|
|
(7 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ''$\Gamma$-function'' | + | Post $\TeX$ remarks. |
| + | * Added links to [[Bohr-Mollerup theorem|Bohr–Mollerup]] |
| + | * Expanded the reference to Artin's monograph |
| + | * Renamed the second integration contour from $C^*$ to $C'$ |
| + | * Used $\gamma$ for the Euler constant rather than $C$ (which also clashed with the notation for the first integration contour mentioned) |
| + | * Redrew all figures |
| + | --[[User:Jjg|Jjg]] 19:58, 27 April 2012 (CEST) |
| | | |
− | {{MSC|}}
| + | : I have also used $\gamma$ for [[Euler constant]], since this is the modern convention. [[User:TBloom|TBloom]] 22:08, 27 April 2012 (CEST) |
− | {{TEX|done}}
| + | :: Good idea, I have never seen anything but $\gamma$ in this context. According to this [http://mathworld.wolfram.com/Euler-MascheroniConstant.html article] on MathWorld, $C$ was used by Euler (1735), $\gamma$ by Mascheroni (1790). So a not-so-modern modern convention :-) --[[User:Jjg|Jjg]] 22:34, 27 April 2012 (CEST) |
− | $
| |
− | \newcommand{\abs}[1]{\left|#1\right|}
| |
− | \newcommand{\Re}{\mathop{\mathrm{Re}}}
| |
− | \newcommand{\Im}{\mathop{\mathrm{Im}}}
| |
− | $
| |
− | | |
− | A transcendental function $\Gamma(z)$ that extends the values of the factorial $z!$ to any complex number $z$. It was introduced in 1729 by L. Euler in a letter to Ch. Goldbach, using the infinite product
| |
− | $$
| |
− | \Gamma(z) =
| |
− | \lim_{n\rightarrow\infty}\frac{n!n^z}{z(z+1)\ldots(z+n)} =
| |
− | \lim_{n\rightarrow\infty}\frac{n^z}{z(1+z/2)\ldots(1+z/n)},
| |
− | $$
| |
− | which was used by L. Euler to obtain the integral representation (Euler integral of the second kind, cf. [[Euler integrals]])
| |
− | $$
| |
− | \Gamma(z) = \int_0^\infty x^{z-1}e^{-x} \rd x,
| |
− | $$
| |
− | which is valid for $\Re z > 0$. The multi-valuedness of the function $x^{z-1}$ is eliminated by the formula $x^{z-1}=e^{(z-1)\ln x}$ with a real $\ln x$. The symbol $\Gamma(z)$ and the name gamma-function were proposed in 1814 by A.M. Legendre.
| |
− | | |
− | If $\Re z < 0$ and $-k-1 < \Re z < -k$, $k=0,1,\ldots$, the gamma-function may be represented by the Cauchy–Saalschütz integral:
| |
− | $$
| |
− | \Gamma(z) = \int_0^\infty x^{z-1}
| |
− | \left(
| |
− | e^{-x} - \sum_{m=0}^k (-1)^m \frac{x^m}{m!}
| |
− | \right) \rd x.
| |
− | $$
| |
− | In the entire plane punctured at the points $z=0,-1,\ldots $, the gamma-function satisfies a Hankel integral representation:
| |
− | $$
| |
− | \Gamma(z) = \frac{1}{e^{2\pi iz} - 1} \int_C s^{z-1}e^{-s} \rd s,
| |
− | $$
| |
− | where $s^{z-1} = e^{(z-1)\ln s}$ and $\ln s$ is the branch of the logarithm for which $0 < \arg\ln s < 2\pi$; the contour $C$ is represented in Fig. a. [FIXME] It is seen from the Hankel representation that $\Gamma(z)$ is a [[Meromorphic function|meromorphic function]]. At the points $z_n = -n$, $n=0,1,\ldots$ it has simple poles with residues $(-1)^n/n!$.
| |
− | | |
− | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310a.gif" />
| |
− | | |
− | Figure: g043310a
| |
− | | |
− | ==Fundamental relations and properties of the gamma-function.==
| |
− | | |
− | 1) Euler's functional equation:
| |
− | $$
| |
− | z\Gamma(z) = \Gamma(z+1),
| |
− | $$
| |
− | or
| |
− | $$
| |
− | \Gamma(z) = \frac{1}{z\ldots(z+n)}\Gamma(z+n+1);
| |
− | $$
| |
− | $\Gamma(1)=1$, $\Gamma(n+1) = n!$ if $n$ is an integer; it is assumed that $0! = \Gamma(1) = 1$.
| |
− | | |
− | 2) Euler's completion formula:
| |
− | $$
| |
− | \Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}.
| |
− | $$
| |
− | In particular, $\Gamma(1/2)=\sqrt{\pi}$;
| |
− | $$
| |
− | \Gamma\left(n+\frac{1}{2}\right) =
| |
− | \frac{1.3\ldots(2n-1)}{2^n}\sqrt{\pi}
| |
− | $$
| |
− | if $n>0$ is an integer;
| |
− | $$
| |
− | \abs{\Gamma\left(\frac{1}{2} + iy\right)}^2 =
| |
− | \frac{\pi}{\cosh y\pi},
| |
− | $$
| |
− | where $y$ is real.
| |
− | | |
− | 3) Gauss' multiplication formula:
| |
− | $$
| |
− | \prod_{k=0}^{m-1} \Gamma\left( z + \frac{k}{m} \right) =
| |
− | (2\pi)^{(m-1)/2}m^{(1/2)-mz}\Gamma(mz), \quad m = 2,3,\ldots
| |
− | $$
| |
− | If $m=2$, this is the Legendre duplication formula.
| |
− | | |
− | 4) If $\Re z \geq \delta > 0$ or $\abs{\Im z} \geq \delta > 0$, then $\ln\Gamma(z)$ can be asymptotically expanded into the Stirling series:
| |
− | $$
| |
− | \ln\Gamma(z)
| |
− | = \left(z-\frac{1}{2}\right)\ln z
| |
− | - z
| |
− | + \frac{1}{2}\ln 2\pi
| |
− | + \sum_{n=1}^m \frac{B_{2n}}{2n(2n-1)z^{2n-1}}
| |
− | + O\bigl(z^{-2m-1}\bigr), \quad m = 1,2,\ldots,
| |
− | $$
| |
− | where $B_{2n}$ are the [[Bernoulli numbers]]. It implies the equality
| |
− | $$
| |
− | \Gamma(z) = \sqrt{2\pi} z^{z-1/2} z^{-z}
| |
− | \left(
| |
− | 1
| |
− | + \frac{1}{12}z^{-1}
| |
− | + \frac{1}{288}z^{-2}
| |
− | - \frac{139}{51840}z^{-3}
| |
− | - \frac{571}{2488320}z^{-4}
| |
− | + O\bigl(z^{-5}\bigr)
| |
− | \right).
| |
− | $$
| |
− | In particular,
| |
− | $$
| |
− | \Gamma(1+x) = \sqrt{2\pi} x^{x+1/2} e^{-x + \theta/12x},
| |
− | \quad 0 < \theta < 1.
| |
− | $$
| |
− | More accurate is Sonin's formula {{Cite|So}}:
| |
− | $$
| |
− | \Gamma(1+x) = \sqrt{2\pi} x^{x+1/2} e^{-x + 1/12(x+\theta)},
| |
− | \quad 0 < \theta < 1/2.
| |
− | $$
| |
− | | |
− | 5) In the real domain, $\Gamma(x) > 0$ for $x > 0$ and it assumes the sign $(-1)^{k+1}$ on the segments $-k-1 < x < -k$, $k = 0,1,\ldots$ (Fig. b).
| |
− | | |
− | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310b.gif" />
| |
− | | |
− | Figure: g043310b
| |
− | | |
− | The graph of the function $ $.
| |
− | | |
− | For all real $x$ the inequality
| |
− | $$
| |
− | \Gamma\Gamma^{\prime\prime} > \bigl(\Gamma^\prime\bigr)^2 \geq 0
| |
− | $$
| |
− | is valid, i.e. all branches of both $\abs{\Gamma(x)}$ and $\ln\abs{\Gamma(x)}$ are convex functions. The property of logarithmic convexity defines the gamma-function among all solutions of the functional equation
| |
− | $$
| |
− | \Gamma(1+x) = x\Gamma(x)
| |
− | $$
| |
− | up to a constant factor (see also the
| |
− | [[Bohr-Mollerup theorem|Bohr–Mollerup theorem]]). | |
− | | |
− | For positive values of $x$ the gamma-function has a unique minimum at $x=1.4616321\ldots$ equal to $0.885603\ldots$. The local minima of the function $\abs{\Gamma(x)}$ form a sequence tending to zero as $x\rightarrow -\infty$.
| |
− | | |
− | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310c.gif" />
| |
− | | |
− | Figure: g043310c
| |
− | | |
− | The graph of the function $ $.
| |
− | | |
− | 6) In the complex domain, if $\Re z > 0$, the gamma-function rapidly decreases as $\abs{\Im z} \rightarrow \infty$,
| |
− | $$
| |
− | \lim_{\abs{\Im z} \rightarrow \infty}
| |
− | \abs{\Gamma(z)}\abs{\Im z}^{(1/2)-\Re z}e^{\pi\abs{\Im z}/2} =
| |
− | \sqrt{2\pi}.
| |
− | $$
| |
− | | |
− | 7) The function $1/\Gamma(z)$ (Fig. c) is an entire function of order one and of maximal type; asymptotically, as $r \rightarrow \infty$,
| |
− | $$
| |
− | \ln M(r) \sim r \ln r,
| |
− | $$
| |
− | where
| |
− | $$
| |
− | M(r) = \max_{\abs{z} = r} \frac{1}{\abs{\Gamma(z)}}.
| |
− | $$
| |
− | It can be represented by the infinite Weierstrass product:
| |
− | $$
| |
− | \frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^\infty
| |
− | \left(\left( 1 + \frac{z}{n} \right) e^{-z/n} \right),
| |
− | $$
| |
− | which converges absolutely and uniformly on any compact set in the complex plane ($\gamma$ is the [[Euler constant]]). A Hankel integral representation is valid:
| |
− | $$
| |
− | \frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{C'} e^s s^{-z} \rd s,
| |
− | $$
| |
− | where the contour $C'$ is shown in Fig. d.
| |
− | | |
− | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310d.gif" />
| |
− | | |
− | Figure: g043310d
| |
− | | |
− | $ $
| |
− | | |
− | G.F. Voronoi {{Cite|Vo}} obtained integral representations for powers of the gamma-function.
| |
− | | |
− | In applications, the so-called poly gamma-functions — $k$th derivatives of $\ln\Gamma(z)$ — are of importance. The function (Gauss' $\psi$-function)
| |
− | $$
| |
− | \psi(z) =
| |
− | \frac{\mathrm{d}}{\mathrm{d}z}\ln\Gamma(z) =
| |
− | \frac{\Gamma'(z)}{\Gamma(z)} =
| |
− | -\gamma + \sum_{n=0}^\infty \frac{z-1}{(n+1)(z+n)} =
| |
− | -\gamma + \int_0^1 \frac{1 - (1-t)^{z-1}}{t} \rd t
| |
− | $$
| |
− | is meromorphic, has simple poles at the points $z=0,-1,\ldots$ and satisfies the functional equation
| |
− | $$
| |
− | \psi(z+1) - \psi(z) = \frac{1}{z}.
| |
− | $$
| |
− | The representation of $\psi(z)$ for $\abs{z}<1$ yields the formula
| |
− | $$
| |
− | \ln\Gamma(1+z) =
| |
− | -\gamma z + \sum_{k=2}^\infty \frac{(-1)^k S_k}{k} z^k,
| |
− | $$
| |
− | where
| |
− | $$
| |
− | S_k = \sum_{n=1}^\infty n^{-k}.
| |
− | $$
| |
− | This formula may be used to compute $\Gamma(z)$ in a neighbourhood of the point $z=1$.
| |
− | | |
− | For other poly gamma-functions see {{Cite|BaEr}}. The [[Incomplete gamma-function|incomplete gamma-function]] is defined by the equation
| |
− | $$
| |
− | I(x,y) = \int_0^y e^{-t}t^{x-1} \rd t.
| |
− | $$
| |
− | The functions $\Gamma(z)$ and $\psi(z)$ are transcendental functions which do not satisfy any linear differential equation with rational coefficients (Hölder's theorem).
| |
− | | |
− | The exceptional importance of the gamma-function in mathematical analysis is due to the fact that it can be used to express a large number of definite integrals, infinite products and sums of series (see, for example, [[Beta-function]]). In addition, it is widely used in the theory of special functions (the [[Hypergeometric function|hypergeometric function]], of which the gamma-function is a limit case, [[Cylinder functions|cylinder functions]], etc.), in analytic number theory, etc.
| |
− | | |
− | ====References====
| |
− | | |
− | {|
| |
− | |-
| |
− | |valign="top"|{{Ref|An}}||valign="top"| A. Angot, "Compléments de mathématiques. A l'usage des ingénieurs de l'electrotechnique et des télécommunications", C.N.E.T. (1957)
| |
− | |-
| |
− | |valign="top"|{{Ref|BaEr}}||valign="top"| H. Bateman (ed.) A. Erdélyi (ed.), ''Higher transcendental functions'', '''1. The gamma function. The hypergeometric functions. Legendre functions''', McGraw-Hill (1953)
| |
− | |-
| |
− | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Elements of mathematics. Functions of a real variable", Addison-Wesley (1976) (Translated from French)
| |
− | |-
| |
− | |valign="top"|{{Ref|JaEm}}||valign="top"| E. Jahnke, F. Emde, "Tables of functions with formulae and curves", Dover, reprint (1945) (Translated from German)
| |
− | |-
| |
− | |valign="top"|{{Ref|Ni}}||valign="top"| N. Nielsen, "Handbuch der Theorie der Gammafunktion", Chelsea, reprint (1965)
| |
− | |-
| |
− | |valign="top"|{{Ref|So}}||valign="top"| N.Ya. Sonin, "Studies on cylinder functions and special polynomials", Moscow (1954) (In Russian)
| |
− | |-
| |
− | |valign="top"|{{Ref|Vo}}||valign="top"| G.F. Voronoi, "Studies of primitive parallelotopes", ''Collected works'', '''2''', Kiev (1952) pp. 239–368 (In Russian)
| |
− | |-
| |
− | |valign="top"|{{Ref|WhWa}}||valign="top"| E.T. Whittaker, G.N. Watson, "A course of modern analysis", Cambridge Univ. Press (1952)
| |
− | |-
| |
− | |}
| |
− | | |
− | | |
− | ====Comments====
| |
− | | |
− | For an approach to the gamma-function based on the [[Bohr-Mollerup theorem|Bohr–Mollerup]] characterization, see the short monograph by E. Artin {{Cite|Ar}}.
| |
− | | |
− | The $q$-analogue of the gamma-function is given by
| |
− | $$
| |
− | \Gamma_q(z) = (1-q)^{1-z}
| |
− | \prod_{k=1}^\infty \frac{1-q^{k+1}}{1-q^{k+z}}, \quad
| |
− | z \neq 0,-1,-2,\ldots;\quad 0<q<1,
| |
− | $$
| |
− | cf. {{Cite|As}}. Its origin goes back to E. Heine (1847) and D. Jackson (1904).
| |
− | | |
− | ====References====
| |
− | | |
− | {|
| |
− | |-
| |
− | |valign="top"|{{Ref|Ar}}||valign="top"| E. Artin, "The gamma function", Holt, Rinehart & Winston (1964)
| |
− | |-
| |
− | |valign="top"|{{Ref|As}}||valign="top"| R. Askey, "The $ $-Gamma and $ $-Beta functions" ''Appl. Anal.'', '''8''' (1978) pp. 125–141
| |
− | |-
| |
− | |}
| |