Case 5

[asy] pair A,B,C,X,Y,Z; A = (0,0); B = (1,0); C = (0.3,0.8); draw(A--B--C--A); X = (B+C)/2; Y = (A+C)/2; Z = (A+B)/2; draw(A--X, red); draw(B--Y,red); draw(C--Z,red); [/asy]

Previous tests





Test Cite Extension

Example: Cite-Extension

Test MathJax

\begin{align} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{align}


\[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]


Some Text \( \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \)


Some Text \[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]

Pages A-Z

Alphabetically ordered index of all pages

Recent Changes

List of previous changes on EOM

.

Legacy Images


How to Cite This Entry:
WikiSysop. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=WikiSysop&oldid=34563

Test January 12th 2015