Namespaces
Variants
Actions

Difference between revisions of "Talk:Gamma-function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(copied to discussion for TeXing)
 
m
 
(34 intermediate revisions by 2 users not shown)
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433102.png" />-function''
+
Post $\TeX$ remarks.
 +
* Added links to [[Bohr-Mollerup theorem|Bohr–Mollerup]]
 +
* Expanded the reference to Artin's monograph
 +
* Renamed the second integration contour from $C^*$ to $C'$
 +
* Used $\gamma$ for the Euler constant rather than $C$ (which also clashed with the notation for the first integration contour mentioned)
 +
* Redrew all figures
 +
--[[User:Jjg|Jjg]] 19:58, 27 April 2012 (CEST)
  
A  transcendental function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433103.png" /> that extends the  values of the factorial <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433104.png" /> to any complex  number <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433105.png" />. It was introduced  in 1729 by L. Euler in a letter to Ch. Goldbach, using the infinite  product
+
: I have also used $\gamma$ for [[Euler constant]], since this is the modern convention. [[User:TBloom|TBloom]] 22:08, 27 April 2012 (CEST)
 
+
:: Good idea, I have never seen anything but $\gamma$ in this context. According to this [http://mathworld.wolfram.com/Euler-MascheroniConstant.html article] on MathWorld, $C$ was used by Euler  (1735), $\gamma$ by Mascheroni (1790). So a not-so-modern modern convention :-) --[[User:Jjg|Jjg]] 22:34, 27 April 2012 (CEST)
<table class="eq" style="width:100%;">  <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433106.png"  /></td> </tr></table>
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433107.png"  /></td> </tr></table>
 
 
 
which was  used by L. Euler to obtain the integral representation (Euler integral  of the second kind, cf. [[Euler integrals|Euler integrals]])
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433108.png"  /></td> </tr></table>
 
 
 
which is  valid for <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433109.png" />. The  multi-valuedness of the function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331010.png" /> is eliminated by  the formula <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331011.png" /> with a real  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331012.png" />. The symbol  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331013.png" /> and the name  gamma-function were proposed in 1814 by A.M. Legendre.
 
 
 
If  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331014.png" /> and <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331015.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331016.png" /> the  gamma-function may be represented by the Cauchy–Saalschütz integral:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331017.png"  /></td> </tr></table>
 
 
 
In the  entire plane punctured at the points <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331018.png" /> the  gamma-function satisfies a Hankel integral representation:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331019.png"  /></td> </tr></table>
 
 
 
where  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331020.png" /> and <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331021.png" /> is the branch of  the logarithm for which <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331022.png" />; the contour  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331023.png" /> is represented in  Fig. a. It is seen from the Hankel representation that <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331024.png" /> is a  [[Meromorphic function|meromorphic function]]. At the points <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331025.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331026.png" /> it has simple  poles with residues <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331027.png" />.
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310a.gif" />
 
 
 
Figure: g043310a
 
 
 
==Fundamental relations and properties of the gamma-function.==
 
 
 
 
 
1) Euler's functional equation:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331028.png"  /></td> </tr></table>
 
 
 
or
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331029.png"  /></td> </tr></table>
 
 
 
<img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331030.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331031.png" /> if <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331032.png" /> is an integer; it  is assumed that <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331033.png" />.
 
 
 
2) Euler's completion formula:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331034.png"  /></td> </tr></table>
 
 
 
In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331035.png" />;
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331036.png"  /></td> </tr></table>
 
 
 
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331037.png" /> is an integer;
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331038.png"  /></td> </tr></table>
 
 
 
3) Gauss' multiplication formula:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331039.png"  /></td> </tr></table>
 
 
 
If <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331040.png" />, this is the Legendre duplication formula.
 
 
 
4) If <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331041.png" /> or <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331042.png" />, then <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331043.png" /> can be  asymptotically expanded into the Stirling series:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331044.png"  /></td> </tr></table>
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331045.png"  /></td> </tr></table>
 
 
 
where  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331046.png" /> are the  [[Bernoulli numbers|Bernoulli numbers]]. It implies the equality
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331047.png"  /></td> </tr></table>
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331048.png"  /></td> </tr></table>
 
 
 
In particular,
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331049.png"  /></td> </tr></table>
 
 
 
More accurate is Sonin's formula [[#References|[6]]]:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331050.png"  /></td> </tr></table>
 
 
 
5) In the  real domain, <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331051.png" /> for <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331052.png" /> and it assumes  the sign <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331053.png" /> on the segments  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331054.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331055.png" /> (Fig. b).
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310b.gif" />
 
 
 
Figure: g043310b
 
 
 
The graph of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331056.png" />.
 
 
 
For all real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331057.png" /> the inequality
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331058.png"  /></td> </tr></table>
 
 
 
is valid, i.e. all branches of both <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331059.png" /> and <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331060.png" /> are convex  functions. The property of logarithmic convexity defines the  gamma-function among all solutions of the functional equation
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331061.png"  /></td> </tr></table>
 
 
 
up to a constant factor.
 
 
 
For  positive values of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331062.png" /> the  gamma-function has a unique minimum at <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331063.png" /> equal  to <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331064.png" />. The local minima  of the function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331065.png" /> form a sequence  tending to zero as <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331066.png" />.
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310c.gif" />
 
 
 
Figure: g043310c
 
 
 
The graph of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331067.png" />.
 
 
 
6)  In the complex domain, if <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331068.png" />, the  gamma-function rapidly decreases as <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331069.png" />,
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331070.png"  /></td> </tr></table>
 
 
 
7) The  function <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331071.png" /> (Fig. c) is an  entire function of order one and of maximal type; asymptotically, as  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331072.png" />,
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331073.png"  /></td> </tr></table>
 
 
 
where
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331074.png"  /></td> </tr></table>
 
 
 
It can be represented by the infinite Weierstrass product:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331075.png"  /></td> </tr></table>
 
 
 
which  converges absolutely and uniformly on any compact set in the complex  plane (<img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331076.png" /> is the [[Euler  constant|Euler constant]]). A Hankel integral representation is valid:
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331077.png"  /></td> </tr></table>
 
 
 
where the  contour <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331078.png" /> is shown in Fig.  d.
 
 
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310d.gif" />
 
 
 
Figure: g043310d
 
 
 
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331079.png" />
 
 
 
G.F. Voronoi [[#References|[7]]] obtained integral representations for powers of the gamma-function.
 
 
 
In  applications, the so-called poly gamma-functions — <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331080.png" />-th derivatives of  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331081.png" /> — are of  importance. The function (Gauss' <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331083.png" />-function)
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331084.png"  /></td> </tr></table>
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331085.png"  /></td> </tr></table>
 
 
 
is  meromorphic, has simple poles at the points <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331086.png" /> and  satisfies the functional equation
 
 
 
<table class="eq"  style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331087.png"  /></td> </tr></table>
 
 
 
The  representation of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331088.png" /> for <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331089.png" /> yields the  formula
 
 
 
<table class="eq" style="width:100%;">  <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331090.png"  /></td> </tr></table>
 
 
 
where
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331091.png"  /></td> </tr></table>
 
 
 
This formula  may be used to compute <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331092.png" /> in a  neighbourhood of the point <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331093.png" />.
 
 
 
For  other poly gamma-functions see [[#References|[2]]]. The [[Incomplete  gamma-function|incomplete gamma-function]] is defined by the equation
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331094.png"  /></td> </tr></table>
 
 
 
The  functions <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331095.png" /> and <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331096.png" /> are  transcendental functions which do not satisfy any linear differential  equation with rational coefficients (Hölder's theorem).
 
 
 
The  exceptional importance of the gamma-function in mathematical analysis  is due to the fact that it can be used to express a large number of  definite integrals, infinite products and sums of series (see, for  example, [[Beta-function|Beta-function]]). In addition, it is widely  used in the theory of special functions (the [[Hypergeometric  function|hypergeometric function]], of which the gamma-function is a  limit case, [[Cylinder functions|cylinder functions]], etc.), in  analytic number theory, etc.
 
 
 
====References====
 
<table><TR><TD  valign="top">[1]</TD> <TD valign="top">  E.T. Whittaker,    G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)</TD></TR><TR><TD  valign="top">[2]</TD> <TD valign="top">  H. Bateman (ed.)   A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''1. The  gamma function. The hypergeometric functions. Legendre functions''' ,  McGraw-Hill  (1953)</TD></TR><TR><TD  valign="top">[3]</TD> <TD valign="top">  N. Bourbaki,    "Elements of mathematics. Functions of a real variable" , Addison-Wesley  (1976)  (Translated from French)</TD></TR><TR><TD  valign="top">[4]</TD> <TD valign="top"> , ''Math. anal.,  functions, limits, series, continued fractions'' , ''Handbook Math.  Libraries'' , Moscow  (1961)  (In  Russian)</TD></TR><TR><TD  valign="top">[5]</TD> <TD valign="top">  N. Nielsen,    "Handbuch der Theorie der Gammafunktion" , Chelsea, reprint  (1965)</TD></TR><TR><TD  valign="top">[6]</TD> <TD valign="top">  N.Ya. Sonin,    "Studies on cylinder functions and special polynomials" , Moscow  (1954)  (In Russian)</TD></TR><TR><TD  valign="top">[7]</TD> <TD valign="top">  G.F. Voronoi,    "Studies of primitive parallelotopes" , ''Collected works'' , '''2''' ,  Kiev  (1952)  pp. 239–368  (In  Russian)</TD></TR><TR><TD  valign="top">[8]</TD> <TD valign="top">  E. Jahnke,  F.  Emde,  "Tables of functions with formulae and curves" , Dover, reprint  (1945)  (Translated from German)</TD></TR><TR><TD  valign="top">[9]</TD> <TD valign="top">  A. Angot,    "Compléments de mathématiques. A l'usage des ingénieurs de  l'electrotechnique et des télécommunications" , C.N.E.T.  (1957)</TD></TR></table>
 
 
 
 
 
 
 
====Comments====
 
The  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331098.png" />-analogue of the  gamma-function is given by
 
 
 
<table class="eq"  style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331099.png"  /></td> </tr></table>
 
 
 
<table  class="eq" style="width:100%;"> <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g043310100.png"  /></td> </tr></table>
 
 
 
cf.  [[#References|[a2]]]. Its origin goes back to E. Heine (1847) and D.  Jackson (1904). For the gamma-function see also [[#References|[a1]]].
 
 
 
====References====
 
<table><TR><TD  valign="top">[a1]</TD> <TD valign="top">  E. Artin,    "The gamma function" , Holt, Rinehart &amp; Winston  (1964)</TD></TR><TR><TD  valign="top">[a2]</TD> <TD valign="top">  R. Askey,    "The <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g043310101.png" />-Gamma and  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g043310102.png" />-Beta functions"  ''Appl. Anal.'' , '''8'''  (1978) pp.  125–141</TD></TR></table>
 

Latest revision as of 16:10, 29 April 2012

Post $\TeX$ remarks.

  • Added links to Bohr–Mollerup
  • Expanded the reference to Artin's monograph
  • Renamed the second integration contour from $C^*$ to $C'$
  • Used $\gamma$ for the Euler constant rather than $C$ (which also clashed with the notation for the first integration contour mentioned)
  • Redrew all figures

--Jjg 19:58, 27 April 2012 (CEST)

I have also used $\gamma$ for Euler constant, since this is the modern convention. TBloom 22:08, 27 April 2012 (CEST)
Good idea, I have never seen anything but $\gamma$ in this context. According to this article on MathWorld, $C$ was used by Euler (1735), $\gamma$ by Mascheroni (1790). So a not-so-modern modern convention :-) --Jjg 22:34, 27 April 2012 (CEST)
How to Cite This Entry:
Gamma-function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gamma-function&oldid=25551