Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(301 intermediate revisions by the same user not shown)
Line 1: Line 1:
''Also: analytic measurable space''
+
<ref> [http://hea-www.harvard.edu/AstroStat http://hea-www.harvard.edu/AstroStat]; <nowiki> http://www.incagroup.org </nowiki>; <nowiki> http://astrostatistics.psu.edu </nowiki> </ref>
  
[[:Category:Descriptive set theory]]
+
====Notes====
[[:Category:Classical measure theory]]
+
<references />
  
{{User:Rehmann/sandbox/MSC|03E15|28A05,54H05}}
+
-------------------------------------------
  
$ \newcommand{\R}{\mathbb R}
 
\newcommand{\C}{\mathbb C}
 
\newcommand{\Om}{\Omega}
 
\newcommand{\A}{\mathcal A}
 
\newcommand{\B}{\mathcal B}
 
\newcommand{\P}{\mathbf P} $
 
A [[measurable space|Borel space]] is called '''analytic''' if it is [[Measurable space#separated|countably separated]] and [[Measurable space#isomorphic|isomorphic]] to a [[Measurable space#quotient space|quotient space]] of a [[Standard Borel space|standard]] Borel space.
 
  
This is one out of several equivalent definitions (see below).
+
{|
 +
| A || B || C
 +
|-
 +
| X || Y || Z
 +
|}
  
Finite and countable analytic Borel spaces are trivial: all subsets are measurable. Uncountable
 
analytic Borel spaces are of [[Continuum, cardinality of the|cardinality continuum]]. Some, but not all, of them are standard; these are mutually isomorphic. Some additional (to [[ZFC]]) set-theoretic axioms imply that all nonstandard analytic Borel spaces are mutually isomorphic (see [1, Sect. 26.D]).
 
  
''Non-example.'' The [[quotient group]] $\R/\Q$ (real numbers modulo rational numbers, additive) may be thought of as a quotient measurable space, $\R$ being endowed with its Borel σ-algebra. Then $\R/\Q$ is a quotient space of a standard Borel space, but not an analytic Borel space, because it is not countably separated. (See [2, Sect. 5].)
 
  
====Relations to analytic sets====
+
-----------------------------------------
 +
-----------------------------------------
  
A subset of a standard Borel (or just countably separated measurable) space is called ''analytic'' if it is the image of a standard Borel space under a Borel map. (See [1, Sect. 14.A].)
+
$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$
  
As every subset of a measurable space, an analytic set is itself a measurable space (a
+
<asy>
[[Measurable space#subspace|subspace]] of the given space).
+
size(100,100);
 +
label(scale(1.7)*'$T(\\Sigma)\hookrightarrow T(\\Sigma,X)$',(0,0));
 +
</asy>
  
'''Definition 2''' (equivalent).
+
<asy>
A Borel space is called ''analytic'' if it is isomorphic to an analytic set.
+
size(220,220);
  
Equivalence of the two definitions follows from the [[Standard Borel space#Blackwell-Mackey theorem|Blackwell-Mackey theorem]] and the following simple fact: every countably separated measurable space admits a one-to-one measurable map to a standard Borel space.
+
import math;
  
See [1, Sect. 25.A], [2, Sect. 4] for these, and some other, definitions of analytic sets and spaces.
+
int kmax=40;
  
====Measurable injections====
+
guide g;
 +
for (int k=-kmax; k<=kmax; ++k) {
 +
  real phi = 0.2*k*pi;
 +
  real rho = 1;
 +
  if (k!=0) {
 +
    rho = sin(phi)/phi;
 +
  }
 +
  pair z=rho*expi(phi);
 +
  g=g..z;
 +
}
 +
 
 +
draw (g);
  
Several [[Standard Borel space#Measurable injections|results on standard Borel spaces]] generalize to analytic Borel spaces (see [2, Sect. 4]).
+
defaultpen(0.75);
 +
draw ( (0,0)--(1.3,0), dotted, Arrow(SimpleHead,5) );
 +
dot ( (1,0) );
 +
label ( "$a$", (1,0), NE );
  
'''Theorem 1a.''' If a bijective map between analytic Borel spaces is measurable then the inverse map is also measurable.
+
</asy>
 
 
'''Theorem 1b.''' If σ-algebras $\A$, $\B$ on $X$ are such that $\A\subset\B$ and $(X,\A)$, $(X,\B)$ are analytic then $\A=\B$.
 
 
 
''Example.'' The real line with the Lebesgue σ-algebra is not analytic (by Theorem 1b).
 
 
 
'''Theorem 2a.''' If a bijective map  from an analytic Borel space to a countably separated measurable space  is measurable then the inverse map is also measurable.
 
 
 
'''Theorem 2b.''' If σ-algebras $\A$, $\B$ on $X$ are such that $\A\subset\B$,  $(X,\A)$ is countably separated and $(X,\B)$ is analytic then $\A=\B$.
 
 
 
'''Theorem 2c.''' If $(X,\A)$ is an analytic Borel space then $\A$ is generated by  every at most countable [[Measurable space#separating|separating]]  subset of $\A$. (See [3, Sect. 3].
 
 
 
====References====
 
{|
 
|valign="top"|[1]|| Alexander S.  Kechris, "Classical descriptive set theory", Springer-Verlag (1995). &nbsp; {{MR|1321597}} &nbsp;{{ZBL|0819.04002}}
 
|-
 
|valign="top"|[2]|| George W. Mackey,  "Borel structure in groups and their duals", ''Trans.  Amer. Math. Soc.''  '''85''' (1957), 134–165. &nbsp; {{MR|0089999}} &nbsp;  {{ZBL|0082.11201}}
 
|-
 
|valign="top"|[3]|| S.M. Srivastava, "A course on Borel sets", Springer-Verlag (1998). &nbsp; {{MR|1619545}} &nbsp;{{ZBL|0903.28001}}
 
|}
 

Latest revision as of 07:12, 13 March 2016

[1]

Notes

  1. http://hea-www.harvard.edu/AstroStat; http://www.incagroup.org ; http://astrostatistics.psu.edu


A B C
X Y Z




$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=20588